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Abstract: In this paper, the Riemann–Hilbert problem, with a jump supported on an appropriate curve
on the complex plane with a finite endpoint at the origin, is used for the study of the corresponding
matrix biorthogonal polynomials associated with Laguerre type matrices of weights—which are
constructed in terms of a given matrix Pearson equation. First and second order differential systems
for the fundamental matrix, solution of the mentioned Riemann–Hilbert problem, are derived. An
explicit and general example is presented to illustrate the theoretical results of the work. The
non-Abelian extensions of a family of discrete Painlevé IV equations are discussed.
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1. Introduction

Mark Grigorievich Krein [1,2] was the first to discuss matrix extensions of real orthog-
onal polynomials. Some relevant papers that appear afterwards on this subject are [3,4]
and more recently [5]. The Russian mathematicians Aptekarev and Nikishin [5] made a
remarkable finding: for a kind of discrete Sturm–Liouville operators they solved the scat-
tering problem and proved that the matrix polynomials that satisfy a three-term recurrence
relation with matrix coefficients

xPk(x) = AkPk+1(x) + BkPk(x) + A∗k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite matrix measure, i.e., they derived a matrix
Favard theorem. Later, it was found that matrix orthogonal polynomials (MOP) sometimes
satisfy properties, as do the classical orthogonal polynomials.

For example, for matrix versions of Laguerre, Hermite and Jacobi polynomials, the
scalar-type Rodrigues’ formula [6,7] and a second order differential equation [8–10] has
been discussed. It also has been proven in [11] that operators of the form D = ∂2F2(t) +
∂1F1(t) + ∂0F0 have as eigenfunctions different infinite families of MOP’s. In [12,13] matrix
extensions of the generalized polynomials considered in [14,15] were studied. Recently,
in [16], the Christoffel transformation to matrix orthogonal polynomials in the real line
(MOPRL) has been extended and a new matrix Christoffel formula was obtained. Finally,
in [17,18] more general transformations—of Geronimus and Uvarov type—where also
considered.

Fokas, Its and Kitaev [19] found, in the context of 2D quantum gravity, that certain
Riemann–Hilbert problems were solved in terms of orthogonal polynomials in the real line
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(OPRL). They found that the solution of a 2× 2 Riemann–Hilbert problem can be expressed
in terms of orthogonal polynomials in the real line and its Cauchy transforms. Later, Deift
and Zhou combined these ideas with a non-linear steepest descent analysis in a series of
papers [20–23] which was the seed for a large activity in the field. To mention just a few
relevant results, let us cite the study of strong asymptotic with applications in random
matrix theory [20,24], the analysis of determinantal point processes [25–28], orthogonal
Laurent polynomials [29,30] and Painlevé equations [31,32].

Recursion coefficients for orthogonal polynomials and their properties is a subject of
current interest. See [33,34] for a review on how the form of the weight and its properties
translates to the recursion coefficients. Freud [35] has studied weights in R of exponential
variation w(x) = |x|ρ exp(−|x|m), ρ > −1 and m > 0. When m = 2, 4, 6 he constructed
relations among them as well as determining its asymptotic behavior. The role of the
discrete Painlevé I in this context was discovered later by Magnus [36]. For a weight of
the form w(θ) = exp(k cos θ), k ∈ R, on the unit circle the discrete Painlevé II equation for
the recursion relations of the corresponding orthogonal polynomials was found in [37,38]
(see also [39], for a connection with the Painlevé III equation). The discrete Painlevé II was
found in [40] using the Riemann–Hilbert problem given in [41], see also [42]. For a good
account of the relation of these discrete Painlevé equations and integrable systems, see [43],
and for a survey on the subject of differential and discrete Painlevé equations see (cf. [44]).
We also mention the recent paper [45] where a discussion on the relationship between the
recurrence coefficients of orthogonal polynomials with respect to a semi-classical Laguerre
weight and classical solutions of the fourth Painlevé equation can be found. Moreover,
in [46], the solution of the discrete alternate Painlevé equations is presented in terms of the
Airy function.

