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Resumo 

 

 O Mercado das Energias tem evoluído de modo a fornecer energia elétrica ao consumidor 

de uma forma segura e fiável. De modo a atingir esse objetivo e manter um sistema com a dita 

fiabilidade, é necessário haver um equilíbrio entre produção e consumo, e/ou fornecimento e 

procura, a cada instância de tempo. 

 A Resposta Dinâmica dos Consumidores (“Demand Response”) começa a ser um 

importante recurso que pode de forma ativa ser utilizada na operação e no funcionamento do 

Mercado das Energias de modo a melhorar a sua fiabilidade e eficiência, reduzir picos de consumo 

e as várias oscilações de preço. Com a introdução de redes elétricas inteligentes e com a 

implementação e desenvolvimento das tecnologias de informação, os consumidores podem 

ativamente participar em ações de Resposta Dinâmica e fazer uso dos seus recursos (consumos 

controlados, armazenamento e produção local). 

 O objetivo desta dissertação é de avaliar o impacto das ações de Resposta Dinâmica dos 

Consumidores na fiabilidade dos mercados das energias e encontrar uma solução que mantenha e 

preveja consumos no mercado diário e mercado intradiário equilibrado. Por conseguinte, foi 

implementada uma abordagem para identificar as ações de controlo, simular o seu impacto nos 

padrões de consumo de cargas e avaliar os efeitos das mudanças na procura. Para a abordagem 

implementada utilizou-se o algoritmo evolutivo NSGA-II em conjunto com outros modelos 

baseados no local para a identificação das ações de controlo e avaliação do impacto nos padrões 

de procura. 

 Nesta dissertação o software MATLAB serviu de via para a implementação da abordagem 

delineada. Os resultados deste trabalho mostram que é possível atenuar as diferenças entre as 

procuras de carga no mercado intradiário e as procuras de carga previstas para o mercado diário 

com a aplicação das devidas ações de gestão de procura de carga adequadas. 

 

Palavras-Chave: Fiabilidade; Demand Response; Estratégia Evolutiva; Modelo Baseado no 

Local 
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Abstract 

 

The Electricity markets have evolved in order to supply power to consumers in a secure and 

reliable way. In order to achieve this target and have a reliable system, it is necessary to be a 

balance between supply and demand at each period of time. 

Demand Response is becoming important as a resource that can be actively used in the operation 

and functioning of the Electricity markets to improve the reliability and efficiency and also to 

decrease peak demand and price instability. By introducing smart grids and with the deployment 

and development of information and communication technologies, consumers can actively 

participate in demand response actions and use their resources (controllable demand, storage and 

site generation). 

The objective of this thesis is to assess the impact of demand response actions on the reliability of 

electricity markets and find a solution for keeping the demand forecast in day-ahead market and 

intraday market balanced. Hence, an approach was implemented to identify the control actions, 

simulate their impact on consumption patterns of loads, and evaluate the effects of the changes on 

the demand .The implemented approach used NSGA- II evolutionary algorithm along with 

physically based models to identify the control actions and evaluate their impact on demand 

patterns. 

 In this thesis Matlab software was used in order to implement the approach. The results of this 

work show that it is possible to mitigate the differences between the load demands in intraday 

market and forecasted load demands in day-ahead market with the application of appropriate load 

demand management actions. 

 

 

 

Key words: Reliability; Demand Response; Evolutionary Strategy; Physically Based 

Model 
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Chapter 1 

Introduction 
 

1.1 Background and Motivation  
 

The structure of Electricity supply industry was changed because of the deregulation and 

liberalization of power systems. In traditional method, power demands were supplied whenever it 

was needed. In new method it is important to keep the system more efficient by keeping demand 

fluctuations as small as possible. To have a reliable operation it is necessary to be a balance 

between supply and demand in real time. Achieving this balance could have some difficulties 

because of rapid and unexpected changes which may occur between demand and supply levels for 

so many reasons such as outages and sudden load changes. 

Renewable energy sources along with demand response programs are the cheaper resources 

available for operating the system according to this new method and they are increasingly 

becoming important in the past several years. Change of electricity consumption pattern by end-

users in response to the changes in price of electricity is regarded as demand response. Demand 

response play an important role in competitive electricity markets and can have so many 

advantages such as improving market efficiency, reducing peak demand and price instability and 

enhancing the reliability. DR participation in system operation markets can be increased by using 

advanced smart grid infrastructures 

DR can be used in electricity markets by implementing new rules and regulations in electricity 

markets. In the electricity market players can be divided into DR buyers which are usually retailers 

and distributors and DR sellers who are large customers or new market participants such as 

distribution system operators (DSOs), load service entities (LSEs), and DR aggregators which 

have the responsibility of managing customer responses. 

Retailer obtains electricity from the wholesale market and sells it to the customers. The day-ahead 

market is a market in which the price of the electricity is calculated for the next day and the price 
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of electricity is not the same for different periods of time usually each thirty minutes over twenty-

four hours. Day-ahead market is the main source for retailer in some electricity markets and retailer 

buys electricity based on the amount of demand needed for the next day and the spot prices in day-

ahead market. Retailer as a buyer needs to assess how much electricity is needed to meet the 

demand of the following day. The amount of power supplied by the retailer should match with the 

total demand of all consumers at each period. If there are some differences between them it should 

be balanced by adjusting them through intraday market. Prices in intraday market are different 

from the spot prices of day-ahead market and retailer prefers to compensate these difference by 

using demand response actions. 

In this thesis we have tried to implement some load management programs to maintain the balance 

between demand forecast in day-ahead market and intraday demand forecast which is close to the 

real-time demand. To achieve this purpose we have used physically based load models which are 

freezers in this thesis and implemented some demand management actions to mitigate the 

differences. The main purpose of this thesis is to use different strategies and find out the best 

solution by using multi-objective optimization tool (NSGA- II). 

 

1.2 Dissertation structure 
 

This dissertation is divided into different chapters. Chapter 2 presents a general explanation about 

electricity markets and talks about some different markets around the world. It is made one brief 

reference to the evolution of the electricity sector, and some examples of existing markets. With 

regard to Chapter 3, demand response is dissected in literature, different classification of demand 

response and costumer participation in demand response activities is explained. Chapter 4 talks 

about the methodology of this thesis and refers to the existence of physically based models, mostly 

freezers. In addition, a small review about evolutionary and genetic algorithms is carried out. In 

the end of this chapter the problem which is going to be solved and the formulation needed for our 

work is mentioned. In chapter 5 the case study was analyzed, in order to verify the impact of load 

management strategies in our work. Finally, in Chapter 6 Conclusions that this work yielded are 

drawn, and some suggestions for future works are proposed. 
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Chapter 2 

Electricity market 
 
 

In the past, the electricity sector was based on vertically integrated monopolies consisting of 

independent generation, integrated transmission and distribution that usually owned by states or a 

single entity. During the last decades, the infrastructure of system operation and planning has been 

changed by restructuring and deregulation of power system [1]. The term ‘deregulation’ means 

that power market is neither owned nor run by the state (government) anymore. This deregulation 

changed the monopolistic structure and unbundled the main sections of integrated utilities 

(generation, transmission, distribution and retail supply) and let generation activities and electricity 

retailing take part in a competition market while the remaining parts of utilities remained regulated 

[2, 3]. Due to different market organizations in the electricity industry and different regulatory 

policies around the world, there is no single standard market model yet. Nevertheless, from the 

various electricity market models which are operating in different parts of the world, it is likely to 

classify two main types of market organizations namely pool (centralized markets) and bilateral 

contract (decentralized market models) or a combination of their variants [4]. In pool or centralized 

markets, the whole electricity is traded via the pool and most of the time, the supply side places 

the bid into the pool, while the demand is estimated by market operator. The pool can either run 

on a day-ahead market or a market which is similar to an intraday real-time market [4]. A bilateral 

contract or decentralized market is founded on a bilateral contracts among sellers (generators) and 

buyers (distribution companies) participating freely into bilateral contracts for electricity supply 

[4]. 

