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Abstract

This paper aims to compare two portfolio selection models: the mean-variance (MV) model,
introduced by Markowitz, and the mean absolute deviation (MAD) model, proposed by Konno and
Yamazaki. This dissertation aims to remove some doubts and inconsistencies that exist in the literature.
Thus, we do not intend to conclude which is the best model but under which conditions one model
outperforms the other to satisfy the investor’s objectives. We used a complete database for this
comparison: the 500 stocks with the largest market capitalization in the United States of America with
different time frames. The period used ranges from January 4, 2010, to November 30, 2021. First, we
analyzed the performance of the models taking into account the computational time. The results show
that the MAD model is computationally faster than the MV model, but only if we consider a rather
large universe of assets and few observations simultaneously. Otherwise, the MAD model performs
worse. After applying the rebalancing strategy considering the different frequencies, we performed
an out-of-sample analysis of the models’ performance. This analysis used different performance
measures: win rate, cardinality, turnover, annualized mean return, annualized standard deviation,
Sharpe ratio, Sortino ratio, CVaR and maximum drawdown. This analysis concluded that, although
the minimum risk solution for MAD model shows slightly worse values than the corresponding in the
MV model, they do not differ much. We also found a clear disadvantage associated with the solution
obtained by MV model. MV model invests in all 500 assets in the portfolio, many of which with a
very small proportion which is unrealistic in real scenarios. Whereas the case of the MAD model only
suggests investing in around 40 to 50 assets of all the 500 available assets.

Keywords: portfolio selection optimization, MV model, MAD model, risk, return.





Resumo

O presente trabalho visa comparar dois modelos de seleção de carteiras: o modelo da média-
variância (MV), introduzido por Markowitz, e o modelo do desvio absoluto médio (MAD), proposto
por Konno e Yamazaki. O objetivo desta dissertação passa por retirar algumas dúvidas e incongruências
que existem na literatura. Deste modo, não pretendemos concluir qual o melhor modelo mas sim
em que condições é que um modelo supera o outro por forma a satisfazer os objetivos do investidor.
Para esta comparação utilizámos uma base de dados bastante completa: as 500 ações com maior
capitalização bolsista dos Estados Unidos da América com diferentes periodicidades sendo que o
período utilizado engloba desde 4 de janeiro de 2010 até 30 de novembro de 2021. Primeiramente
fizemos uma análise ao desempenho dos modelos tendo em conta o tempo computacional. Os
resultados obtidos comprovam que, de facto, o modelo MAD é computacionalmente mais rápido que o
modelo MV mas apenas se considerarmos um universo bastante elevado de ativos e, simultaneamente,
poucas observações. Caso contrário, o modelo MAD apresenta pior desempenho. Após aplicarmos a
estratégia de rebalanceamento tendo em conta as diferentes periodicidades, fizemos uma análise out-
of-sample do desempenho dos modelos. Nesta análise utilizámos diferentes medidas de desempenho
tais como: win rate, cardinalidade, turnover, retorno médio anualizado, desvio-padrão anualizado,
rácio de Sharpe, rácio de Sortino, CVaR e maximum drawdown. Através desta análise concluímos
que, ainda que a solução de menor risco no modelo MAD apresente ligeiramente piores valores que a
correspondente solução no modelo MV, estes não diferem muito. Comprovou-se também que há uma
clara desvantagem associada à solução obtida com o modelo MV no sentido em que este investe em
todos os 500 ativos da carteira muitos dos quais com uma proporção ínfima, o que é pouco realista
num cenário real. Ao passo que, no caso do modelo MAD este apenas sugere investir em cerca de 40
a 50 ativos de todos os 500 ativos disponíveis.

Palavras-chave: otimização em seleção de carteiras, modelo MV, modelo MAD, risco, retorno.
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Chapter 1

Introduction

Financial mathematics is the practical application of mathematics to financial problems. Through
multiple tools, it allows us to manage and organize money in the best possible way to avoid losses. The
importance of financial mathematics is essentially linked to the rigour and efficiency it has brought
to the financial markets [1]. Financial mathematics is used to solve some problems such as risk
management, portfolio optimization and asset valuation [1]. In this dissertation, we will address some
financial mathematics issues related with portfolio optimization.

Investors who own an investment portfolio, which can be made up of stocks, bonds and derivatives,
aim to reach the highest return and, at the same time, the lowest possible risk. However, these
objectives are somewhat conflicting because higher return is usually associated with higher risk. So,
investors will have to decide on which assets they should invest and on what proportions to form
a portfolio with the desirable features. In this sense some models/techniques are used in financial
markets to help investors in this decision making process [17].

Markowitz [25] was a pioneer on this subject when he presents a model that can help investors
to build up their efficient portfolios. The Markowitz model, also known as the Mean-Variance (MV)
model, uses the variance of returns as a risk measure, with the intention to minimize risk given a
desired expected return.

However, some criticisms of the MV model began to emerge, and alternative proposals were put
forward, such as the Konno-Yamazaki model, or Mean Absolute Deviation (MAD) model, proposed
in 1991 by Konno and Yamazaki [20]. The main difference between the MV and the MAD model is
that the last uses the mean absolute deviation instead of the variance as a risk measure. Konno and
Yamazaki [20] pointed out strong criticisms of the MV model. However, the most important ones are
that the MV problem involves a quadratic optimization problem and that it assumes the normality
of the distribution of asset returns, something that is quite rare in reality. Other disadvantages are
associated with the computational time involved in the MV model and a poor diversification, because
through the MV model, some weights are assigned with minimal values. The main advantages
associated with the Konno-Yamazaki problem are that it is related with a linear problem and does not
need to compute the covariance matrix. The MAD model has been studied in the literature. However,
the conclusions about the model performance have not been unanimous. There is some ambiguity in
the computational results, mainly because the results are not obtained using a meaningful data set.
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2 Introduction

This dissertation aims at making a detailed comparison between these two models using real
data on the 500 stocks with the largest market capitalization in the United States of America. The
two models are compared not only in terms of computational time but also in terms of financial
performance.

This dissertation is structured into five chapters. Chapter 2 presents a brief contextualization
of the comparative studies already carried out in the literature, focusing on the geography of the
data used, the measures used to compare the models and their main conclusions. Chapter 3 presents
a theoretical description of MV and MAD models, accompanied with a brief illustrative example
that allows the reader to become familiar with both models and to replicate them using the Matlab
software. Chapter 4 presents a comparative study between the models using data on 500 USA stocks.
The comparison is performed considering the computational time and the out-of-sample financial
performance of portfolios with rebalancing at different frequencies. Finally, Chapter 5 discuss the
main results obtained and proposes future studies.



Chapter 2

Literature Review

The modern portfolio theory was presented in 1952 by Henry Markowitz in an article of the
Journal of Finance intitled "Portfolio Selection" [25]. The paper presents a Mean-Variance (MV)
framework where portfolio optimal solutions are obtained. Afterwards, several authors have presented
alternative models to correct some of the disadvantages of the basic MV model.

The main disadvantage associated with the MV model is that it falls into a quadratic problem,
which requires a great computational effort when dealing with a large number of assets and may
lead sometimes to poorly diversified portfolios, i.e, to portfolios with a large number of assets with
marginal weights. Thus, new models have emerged trying to overcome these drawbacks, namely those
based on linear programming, as is the case in [30, 31]. Peng et al. [27] is another example. These
authors kept the quadratic programming problem but added transaction costs and proved that there
was a significant improvement in relation to the Markowitz model.

In another strand of the literature, researchers address the issue by changing the risk measure. In
1991, Konno and Yamazaki [20] presented the Mean Absolute Deviation (MAD) model, which uses
the absolute deviation as a risk measure instead of the quadratic deviation as in the MV model. This
dissertation aims to compare the performances of the MV and MAD models. As mentioned before,
there are other linear models (which will be referred throughout this chapter); however, we focus on
the MAD model as it is the most referred portfolio selection linear model in the literature.

The precursors of the MAD model, Konno and Yamazaki, were the forerunners to make this
comparison in [20]. They used monthly data from 1981 to 1987 on 224 stocks from Nikkei 225
(Japan’s benchmark stock index). They partitioned the data into three groups, taking into account
different periods. Each group’s last year is used to perform an out-of-sample analysis considering
portfolio rebalancing. They used several performance metrics, such as the average rate return, standard
deviation of return, and Sharpe ratio. They conclude that the portfolio obtained with the MAD model
was quite similar to the one obtained with the MV model. They also highlight that both models are

equivalent (i.e. the mean absolute deviation corresponds to
√

2
π

of the standard deviation) if returns
follow a multivariate normal distribution. Following Konno and Yamazaki [20], other authors have
contributed to the empirical evidence on the comparison between MV and MAD models.

Simaan [33] used a random numbers generator to obtain returns for sets of stock with different
cardinalities (30, 60, 90, 120), from which he estimated the mean and standard deviation of returns.

3



4 Literature Review

Simaan concludes that increasing the sample size in the asset space reduces the estimation error in
both models. However, the estimation error is lower in the MV model.

Mansini et al. [24] compared the Markowitz model with the MAD model and other linear problems
(m-MAD, Minimax (MM) Model, CVaR model and Gini Mean Difference (GMD) model). They
considered weekly data on stocks from the Milan Stock Exchange in the period from 1994 to 1998.
The data was divided into four sub-samples with different periods and stocks (1994-1995, 1995-1996,
1996-1997, 1997-1998). The last year of each sub-sample was then used for out-of-sample analysis,
without considering portfolio rebalancing. They concluded that MAD provide more diversified
portfolios than MV, and that MV and MAD provide higher return and risk out-of-sample than other
linear models.

Júdice et al. [17] was the first Portuguese study to make a comparison between the MV model and
the MAD model. In this work, the computational time and the stability of the solution, i.e. variation of
the composition of the optimal portfolio on rebalancing, were evaluated. The authors used a universe
of ninety-two European stocks (including twenty-seven Portuguese stocks) from February 2, 1998,
to February 23, 2000. The last year was used to perform the out-of-sample analysis, considering
portfolio rebalancing. In terms of computational time, they concluded that the Markowitz model
depends on the number of stocks, while the Konno-Yamazaki model depends mainly on the number
of observations.

Bower and Wentz [7] studied this issue using daily data on thirty sets of five stocks of the S&P
500 and a six-month bond, for the period from July 1 to December 31, 2004. They compared the
performance of the optimal solutions of the MV and MAD models in terms of return obtained by the
thirty portfolios from January 3 to June 30, 2005, where the solution of the MV achieved a higher
return in sixteen of the thirty portfolios.