The Riemann–Hilbert problem for this matrix situation appears in the paper [47] in
the context of inverse scattering for the integral matrix equation, as well as in [48] where
the appearance of the Riemann–Hilbert problem for this matrix situation takes place when
studying non-Abelian discrete versions of Painlevé I, showing singularity confinement [49],
see also [50]. The singularity analysis for a matrix discrete version of the Painlevé I equation
was performed. It was found that the singularity confinement holds generically, i.e., in the
whole space of parameters except possibly for algebraic subvarieties. This situation was
considered in [51] for the matrix extension of the Szegő polynomials in the unit circle and
corresponding non-Abelian versions of discrete Painlevé II equations.

In [52], we discussed matrix biorthogonal polynomials with matrix of weights W(z)
such that

• The support of W(z) is a non-intersecting smooth curve on the complex plane with
end points at ∞.

• Weight matrix entries were, in principle, Hölder continuous, and eventually requested
to have holomorphic extensions to the complex plane.

• The matrix of weights W(z) is regular, i.e., det
[
Wj+k

]
j,k=0,...n 6= 0, n ∈ N := {0, 1, . . .},

where the moment of order n, Wn, associated with W is, for each n ∈ N, given by,

Wn :=
1

2π i

∫
γ

znW(z)d z.

We obtained Sylvester systems of differential equations for the orthogonal polynomials
and its second kind functions, directly from a Riemann–Hilbert problem, with jumps
supported on appropriate curves on the complex plane. We considered a Sylvester type
differential Pearson equation for the matrix of weights. We also studied whenever the
orthogonal polynomials and their second kind functions are solutions of second order linear
differential operators with matrix eigenvalues. This was achieved by stating an appropriate
boundary value problem for the matrix of weights. In particular, special attention was
paid to non-Abelian Hermite biorthogonal polynomials in the real line, understood as
those whose matrix of weights is a solution of a Sylvester type Pearson equation with
given matrices of degree one polynomial coefficients. We also found nonlinear equations
for the matrix coefficients of the corresponding three-term relations, which extends to the



Mathematics 2022, 10, 1205 3 of 25

non-commutative case the discrete Painlevé I and the alternate discrete Painlevé I equations.
In this paper, we conduct a similar study but with more relaxed conditions, namely of
Laguerre type.

The layout of the paper is as follows. In Section 2 we present the main definitions
and theorems fundamental in the theory worked on in this paper. In Section 3 we state the
Riemann–Hilbert problem for matrix biorthogonal polynomials, discussing the Pearson–
Laguerre matrix weights with a finite end point, introducing the constant jump fundamental
matrix and the important structure matrix. We also apply these ideas to obtain first and
second order matrix differential operators of Laguerre type. In Section 4, we take a Laguerre
type weight as a case study and reinterpret the results just stated for this specific and general
example. Then, in Section 5 we end the paper with the finding of a matrix extension of an
instance of the discrete Painlevé IV equation.

2. Preliminaries
2.1. Matrix Biorthogonal Polynomials

We begin this section with the important definition of this paper.

Definition 1 (Laguerre type Matrix of weights). We say that a regular matrix of weights

W =

W(1,1) · · · W(1,N)

...
. . .

...
W(N,1) · · · W(N,N)

 ∈ CN×N

is of Laguerre type if:

• The support of W(z) is a non self-intersecting smooth curve on the complex plane with a
beginning point at 0 and an ending point at ∞, and such that it intersects the circles |z| = R,
R ∈ (0,+∞), once and only once (i.e., it can be taken as a determination curve for arg z).

• The entries W(j,k) of the matrix measure W can be written as

W(j,k)(z) = ∑
m∈Ij,k

Am(z)zαm logpm z, z ∈ γ, (1)

where Ij,k denotes a finite set of indexes, Re(αm) > −1, pm ∈ N∪ {0} and Am(z) is Hölder
continuous and bounded. Here, the determination of logarithm and the powers are taken along
γ. We will request, in the development of the theory, that the functions Am have a holomorphic
extension to the whole complex plane.

• The matrix of weights W(z) is regular, i.e., det
[
Wj+k

]
j,k=0,...n 6= 0, n ∈ N := {0, 1, . . .},

where the moment of order n, Wn, associated with W is, for each n ∈ N, given by, Wn :=
1

2π i

∫
γ

znW(z)d z.

In this work, for the sake of simplicity, γ = (0,+∞) and the finite end point of the
curve γ is taken at the origin, c = 0, with no loss of generality, as similar arguments
apply for c 6= 0. In [10], different examples of Laguerre weights for the matrix orthogonal
polynomials on the real line are studied.