The wholesale electricity market is a mandatory pool where Energy is transacted. In this market 

energy and ancillary services are simultaneously traded in a day-ahead market and are dispatched 

on the available units [5]. These markets are organized with several generation companies. 

Generation companies compete to sell to all distributors or directly to customers and retailers if 

retail competition is allowed [3]. Retail competition is implemented to allow consumers to choose 

among different sellers (retail companies) or to buy directly from the wholesale market. The 
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electrical energy is purchased from the wholesale market and it is sold to consumers who are not 

able to participate in the wholesale market. Retailers can compete with each other by offering 

cheaper prices and better services. The competitive wholesale markets provide stronger incentives 

for controlling construction and operating costs of new and existing generating capacity which 

lead suppliers to save costs. In addition, competition provides better incentives for network 

operators to ensure appropriate levels of service quality. Usually, the wholesale electricity market 

can be categorized as three market places according to different time scales. 

 

 

2.1 Different types of markets 
 

2.1.1 Day-ahead Market 
 

The spot market is also called as day-ahead market is a forward market in which clearing prices 

are calculated for each hour of the next operating day based on generation offers, demand bids, 

bilateral transaction schedules and so on. Most of the electricity is traded majorly through day-

ahead market. Therefore market operators need to submit their offers for all hours of the day-ahead 

and it should be a couple of hours ahead of time. 

2.1.2 Intraday markets 

 

Intraday market is a market that operates immediately after the time when clearing prices of Day-

Ahead Auction is represented and it will be closed approximately near to real time, commonly 60 

minutes or in some markets 45 minutes. In intraday market participants can benefit from more 

accurate forecasts. 

2.1.3 Real-time electricity markets (RTM) 

 

RTM is a balancing market where the clearing prices are calculated every 5 min based on the 

different criteria such as actual system operations security-constrained and economic dispatch [6]. 

The negative aspects of buying electricity at wholesale markets for the electricity end-users would 

be the market uncertainty along with the monetary risks of purchasing at real-time prices. The 

contributors within the wholesale market need to keep track of the market, which can be hard for 
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them and needs unlimited accessibility to the revised market details. A further obstacle towards 

the contribution of the customers in wholesale electricity markets is considered the insufficient 

infrastructure of the essential systems (e.g., smart metering systems at the endpoints) in the 

majority of the electric power systems. Retail electricity providers take part in the wholesale 

market with respect to the end-users. They protect the end-users from economic negative 

consequences in the market and the real-time pricing difficulties, and they take the risks rather 

than end-users. This means that Retail markets are susceptible to financial risks due to the 

unpredicted price changes, price spikes, volatile loads and for these reasons they have to buy 

electricity at prices higher that their selling prices [7]. The risk of financial losses can be reduced 

by using different approaches such as well-designed demand response programs or using the 

distributed generation units. Demand response distributed energy sources can have various 

benefits such as lowering of electricity charges through changing the electricity consumption 

pattern to hours that the electricity prices are lower. Additionally Demand response programs 

perform a significant role in enhancing market efficiency, reducing peak demand and price 

instability and can have a predominant role in mitigating market and network problems. It can 

reduce retailer’s risk whenever the prices are high by implementing smart controllers and using a 

proper method to manage them. Electricity retailers intend to implement DR in electricity markets 

in order to improve the security and reliability of the network and also to alleviate the risk of pool 

price volatilities. 

 

 

 

2.2 Some Electricity Market Operators 
 

2.2.1 Nord pool 

 

Nord Pool is the Nordic commodity market for electricity which was established in 1992 as a 

consequence of the Norwegian energy act of 1991 that formally paved the way for deregulation. 
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 Elspot Market 

The Elspot market is a day-ahead auction market for Nord Pool Spot where electrical power is 

traded for delivery during the next day [8]. Prices calculated based on supply, demand and 

transmission capacity (how much power can be moved from one area to another). Market 

participants can submit offers to sell or bids to buy physical electricity for the following day [9]. 

Players who want to trade power on the Elspot market and participants who want to sell power to 

Elspot have to send their purchase orders and sale offers to Nord Pool not later than 12:00 CET. 

Figure 2.1 demonstrates different actions taken by market participants in Elspot market. 

 

Figure 2.1: Elspot trading – daily routines [8] 

 

  Elbas Market 

The Elbas market is an intraday market for Nord Pool where the actual generation (or 

consumption) during the day are adjusted. Participants are allowed to trade physical electricity for 

the next day at 14:00, when the spot prices are available for the next day. Trades are allowed up to 
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one hour before the operation hour. Elbas trading schedule continuous adjustment trading in hourly 

contracts can be performed until one hour before the delivery hour. New contracts are opened after 

the day-ahead Elspot prices have been set. Before 2 p.m. the remaining hours of the current day 

are tradable and then day-ahead contracts are open for trading. The objective of Nord Pool financial 

market is to provide an efficient market, with excellent liquidity and a high level of security to 

offer a number of financial power contracts that can be used profitably by a variety of customer 

groups [10]. 

 

 

 

2.2.2 MIBEL 

 

The Iberian Electricity market (MIBEL) is an agreement between the governments of Portugal and 

Spain with the aim of promoting the integration of both countries' electrical systems. The 

consequence of this cooperation has been very constructive and fruitful and has made an important 

step in building the Internal Energy Market in addition to its contribution towards establishing an 

electricity market at the Iberian level [11]. MIBEL includes a Day-Ahead Market (DAM) and 

Intraday Market (IM) located in Spain and managed by OMIE and Derivative/forward Market 

located in Portugal and managed by OMIP and also an ancillary services market that balances the 

stability between electricity production and consumption and operates in real time. DAM (Day-

Ahead Market) is the predominate market which takes part in energy transactions the day before 

the delivery day. It has 24 simultaneous auctions, one for each hour of the next day. The closing 

hour of the day-ahead market is 10.00 am on the day before supply; clearing prices are published 

at 11.00 am. Intraday market runs just before and through the delivery day. In this markets 

electricity is either sent or bought by Generation Companies so they can role both as buyers or 

sellers of energy. It has the same function as the DAM has and Generation Companies implement 

it to change the DAM resulting generation scheduling. It is worth bearing in mind that a unit can 

only submit buy or sell offers in one hour, not both of them simultaneously, although this role can 

change during the different hours [12]. 
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2.2.3 PJM 

 

The Pennsylvania-New Jersey-Maryland (PJM) operates the wholesale electricity market of the 

13 states of U.S. and Columbia District. It mainly operates as a day-ahead energy market and a 

real-time energy market. In these markets customers are allowed to participate directly in real time 

[13] and day-ahead markets. In day-ahead market participants can buy and sell energy at binding 

day-ahead prices and also transmission customers are allowed to schedule bilateral transactions at 

binding day-ahead congestion charges based on the differences in Locational Marginal Price 

(LMP) between the transaction source and sink locations [6]. It means that PJM will pay LMP to 

customers whenever the LMP in the given zone is higher than a trigger point and if the LMP is 

below or equal to a trigger point, customers will receive the difference between the LMP and the 

generation and transmission components of the customer’s bill [13]. 