Karacabey [18] made a simple comparison using monthly data on 91 stocks from the Istanbul
Stock Exchange. The results showed that the optimal portfolios from the MV model generally
outperformed the optimal portfolios from the MAD model.

Yu et al. [35] and Hoe et al. [15] compared the MV and MAD model, and several other portfolio
selection models that are seldom mentioned in the literature. Yu et al. [35] compare four models:
Markowitz, Konno-Yamazaki, Cai, and Teo. Two data sets were used in this study: seventy-two
months of data on thirty-three Nikkei 225 bonds, and one hundred and twenty months of data on
sixty-three Nikkei 500 bonds. Yu et al. [35] concluded that MV and MAD models provided similar
results in terms of expected return. They also highlighted that Teo’s model is influenced by the number
of stocks and the number of periods. However, there is no evidence that the number of stocks and
periods impact on the computational time of MV, MAD and Cai’s models. Hoe et al. [15] compared
the composition and performance of portfolios using four optimization models with different risk
measures: MV, MAD, MM and SV (Semi-variance). The comparison is conducted using monthly
data on fifty-four stocks from the Kuala Lumpur Composite Index from January 2004 to December
2007. They concluded that the MV model and the MAD model produce portfolios with almost the
same assets, however, with different weights. The MV portfolios presented higher risk than the MAD
portfolios.

Bartkus and Paleviciene [5], and Kasenbacher et al. [19] also address the performances of MV
and MAD models; without and with portfolio rebalancing, respectively. Bartkus and Paleviciene [5]
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used the 20 stocks from Vilnius Exchange Market with the highest positive skewness. They concluded
that the MV model provided a more diversified portfolio, while the MAD optimal portfolio achieved
a better expected return in-sample. Kasenbacher et al. [19] analyse the top 75, 150 and 200 stocks
belonging to the S&P 500, over one year between 2016 and 2017. The portfolio rebalancing was
activated weekly and monthly, obtaining the best expected return with the weekly rebalancing, as
expected. The MAD portfolios obtained higher expected return and lower risk, hence resulting in
Sharpe ratios greater than those of the MV portfolios,

Some articles, such as Angelelli et al. [2], Cesarone et al. [8] and Hunjra et al. [16] use the
conditional value at risk (CVaR) as an additional metric for risk assessment when comparing portfolio
performance. Angelelli et al. [2] compared only two linear models: MAD and CVaR (with different
values of α). They use weekly data on four sets of stocks, with cardinalities 200, 300, 400 and 600,
of three European stock exchanges: Paris, Milan and Frankfurt. The sample period was partitioned
into in-sample (1999-2000) and out-of-sample (2001). The models considered transaction costs and
cardinality restriction. The computational time of the CVaR model increased significantly with the
number of assets included in the portfolios. Cesarone et al. [8] conducted a similar work to the
previous one but also considered the MV model and equally-weighted (EW) portfolio. The authors
concluded that linear models are less time consuming although producing similar results to those
of the MV model. The EW portfolio does not beat the other portfolios resulting from optimization
models. More recently, Hunjra et al. [16] used four models: MV, MAD, SV and CVaR on forty
stocks from the Pakistan stock exchange, ninety-two stocks from the Bombay stock exchange, and
thirty from the Dhaka stock exchange. The analysis considered three periods: during the economic
crisis (2003-2005), the recovery period after the crisis (2006-2011) and the growth period after the
crisis (2012-2015). The main conclusion was that in India, the CVaR produced the best results in all
scenarios.

To give a more systematic view of the literature review, Appendix A) presents a table with a list of
some studies that compare the MV and MAD models.

Our study aims at making a more detailed comparison between the MV and MAD models and,
hence to clarify some ambiguities that persist in the empirical literature. First, empirical studies use a
different numbers of stocks, data frequencies and sampling periods. We address this by considering
different sets of stocks with cardinalities up to 500. We also use around 12 years of data, from January
4, 2010, to November 30, 2021, with different frequencies (daily, weekly and monthly). Second, the
performance analysis is conducted out-of-sample with periodical rebalancing. Several papers, such
as Simaan [33], Yu et al. [35], Peng et al. [27], Hoe et al. [15] and Bartkus et al. [5] only evaluate
the in-sample performance, which is questionable from the point of view of measuring the effective
performance of the models. Other studies, such as Mansini et al. [24], conduct a static out-of-sample
evaluation, i.e. without applying a rebalancing strategy. Our work considers portfolio rebalancing
with daily, weekly and monthly frequencies. The rebalancing strategy is a more realistic framework,
because the investor updates dynamically her portfolio, considering updated data. Third, to give a
more realistic and effective view of the portfolio selection problem, we introduce transaction costs
into the performance analysis. We did not find many papers that consider transaction costs. The
exceptions are Peng et al. [27] and Angelelli et al. [2]. So we perform a comprehensive performance
evaluation of the models with and without transaction costs, therefore maintaining the comparability



6 Literature Review

with most studies. Fourth, besides the computational time which is a usual feature addressed when
comparing the MV and MAD models, we also use a wide range of financial performance measures,
which is not usual in most of the studies, namely the Win Rate, Cardinality, Turnover, Annualized
Mean Return, Annualized Standard Deviation, Annualized Sharpe Ratio, Annualized Sortino Ratio,
CVaR and Maximum Drawdown. Fifth, we use the EW portfolio as a benchmark, which has been
shown to provide better out-of-sample results than several portfolios based on optimization models
(see DeMiguel et al. [12]) however, that paper did not address the MAD model.



Chapter 3

The Markowitz and Konno-Yamazaki
Models

An investment portfolio may consist of several securities, such as equities, bonds and derivatives.
Throughout this dissertation, we will mainly focuses on portfolios composed of equities. A rational
risk-averse investor interested has two aims: increase the expected return whilst decreasing the risk
exposure. However, these are competing features because, in general, risk increases with the expected
return. Therefore, the investor has to find a solution that takes into account the trade-off between risk
and return. In other words, she has to decide how much to invest in each asset, aiming at minimizing
the risk and, at the same time, maximizing the expected return. The two models presented hereafter
assist the investor in her decision.

This chapter provides a theoretical description of the Markowitz and the Konno-Yamazaki models
and some comparative insights. This description is accompanied by illustrative examples using
stocks from the S&P 500 index, the most known benchmark stock index of the United States. It also
illustrates how to apply the models using the Matlab software.

3.1 Risk Measures

The assessment of risk in any financial investment may be done using different risk metrics. This
dissertation considers two risk measures: the variance (or standard deviation) and the mean absolute
deviation of returns, which are associated with the MV and MAD models, respectively. However,
none of these metrics are coherent risk measures, taking into account Definition 1.

Let χ be the linear space of measurable functions defining the random variables X1 and X2 in the
probability space (Ω,ψ,P). According to Artzner et al. [3], a risk measure is coherent if it satisfies
the properties presented in Definition 1.

Definition 1 A risk measure ϕ : χ → R is a coherent risk measure if it satisfies the following proper-
ties:

1. Translation invariance: ϕ(X1 +a) = ϕ(X1)−a, ∀a ∈ R, ∀X1 ∈ χ .

2. Subadditivity: ϕ(X1 +X2)≤ ϕ(X1)+ϕ(X2), ∀X1,X2 ∈ χ .

7



8 The Markowitz and Konno-Yamazaki Models

3. Positive homogeneity: ϕ(λX1) = λϕ(X1), ∀λ ≥ 0, ∀X1 ∈ χ .

4. Monotonicity: If X1 ≤ X2, ϕ(X2)≤ ϕ(X1), ∀X1,X2 ∈ χ.

As we will see, the variance is not a coherent risk measure because it does not satisfy, for instance,
properties 1, 3 and 4 (see Proposition 1). The standard deviation is not a coherent risk measure either;
although it already satisfies the property 3 (see Proposition 2). The mean absolute deviation is not
also a coherent risk measure as it does not comply property 1 and 4.

3.2 Markowitz model

The Markowitz (or Mean-Variance (MV)) model is a quadratic optimization problem that aims
to find the weights of the assets in the portfolio that minimize the risk, measured by the variance,
amongst all feasible portfolios that have an expected return, at least, equal to a given threshold, ρ .

The MV model, and other basic portfolio selection models such as the Konno-Yamazaki model,
is based on the assumptions of perfect, continuous and competitive markets. These assumptions are
listed in Beyhaghi and Hawley [6] and Sebastião [29]. Namely:

• Assets are infinity divisible.

• There are no transaction costs, taxes, or other market frictions.

• Investors can lend or borrow at the same risk-free interest rate.

• Assets are available for transaction at any time at a known price.

• Investors are rational and risk-averse (if there are two portfolios with the same risk, the investor
always prefers a portfolio with a higher expected return, if there are two different portfolios
with the same expected return, the investor chooses the portfolio with lower risk).

• Investors are price-takers (their isolated actions do not influence market prices).

Let us define some notations, preliminary concepts, and definitions needed to present the MV
model (Markowitz [25], Júdice et al. [17]).

Suppose that an investor has an portfolio consisting of n assets. The proportion invested into
asset j, with j ∈ {1, . . . ,n}, is x j. This proportion is also called the weight of asset j in the portfolio.
Throughout this dissertation it is considered that ∑

n
j=1 x j = 1, meaning that all the wealth available to

invest into equities, is used in buying the n assets.
The return of asset j is a random variable, R j. The observation of R j at moment t is calculated

using the adjusted closing prices Pj (i.e., market prices adjusted to dividends and other management
decisions such as stock splits that have an artificial impact on the stock market prices), using formulas
(3.1) or (3.2) depending on if one is considering discrete or continuous returns, respectively:

R j(t) =
Pj,t −Pj,t−1

Pj,t−1
, (3.1)
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R j(t) = ln(
Pj,t

Pj,t−1
). (3.2)

Where Pj,t and Pj,t−1 correspond to the adjusted closing prices of asset j at time t and t−1, respectively.
Throughout this dissertation, we mainly use logarithmic returns, which have the disadvantage of not
being additive over the asset space. Whenever necessary logarithmic returns are transformed into
discrete returns, which are additive across assets but not overtime. To understand the implications of
using logarithmic or discrete returns, we provide a simple example below.