Given a Laguerre type matrix of weights, as in Definition 1, we define the sequences
of matrix monic polynomials,

{
PL

n (z)
}

n∈Z+
, where deg PL

n (z) = n, n ∈ N, left orthogonal

and right orthogonal,
{

PR
n (z)

}
n∈N, where deg PR

n (z) = n, n ∈ N, with respect to the regular
matrix of measure W, by the conditions,

1
2π i

∫
γ

PL
n (z)W(z)zk d z = δn,kC−1

n , (2)

1
2π i

∫
γ

zkW(z)PR
n (z)d z = δn,kC−1

n , (3)
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for k = 0, 1, . . . , n and n ∈ N, where Cn is a nonsingular matrix.
We can see that the sequence of monic polynomials

{
PL

n
}

n∈N are defined by (2) with
respect to a regular matrix weight, W. In fact, taking into account a representation for PL

n as

PL
n (z) = p0

L,nzn + p1
L,nzn−1 + · · ·+ pn−1

L,n z + pn
L,n,

such that, for each j = 0, 1, . . . , n− 1∫
γ

PL
n (z)W(z)zj dz = p0

L,nWn+j + p1
L,nWn+j−1 + · · ·+ pn−1

L,n Wj+1 + pn
L,nWj = 0,

and with j = n∫
γ

PL
n (z)W(z)zn dz = p0

L,nW2n + p1
L,nW2n−1 + · · ·+ pn−1

L,n Wn+1 + pn
L,nWn = C−1

n .

Let us notice that

Un =
[
Wj+k

]
j,k=0,...,n

=

W0 · · · Wn
...

. . .
...

Wn · · · W2n

 is such that det Un 6= 0, n ∈ N.

In matrix notation, we have[
pn

L,n pn−1
L,n · · · p1

L,n p0
L,n

]
Un =

[
0 0 · · · 0 C−1

n
]
.

Since det Un 6= 0, we know that the above linear system has a unique solution, i.e., there
exists and are unique the matrices pn

L,n, pn−1
L,n , . . . , p1

L,n, p0
L,n, and so the sequence

{
PL

n
}

n∈Z+

is uniquely defined up to a multiplicative nonsingular matrix defined by (2).
As a direct consequence of the non-singularity of the last block of U−1

n , i.e., the one in
the position (n + 1), (n + 1), of the matrix U−1

n we find that p0
L,n is a non singular matrix.

In fact, as (see for instance [53])

U−1
n =

[
A B
C D

]
with

D =
(

W2n −
[
Wn · · · W2n−1

]
U−1

n−1
[
W>n · · · W>2n−1

]>)−1
,

and det D = det Un−1
det Un

, we get the non singularity of p0
L,n. The same can be seen for

{
PR

n
}

n∈N.
The matrix of weights W(z) induces a non-degenerate bilinear form in the set of matrix

polynomials CN×N [z] given by

〈P, Q〉W :=
1

2π i

∫
γ

P(z)W(z)Q(z)d z, (4)

for which
{

PL
n (z)

}
n∈N and

{
PR

n (z)
}

n∈N are biorthogonal〈
PL

n , PR
m
〉

W = δn,mC−1
n , n, m ∈ N.

As the polynomials are chosen to be monic, we can write

PL
n (z) = INzn + p1

L,nzn−1 + p2
L,nzn−2 + · · ·+ pn

L,n,

PR
n (z) = INzn + p1

R,nzn−1 + p2
R,nzn−2 + · · ·+ pn

R,n,
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with matrix coefficients pk
L,n, pk

R,n ∈ CN×N , k = 0, . . . , n and n ∈ N (imposing that p0
L,n =

p0
R,n = IN , n ∈ N). Here, IN ∈ CN×N denotes the identity matrix.