2.2.4 New England Market 

 

The New England electricity market has designed a real-time demand response program for 

customers in which customers are able to decrease their electricity consumption within 30 hours 

or two hours when it is needed and New England independent system operator (ISO-NE) asks for 

it. The request by ISO-NE is named as "reliability events."  In order to contribute in the real-time 

demand response program customers need to install special metering and communication systems 

which are able to record participant's electricity consumption in five-minute intervals. The purpose 

of ISO-NE's price program is to reduce the severe consequences of real-time market price 

volatility, while its reliability programs are intended to provide a stock of resources that help avoid 

electricity shortages [14]. 
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Chapter 3 

Demand Response 
 
 

There is a growing consensus that insufficient levels of demand response exist in the Europe 

electric power system. The disconnection between short-term electricity production costs and 

time-averaged, fixed retail rates paid by most consumers leads to an inefficient use of resources. 

An important benefit of demand response is avoided need to build power plants to serve heightened 

demand that occurs in just a few hours per year. To meet the above requirements, tremendous 

research is being carried out to build new electric grids. Electrical Grid is a network of horizontal 

and perpendicular lines cross each other to connect synchronized power providers and consumers 

by transmission and distribution lines together. Electricity is produced in these grids by using 

centralized power plants of hydraulics, combined heat, nuclear, and fossil fuel based plants [15]. 

There is no bidirectional communication between supplier and demand side and power flow is 

almost unidirectional [16] as shown in Figure 3.1: 

 

Figure 3.1: Power and Information Flow in Traditional Utility Environment [16] 

Smart grid is a new concept of electrical grid seeks to improve operation, maintenance and 

reliability of the network through delivering electricity in a controlled and smart way from 

electricity supplier to a consumer. Smart grid as an intelligent grid can store, communicate and 

make decisions by collecting data from electric meters. By emerging smart metering infrastructure 

to the smart grid it is possible for residential users to control their electricity costs [17] and have a 

bidirectional communication with the utility operator. Bidirectional communication and smart 

metering infrastructure are two key technical drivers for introducing demand response into smart 

grids [18]. 
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Figure 3.2: Power and Information Flow under Smart Grid [16] 

Demand response can be defined more specifically as Changes in electric usage by end-use 

customers from their normal consumption patterns in response to changes in the price of electricity 

over time, or to incentive payments designed to induce lower electricity use at times of high 

wholesale market prices or when system reliability is jeopardized [19]. DR can play an important 

role for securing network reliability and controlling the price volatilities in wholesale market. DR 

programs are able to  change electricity consumption patterns of end-use customers who are 

intended to change the timing, level of instantaneous demand, or the total electricity consumption 

[20]. DR lets customers to have interaction with utility and respond to them whenever it is 

necessary. The collaboration between customers and utility will have short impacts on the 

electricity markets and lead to economic benefits for both sides. Furthermore DR can enhance the 

reliability of the power systems and have long-term consequences such as lowering peak demand, 

decreasing overall plant and capital cost investments and postponing the need for network upgrade 

[7]. Lowering peak demand can have some advantages through lowering the quantity of generation 

and transmission assets needed to supply electrical service. Decreasing the demand in response to 

high charges reduces the expenses of energy production and keeps the expenses at the same level 

in energy spot markets. Reduced demand in reaction to system reliability troubles improves 

operators’ capability to control the electric grid—the network that transmits power from generators 

to customers—and reduces the possibility of sudden shut down or complete power cut [5]. 

There are three general ways by which a customer can participate in demand response options. 

every of these actions involves price and measures taken by the client [21]. 
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 Foregoing: Reducing their energy consumption through load curtailment strategies at 

times the price of electricity is high; for instance changing the thermostat set point of 

refrigerators or air conditioners that can have some uncomfortable results for a short period 

 Shifting: Moving energy consumption to a different time period by rescheduling 

consumption from high peak period to another time; for example instead of using their 

washing machines during the high price periods users can postpone it to another time. 

 Onsite generation: customers can use some distributed energy resources or emergency 

generators to limit their dependence on the main grid and to supply some of their needs, 

For instance, they can install some solar panels or some electricity storages in order to have 

less dependency to the power system. 

Customer’s contribution in demand reduction will depend on the contract with the utility or 

electricity suppliers and can be either directly or through an intermediary. Different price based or 

incentive based plans are useful for this issue. For household clients, using the demand response 

signal needs accomplishing a number of available actions including dimming or switching off non-

critical lights, adjusting the thermostat set-points, or switching off non-critical equipment 

Regardless of the plan which is adopted, the customer’s contribution are typically considered either 

on/off services from where the load is cut down or turned off totally (worst case), smooth decrease 

in consumption at its own discretion, or shifting the loads from peak hours to non-peak hours. 

 

3.1 Quantifying the Benefits of Demand Response  
 

• Quantifying the potential nation-wide benefits of demand response is a difficult undertaking 

requiring the following key information and assumptions:  

• Demand Response Options—the types of time-varying rates and demand response programs 

currently offered (or potentially available) 

• Customer Participation—the likelihood that customers will choose to take part in the offered 

programs 

• Customer Response—documenting and quantifying participants’ current energy usage 

patterns, and determining how participants adjust that usage in response to changes in prices 

or incentive payments 
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• Financial Benefits—developing methods to quantify the short- and long-term resource savings 

of load response under varying market structures 

• Other Benefits—identifying and quantifying any additional benefits provided by demand 

response resources (e.g., improved reliability); and  

• Costs—establishing the costs associated with achieving demand response 

 

In the literature Demand response can be classified differently. Based on [19]  DR can be separated 

into two categories, price (Time) -based programs and incentive-based programs, while in [22] in 

addition to the first two groups, an extra group has been added named as Demand reduction bids. 

3.2 Classifying Demand Response Options 
 

Price-based or time-based demand response programs depend on costumer’s choice. The price of 

electricity varies over the time in order to motivate consumers to change and decrease their 

consumption patterns. Time-of-use (TOU), real-time pricing (RTP) and critical-peak pricing 

(CPP) are three different tariffs included in this program. Incentive-based programs relies on 

customer’s reaction to financial rewards given by electricity utility during the period of high peak 

demand in order to curtail their consumption [23]. Direct Load Control (DLC), Interruptible/curtail 

able service (I/C), Emergency Demand Response Program (EDRP), Capacity Market Program 

(CMP), Demand Bidding/Buy Back and Ancillary Service Markets (A/S) are some common 

demand response programs related to Incentive-based programs [24]. In demand reduction bids 

customers place their reduction bids to the aggregators or to the utilities when the prices are high 

and they wish to be curtailed [22]. Table 3-1 gives a brief explanation of each demand response 

programs. 

 

 

 

 

 

 



 

13 
 

Demand Response Options 

Policymakers have several tariff and program options for eliciting demand response. The most commonly 

implemented options are described below.  
 

Tariff Options 

    (“price-based” demand response) 

 

Time-of-use (TOU): a rate with different unit 

prices for usage during different blocks of time, 

usually defined for a 24-hour day. TOU rates 

reflect the average cost of generating and 

delivering power during those time periods. 

TOU rates often vary by time of day (e.g., peak 

vs. off-peak period), and by season and are 

typically pre-determined for a period of several 

months or years. Time-of-use rates are in 

widespread use for large commercial and 

industrial (C/I) customers and require meters that 

register cumulative usage during the different 

time blocks.  