Example 1 Suppose that a portfolio has two assets from the S&P500: Apple (AAPL) and Kellogg (K).
The next table presents the closing prices and returns (logarithmic and discrete) in three consecutive
days chosen randomly.

Table 3.1 Comparison between discrete and logarithmic returns.

Moments
Price Discrete returns Log returns

APPL K APPL K APPL K
t 6.86 54.42 n.a n.a n.a n.a
t +1 7.31 52.15 0.066 -0.042 0.064 -0.043
t +2 8.39 53.43 0.148 0.025 0.138 0.024

Notes: This table presents the adjusted closing prices, discrete and logarithmic returns in 3 consecutive
days. Returns are rounded to three decimal digits.

Logarithmic returns have two properties: 1.a) they are non-additive in the asset space and 1.b) are
additive over time. While discrete returns are: 2.a) additive on assets and 2.b) non-additive over time.

1.a Applying Equation (3.2) to logarithmic returns one obtains that RAPPL(t)+RK(t) is different
to ln( PAPPL,t+PK,t

PAPPL,t−1+PK,t−1
). Therefore, at t +1, it follows that 0.021 ̸=−0.030, and at t +2, 0.162 ̸= 0.039,

proving the non-additivity of logarithmic returns within the asset space.
2.a Applying Equation (3.1) to discrete returns one obtains that RAPPL(t)+RK(t) is equal to

PAAPL,t−PAAPL,t−1
PAAPL,t−1

+
PK,t−PK,t−1

PK,t−1
, hence proving the additivity of discrete returns within the asset space.

Based on Pascoal [26], we prove assertions 1.b) and 2.b).
1.b) The logarithmic return in two periods, that is, between t and t −2 is given by

R j,2(t) = ln
(

Pj,t

Pj,t−2

)
= ln

(
Pj,tPj,t−1

Pj,t−1Pj,t−2

)
= ln

(
Pj,t

Pj,t−1

)
+ ln

(
Pj,t−1

Pj,t−2

)
= R j(t)+R j(t −1).

Therefore, this statement may be generalized to k periods as:

R j,k(t) =
k−1

∑
i=0

R j(t − i). (3.3)

2.b) The discrete return for a two-period, i.e., between t and t −2, is given by

R j,k(t) =
Pj,t −Pj,t−2

Pj,t−2
=

Pj,t

Pj,t−2
−1 =

Pj,tPj,t−1

Pj,t−1Pj,t−2
−1 =
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= (1+R j(t))(1+R j(t −1))−1 ̸= R j(t)+R j(t −1).

Generalizing for k:

R j,k(t) =
k−1

∏
i=0

(1+R j(t − i))−1. (3.4)

The Markowitz model assumes that the return vector R = (R1, . . . ,Rn) follows a multivariate
normal distribution. However, this assumption does not hold in practice (see, for instance, Konno
and Yamazaki [20]). In our example, at the end of this chapter, we present two normality tests, the
Kolmogorov-Smirnov test and the Jarque-Bera test, that an investor can use to assess if data are
compatible with a normal distribution.

Given a portfolio, x ∈ Rn, the random variable that describes its return is R(x) = ∑
n
j=1 x jR j. So,

the returns of asset j contribute proportionally to the return of the portfolio, assuming that the returns
on different assets are additive.

Denoting the expected return of R j by µ j = E[R j], then:

E[R(x)] = E[
n

∑
j=1

R jx j] =
n

∑
j=1

E[R j]x j =
n

∑
j=1

µ jx j. (3.5)

In the Markowitz framework, the risk is measured by the variance:

V [R(x)] = σ
2(R(x)) = E

{ n

∑
j=1

R jx j −E

[
n

∑
j=1

R jx j

]}2
=

= E

{ n

∑
j=1

R jx j −
n

∑
j=1

E[R j]x j

}2


= E

{ n

∑
j=1

R jx j −
n

∑
j=1

µ jx j

}2


= E

{ n

∑
j=1

x j(R j −µ j)

}2


=
n

∑
i=1

n

∑
j=1

xix jE [(Ri −µi)(R j −µ j)]

=
n

∑
i=1

n

∑
j=1

xix jσi, j (3.6)

=
n

∑
i=1

x2
i σ

2
i +

n

∑
i=1

n

∑
j=1, j ̸=i

xix jσi, j, (3.7)

where σi, j denotes E[(Ri −µi)(R j −µ j)].

Notice that (3.6) can also be written as xT Σx, where Σ corresponds to the covariance matrix (3.8).
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Σ =


E[(R1 −µ1)(R1 −µ1)] E[(R1 −µ1)(R2 −µ2)] · · · E[(R1 −µ1)(Rn −µn)]

E[(R2 −µ2)(R1 −µ1)] E[(R2 −µ2)(R2 −µ2)] · · · E[(R2 −µ2)(Rn −µn)]
...

...
. . .

...
E[(Rn −µn)(R1 −µ1)] · · · · · · E[(Rn −µn)(Rn −µn)]

 . (3.8)

The covariance between the returns of two assets, σi, j, shows how they are linearly related to each
other. If σi, j > 0, then assets are directly related, implying that when prices of one asset increase
(decrease), in general the prices of the other also increase (decrease). If σi, j < 0, the opposite occurs,
implying that when prices of one asset increase (decrease), in general the prices of the other also
decrease (increase). When σi, j = 0, the assets have no linear relationship with each other (Kwon [21]).
The covariance between the returns on assets i and j can be expressed as:

σi, j =Corri, jσiσ j, (3.9)

where Corri j corresponds to the correlation coefficient such that Corri j ∈ [−1,1].
The variance is a risk measure that verifies the following properties in Proposition 1[14].

Proposition 1 Let X be a random variable. The variance of a portfolio verifies the following
properties:

1. V (X) = E(X2)− (E(X))2.

2. If a is a constant then V (a+X) =V (X).

3. If a is a constant then V (aX) = a2V (X).

4. Let Y be a random variable, so V (X +Y ) =V (X)+V (Y )+2cov(XY ).

Proof:

1. V (X) = E(X −E(X))2 = E[X2 −2XE(X)+E(X)2] = E(X2)−2E(X)2 +E(X)2 =

= E(X2)−E(X)2.

2. V (X +a) = E[X +a−E(X +a)]2 = E[X +a−E(X)−a]2 = E(X −E(X))2 =V (X).

3. V (aX) = E[(aX)2]− [E(aX)]2 = a2[E(X2)−E(X)2] = a2V (X).

4. V (X +Y ) =E(X +Y )2− [E(X +Y )]2 =E(X2+2XY +Y 2)− [E(X2)+2E(X)E(Y )+E(Y )2] =

= E(X2)+2E(XY )+E(Y 2)−E(X2)+2E(X)E(Y )−E(Y ) =
= E(X2)−E(X)2 +E(Y 2)−E(Y )2 +2[E(XY )−E(X)E(Y )] =V (X)+V (Y )+2cov(XY ).

From property 2 of Proposition 1 we conclude that V (X) does not verify the translation invariance
property from Definition 1. Property 3 indicates that V (X) does not verify positive homogeneity.
Finally, property 4 indicates that V (X) is sub additive only when cov(X ,Y )> 0.
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Since the variance is not in the same units as the return, a new risk measure can be defined using
the standard deviation σ(R(x)) =

√
V (R(x)). Proposition 2 indicates that this risk measure also has

interesting properties:

Proposition 2 Let X be a random variable. The standard deviation of a portfolio verifies the following
properties.

1. If a is a constant then σ(a+X) = σ(X).

2. If a is a constant then σ(aX) = aσ(X).

3. Let Y be a random variable σ(X +Y ) =
√

σ2(X)+σ2(Y )+2cov(X ,Y ).

The proof follows immediately from Proposition 1.

3.2.1 Formulation of the Markowitz Model

The MV model is usually formulated as

min
n

∑
i=1

n

∑
j=1

σi jxix j (3.10)

s.t.
n

∑
j=1

µ jx j ≥ ρ (3.11)

n

∑
j=1

x j = 1 (3.12)

x j ≥ 0, j = 1, ...,n. (3.13)

The MV model has n variables and n+2 constraints (n signal constraints, 1 inequality constraint
and 1 equality constraint).

• The first constraint (3.11) guarantees that the expected return of the portfolio is greater than or
equal to a target return, ρ , required by the investor.

• The second constraint (3.12) guarantees that the entire amount available for investment is used.

• The third constraint (3.13) implies that short selling is not allowed. Short-selling means that the
investor sells an asset that is not owned, intending to buy it back later, therefore introducing an
asset with negative weight in her portfolio.

It should be noted that, if risk is measured by the standard deviation, the optimal solution is the
same as the one for the MV problem, making the two problems equivalent.
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3.2.2 Efficient frontier

As already mentioned, a rational risk-averse investor selects, among all feasible portfolios, the
one that allows the lower risk for a given return. Therefore, for each value of ρ , the investor will
select the minimum risk portfolio (i.e., an efficient portfolio). These efficient portfolios range from the
admissible portfolio with the minimum variance denoted by xmin, and the admissible portfolio with
the maximum expected return, denoted by xmax. The expected returns associated with these portfolios
correspond to ρmin and ρmax, respectively.

Fig. 3.1 Efficient frontier of the practical example (3.4) using monthly data.

To obtain the efficient frontier, i.e., the set of all efficient portfolios, it is necessary to calculate all
solutions of the MV problem for different values of ρ . So, let us define the function σ : [ρmin,ρmax]→
R with standard deviation, σ(ρ) =

√
xT

ρ Σxρ , where xρ is the optimal solution associated with each

value of ρ . Thus, the efficient frontier is the set EF = {(σ(ρ),ρ) : ρ ∈ [ρmin,ρmax]} and corresponds
to the graph of the function σ (with the coordinate axes reversed) which generally has a configuration
similar to the one presented in the Figure 3.1.

The extreme points of this curve correspond to the portfolio with minimum variance (leftmost
point) and the portfolio with the maximum return (rightmost point).

Over the years, several criticisms have been raised against the MV model. An important one,
pointed out by Konno and Yamazaki [20], is that it falls into a quadratic optimization problem, from
which results in three disadvantages: first, the calculation of an extensive covariance matrix requires
non-negligible computational time when working with a large number of assets; second, in practice,
returns do not follow a normal distribution; and finally, when working with a large number of assets,
the optimal solution may contain very small weights, implying an increase in transaction costs.
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The next section presents the linear model proposed in 1991 by Konno and Yamazaki, which
according to the authors is easier to solve than quadratic problems.