We define the sequence of second kind matrix functions by

QL
n(z) :=

1
2π i

∫
γ

PL
n (z′)

z′ − z
W(z′)d z′, QR

n (z) :=
1

2π i

∫
γ

W(z′)
PR

n (z′)
z′ − z

d z′,

for n ∈ N. From the orthogonality conditions (2) and (3), we have, for all n ∈ N, the
following asymptotic expansion near infinity

QL
n(z) ∼ − C−1

n
(

INz−n−1 + q1
L,nz−n−2 + · · ·

)
, |z| → ∞, (5)

QR
n (z) ∼ −

(
INz−n−1 + q1

R,nz−n−2 + · · ·
)
C−1

n , |z| → ∞. (6)

2.2. Three-Term Recurrence Relation

Following standard arguments of orthogonality, we conclude that the sequence of
monic polynomials

{
PL

n (z)
}

n∈N satisfies the three-term recurrence relations

zPL
n (z) = PL

n+1(z) + βLnPL
n (z) + γL

n PL
n−1(z), n ∈ N,

zQL
n(z) = QL

n+1(z) + βL
nQL

n(z) + γL
n QL

n−1(z), n ∈ N,

with recursion coefficients given by βLn := p1
L,n − p1

L,n+1 and γL
n := C−1

n Cn−1, with initial
conditions,

PL
−1 = 0N , PL

0 = IN , QL
−1(z) = −C−1

−1 and QL
0 (z) = SW(z) :=

1
2πi

∫
γ

W(z′)
z′ − z

dz′,

where SW(z) is the Stieltjes–Markov transformation. Analogously,

zPR
n (z) = PR

n+1(z) + PR
n (z)βRn + PR

n−1(z)γ
R
n , n ∈ N,

zQR
n (z) = QR

n+1(z) + QR
n (z)βRn + QR

n−1(z)γ
R
n , n ∈ N,

where βRn := CnβLnC−1
n , γR

n := CnγL
nC−1

n = Cn−1C−1
n , QR

−1(z) = −C−1
−1 and QR

0 (z) = SW(z).
These relations could be written as,

YL
n+1(z) = TL

n (z)Y
L
n (z), TL

n (z) :=

[
zIN − βLn C−1

n

−Cn 0N

]
, n ∈ N,

where TL
n denotes the left transfer matrix. For the right orthogonality, we similarly obtain,

YR
n+1(z) = YR

n (z)TR
n (z), TR

n (z) :=

[
zIN − βRn −Cn

C−1
n 0N

]
, n ∈ N,

where TL
n denotes the right transfer matrix.

2.3. Reductions: From Biorthogonality to Orthogonality

We consider two possible reductions for the matrix of weights, the symmetric reduction
and the Hermitian reduction. (i) A matrix of weights W(z) with support on γ is said to be
symmetric if

(W(z))> = W(z), z ∈ γ.

(ii) A matrix of weights W(x) with support on R is said to be Hermitian if

(W(x))† = W(x), x ∈ R.
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These two reductions lead to orthogonal polynomials, as the two biorthogonal families are
identified; i.e., for the symmetric case

PR
n (z) =

(
PL

n (z)
)>

, QR
n (z) =

(
QL

n(z)
)>

, z ∈ C,

and for the Hermitian case, with γ = R

PR
n (z) =

(
PL

n (z̄)
)†

, QR
n (z) =

(
QL

n(z̄)
)†

, z ∈ C.

In both cases, biorthogonality collapses into orthogonality, that for the symmetric case
reads as

1
2πi

∫
γ

Pn(z)W(z)(Pm(z))
>dz = δn,mC−1

n , n, m ∈ N,

while for the Hermitian case it can be written as follows

1
2πi

∫
R

Pn(x)W(x)(Pm(x))†dx = δn,mC−1
n , n, m ∈ N,

where Pn = PL
n .

3. Riemann–Hilbert Problem for Matrix Biorthogonal Polynomials
3.1. The Riemann–Hilbert Problem

We begin this section stating a general theorem on the Riemann–Hilbert problem for
the matrix Laguerre general weights. A preliminary version of this can be found in [54].

Theorem 1. Given a regular Laguerre type matrix of weights W(x) with support on γ, we have:

(i) The matrix function

YL
n (z) :=

[
PL

n (z) QL
n(z)

−Cn−1PL
n−1(z) −Cn−1QL

n−1(z)

]

is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem, which consists in the
determination of a 2N × 2N complex matrix function such that:

(RHL1) YL
n (z) is holomorphic in C \ γ.

(RHL2) Has the following asymptotic behavior near infinity,

YL
n (z) ∼

(
I2N +

∞

∑
j=1

(z−j)Y j,L
n

)[INzn 0N

0N INz−n

]
.