 

Real-time pricing (RTP): a rate in which the 

price for electricity typically fluctuates hourly 

reflecting changes in the wholesale price of 

electricity. RTP prices are typically known to 

customers on a day-ahead or hour-ahead basis.  

 

Critical Peak Pricing (CPP): CPP rates include a 

pre-specified high rate for usage designated by 

the Utility to be a critical peak period. CPP 

events may be triggered by system contingencies 

or high prices faced by the utility in procuring 

power in the wholesale market, depending on the 

program design. CPP rates may be super-

imposed on either a TOU or time-invariant rate 

and are called on relatively short notice for a 

limited number of days and/or hours per year. 

CPP customers typically receive a price discount 

during non-CPP periods. CPP rates are not yet 

common, but have been tested in pilots for large 

and small customers in several states  

(e.g., Florida, California, and North and South 

Carolina).  

 

Program Options 

(“incentive-based” demand response) 

Direct load control: a program in which the utility or system operator 

remotely shuts down or cycles a customer’s electrical equipment (e.g. air 

conditioner, water heater) on short notice to address system or local 

reliability contingencies. Customers often receive a participation payment, 

usually in the form of an electricity bill credit. A few programs provide 

customers with the option to override or opt-out of the control action. 

However, these actions almost always reduce customer incentive payments. 

Direct load control programs are primarily offered to residential and small 

commercial customers.  

 

Interruptible/curtailable (I/C) service: 

Programs integrated with the customer tariff that provide a rate discount or 

bill credit for agreeing to reduce load, typically to a pre-specified firm 

service level (FSL), during system contingencies. Customers that do not 

reduce load typically pay penalties in the form of very high electricity prices 

that come into effect during contingency events or may be removed from 

the program. Interruptible programs have traditionally been offered only to 

the largest industrial (or commercial) customers.  

 

Demand Bidding/Buyback Programs: 

programs that (1) encourage large customers to bid into a wholesale 

electricity market and offer to provide load reductions at a price at which 

they are willing to be curtailed, or (2) encourage customers to identify how 

much load they would be willing to curtail at a utility-posted price. 

Customers whose load reduction offers are accepted must either reduce load 

as contracted (or face a penalty).  

 

Emergency Demand Response Programs: programs that provide incentive 

payments to customers for measured load reductions during reliability-

triggered events; emergency demand response programs may or may not 

levy penalties when enrolled customers do not respond.  

 

Capacity Market Programs: these programs are typically offered to 

customers that can commit to providing pre-specified load reductions 

when system contingencies arise. Customers typically receive day-of 

notice of events. Incentives usually consist of up-front reservation 

payments, determined by capacity market prices, and additional energy 

payments for reductions during events (in some programs). Capacity 

programs typically entail significant penalties for customers that do not 

respond when called.  

 

Ancillary Services Market Programs: 

These programs allow customers to bid load curtailments in ISO/RTO 

markets as operating reserves. If their bids are accepted, they are paid the 

market price for committing to be on standby. If their load curtailments are 

needed, they are called by the ISO/RTO, and may be paid the spot market 

energy price.  

 

 

Table 3-1: Common types of demand response programs [22] 
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Chapter 4 

Methodology 
 

Demand response needs some improvements of control mechanism to let end-use costumers 

change the electricity consumption as a result of price variations over the time. Presence of 

controllable loads are necessary in order to implement the control mechanism. Controllable loads 

include different range of loads such as refrigerators, freezers, washing and dishing machines, air 

conditioners, coolers, heaters, water heating and so on. These loads can be either interrupted or 

shifted by utilities and the load curve can be changed by decreasing demand. 

The activities used to change these controllable loads are generally called Load Management (LM) 

Programs. LM programs can change the usual working cycles of loads by using appropriate power 

curtailment actions [25]. Direct Load Control (DLC) and Interruptible Load Management are the 

most common programs used in LM programs. DLC can reshape load consumption of end-users 

by changing the demand of controllable load without having remarkable impact on their life style. 

LM programs can use thermostatic loads which are able to change the power demand of loads by 

adjusting different thermostat points. Temperature of the fluid being heated or cooled defines the 

demand of these loads [26]. For a cooling device whenever the temperature is higher than the 

above limit of dead band the power will be connected and whenever the temperature is below the 

lower limit of dead band the power will be disconnected and it is opposite for a heating device. In 

these specific types of loads the demand pattern will be changed as soon as the regular working 

cycle is changed by an external action [27].  

4.1 Physically based load models 
 

Since LM programs will change the normal behavior of loads it is important to use models which 

are capable to capture these kinds of behaviors. In order to evaluate the impacts of load 

management strategies it is necessary to use tools for monitoring the result of actions. Physically 

based load models (PBLM) are models that let you know, at any time the value of each variable 

interest. By using these models, operation equipment can be simulated and also it is possible to 

evaluate the impact of LM actions. PBLMs can recreate the demand of end-use loads such as 

thermostatic loads by simulating the physical phenomena happening in these sort of loads and also 
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replicating thermostatic behaviors influencing the demand of these loads. By using some software 

tools it is possible to simulate the load diagram and assess the results both with and without 

implementing load control strategies. An important feature that modeling tools should be capable 

of is that they can simulate the demand of group of end-use loads because usually load control 

strategies are applied over group of loads [26, 27]. 

The loads that are used in this thesis are freezers and the operation of these loads can be controlled 

by changing the thermostat point. Thermostat allows certain range of temperatures and determines 

the operational status of loads and turn them on/off. In thermostatic loads like freezers both 

parameterizing thermostat and cutting actions can be implemented. In this thesis simultaneous 

control both with changing the thermostat set points and direct load control (DLC) has been used 

which means that loads consumption pattern is changed by altering the thermostat values of the 

freezers and switching ON/OFF of them. The reason for choosing this type of PBLM is due to 

their availabilities in all homes and many other places which lead to have a better assessment of 

load management strategies. The other reason is that these types of loads are operating during the 

24 hours a day and they are a resource with high temporal availability. In order to simulate these 

loads, a PBLM which has been created and validated experimentally in [28] has been used.  

 

4.2 Optimization and Evolutionary Algorithms 
 

 

Optimization is a technique used to select a number of probable solutions which match extreme 

values of one or more objectives. The necessity for discovering such ideal solutions within a 

problem originates mainly out of the excessive reason for either designing a solution for minimum 

possible cost of fabrication, or for optimum possible reliability, or others. As a result of such 

extreme properties of optimal solutions, optimization methods are so important in practice, 

predominantly in engineering design, scientific experiments and business decision–making. 

Single-objective optimization refers to a procedure to find the optimal solution for an optimization 

problem which has only one objective function. When the optimization problem is related to more 

objective functions, it is a needed to find more than one optimum solution and this optimization 

problem is called multi-objective optimization [29]. Typically optimization problems have 
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multiple objectives. In most cases these objectives are contradicting, it means that by optimizing 

one objective another objectives will become poor. 

Evolutionary algorithms are stochastic search techniques that imitate the metaphor of natural 

biological evolution. Evolutionary algorithms work on a population of potential solutions by using 

a theory that is based on the survival of the fittest to produce better estimates to a solution. Every 

single generation, a completely new number of estimates is created by the whole process of 

selecting individuals according to their amount of fitness inside the problem domain and breeding 

them together using operators given from natural genetics. This approach results in the evolution 

of populations of individuals which are more appropriate for their environment comparing to those 

were just created from natural adaptation [30].  