3.3 Konno-Yamazaki Model

Konno and Yamazaki [20] introduced the Mean Absolute Deviation (MAD) model that uses

w(x) = E[|
n

∑
j=1

R jx j −E[
n

∑
j=1

R jx j]|] (3.14)

as the risk measure. If returns follow a multivariate normal distribution, then the MV and MAD
problems are equivalent, in the sense that minimizing w(x) is equivalent to minimizing σ(x) (Konno
and Yamazaki [20], Júdice et al. [17]).

Theorem 1 If (R1, ...,Rn) follow a multivariate normal distribution, then

w(x) =

√
2
π

σ(x)

Proof: Let (R1, . . . ,Rn) be a random vector following a multivariate normal distribution with mean
(µ1, . . . ,µn) and a covariance matrix Σ with a generic element σi, j which represents the covariance
between Ri and R j. Let R be a weighted sum of the n variables R j, i.e. R(x) = ∑

n
j=1 R jx j, then R(x)

has a normal distribution with mean ∑
n
j=1 µ jx j and standard deviation σ(x) =

√
∑

n
i=1 ∑

n
j=1 σi, jxix j.

Let A be the following random variable:

A(x) =
n

∑
j=1

R jx j −E[
n

∑
j=1

R jx j] =
n

∑
j=1

(R j −µ j)x j. (3.15)

Then A(x)∼ N(0,σ) and the density function of A is e−t2/(2σ(x)2)
√

2πσ(x)
, t ∈ R.

So, from (3.14), we have:

w(x) = E(|A(x)|) =
∫ +∞

−∞

|t| 1√
2πσ(x)

e
−t2

2σ(x)2 dt = 2
∫ +∞

0
t

1√
2πσ(x)

e
−t2

2σ(x)2 dt,

since the integrand function is even and |t|= t,∀t ≥ 0, the change in variable y = t
σ(x) results in

w(x) = 2
∫ +∞

0

y√
2π

e
−y2

2 σ(x)dy = 2
σ(x)√

2π
=

√
2
π

σ(x).

Thus, it follows that w(x) =
√

2
π

σ(x), and therefore the MV and MAD models, under the condition
of the normality of returns, are equivalent (Konno and Yamazaki [20], Cornuejols and Tutuncu [10]).

The portfolio selection problem using MAD can be formalized as:

min w(x) (3.16)
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s.t.
n

∑
j=1

µ jx j ≥ ρ (3.17)

n

∑
j=1

x j = 1 (3.18)

x j ≥ 0, j = 1, ...,n. (3.19)

Notice that this model has the same restrictions as the MV model: (3.11), (3.12) and (3.13).

Let r jt be the realization of the random variable R j during period t (t = 1, ...,T ), which means that
r jt corresponds to the observed return of asset j in period t. So the mean return, µ j, can be estimated
as

1
T

T

∑
t=1

r jt , (3.20)

and the mean absolute deviation can be estimated as

w(x) = E[|
n

∑
j=1

R jx j −E[
n

∑
j=1

R jx j]|] =

=
1
T

T

∑
t=1

∣∣∣∣∣ n

∑
j=1

(r jt −µ j)x j

∣∣∣∣∣ . (3.21)

So, the initial MAD model may be reformulated considering (3.21). That is:

min
1
T

T

∑
t=1

∣∣∣∣∣ n

∑
j=1

(r jt −µ j)x j

∣∣∣∣∣ (3.22)

s.t.
n

∑
j=1

µ jx j ≥ ρ (3.23)

n

∑
j=1

x j = 1 (3.24)

x j ≥ 0, j = 1, ...,n. (3.25)

The previous problem is not yet a linear one because of the modules. However, the following
proposition overcomes this.

Proposition 3 Consider the problem (P)

min
k

∑
i=1

| fi(x)| (3.26)

s.t. x ∈ Ω. (3.27)
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Let us consider new auxiliary variables yi, i = 1, . . . ,k, and the problem (P’)

min
k

∑
i=1

yi (3.28)

s.t. yi ≥ fi(x), yi ≥− fi(x), x ∈ Ω. (3.29)

Then, the optimal solutions of the two problems, in variables x, coincide and the optimal solution of
(P’) in y verifies y∗i = | fi(x∗)|.

Proof: (By contradiction)
(⇒) Let x∗ be the optimal solution of problem (P) and y∗i = | fi(x∗)|. Then (x∗,y∗) is an admissible

solution of (P’). If it is not optimal, there would be a solution (x̄, ȳ) where

k

∑
i=1

ȳi <
k

∑
i=1

y∗i . (3.30)

As ȳ is admissible in (P’), then, ȳi ≥ fi(x̄i) and ȳi ≥ − fi(x̄i) ⇒ ȳi ≥ | fi(x̄)|. Furthermore, as x̄ is
admissible in (P’), then is also admissible in (P), so, x∗ cannot be an optimal solution.

(⇐) Let (x∗,y∗) be the optimal solution of (P’). If x∗ is not the optimal solution of (P), it will exist
an optimal solution (x̄) of (P) such that,

k

∑
i=1

| fi(x̄)|<
k

∑
i=1

f ∗i . (3.31)

Let us define ȳi = | fi(x̄)|. Then we have that (x̄, ȳ) is admissible and has lower value in the objective
function.

Corollary 1 If the functions fi in problem (P) of the previous proposition are linear and Ω is a
polyhedron, then the problem (P’) is a linear problem.

Thus, the result stated in Proposition 3 can be applied to problem (3.32)-(3.37). Using Proposition
3 and Corollary 1, the problem (3.22)-(3.25) can be transformed into a linear problem by introducing
a new variable yt associated with yt =

∣∣∑n
j=1(r jt −µ j)x j

∣∣, such that

min
1
T

T

∑
t=1

yt (3.32)

s.t. yt +
n

∑
j=1

(r jt −µ j)x j ≥ 0, t = 1, ...,T (3.33)

yt −
n

∑
j=1

(r jt −µ j)x j ≥ 0, t = 1, ...,T (3.34)

n

∑
j=1

µ jx j ≥ ρ (3.35)
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n

∑
j=1

x j = 1 (3.36)

x j ≥ 0, j = 1, ...,n. (3.37)

It is important to notice that there are more 2T constraints and T variables in relation to the
competing MV problem. However, these do not depend on the number of assets. Hence, the
computational time associated with the MAD model depends on the number of observations and not
on the number of assets as it happens in the MV model.

Arguably, the MAD model, being a linear problem, is easier to solve than the MV model. Simaan
[33] mentioned three advantages: it does not require the calculation of the covariance matrix; in
large scale problems it is easier to solve a linear problem than a quadratic one and, finally, portfolios
obtained by applying this model are formed by fewer assets, which implies lower transaction costs.
However, if there is a large number of observations, probably there are no advantages in terms of
computational time, as it will be shown in Chapter 4.

3.4 A simple example of portfolio selection

This section compares the quadratic and linear models using an illustrative example. With that
example, it is explained how one can replicate these models using Matlab and then the results obtained
are presented.

Quadratic problems can be solved with Matlab software using the quadprog function. The
quadratic program can be described as

min
1
2

xT Hx+ f T x (3.38)

s.t. Ax ≤ b (3.39)

Aeqx = beq (3.40)

lb ≤ x ≤ ub. (3.41)

The first constraint corresponds to the inequality constraints. Note that these have a greater or equal
sign in the MV and MAD models, so they need to be converted. The second constraint represents
the equality one and the last one the lower and upper bounds. Regarding the objective function, we
consider f = 0 because this term does not exist in the MV model, and H is the covariance matrix
(Kwon [21]).

Thus, these arguments are described as [x, f val] = quad prog(H, f ,A,b,Aeq,beq, lb,ub), where
the vector x corresponds to the optimal solution, in this case, the proportions of the assets, and f val is
the value of the objective function, which corresponds to the variance of the optimal solution.
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Considering the linear formulation of the MAD model (from equations (3.32) to (3.37) ), we use
Matlab’s linprog function. The linear problem is described as

min f T x (3.42)

s.t. Ax ≤ b (3.43)

Aeqx = beq (3.44)

lb ≤ x ≤ ub. (3.45)

Hence, [x, f val] = linprog( f ,A,b,Aeq,beq, lb,ub), where x corresponds to the optimal solution and
f val to the value of the mean absolute deviation of the optimal solution.

Example 2 Let us consider three stocks from the S&P500 Index, each one belonging to a different
sector. These stocks are described in Table 3.2. The sample period is from January 4, 2010 -
December 31, 2018. Data were collected from the Investing website (https://www.investing.com/).
The logarithmic returns time series are constructed using three frequencies: daily, weekly and monthly.

Table 3.2 Name, acronym and sector of each stock.

Name Acronym Sector
Apple AAPL Information Technology

Kellogg Company K Consumer Staples
Caterpillar Inc CAT Industrials

The portfolio selection problem will be mainly focused on the minimum risk portfolios, i.e. on the
minimum variance and minimum mean absolute deviation portfolios. In these cases, the constraints
(3.11) and (3.35) are removed from the MV and MAD models, respectively.

Table 3.3 presents some descriptive statistics of the three stocks. Apple is the stock with the
highest mean return, while Kellogg is the stock with the lowest mean return. Although Apple has the
highest mean return in all frequencies, its standard deviation is lower than the standard deviation of
CAT at weekly and monthly frequencies.

The Jarque-Bera and Kolmogorov-Smirnov tests, where the null is normality, are then used to
assess if logarithmic returns follow a normal distributions. The results in Table 3.4 show that the daily
returns of the three stocks do not follow a normal distribution. However, as frequency decreases the
distributions approximate normality, and the tests fail to reject the null hypothesis for monthly returns.
That occurs because one observation corresponds to the sum of 21 daily returns (approximately) and,
for that reason the distribution tends to approach the normal.

https://www.investing.com/


3.4 A simple example of portfolio selection 19

Table 3.3 Descriptive statistics of returns.