(RHL3) Satisfies the jump condition

(
YL

n (z)
)
+
=
(
YL

n (z)
)
−

[
IN W(z)
0N IN

]
, z ∈ γ \ {0}.

(RHL4) YL
n (z) =

[
O(1) sL1 (z)

O(1) sL2 (z)

]
, as z → 0, lim

z→0
zsLj (z) = 0N , j = 1, 2 and the O

conditions are understood entrywise.

(ii) The matrix function

YR
n (z) :=

[
PR

n (z) −PR
n−1(z)Cn−1

QR
n (z) −QR

n−1(z)Cn−1

]
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is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem, which consists of the
determination of a 2N × 2N complex matrix function such that:

(RHR1) YR
n (z) is holomorphic in C \ γ.

(RHR2) Has the following asymptotic behavior near infinity,

YR
n (z) ∼

[
INzn 0N

0N INz−n

](
I2N +

∞

∑
j=1

(z−j)Y j,R
n

)
.

(RHR3) Satisfies the jump condition

(
YR

n (z)
)
+
=

[
IN 0N

W(z) IN

](
YR

n (z)
)
−, z ∈ γ \ {0}.

(RHR4) YR
n (z) =

[
O(1) O(1)

sR1 (z) sR2 (z)

]
, as z → 0, lim

z→0
zsRj (z) = 0N , j = 1, 2 and the O

conditions are understood entrywise.

(iii) The determinant of YL
n (z) and YR

n (z) are both equal to 1, for every z ∈ C.

Proof. Using the standard calculations from the scalar case [55], it follows that the matrices
YL

n and YR
n satisfy (RHL1)–(RHL3) and (RHR1)–(RHR3), respectively.

The entries W j,k of the matrix measure W are given in (1). It holds (cf. [56]) that in a
neighborhood of z = 0 the Cauchy transform

φm(z) =
1

2π i

∫
γ

p(ζ)Am(ζ)ζαm logpm ζ

ζ − z
d ζ,

where p(ζ) denotes any polynomial in ζ, that satisfies lim
z→0

zφm(z) = 0. Then, (RHL4)

and (RHR4) are fulfilled by the matrices YL
n , YR

n , respectively. To prove the unicity of both
Riemann–Hilbert problems let us consider the matrix function

G(z) = YL
n (z)

[
0N IN

−IN 0N

]
YR

n (z)

[
0N −IN

IN 0N

]
.

It can easily be proved that G(z) has no jump or discontinuity on the curve γ and that its
behavior at the end point 0 is given by

G(z) ∼
[

O(1)sL1 (z) + O(1)sR2 (z) O(1)sL1 (z) + O(1)sR1 (z)

O(1)sL2 (z) + O(1)sR2 (z) O(1)sL2 (z) + O(1)sR1 (z)

]
, z→ 0,

so it holds that lim
z→0

zG(z) = 0 and we conclude that the end point 0 is a removable

singularity of G. Now, from the behavior for z→ ∞,

G(z) ∼
[

INzn 0N

0N INz−n

][
0N IN

−IN 0N

][
INzn 0N

0N INz−n

][
0N −IN

IN 0N

]
=

[
IN 0N

0N IN

]
,

hence the Liouville theorem implies that G(z) = I2N . To prove the unicity of the solution of
(RHL1)–(RHL3) and (RHR1)–(RHR3) let ỸL

n be any solution of the left Riemann–Hilbert
problem. Then

ỸL
n (z) =

([
0N IN

−IN 0N

]
YR

n (z)

[
0N −IN

IN 0N

])−1

.
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Hence, any solution of this left Riemann–Hilbert problem is equal to the inverse of a fixed
matrix, and the uniqueness follows. We obtain the uniqueness of the solution of the right
Riemann–Hilbert in a similar way.

Let us calculate the determinant of the fundamental matrix. Since

det(YL
n+1) = det

([
zIN − βLn C−1

n

−Cn 0N

])
det(YL

n (z)) = det(YL
n ), ∀n ∈ N.

Then

det
(

YL
n

)
= det

(
YL

0

)
= det

[
PL

0 (z) QL
0 (z)

−C−1PL
−1(z) −C−1QL

−1(z)

]
= 1.

A similar reasoning leads to a similar result for YR
n .