The genetic algorithm (GA) is definitely an evolutionary algorithm that utilizes genetic operators 

to acquire optimal solutions with no presumptions concerning the search space. Genetic 

Algorithms (GAs) are search methods of probabilistic nature, which were inspired by the 

principles of genetics and natural selection. The process of natural evolution, according to the 

assumptions made by Darwin, involves two basic processes: the selection and reproduction with 

variation. The process of selection responsible for ensuring that individuals are better adapted to 

the environment (the fittest) and they have a greater chance of survival. The variation associated 

with reproduction and mutation ensures that the descendants that are being generated, will not be 

an exact copy of their parents. The combination of these two processes allows the development of 

individuals, over successive generations, occurs in a gradual manner [31]. 

 GA deals with a population of possible solutions and due to this fact, it can be used in multi-

objective optimization problems to collect several solutions at the same time. GA based multi-

objective optimization strategies were implemented nicely in order to look for a group of Pareto-

optimal solutions during the past decade and far beyond. Evolutionary multi-objective 

optimization (EMO) methodologies have proved their advantages in looking for a well-

incorporated and well-distributed group of near Pareto-optimal solutions during the 15 years or 

even more. As a result of so many widespread studies and accessible source codes either 

commercially or without restraint, the EMO strategies was used widely in a variety of problem-

solving projects and have received significant amounts of interest even from the classical multi-

criterion optimization and decision-making communities. Non-dominating sorting GA (NSGA-II) 
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is just about the most popular strategies to producing the Pareto frontier. The NSGA-II algorithm 

ranks the individuals by considering dominance. NSGA-II works by using elitism along with a 

phenotype crowd comparison operator that maintains diverseness without revealing any extra 

variables [32]. The main feature of NSGA-II could be as below: 

 It is a sorting non-dominated technique and it sorted individual based on the level of non-

domination;  

  Elitism is implemented and it stores all non-dominated solutions, and it enhance 

convergence properties;  

 a suitable automatic mechanics is adapted based on the crowding for ensuring diversity and 

spread of solutions; 

  Constraints are implemented using a modified definition of dominance without the use of 

penalty functions [33]. 

 

 

4.3 Problem  
 

As mentioned before retailer can take advantages of demand response programs in order to 

decrease financial risks and some other market problems. The retailer buys electivity from the 

market and sell the power to the consumers. The day-ahead market (called spot market) is 

mentioned in this work because it is expected to be the main market for many retailers. In the day-

ahead market a buyer, typically a utility/retailer, needs to assess how much energy is required for 

the following day and a seller needs to decide how much energy can be provided. Bids are placed 

for each hour of the next day and clearing prices are calculated. The orders placed in the day-ahead 

market are not always equal to the demands needed to be physically delivered in the next day. This 

differences can be balanced by giving a new forecast through intra-day market which is closer to 

the actual demand. The differences between demands of day-ahead market and intra-day demands 

can be resolved whether by purchasing an extra energy which is costly or by using Load 

Managements (LM) programs. 
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LM programs can implement load control strategies to mitigate these differences. The load strategy 

going to be used in this research is based on load on/off pattern or thermostatic loads management 

and the load models in this research are physically-based load models (Freezers). It means that by 

applying load curtailments or by changing the input temperature of Freezers in large numbers, the 

consumption pattern will be changed. The main purpose of this research is to use different 

strategies and find out the best solution by using evolutionary algorithms (EA). EA identifies a set 

of solutions which are then decodified into load control strategies. Freezers implement these 

strategies and then the load pattern is simulated under this control strategy. Then the obtained 

result is used by EA to identify the next generation. This cycle repeats until a stop condition is 

reached.  Figure 4.1 demonstrates the iterative process. 

 

Figure 4.1: iterative process of load management simulation  

 

 

4.4 Mathematical Formulation 
 

In order to assess the impact of demand management actions in a real situation, we used a 

substation load diagram with a transformation ratio High Voltage (HV) / Low Voltage (LV), in 

kV, of 60/15, an installed capacity of 60 MVA and a total number of consumers of 35950. This 

Assessing the 

impacts on 

demands 
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load diagram includes two different consumption patterns; one of these patterns is considered as 

day-ahead forecasted load demands and the other one is considered as an intraday forecast which 

is closer to actual demands. 

The above-mentioned load diagrams are shown in figure 4.2; as it can be seen, there are two 

different forecasts in two different instants of time. 

 

 
Figure 4.2: Aggregated load diagrams, forecasted in two different instants of time 

 

 

We notice that they just differ for following three time durations: 

 between 11:30 to 13:15 which the consumption is more than forecast 

 between 15:00 to 16:00 which the consumption is more than forecast 

 between 18:00 to 20:15 which the consumption is less than forecast 

These parts of the diagrams are shown graphically in figure 4.3. The main objective is to identify 

LM actions that allow minimizing the differences between these two curves. 
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Figure 4.3: Enlargement of the aggregated load diagrams between time duration 11:30 to 20:15 

 

 

In this study, two objective functions and three types of decision variables are considered which 

are explained in the following three subsections. 

 

 

4.4.1. Objective 1 

 

The 1st objective is to minimize the differences between aforesaid two load diagrams, i.e., the day-

ahead forecasted load demands and the intraday forecast which is close to actual load demands. In 

this regard, we consider time varying “thermostat set points” for freezers. Hence the thermostat 

set points of each group of freezers, with group index “j” at time instant “i,” can be represented 

with [Tminj + xij, Tmaxj + xij] in which “xij” varies in [-2, 2]. The objective is to find “xij” in 

such a way that minimize the differences between the two load diagrams. 

 

j index for group of loads (index for group of freezers) 

Ng number of load groups (in this study, Ng = 8) 

Tminj initial minimum thermostat set point of load group j 

Tmaxj maximum thermostat set point of load group j 

i index for time grid node under consideration  

N number of time grid nodes the load diagram is discretized (in this study, N = 1440)  

ti time instant at grid node i (in this study, ti = i – 1) 

xij the difference between proposed thermostat set points and initial thermostat set points for 

load group j at time instant i; it varies between -2oC to +2oC 
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DLCij the ON/OFF state of freezer for load group j at ti which can be decided by operator as a 

part of load management and called Direct Load Control; it switches between 0 and 1 

0

ijDLC  the ON/OFF state of freezer for load group j at ti with no LM action 

 

We assume the “blue color diagram” is the load demand forecast, and the “green color diagram” 

is the consumed load. Therefore, in the computer simulation when “xij = 0” for i = 1, 2, …, N and 

j = 1, 2, …, Ng, the freezer load consumption diagram plus an unknown load consumption from 

other load groups should be identical to the consumed load diagram, i.e., green color diagram. 

 

In order to express the objective function for minimization of the differences between load 

consumption and load demand forecast suppose: 

 

ALCi Aggregated Load Consumption at ti (load value on green color diagram at ti) 

FLCij Freezer Load Consumption for load group j at ti 

CLDi Consumed Load Difference at ti 

LDFi Load Demand Forecast at ti (load value on blue color diagram at ti) 

ei The difference between load consumption and load demand forecast at ti 

 

Then we can calculate the differences between load consumption and load demand forecast as 

followings: 
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
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Now to minimize the differences between load consumption and load demand forecast, we can 

consider a non-negative function as objective function; for example, the summation of weighted 

absolute differences: 

 
 











N

i

i

N

i

ii pep
1

Ng

1j

0

ijijiji

Ng

1j

ijijiji

1

)DLC 0,(xFLC - ALC + )DLC ,(xFLC - LDF objFunc1  

 



 

22 
 

In which, pi denotes to a suitable weighting function in order to account the relative importance of 

the  differences between load consumption and load demand forecast at ti.    