Type Company Mean StD Min 1st quartile Median 3rd quartile Max
Daily AAPL 0.0007 0.0443 -1.3891 -0.0072 0.0007 0.0095 1.3866

K 0.0000 0.0109 -0.0930 0.0051 0.0003 0.0055 0.0603
CAT 0.0003 0.0172 -0.2287 -0.0080 0.0002 0.0093 0.0780

Weekly AAPL 0.0034 0.0380 -0.1283 -0.0200 0.0056 0.0267 0.1317
K 0.0002 0.0222 -0.0933 -0.0114 0.0011 0.0131 0.0804

CAT 0.0016 0.0387 -0.1510 -0.0188 0.0237 0.0093 0.1222
Monthly AAPL 0.0163 0.0733 -0.2034 -0.0218 0.0157 0.0635 0.1793

K 0.0004 0.0429 -0.1102 -0.0284 0.0026 0.0302 0.0934
CAT 0.0083 0.0804 -0.2287 -0.0407 0.0104 0.0595 0.2463

Table 3.4 Kolmogorov-Smirnov (KS) and Jarque-Bera (JB) normality tests.

Periodicity
AAPL K CAT

KS JB KS JB KS JB
Daily 0.0000 0.0010 0.0000 0.0010 0.0000 0.0010
Weekly 0.6402 0.0096 0.0446 0.0010 0.0681 0.0010
Monthly 0.7606 0.3430 0.9795 0.5 0.9839 0.2950

Notes: The values in bold represent the rejection of the null of normality at the 1% level.

Table 3.5 reports the composition of the minimum risk MV and MAD portfolios and its expected
return and risk. Both models, independently of the frequency, suggest investing a higher proportion in
Kellogg. Since we are dealing with the minimum risk portfolio in both models, it is expected that
the optimal solution proposes an higher weight for the less risky (Kellogg). The expected returns of
the minimum risk MV and MAD portfolios are close, and its closeness increases when the frequency
decreases. This example also illustrates Theorem 1. In the case of daily data, which do not follow a
normal distribution, one may observe that 0.0001 ̸=

√
( 2

π
)
√

0.0001. However, in the case of monthly
data, when returns follow a distribution closed to the normal (see Table 3.4), 0.0307 ≈

√
( 2

π
)
√

0.0014.

Other insights can be obtained considering how the portfolios’ composition change with different
values of ρ . That is, how the distribution of weights change according to the desired return. To
construct the efficient frontier, we consider an expected return in the interval [ρmin, ρmax], as explained
in section (3.2.2), divided into 100 points .

Figures 3.2 and 3.3 show the distribution of weights as a function of ρ for the MV and MAD mod-
els, respectively. In these figures, we can note that the minimum risk portfolio is the most diversified
portfolio. Also as the portfolio’s required minimum expected return increases, the investment in the
asset with the highest return increases.

This illustrative example allow us to draw some conclusions which are inline with previous studies,
namely [20]. First, the normality of returns usually does not occur except for monthly returns. Second,
if normality holds, then the risk of the two models agree according to Theorem 1 and the weights and



20 The Markowitz and Konno-Yamazaki Models

Table 3.5 MV and MAD minimum risk portfolios.

Period Model Expected Return (%) Weight AAPL Weight K Weight CAT Risk
Daily MV 0.0120 0.0303 0.7560 0.2138 0.0001

MAD 0.0165 0.1391 0.7467 0.1141 0.0001
Weekly MV 0.0869 0.1689 0.7134 0.1177 0.0003

MAD 0.0842 0.1715 0.7349 0.0936 0.0149
Monthly MV 0.3891 0.1462 0.7103 0.1435 0.0014

MAD 0.3970 0.1184 0.6718 0.2098 0.0307

Notes: This table presents the weights of the MV and MAD minimum risk portfolios. It also shows
the expected returns and risk (measured by the variance and mean absolute deviation for the MV and
MAD portfolios, respectively).

(a) Daily data. (b) Weekly data. (c) Monthly data.

Fig. 3.2 Composition of efficient portfolios of MV model.

(a) Daily data. (b) Weekly data. (c) Monthly data.

Fig. 3.3 Composition of efficient portfolios of MAD model.

returns obtained by the two models are similar. Third, the portfolio with the lowest risk is the most
diversified one.

3.5 Equally-Weighted portfolio

In the study carried out in Chapter 4, we compare the optimization models, MV and MAD,
with a simple heuristics - the Equally-Weighted (EW) portfolio. DeMiguel et al. [12] call this
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investing strategy the "naive portfolio", which consists in assigning the same weight to all assets in
the investment universe, that is, if the portfolio has n assets, then

x j =
1
n

(3.46)

for each asset j, j = 1, ...,n.
This is a straightforward and intuitive investing strategy, because it does not require the estimation

of the moments of returns or the application of any optimization procedure. Hence, there are no
measurement or estimation errors. In the one hand, DeMiguel et al. [12] showed that the EW portfolio
may obtain better out-of-sample performances than portfolios based on optimization techniques. On
the other hand, this portfolio may be seen as a proxy for the overall market, as it is formed by all
assets in the considered stock universe. Hence we use the EW portfolio as a benchmark portfolio in
our comparative analysis.





Chapter 4

Comparative Study

This chapter compares the performance of the MV and MAD models considering the following
aspects: the computational time regarding the dimensionality of the problem (number of stocks
and number of observations collected over time); sensitivity to portfolio rebalancing, and portfolio
financial performance. The software used in this chapter was Matlab R2021b. The Matlab codes were
written with the help of the supervisors.

4.1 Data and Preliminary Analysis

Data was collected from the Refinitiv Eikon (https://www.refinitiv.com/en), also known as Thom-
son Reuters Eikon. The data covers the period from January 4, 2010, to November 30, 2021. US
stocks were sorted in descending order of market capitalization (overall share value of a company)
on the first day of the sample. Then, the adjusted daily closing prices were obtained for the first 500
stocks. A filtering procedure was then applied: if a given stock does not have data for the entire period,
it was discarded, and a new stock, with the highest market capitalization, is added. We end up the
procedure when a set of 500 stocks with full data was achieved. More specifically, we selected the
stocks in the Refinitiv Eikon database as follows:

1. In the Static Request section, in Series/List, the search was redefined with the following
constraints: category - equities, exchange - NASDAQ and NYSE, market - the United States,
currency - United States Dollar, type - equity, activity - active, and base date - 2010. Then in
Datatypes/Expressions ’WC08001’ was selected, which is the ticket corresponding to market
capitalization. Before submitting the request, it was essential to click on the primary sort and
ask for the data to be sorted by descending order of market capitalization and in the date insert
the first day of the sample with data, which, in this case, corresponded to January 4, 2010.

2. After having the data sorted, in the Times Series Request section, in Series, the first 500 stocks
were chosen by selecting the cells in Excel. Finally, in Datatypes, the ’P’ ticket was inserted,
corresponding to the adjusted closing price, not forgetting to put the period to be observed.

Most of the selected stocks (305) were constituents of the S&P500 index on the first day of the sample,
and this number increased to 420 on the last day of the sample. Information on the components of
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the S&P500 index in 2010 is available at [4], and that information for the year 2021 is available in
Refinitiv Eikon, using the symbol "LS&PCOMP".

Since we are only interested in days when the market is open, the days corresponding to New
York holidays were removed (e.g., January 1, third Monday in January and February, last Monday in
May, July 4, first Monday in September, second Monday in October, November 11, last Thursday in
November and December 25). The daily data was then converted into weekly data, using the prices
on Wednesdays, which is the day-of-the-week less subjected to the weekend effect. If on a given
Wednesday the market was closed then the previous business day was considered. Monthly data was
also obtained by using prices every four weeks. So, the sample contains 3002 daily observations, 621
weekly observations and 156 monthly observations.

The period under study was divided into two sub-periods: "in-sample" (January 4, 2010 - Decem-
ber 31, 2018) and "out-of-sample" (January 2, 2019 - November 30, 2021).

As most stocks in our database belong to the S&P500 index, we present in Figure 4.1 the evolution
of this index during the sample period. The S&P500 index presented a positive trend during the
overall period, following the aftermath of the 2007-2008 crisis. In March 2020 there was a sudden fall
down originated by the Covid-19 crisis. Despite the Covid-19 crisis, the price average rate of increase
was higher in the out-of-sample period than in the in-sample period.

Table 4.1 shows some descriptive statistics of daily, weekly and monthly logarithmic returns
of the S&P 500 in the entire sample, while Table 4.2 shows these statistics for the in-sample and
out-of-sample periods. All the statistics increase when the periodicity of the data decreases, except the
kurtosis, which is higher in daily data. This is expected, as weekly data results from the aggregation
of daily data, while monthly data results form the aggregation of weekly data. Hence, the monthly
average corresponds approximately to four times the weekly average and the monthly standard
deviation is twice (

√
4) the weekly standard deviation. The weekly average is approximately five

times the daily average returns and the weekly standard deviation is
√

5 times the daily standard
deviation.

The mean and median of returns are higher in the out-of-sample period than in the in-sample
period, this supported what previously has been said about Figure 4.1. The variability of returns is
also higher in the out-of-sample period (higher standard deviation, minimum and maximum range and
inter-quartile range).

The kurtosis presents for all series values are greater than three which implies that the distributions
have heavier "tails" than the normal distribution. The periodicity of the data affects the weight of
the tails, being heavier when the frequency of the data increases. Moreover, it is observed that the
distribution of returns in the out-of-sample period has heavier tails than in the in-sample period, being
in accordance with an increase in extreme values reported earlier.

4.2 In-Sample Performance

This section analyzes the in-sample computational effort and performance of models. The
in-sample portfolio optimal solutions can be seen as estimations of the optimal solutions in the
out-of-sample period, when the portfolio is actually retained by the investor.
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Fig. 4.1 Evolution of the S&P 500 index from January 4, 2010, to November 30, 2021. The vertical
line separates the in-sample and out-of-sample periods.

Table 4.1 Descriptive statistics of logarithmic returns (full sample).

Descriptive statistics Return (Full Sample)
Daily Weekly Monthly

Observations 3002 621 156
Mean 0.0004 0.0024 0.0096
Median 0.0006 0.0036 0.0136
Std.Deviation 0.0191 0.0407 0.0834
1st Quartile -0.0082 -0.0170 -0.0297
3rd Quartile 0.0096 0.0235 0.0539
Minimum -0.1997 -0.2850 -0.4794
Maximum 0.1676 0.2070 0.2760
Kurtosis 19.4526 13.3193 13.7458

4.2.1 Analysis of portfolio performance

The 500 stocks in the database were then sorted alphabetically and divided into different groups
with equal cardinality. For example, in the 2 groups case, each group has 250 stocks, in the 5 group
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Table 4.2 Descriptive statistics logarithmic returns (in-sample and out-of-sample).

Descriptive statistics In-Sample Out-of-Sample
Daily Weekly Monthly Daily Weekly Monthly

Observations 2268 469 118 734 152 38
Mean 0.0004 0.0020 0.0079 0.0006 0.0036 0.0132
Median 0.0005 0.0032 0.0118 0.0010 0.0050 0.0188
Std.Deviation 0.0169 0.0357 0.0665 0.0242 0.0521 0.1192
1st Quartile -0.0079 -0.0167 -0.0298 -0.0095 -0.0183 -0.0310
3rd Quartile 0.0091 0.0223 0.0496 0.0115 0.0284 0.0686
Minimum -0.1343 -0.1729 -0.2123 -0.1833 -0.2685 -0.4675
Maximum 0.1179 0.1416 0.1849 0.1549 0.1946 0.2634
Kurtosis 12.2672 6.4841 4.2936 16.5352 11.0982 9.4412

case, each group has 100 stocks, and so on. The weights of stocks are equally assigned within each
group. For instance, in the 2 group case, if the weight of the first group is 30%, then the final weight
of any stock in that group is 0.3

250 = 0.12%. We consider eleven partitions of the stocks into 1, 2, 5, 10,
20, 25, 50, 100, 125, 250 and 500 groups.

Table 4.3 Expected return and standard deviation of portfolios selected from different groups of stocks.

Number of groups MV MAD EW
ER StD ER StD ER StD

1 0.0520 1.0049 0.0520 1.0049 0.0520 1.0049
2 0.0506 0.9760 0.0506 0.9760 0.0520 1.0049
5 0.0539 0.9539 0.0539 0.9539 0.0520 1.0049
10 0.0536 0.9533 0.0535 0.9540 0.0520 1.0049
20 0.0487 0.9265 0.0488 0.9267 0.0520 1.0049
25 0.0543 0.9089 0.0542 0.9105 0.0520 1.0049
50 0.0542 0.8705 0.0537 0.8762 0.0520 1.0049
100 0.0497 0.7962 0.0489 0.8005 0.0520 1.0049
125 0.0503 0.7602 0.0492 0.7682 0.0520 1.0049
250 0.0444 0.6782 0.0436 0.6833 0.0520 1.0049
500 0.0319 0.6063 0.0322 0.6117 0.0520 1.0049

Notes: This table shows the expected return (ER) and risk, measured by the standard deviation
(StD) of minimum risk portfolios selected in-sample using the Mean-Variance model (MV) and the
Mean Absolute Deviation model (MAD). It also shows these statistics for the Equally Weighted
(EW) portfolio. These portfolios are constructed considering different numbers of groups with equal
cardinality. In each group, stocks are equally weighted. The analysis is conducted in-sample (January
4, 2010 - December 31, 2018) using daily data. The results are shown in percentage.

Table 4.3 shows the expected return and risk for the minimum risk MV and MAD portfolios, and
EW portfolios considering different numbers of groups. The expected return and standard deviation of
the EW portfolios do not change, has in fact these correspond to a unique portfolio with equal weights
(also notice that this portfolio corresponds, by construction, to the MV and MAD portfolios when only
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Fig. 4.2 Sharpe ratio as a function of the number of groups using daily data.

one group is used). The EW portfolio presents a good performance in terms of expected return but
shows the worst performance in terms of risk. The MV and MAD portfolios present similar results,
however, the risk of the MV portfolio is always equal to or lower than the risk of the MAD portfolio.
This is expected because the MV minimizes the risk measured by the variance (or equivalently the
standard deviation) which is the metric used to assess the risk of MV and MAD portfolios. The
mean return of the minimum risk portfolios shows a tendency to increase with the number of groups
until 25 and then decreases. The risk tends always to decrease with the number of groups. This is
expected because we are dealing with minimum risk portfolios, and the optimization procedure is
more effective with an increase in the number of groups which imply a decrease in the number of
superimposed restrictions. In Appendix B, Figure B.1 and Figure B.2 show graphically the expected
return and risk as a function of the number of groups, respectively, where these patterns are visible.
Figure 4.2 shows the annualized Sharpe ratio (see Equation (5)) over the different groups. As expected
from the analysis of the expected return and standard deviation, the Sharpe ratio of MV portfolios is
never lower than the corresponding Sharpe ratio for the MAD portfolios. The Sharpe ratio increases
for both MV and MAD models until 125 groups (4 assets per group) and then decreases reaching the
minimum of approximately 0.8 when considering 500 groups.

The same analysis is performed for weekly and monthly data (see Appendix B). Basically, the
same patterns reported for daily data are also visible for weekly and monthly data.

4.2.2 Analysis of computational time

This section assesses the impact of the problem’s dimensionality on the computational time of the
MV and MAD models. As already mentioned in Chapter 3, Markowitz’s main disadvantage is that
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it falls on a quadratic problem, which arguably needs a greater computational effort to compute the
optimal solution than the linear model. The MV model is strongly dependent on the number of stocks,
in contrast, the MAD model depends on the number of stocks and the number of observations (see,
for instance, Júdice et al. [17]). In that paper, the authors only use a maximum of 92 stocks and 300
observations, which are small numbers to reach accurate conclusions.

Fig. 4.3 Computational time using daily data.

Fig. 4.4 Computational time using weekly data.

Fig. 4.5 Computational time using monthly data.
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To analyse the computational time we use the previous partition of stocks into groups, and consider
the minimum risk portfolios of the MV and MAD models for the three frequencies (daily, weekly and
monthly). The daily, weekly, and monthly data consist of 2268, 469 and 118 observations, respectively,
as mentioned in Table 4.2. Since the computational time varies significantly from run to run, the
portfolios for each group is computed ten times and then their computational times are averaged. The
average computational times for the three frequencies as a function of the number of groups are shown
in Figure 4.3, Figure 4.4, and Figure 4.5. Notice that the computational times for the MV model
include the time needed to calculate the covariance matrix. The MAD model needs less time only
when using monthly data (i.e., when the number of time points is small). These results are in line with
those presented in several papers [2, 8, 17]. So, the MAD model has n×T decision variables and,
consequently, it is T times greater (in terms of dimensionality) than the MV model.

To have a more clear view of the dependence of the computational time with respect to the number
of stocks and the number of time observations, we resort to simulated data. Returns, following the
standard normal distribution, were simulated for 5,000 stocks and 200 time observations.

Figure 4.6 represents the computational time for 100 time observations and 5,000 stocks. Figure
C.1(a), Figure C.1(b), and Figure C.1(c), show the differences in computational time using 50, 100
and 200 time points. All these figures highlight that the computational time increases quadratically
and linearly with the number of stocks for the MV model and MAD models, respectively. However,
the inclination of the straight line that describes the evolution of computational time in the MAD
model increases with the number of observations.

Fig. 4.6 Computational time using random data.

So, from Figure 4.6, we may conclude that when there are many assets with low frequency data,
the MAD model performs much better than the MV model. It is essential to mention that in our
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computational experience, the covariance matrix was computed using an optimized routine available
for Matlab, so we believe that this may also have influenced the computational time to solve the MV
problem.

It seems that the MAD model is better when the number of observations is lower than 1/15 of
the stocks number (this is the point where the two curves intersect). This pattern is noticeable if one
computes the ratio T

n , where T is the number of time points and n is the number of assets. For instance
for T = 50, 50/1,000 = 0.05 = 1/15, for T = 100, 100/1,500 = 0.05 = 1/15, and for T = 200
200/3,500 = 0.05 = 1/15. However, in practice, to obtain accurate estimates of the models’ inputs,
the number of observations must be at least equal to the number of stocks. This raises some questions
on the usefulness of the MAD model.

One should notice that in reality, investors seldom intend to invest in such a large number of assets.
However, if the investment strategy aims at creating a widely diversified portfolio, the investor may
invest in ETFs (Exchange Traded Funds), which are traded assets that replicate the behaviour of stock
indexes. Let us suppose that an investor wants to pursue an international diversification strategy, then
she can buy ETFs on, for instance, the S&P500, Nikkei 250, and FTSE 100. Using just these three
assets the investor will have a market position on 850 equities from three continents.

4.3 Out-of-Sample Performance

4.3.1 Portfolio rebalancing

The portfolio rebalancing strategy is a common portfolio management practice. By rebalancing
her portfolio, the investor changes the composition of the portfolio according to updated data, and
also enables the investor to manage his risk exposure and to pick up the best stocks in the recent past.

Considering that the portfolios are rebalanced periodically, allows a proper assess the out-of-
sample performance of the portfolio selection models. Usually, rebalancing is performed using the
information in a rolling window with fixed length (see DeMiguel et al. [12]). Here we consider
rebalancing at daily, weekly and monthly frequencies considering a rolling window with 2268 days,
469 weeks and 118 months respectively, i.e. corresponding to the in-sample period. The investment
universe is formed by the 500 stocks in the database. Using this strategy implies obtaining 734 daily
returns, 152 weekly and 38 monthly returns corresponding to the out-of-sample period. A simple
example clarifies this. Suppose that one has a sample consisting of 1,000 daily observations, 700 of
which are in-sample and 300 out-of-sample. First, using the in-sample data from day 1 to day 700,
one computes the optimal solutions applying both models. Then, with these vectors of weights, one
computes the effective return of the portfolio for the first day out-of-sample, i.e., day 701. Then, the
optimal solutions are calculated using data day 2 to day 701, which are then used to compute the
portfolio return on day 702, and so on until all days in the out-of-sample are covered. One ends up
with 300 portfolio returns produced by each of the models under study. The reasoning is identical if
we have weekly and monthly data.

The out-of-sample analysis is performed considering the minimum risk portfolio, hence the
minimum expected return constraints present in both models, namely Equation 3.11 and Equation
3.35 are not considered.
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In the out-of-sample analysis, one must take into account the way that returns are computed. The
optimal solutions were estimated using logarithmic returns, but they are not additive in the asset
space. So, one must convert them into discrete returns using the operation exp(rt)−1, where rt are
logarithmic returns. To obtain the vector portfolio returns, one has to apply the operation ln(1+Rt),
where Rt are the discrete effective portfolio returns.

Figure 4.7 shows the daily cumulative return (with basis equal to 100), i.e., the path of 100e∑
T
t=1 Rt ,

where Rt is the out-of-sample portfolio logarithmic return at time t after rebalancing (weekly and
monthly rebalancing provide similar figures). This figure shows that the EW almost always dominates
the other portfolios. This does not happen during the second semester of 2019, when there was an
increase in the trade war between the USA and China [23], uprising the uncertainties on the USA
economic growth, and in March 2020, due to the market crash caused by the COVID-19 pandemic.
Therefore, the EW portfolio appears to perform worse when there is is a lot of uncertainty in the
financial market.