In the above formulation, the number of considered xij decision variables is N*Ng (in this study, 

N = 1440, Ng = 8). However, if we assume the thermostat set points vary just after each 

“dtThermostat” minutes, then the number of decision variables will be reduced to 

(N/dtThermostat)*Ng (in this study, dtThermostat = 15). 

 

 

 

 

4.4.2. Objective 2 

 

The 2nd objective is to minimize causing discomfort. For this purpose the indicator considered is 

the number of minutes that the thermostat set points go “dTemp” beyond initial thermostat set 

points (in this study, dTemp = 0.5oC). This objective function can mathematically be expressed 

with following equation: 
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In which: 

nLoadsj number of freezers of load group j 

NSPG  number of sets per each load group 

And “H” denotes to Heaviside step function: 
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4.4.3. Decision Variables 

 

In this study, following three types of decision variables are considered:  

xij the difference between proposed thermostat set points and initial thermostat set points for 

load group j at time instant i; it varies between -2oC to +2oC 

nVars1 = number of xij = (N/dtThermostat)*Ng = (1440/15)*8 = 768 
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DLCij the ON/OFF state of freezer for load group j at ti which can be decided by operator as a 

part of load management and called Direct Load Control; it switches between 0 and 1 

nVars2 = number of DLCij = N*Ng = 1440*8 = 11520 

NSPG number of sets per each load group 

nVars3 = number of NSPG = 1 
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Chapter 5 

Case study 
 

5.1. Description of the system 
 

In realization of this case study, the system considered consisted of some controllable loads, i.e., 

freezers, and some uncontrollable loads. The controllable loads are described in section 5.2. The 

aggregated load diagrams considered described in chapter 4. 

The parameters of controllable loads, presented in table 5.1, are used as input to a physically-based 

model computer simulation to obtain the controllable load diagram. The result is shown in figure 

5.1 graphically. 

 

Figure 5.1: Total controllable load diagram assuming NSPG = 1 

 

The red line shown in figure 5.1 corresponds to the average value of controllable power which is 

15 kW approximately, considering “NSPG = 1.” If we consider “NSPG = 30” then the average 

controllable power is 450 kW approximately. This means that the amount available for inspection 

at each instant of time fluctuates around 450 kW. It should be noted that this value is in continuous 

operation and is available all day when the control actions are considered randomly. 

To determine the number of loads to consider, the variable “NSPG” is considered which the 

computer program will find it.  Once we find this variable, then it’s enough to multiply it to 

“nLoads” to find the number of loads considered (in this study, nLoads = 2000). To simulate the 



 

25 
 

operation, “Ng” groups of loads have been considered, each containing “nLoadsj” sets of “NSPG” 

equal loads (in this study, Ng = 8, nLoadsj = 250 for j = 1,2,…,Ng). In section 5.2 the parameters 

used in each of these groups of loads are presented. 

The uncontrollable load diagram is shown in figure 5.2. It’s obtained by subtracting the 

controllable load diagram which is NSPG times of the diagram shown in figure 5.1, from the 

aggregated load diagram shown (with green color) in figure 4.2. 

 

Figure 5.2: Uncontrollable load diagram assuming NSPG = 21 

 

5.2. Controllable Loads 
 

The parameters of controllable loads (freezers), is presented in table 5.1. As we neither know the 

number of controllable loads nor want to estimate manually, we considered it unknown and 

allowed the optimization algorithm to find it introducing a decision variable; refer to last column 

of table 5.1 which shows the total number of controllable loads are 2000*NSPG, in which “NSPG” 

is an unknown positive integer number. 

 

Table 5.1: The parameters of controllable loads 

Group 

No., j 
Tmin Tmax DLC Tamb P COP MCP Rterm 

Scheduling 

time 

nLoads / 

NSPG 

1 -24.25 -20 1 22 90 1.5 27657 12.1341 1440 250 

2 -24.25 -20.75 1 20 105 1.3 28349 13.8381 1440 250 
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Group 

No., j 
Tmin Tmax DLC Tamb P COP MCP Rterm 

Scheduling 

time 

nLoads / 

NSPG 

3 -23 -20.5 1 23 100 1.3 26993 10.5151 1440 250 

4 -23.25 -19.85 1 22 80 1.5 29363 9.3019 1440 250 

5 -22.25 -19.85 1 24 110 1.5 30097 11.1995 1440 250 

6 -23.45 -18.85 1 22 85 1.5 30859 13.7986 1440 250 

7 -24.25 -19.85 1 23 85 1.5 31649 23.2815 1440 250 

8 -24.25 -18.85 1 23 90 1.3 30097 20.88 1440 250 

 

In which: 

• Tmin and Tmax - Minimum and maximum of freezer thermostat temperatures set points 

of each load group 

• DLC - Initial direct load control of each load group at each time instant, which can take the 

values 0 and 1. When the freezer is “ON,” the value of the variable is 1, and when the 

curtailment action is applied to the freezer, i.e., the freezer switches “OFF,” the value of 

the variable changes to 0. Although all the initial DLC shown in this table have the value 

1, but in the computer simulation for the controllable part of load demand forecast, the 

initial DLC values considered are some randomly generated 1 or 0 numbers. The reason is 

explained in section 5.5 

• Tamb - Room temperature of each load group 

• COP - The freezer coefficient of performance of each load group 

• nLoads - Number of freezers of each load group 

• NSPG - Number of sets per each load group 

 

 

5.3. Genetic Algorithm and its Parameters Setting 
 

As mentioned in section 4.2, Genetic algorithms are stochastic parallel search algorithms based on 

the principle of evolution and natural selection [34]. They have proven to be robust search 

algorithms [35]. The implementation of GA in a specific problem starts with six fundamental 
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issues: encoding of solution, creation of initial population, fitness evaluation, selection of parents, 

generation of children by genetic operators, and termination criteria. 

Genetic parameters (population size, crossover probability, and mutation probability) should be 

carefully selected for optimal performance [36]. The choice of these parameters is problem specific 

and no exact rule exists to determine a suitable combination of these parameters [37]. A joint effect 

of population size, crossover probability, mutation probability, and number of crossover points in 

each recombination influences the performance. Goldberg has suggested a population size equal 

to 1.65x20.21L where L is the length of the chromosome for optimal performance [38]. The formula 

suggested by Goldberg is not applicable for our case since it provides almost an infinite population 

size. Schaffer et al. have concluded that a small population size 20 to 30, a crossover probability 

in the range 0.75 to 0.95, and a mutation probability in the range 0.005 to 0.01 perform well [39]. 

In this case study, the identification of the appropriate set of parameters used in the genetic 

algorithm is taken after a long simulation work.  

The population size of 20 individuals is used. This value was found to have a good compromise 

between the need of diversity and the computational effort required. The parameters used in this 

case study are summarized in the table 5-2. 

 

Table 5-2: Parameters used in this case study 

Parameter Value / Type 

Number of decision variables 12289 

Population size 20 binary chromosomes 

Selection type Tournament 

Tournament size 2 

Crossover type Single point 

Crossover fraction 0.8 

Mutation type Uniform 

Mutation rate 0.01 

Pareto fraction 1 

Genome (or chromosome) length 16142 binary gens 

Number of load groups 8 

Total number of loads 2000*NSPG 

Temperature threshold, dTemp 0.5oC 

Max number of generations, maxIter 1500 

Termination tolerance on fitness  value, tolFun 10-10 
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A suitable weighting function that denoted by “pi” in section 4.4.1 is considered, which is shown 

in figure 5.3. 

    

Figure 5.3: Weighting function, pi, considered for “objFunc1” 

 

In order to account the discomfort, it is defined that a load is in discomfort when thermostat set 

points exceed 0.5oC beyond initial thermostat set points. 

Two stop conditions are defined: maximum number of iterations, “maxIter,” and the tolerance on 

fitness function value, “tolFun.” The maximum number of iterations for this case study is 

considered is 1500. As the average change in the spread of Pareto solutions became less than 

“tolFun” at iteration 1483, the algorithm found good compromise solutions and the minimization 

terminated. Increasing the number of iterations and decreasing the tolerance on fitness function 

value does not lead to an increase in the quality of obtained solutions. 

 

5.4. Binary encoding of solution 
 

A binary chromosome is constructed of series of chromosome slices or binary substrings that each 

one of the chromosome slice itself may be constructed from series of smaller chromosome slices 

or binary substrings. Each chromosome slice in general can be presented similar to the following 

sketch: 

 

A Chromosome Slice:      . . .  
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Gen’s number: 1  2  3 . . . mj 
 

“mj” is the number of gens or bits in the jth substring. Each gen or bit can take the value 0 or 1. 

Each chromosome slice with “nVars” variable which each variable defined with “mj” gens can be 

represented similar to the following sketch: 

  . . .     . . .   . . .    . . .  
                

1 2 . . . mj  1 2 . . . mj  . . .  1 2 . . . mj 
                

1  2  . . .  nVars 
 

What explained above is called “binary encoding.” Binary encoding is the most common, mainly because 

first works about GA used this type of encoding. 

 

5.5. Mapping from a binary string to a real number 
 

As mentioned in section 4.4.3, in this study three types of decision variables are considered. Two 

types of these decision variables are real-valued variables which fed as inputs to the objective 

functions. Therefore we have to change the generated binary strings to real numbers as inputs of 

objective functions. A simple way is first to decode a chromosome slice or binary substring as an 

unsigned integer (or decimal value) and then map them to real values. Therefore we get the 

minimum value when all gens are 0: 

 

Chromosome Slice L: 0  0  0 . . . 0 

Decimal value:                   020202020
1210 
jm

 

mj is the number of gens or bits in the jth substring. 

 

We also get the maximum value when all gens are 1: 

 

Chromosome Slice R: 1  1  1 . . . 1 

Decimal value:                   1221212121
1210 
 jj mm
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Therefore, the decoded unsigned integer values are in range ]12  ,0[ jm
. Now we map the decoded 

unsigned integer values linearly from ]12  ,0[ jm
 to ]  ,[ jj ba : 

jm

jj

jj u
ab

ar
j 12 


  

In which, uj is the decimal value of the jth substring. 

With this manner, we can control the range and precision of the decision variables carefully.  

As it can be seen, in the representation of encoded decision variables into binary strings, length of 

the strings depends on the required precision.  

If we consider all possible decimal numbers which can be generated using this decoding scheme 

as a arithmetic sequence, the common difference of successive members is equal to 
12 



jm

jj ab
. 

Therefore if we consider d places after the decimal point as the required precision, then: 

1210)(10
12





 j

j

md

jj

d

m

jj
ab

ab
 

1

1
210)(10

12









j

j

md

jj

d

m

jj
ab

ab
 

Therefore:  

 

 

In the other words, if we consider d places after the decimal point as the required precision, then 

the precision requirement implies that the range of domain of each variable should be divided 

into at least d

jj ab 10)(  size ranges. Hence, the required bits denoted with mj for a variable is 

calculated as following [40]: 

 

For our case, each chromosome consisted of 3 types of decision variables: 

1) Variables for ON/OFF of the freezers, denoted by DLC 

1210)(2
1


 jj md

jj

m
ab

1210)(2
1


 jj md

jj

m
ab
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2) Variables for changing the thermostat set points, denoted by X 

3) A variable to find required number of freezers, denoted by NSPG 

 

X DLC NSPG 
   

4608 bits 11520 bits 14 bits 
 

As for direct load control (DLC), we need just switch between ON (1) and OFF (0), 1 bit for each 

decision variable is enough, therefore we should totally consider 1*nVars2 = 1*11520 = 11520 

bits for DLC. 

For X, the domain of variable is [-2.0, 2.0] and if we consider d = 1 place after the decimal point, 

then from the above formula, we can find mj = 6, hence the total length of bits to construct X is 

mj*nVars1 = 6*768 = 4608 bits. 

For number of sets per each load group (NSPG), we considered [1, 10000] as the domain of 

variable. Similarly for maximum precision of 1, we should consider 14*nVars3 = 14*1 = 14 bits. 

 

5.6. Simulation Detailed Analysis Results 
 

In this section we present a detailed analysis of the results obtained in the simulations performed 

using the parameters listed in the previous subsections. 

The binary code option of MATLAB “GAMULTIOBJ” is used to find the Pareto fronts [41]. This 

multi-objective GA function uses a controlled elitist genetic algorithm (a variant of NSGA-II) [29]. 

The figure 5.4 presents the evolution of the Pareto fronts in three specific numbers of iterations. 

As it can be seen clearly, the overall status of Pareto fronts evolving when the number of iterations 

increases; this is what we expect in an evolutionary algorithm.  



 

32 
 

 

 

Figure 5.4: Evolution of the Pareto fronts 

 

Figure 5.5 shows the results of the solutions obtained at the end of the simulation; all the 

solutions selected by the algorithm are the dominated solutions. 
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Figure 5.5: Solutions selected by algorithm 

 

The numerical values of the chosen dominated solutions are also presented in the table 5-3. 

 

      Table 5-3: Selected solutions 

 

Objective 1 

[kW] 

Objective 2 

[min] 

Solution 1 33331559.6 90 

Solution 2 34154976.6 60 

Solution 3 31420882.2 180 

Solution 4 35136083.2 45 

Solution 5 36069712.2 30 

Solution 6 37184178.8 15 

Solution 7 38172866.6 0 

Solution 8 32636487.7 120 

Solution 9 32229483.3 150 

Solution 10 29748525.0 690 

Solution 11 30171450.0 435 

Solution 12 30418002.0 375 

Solution 13 30053195.2 540 

Solution 14 29843813.3 660 
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Objective 1 

[kW] 

Objective 2 

[min] 

Solution 15 30240917.8 405 

Solution 16 30572935.6 315 

Solution 17 30866360.7 210 

Solution 18 30542802.0 345 

Solution 19 30800407.4 255 

Solution 20 29947732.8 555 

 

Observing figure 5.5 and table 5.3, it can be seen that the worst value recorded for 1st objective is 

38172866.6 which its associated discomfort value is 0. Therefore the worst value for the 1st 

objective (highest value) is recorded when the value of discomfort is the best (the smallest value).  

The best value recorded for 1st objective is 29748525.0, corresponding to an improvement of 

26.1% relative to the value recorded without load demand management actions. This case 

associated with the worst value of discomfort. It can be concluded that, when there is an 

improvement in the value of 1st objective, the 2nd objective, i.e., discomfort, tends to worsen, i.e., 

increase. This is what we expect in multi-objective optimization. 