Fig. 4.7 Portfolio cumulative returns with daily rebalancing

Table 4.4 shows the final values obtained by applying different rebalancing strategies to the
different solutions analyzed. Comparing the optimal solutions of the MV and MAD models, the best
value obtained was with the weekly MV model. However, the MAD model exceeds the value obtained
by the MV model. MAD model performs poorly when transaction costs are taken into account.

4.3.2 Metrics of financial performance

This section evaluates the financial performance of the models using different metrics. These
measures are described below. The analysis is conducted with and without transaction costs. For
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Table 4.4 Final values of an investment of 100.
.

Model Type of reb. Final Value (without TC) Final Value (with TC) Loss (%)
MV Daily 139.3884 129.6288 7.0017

Weekly 148.5556 (+6.5767) 140.9601 (+8.7413) 5.1129
Monthly 119.7246 (-14.1072) 115.6821 (-10.7590) 3.3765

MAD Daily 141.8270 122.3748 13.7154
Weekly 145.4904 (+2.5830) 130.7066 (+6.8084) 10.1614

Monthly 123.9912 (-12.5757) 113.2313 (-7.4717) 8.6780
EW Daily 192.2909 183.7471 4.4432

Weekly 204.6490 (+6.4268) 200.3382 (+9.0293) 2.1064
Monthly 191.5407 (-0.3901) 189.3973 (+3.0750) 1.1190

Notes: In parentheses there are the difference in percentage in relation to daily rebalancing. The final
value is computed without transaction costs (without TC) and with proportional costs of 0.5% (with
TC). The last column shows the relative difference when transaction costs are considered.

these analyses one needs the matrix of asset weights and the vector of out-of-sample effective returns.
The evaluation takes into account the three frequencies (daily, weekly and monthly). Inclusion of
transaction costs gives a more realistic view on the investment differences. According to Dybvig
and Pezzo [13] and Sebastião [29], transaction costs may be associated with brokerage costs, taxes,
bid-ask spreads, time and effort to calculate the optimal portfolios, and costs to study the assets in the
investor’s portfolio.

Based on DeMiguel et al. [12], we use a proportional transaction cost of c = 0.5%. So, the overall
transaction cost at time t is computed as:

costt = 0.5%
n

∑
i=1

∣∣(x j,t − xh
j,t)

∣∣ . (4.1)

The investor’s wealth (Wt) at each moment t, considering that at the initial moment, t = 0, wealth
equals to W0 = 100 is given by (4.2), where Rp,t corresponds to the discrete return of the portfolio at
the moment t.

Wt =Wt−1(1+Rp,t)(1− costt). (4.2)

1. Win Rate: The win rate corresponds to the percentage of periods out-of-sample with positive
returns.

WR =
npositive_returns

#periods
(4.3)

where npositive_returns corresponds to the number of periods that have positive return.

2. Cardinality: The cardinality allows us to observe the evolution of the number of assets in the
portfolio. With the rebalancing strategy, assets weights are updated every day (week or month),
hence cardinality is a variable that counts the number of assets that have a more weight above
a certain threshold and gives an idea on the level of diversification of the portfolio. We first



4.3 Out-of-Sample Performance 33

used three thresholds: 0%, 1/n (where n = 500 is the number of assets) and 1%. However, we
observed that with a 0% threshold the optimal solution of the Markowitz model invests in all
assets, although the investment in more than 450 assets is less than 0.2% . Hence, we chosen to
evaluate the cardinality using the following thresholds: 1/n, 1% and 5%.

3. Turnover: This measure corresponds to the turnover presented by DeMiguel et al. [12] given by
the formula (4.4). It gives an idea of the amount of trading executed by a particular investment
strategy. The turnover corresponds to the average, over all periods, of the absolute changes in
the weights of the assets.

Turnover =
1

#periods

#periods

∑
t=1

n

∑
j=1

∣∣(x j,t − xh
j,t)

∣∣ . (4.4)

xh
j,t and x j,t correspond to the portfolio weights before and after rebalancing at t. One should

notice that the amount of trading of each asset is not equal to the difference between the two
consecutive optimal weights, because the weight changes simply because the asset’s price
changes. Hence, the price impact must be considered. Let R j,t and and RP,t be the out-of-sample
returns of asset j and portfolio P at time t, it follows that xh

j,t = x j,t−1
1+R j,t
1+RP,t

.

4. Annualized Mean Return and Standard Deviation: The annualized mean is obtained by
multiplying the average of the out-of-sample returns by the number of periods in the year of, i.e.
254, 52 and 12 for daily, weekly and monthly data, respectively. The logic is the same for the
annualized standard deviation, for which the multipliers are the square roots of 254, 52 and 12
for daily, weekly and monthly data, respectively.

5. Sharpe Ratio: William Sharpe [32], in 1966, presents a measure to evaluate the performance
of investment portfolios called reward to variability ratio, better known as the Sharpe Ratio. It
describes how much the investor is rewarded per unit of risk.

To compute the Sharpe ratio one needs to firstly define the vector of excess returns, RER =

RP −R f , where RP is the portfolio return and R f is the risk-free interest rate. In this study, the
risk-free interest rate is proxied by the yield-to-maturity of the 3-month Treasury bills collected
from the US Federal Reserve’s database [11]. This interest rates are presented in percentages
and are annualized, hence, were converted into daily, weekly and monthly rates, by dividing per
36,000, 5,200, 1,200, respectively.

The Sharpe ratio corresponds to the quotient between the average excess return and the standard
deviation of the excess return, i.e,

SR =
mean(RER)

σ(RER)
. (4.5)

This ratio (4.5) is then annualized by multiplying it by the square root of 254, 52, 12 for daily,
weekly and monthly data, respectively.

6. Sortino Ratio: In 1994, Sortino and Price [34] introduced a variation of the Sharpe ratio.
The Sortino ratio has the same numerator as the Sharpe ratio; however, the denominator only
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accounts for the downside risk, i.e. only considers the returns lower than a given threshold, B.
The downside risk is defined as,

DR =

√√√√ 1
T

T

∑
j=1

min(0,RPj −B)2, (4.6)

The usual thresholds are the risk-free rate or zero. In this study we chose B = 0. Thus, the
Sortino ratio is defined as

SR =
mean(RER)

DR
(4.7)

The annualized Sortino ratio is obtained multiplying (4.7) per the square root of 254, 52, 12 for
daily, weekly and monthly data, respectively.

7. CVaR: Rockafellar and Uryasev [28] proposed the Conditional Value at Risk (CVaR), which is
related to other risk measure, the Value at Risk (VaR). The CVaR measures the expected loss
below the VaR, i.e. it measures the extreme losses when the VaR value is exceeded. The VaR is
the α quantile of the loss distribution and represents the smallest possible loss with probability
greater than, or equal to, α . The usual values for α are 0.90, 0.95 and 0.99.

Figure 4.8 presents the histogram of the returns of the Markowitz out-of-sample portfolio
applied the daily rebalancing. One can observe the VaR value with a confidence level of 99%.
In red are present the values below the VaR, that is, the values corresponding to the CVaR (the
CVaR is usually presented as the loss value, that is, the symmetric of negative returns).

Fig. 4.8 Histogram of out-of-sample portfolio return.
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8. Maximum Drawdown: A drawdown is an essential tool for investors, as it allows them to
understand the instability of a given investment better. The Maximum Drawdown measures the
maximum loss observed from the highest accumulated value (peak) to the lowest accumulated
value (valley or trough) before a new peak is reached, relative to the initial peak. As stated by
Choi [9], investors will prefer a portfolio with a lower maximum drawdown value.

MDD =
Trough_Value−Peak_Value

Peak_Value
(4.8)

4.3.3 Financial performance of the minimum risk portfolios

Table 4.5 shows the performance of the minimum risk MV and MAD portfolios, and EW
portfolios with and without transaction costs. The EW portfolio outperforms the MV and MAD
portfolios in terms of win rate, turnover, mean return, Sharpe ratio, and Sortino ratio, with and
without transaction costs. However, these portfolios are more risky (higher standard deviation)
and are more susceptible to extreme losses (higher CVaR and Maximum Drawdown).

Except for the weekly rebalancing, the MAD model outperforms the MV model in terms of
mean return. However this advantage is lost when transaction costs are included. The impact
of transaction costs is higher for the MAD portfolios than for the other two portfolios. For the
other metrics, and independently of the rebalancing frequency, the MV model outperforms the
MAD model.

As for the turnover value, we did not expect to obtain such a high value for the MAD model.
However, for instance when analysing in more detail the weights of the MAD portfolio with
monthly frequency, we noticed that the weights fluctuate a lot over time, in many cases excluding
the assets that previously were in the portfolio and including new ones, hence increasing the
turnover significantly.

So, the results undoubtedly show that the EW is the best portfolio, followed by the MV portfolio,
while the MAD portfolio present the worst performance, especially if transaction costs are taken
into account.

Table 4.6 shows the bootstrap p-values of the test on the difference of Sharpe ratios. The test is
conducted pairwise and the null hypothesis is that the difference is equal to zero. The bootstrap
p-values were calculated according to the Ledoit and Wold [22] methodology. Table 4.6
highlights that in most of the cases the differences between the Sharpe ratios are not statistically
different from zero. However, for monthly rebalancing, without transation costs, the MAD
portfolio has a Sharpe ratio significantly lower (at the 5% level) than the EW portfolio. At
monthly frequency, the consideration of transaction costs, reinforces the superiority of the EW
portfolio, which has a Sharpe ratio significantly higher than the MV and MAD portfolios.

We now focus on the cardinality of the portfolios.

Table 4.7 shows the mean, standard deviation, maximum and minimum values of the number
of assets in the portfolios with weights higher than a given threshold. On average the MAD
portfolios with daily and weekly rebalancing have more assets (thresholds 1/n and 1%), and
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Table 4.5 Performance measures.