Figure 5.6 represents the number of non-dominated solutions during the iterative process. As it 

can be seen, from iteration number 1337 onward till the end of process, the number of non-

dominated solutions is constant, i.e., equal to 20. 

 



 

35 
 

 

Figure 5.6: Number of non-dominated solutions in each iteration 

 

In following pages, the results of one of the selected solutions, labeled as LM 10, are presented. 

Figures 5.7 and 5.8 represents the actions applied to the loads of each 8 groups of freezers with 

enlargement of direct load control actions between 11:30-13:15, 15:00-16:00 and 18:00-20:15 of 

load group 8.  

In figure 5.7 the action taken for changing the thermostat set points are shown. The red dotted lines 

are the margins of discomfort; therefore any taken actions located outside of those lines are 

considered as discomfort.  

Figure 5.8 is the direct load control actions taken with enlargement of the graph of load group 8 

between 11:30-13:15, 15:00-16:00 and 18:00-20:15. Note that as each of the two aggregated 

forecast graphs in two different time instants passes through the other one in three time periods 

with both positive and negative deviations, therefore the controllable part of load demand forecast 

is considered with some randomly generated ON/OFF-states. Hence all DLC actions presented on 
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the graphs are not the actions taken for load demand management; few of them initially, i.e., before 

optimization, existed. 

 

Figure 5.7: Sample of actions taken to change the thermostat temperature set points applied to each load 

groups with margins of discomfort shown by red dotted lines 
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Figure 5.8: Sample of DLC actions applied to each load groups, with enlargement between 11:30-13:15, 

15:00-16:00 and 18:00-20:15 of load group 8 

 

Figure 5.9 represents the two initial forecasts superimposed with the final loading diagram with 

load demand management LM 10.  
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Figure 5.9: The initial forecasts superimposed with the final loading diagram with load demand 

management LM 10, with enlargement between 11:30-20:15 

 

As it can be seen, the aggregated load consumption with load management strategies (red graphs) 

fluctuates on load demand forecast (blue graph). This is what we expected because of the nature 

of Monte-Carlo physically-based simulation which is the case we used here to simulate the freezers 

model. 

The data from aforesaid diagrams are organized to obtain the initial and final load duration curves 

and final controlled load diagram which are shown in the figures 5.10 and 5.11 respectively. As it 

can be seen, the load duration graph with LM 10 (red graph) is passing through the two other 

graphs, which is showing good match with what we desired. 
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Figure 5.10: Initial and final load duration curves 

 

 

  

Figure 5.11: Final controlled load diagram 

 

There are another check points pertaining to the three time durations in which the two aggregated 

forecast graphs in two different time instants deviate each other. The mentioned three time 

durations are listed in section 4.4 and shown graphically in figure 4.3. As stated before, the first 

objective was to identify LM actions that minimize the differences between the two aggregated 

forecast curves in two different time instants, especially in the mentioned three time durations 

shown in figure 4.3. 
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The freezer load consumption with load demand management actions should be reduced or 

increased in each of these three time periods. Figure 5.9 is showing a comparison load diagrams 

with and without management actions; the green color graph is the aggregated load consumption 

without any load management action, and the red color dotted graph is the aggregated load 

consumption with load management actions LM 10. Here the increase or decrease in load 

consumption of each of the mentioned 3 time durations is reported: 

 For time period 11:30 to 13:15, we were looking for decreasing in the freezer load 

consumptions with load management actions. Calculation is showing 18952 kW decrease 

in the freezer load consumptions with LM 10. 

 For time period 15:00 to 16:00, we were looking for decreasing in the freezer load 

consumptions with load management actions. Calculation is showing 13958 kW decrease 

in the freezer load consumptions with LM 10. 

 For time period 18:00 to 20:15, we were looking for increasing in the freezer load 

consumptions with load management actions. Calculation is showing 51452 kW increase 

in the freezer load consumptions with LM 10. 

Similarly the combination of all time periods and selected solutions are checked; all of these checks 

for all selected solutions are passed.  

According to these solutions, the calculated “NSPG” for all selected solutions is equal to 27; 

therefore the required total number of freezers for all selected non-dominated solutions can be 

calculated simply: 27*2000 = 54000 sets. 

Above-mentioned analysis on graphs and numerical values, considering what are explained above 

shows; the solutions we obtained are in line with what we desired.  

 

5.7. Sensitivity Analysis 
 

As it can be seen from above sections, the method used in this work, is a highly configurable 

algorithm. Therefore, this section is provided to study the effect of changing some of the 

parameters in the final results of the algorithm. The different parameters used for this study are 

summarized in table 5.4.  
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Table 5.4: Parameters used in 7 simulations for sensitivity analysis 

 
Population 

size 

Tournament 

size 

Crossover 

type 

Crossover 

fraction 

Mutation 

rate 
tolFun 

Case 1 20 2 Single point 0.8 0.01 10-10 

Case 2 10 2 Single point 0.8 0.01 10-10 

Case 3 20 4 Single point 0.8 0.01 10-10 

Case 4 20 2 Single point 0.9 0.01 10-10 

Case 5 20 2 Two points 0.8 0.01 10-10 

Case 6 20 2 Single point 0.8 0.005 10-10 

Case 7 20 2 Single point 0.8 0.01 10-6 

 

As it’s shown in table 5.4, for this sensitivity analysis, 7 simulation cases with different sets of 

parameters are carried out. “Case 1” is the main case which is discussed in the previous sections. 

The other parameters for all cases are set according to what listed in table 5.2. 

In order to compare the results of these 7 simulations, the resultant Pareto fronts are plotted in 

figure 5.12. 

Figure 5.12: Pareto fronts of 7 simulations with parameters mentioned in table 5.4 
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As it can be seen in figure 5.12 the results generally are not much different. Note that this 

sensitivity analysis is only a small portion of whole simulations conducted to identify the optimal 

set of parameters used in main case, i.e., “case 1.” 
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Chapter 6 

Conclusions and future works 
 

The aim of this thesis was to identify suitable load management actions for groups of freezers to 

obtain positive impact on the purchased energy from day-ahead energy market to minimize 

purchasing extra energy in the next day which is costly. To achieve this aim, we tried to minimize 

the differences between the actual load demands and the forecasted load demands. It was also 

necessary to minimize the undesirable discomfort causing to the consumers. For this purpose, we 

used a validated physically-based model allowing the simulation of a specified type of loads and 

developed a code in MATLAB, which uses a non-dominated sorting genetic algorithm (NSGA-II) 

to identify the best load demand management actions to be applied to loads of each group, at each 

time instant. The load management actions considered in this study is combination of changing 

the thermostat set points and power-curtailment. According to this study, it is possible to reduce 

the differences between the actual load demands and the forecasted load demand with the 

application of appropriate load demand management actions, which will cause undesirable 

discomfort to the customers. Like any research work, there are several areas that the work 

developed and presented in this thesis can be continued. 

Using a tool developed for various types of loads could provide more options to obtain positive 

impact on the purchased day-ahead energy, and r reducing the associated discomfort caused to 

consumers. Therefore it would also be interesting to do similar study with representation of other 

forms of the controllable loads. 

In this study, just two conflicting objectives are considered. It may be more interesting to repeat 

similar studies with different objectives which the consumers are interested in, such as 

optimization of loss factor, ON/OFF cycles, coincidence factor, etc. 

In this study, MATLAB is used to provide a computer code for simulation. It seems there is a need 

for some system-independent tool with suitable speed to do such calculations to identify 

appropriate load management actions. 
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