Metric Without transaction costs With transaction costs
Models Daily Weekly Monthly Daily Weekly Monthly

WR (%) MV 55.722 67.105 76.316 55.313 65.790 76.316
MAD 56.540 65.132 68.421 55.041 65.132 65.790
EW 57.493 67.105 78.947 57.357 67.105 78.947

Tr (%) MV 1.980 6.934 18.600 1.980 6.934 18.600
MAD 4.026 14.168 49.107 4.026 14.168 49.107
EW 1.241 2.819 6.042 1.241 2.819 6.042

AMR (%) MV 11.317 13.801 6.944 8.802 11.998 5.827
MAD 11.923 13.174 8.347 6.809 9.489 5.396
EW 22.570 24.954 22.950 20.994 24.221 22.588

AStd (%) MV 17.313 15.857 19.665 17.400 16.034 19.940
MAD 19.291 15.732 24.860 19.317 15.842 25.070
EW 24.903 23.426 30.103 24.906 23.439 30.112

SR (%) MV 61.872 81.607 31.100 47.109 69.454 25.049
MAD 58.672 78.789 30.238 32.117 54.463 18.192
EW 88.200 102.850 73.456 81.862 99.621 72.230

Sort.R (%) MV 82.706 108.755 35.231 62.119 91.030 28.147
MAD 76.846 100.789 34.566 41.675 69.001 20.549
EW 119.555 139.281 95.023 110.652 134.501 93.334

CVaR (%) MV -6.109 -10.919 -30.200 -6.240 -11.246 -30.854
MAD -6.924 -12.553 -37.954 -6.978 -12.781 -38.608
EW -7.932 -17.109 -40.686 -7.949 -17.179 -40.734

MD (%) MV -31.542 -28.870 -26.066 -32.659 -29.628 -26.545
MAD -34.762 -26.763 -31.582 -35.335 -27.318 -32.028
EW -38.625 -34.663 -33.427 -38.841 -34.795 -33.458

Notes: This table presents the performance metrics for the minimum risk MV and MAD portfolios,
and Equally Weighted portfolios with and without transaction costs. These portfolios were constructed
using daily, weekly and monthly data, and were rebalanced at those frequencies. The metrics are: WR
- Win Rate; Tr - Turnover; AMR - Annualized Mean Return; AStd - Annualized Standard Deviation;
SR - Sharpe Ratio; Sort.R - Sortino Ratio; MD - Maximum Drawdown.

show less concentration (threshold 5%) than the MV portfolios. However the variability of the
cardinality is higher for the MAD portfolios (except when the threshold is 5%). This supports
the previous results that show that turnover and hence transaction costs have an higher impact
on the MAD portfolios than in the MV portfolios.

Figure 4.9 and Figure 4.10 shown the time evolution of cardinality for the MV and MAD
portfolios with daily rebalancing, respectively. These figures clearly show that although the
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Table 4.6 Bootstrap p-values for the difference in the Sharpe ratios.

Bootstrap p-values

Period MV vs. MAD MAD vs. EW EW vs. MV
without TC Daily 0.8322 (MV) 0.2886 (EW) 0.4962 (EW)

Weekly 0.8465 (MV) 0.4289 (EW) 0.5756 (EW)
Monthly 0.8202 (MV) 0.0313 (EW) 0.0605 (EW)

with TC Daily 0.3646 (MV) 0.0674 (EW) 0.3644 (EW)
Weekly 0.8465(MV) 0.1182 (EW) 0.4076 (EW)

Monthly 0.3779 (MV) 0.0146 (EW) 0.0383 (EW)

Notes: This table shows the p-values of the pairwise test on the difference between Sharpe ratio. The
rejection of the null hypothesis of no difference between the Sharpe ratios at the 5% significance level
is n bold. In parentheses are the models that in each pair presented the higher Sharpe ratios.

MAD portfolios are more diversified, the cardinality of MAD portfolios changes more frequently
than the cardinality of MV portfolios.

Interestingly, the MV model suggest forming portfolios that include all 500 assets at all times,
while the MAD model suggests using portfolios with as much as 50 assets. Most weights of the
MV portfolios are in fact infinitesimal, which raises some questions about their practicability in
real markets.

Fig. 4.9 Time path of cardinality of MV portfolios with daily rebalancing.
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Table 4.7 Statistical analysis of the portfolios’ cardinality.

Threshold Cardinality
Models Statistic Daily Weekly Monthly

1/n MV Mean 31.350 32.993 29.447
Std Deviation 1.466 3.866 2.446

Maximum 35 41 34
Minimum 28 25 25

MAD Mean 41.928 39.921 31.632
Std Deviation 3.644 3.702 3.483

Maximum 50 50 38
Minimum 33 29 25

1% MV Mean 24.583 24.276 23.605
Std Deviation 1.245 2.373 1.516

Maximum 27 29 26
Minimum 21 20 20

MAD Mean 26.809 25.559 24.921
Std Deviation 1.787 3.624 2.530

Maximum 32 32 31
Minimum 23 17 21

5% MV Mean 5.275 6.632 6.184
Std Deviation 1.283 1.021 0.896

Maximum 8 10 8
Minimum 3 5 5

MAD Mean 5.228 6.132 5.658
Std Deviation 1.243 0.961 1.744

Maximum 8 8 10
Minimum 3 4 3

Notes: This table shows some statistics of the number of assets in the MV and MAD portfolios, with
weights above given threshold. These portfolios were rebalanced daily, weekly and monthly. The
thresholds are 1/n = 1/500, 1% and 5%.
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Fig. 4.10 Time path of cardinality of MAD portfolios with daily rebalancing.





Chapter 5

Conclusions

The Markowitz and Konno-Yamazaki models assist the investors in choosing their portfolios.
The main objective of this dissertation is to present a comparative study between those two portfolio
selection models, highlighting their strengths and weaknesses. In this way, this dissertation presents
some insights that help the investor to choose the model that best fits their preferences.

Computational time is an essential aspect that should be considered when choosing the model to
be used. The MV model computational time increases quadratically with n, while the MAD model
computational time increases linearly with n and T . Thus, the computational time advantage of the
MAD model over the MV model decreases as T increases. In our study, we observe that the MAD
model is faster than the MV model when the ratio n/T is greater than 15. However, in practice, to
obtain results with any accuracy, the number of observations must be at least equal to the number of
stocks, put into question the usefulness of the MAD model.

The out-of-sample analysis of portfolios with periodical rebalancing showed that the EW portfolio
outperforms the MV and MAD models, confirming the main claim of DeMiguel et al. [12], according
to which this simple heuristic is most of the times better than portfolio optimization techniques.
Similar results were obtained for the minimum risk MV and MAD portfolios. However, the MAD
model performs slightly worse in terms of performance measures than the MV model.

We also highlighted the results on the cardinality of the portfolios. The MV model presents a clear
disadvantage in this issue. While the MAD model suggests investing in about 40/50 assets, the MV
model proposes an investment in all assets, and most weights are very small. These small weights
may lead to an increase in transaction costs and may even be are unpractical in real markets.

In future works, we intend to continue this study and publish our conclusions in an international
journal on this topic by. First, we intend to compare the MAD and MV models with other portfolio
selection models, such as the CVaR, Minimax, and Semi-Variance models. Second, we intend to
insert the transaction costs directly in the models’ formulations. In this way, the weights attributed to
each asset would already be calculated considering transaction costs. Third, we also intend to analyse
other portfolios besides the minimum risk portfolio (which we have address in the present work).
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Appendix B

In-Sample performance (more details)

B.1 Expected Return, Risk and Sharpe Ratio for different groups of
stocks.

B.1.1 Daily Data

Fig. B.1 Expected return as a function of the number of groups using daily data.

Fig. B.2 Risk as a function of the number of groups using daily data.
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52 In-Sample performance (more details)

B.1.2 Weekly Data

Table B.1 Expected return and standard deviation of portfolios selected from different groups of
stocks.

Number of groups MV MAD EW
Exp.Return Risk Exp.Return Risk Exp.Return Risk

1 0.2457 2.0534 0.2457 2.0534 0.2457 2.0534
2 0.2385 1.9902 0.2385 1.9902 0.2457 2.0534
5 0.2554 1.9188 0.2554 1.9188 0.2457 2.0534
10 0.2496 1.9011 0.2523 1.9112 0.2457 2.0534
20 0.2296 1.8298 0.2314 1.8318 0.2457 2.0534
25 0.2536 1.8064 0.2524 1.8107 0.2457 2.0534
50 0.2545 1.6828 0.2434 1.6937 0.2457 2.0534
100 0.2328 1.5185 0.2181 1.5410 0.2457 2.0534
125 0.2531 1.4660 0.2309 1.4985 0.2457 2.0534
250 0.2140 1.3261 0.2132 1.3637 0.2457 2.0534
500 0.1608 1.1366 0.1691 1.1751 0.2457 2.0534

Notes: See the notes of Table 4.3. The only difference is the use here of weekly data.

B.1.3 Monthly Data

Table B.2 Expected return and standard deviation of portfolios selected from different groups of
stocks.

Number of groups MV MAD EW
Exp.Return Risk Exp.Return Risk Exp.Return Risk

1 0.9734 3.4487 0.9734 3.4487 0.9734 3.4487
2 0.9439 3.3302 0.9439 3.3302 0.9734 3.4487
5 1.0101 3.1450 1.0101 3.1450 0.9734 3.4487
10 0.9798 3.0848 0.9794 3.0847 0.9734 3.4487
20 0.9325 2.9636 0.9415 2.9707 0.9734 3.4487
25 0.9778 2.9636 0.9514 2.9919 0.9734 3.4487
50 1.0095 2.7689 0.9910 2.7755 0.9734 3.4487
100 0.9419 2.4710 1.0005 2.5152 0.9734 3.4487
125 1.0690 2.3773 1.0492 2.4722 0.9734 3.4487
250 0.9510 2.0592 0.9658 2.1404 0.9734 3.4487
500 0.8733 1.7414 0.8865 1.8559 0.9734 0.0345

Notes: See the notes of Table 4.3. The only difference is the use here of monthly data.



B.1 Expected Return, Risk and Sharpe Ratio for different groups of stocks. 53

Fig. B.3 Expected return as a function of the number of groups using weekly data.

Fig. B.4 Risk as a function of the number of groups using weekly data.

Fig. B.5 Sharpe ratio as a function of the number of groups using weekly data.



54 In-Sample performance (more details)

Fig. B.6 Expected return as a function of the number of groups using monthly data.

Fig. B.7 Risk as a function of the number of groups using monthly data.

Fig. B.8 Sharpe ratio as a function of the number of groups using monthly data.



Appendix C

Computational time using random values

(a) 50 observations. (b) 100 observations.

(c) 200 observations.

Fig. C.1 Computational time using 5000 random values and with different numbers of observations.
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