Corollary 1. It holds that

(
YL

n (z)
)−1

=

[
0N IN

−IN 0N

]
YR

n (z)

[
0N −IN

IN 0N

]
,

that entrywise reads as follows

QL
n(z)PR

n−1(z)− PL
n (z)Q

R
n−1(z) = C−1

n−1, (7)

PL
n−1(z)Q

R
n (z)−QL

n−1(z)PR
n (z) = C−1

n−1, (8)

QL
n(z)PR

n (z)− PL
n (z)Q

R
n (z) = 0. (9)

3.2. Pearson–Laguerre Matrix Weights with a Finite End Point

Instead of a given matrix of weights, we consider two matrices of entire functions, say
hL(z) and hR(z), such that the following matrix Pearson equations are satisfied

z(WL)′(z) = hL(z)WL(z), z(WR)′(z) = WR(z)hR(z), (10)

and, given solutions to them, we construct the corresponding matrix of weights as
W = WLWR. This matrix of weights is also characterized by a Pearson equation.

Proposition 1 (Pearson differential equation). Given two matrices of entire functions hL(z)
and hR(z). A solution of the Sylvester type matrix differential equation, which we call a Pearson
equation for the weight, W,

zW ′(z) = hL(z)W(z) + W(z)hR(z), (11)

is of the form W = WLWR where the factor matrices WL and WR are solutions of (10).

Proof. Given solutions WL and WR of (10), it follows immediately, just using the Leibniz
law for derivatives, that W = WLWR fulfills (11). Moreover, given a solution W of (11) we
pick a solution WL of the first equation in (10), then it is easy to see that (WL)−1W satisfies
the second equation in (10).

We can give the following result from the literature [57].

Theorem 2 (Solution at a regular singular point). Let hL(z) be an entire matrix function. Then,
for the solutions of the Pearson Equation (10) we have:
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(i) If AL := hL(0) has no eigenvalues that differ from each other by positive integers then, the
solution of the left matrix differential equation in (10) can be written as

WL(z) = HL(z)zAL
WL

0 ,

where HL(z) is an entire and nonsingular matrix function such that HL(0) = IN , and WL
0

is a constant nonsingular matrix.
(ii) If the matrix function AL has eigenvalues that differ from each other by positive integers,

then the solution of the left matrix differential equation in (10) can be written as

WL(z) = HL(z)zÃL
WL

0 ,

where, in this case,

HL(z) = S̃L(z)ΠL(z),

and S̃L(z) is a finite product of factors of the form TiSL
i (z), with Ti a nonsingular matrix

and SL
i (z) is a shearing matrix, i.e., a matrix given by blocks as

SL
i (z) =

[
Ini 0

0 zImi

]
,

for some positive integers ni, mi, and ΠL(z) is an entire and non singular matrix function
such that ΠL(0) = I, ÃL is a constant matrix built from the matrix AL, where the
eigenvalues of this matrix are decreased in such a way that the eigenvalues of the resulting
matrix do not differ by a positive integer and WL

0 is a constant nonsingular matrix.

We can obtain analogous results for the right matrix differential equation in (10) and
we will denote the solution as

WR(z) = WR
0 zAR

HR(z).

Notice that given a matrix A, and the oriented curve γ, the matrix of functions zA = eA log z

is a matrix of holomorphic functions in C \ γ, and(
zA)

− =
(
zA)

+
e2πiA = e2πiA (zA)

+
, z ∈ γ.

We also adopt the convention that
(
WL(z)WR(z)

)
+
= W(z), i.e., the matrix of weight

is obtained from the limit behavior of the right side of the curve γ of the matrix function
WL(z)WR(z).

It is necessary, in order to consider the Riemann–Hilbert problem related to the matrix
of weights W satisfying (11), to study the behavior of W(z) around the origin. For that aim,
let us consider J, the Jordan matrix similar to the matrix A, i.e., there exists an nonsingular
matrix P such that A = PJP−1. It holds zA = PzJ P−1 so if

J = (λ1 Im1 + N1)⊕ (λ2 Im2 + N2)⊕ · · · ⊕ (λs Ims + Ns)

where mk is the order of the nilpotent matrix Nk, we have that

zJ = zλ1 Im1+N1 ⊕ zλ2 Im2+N2 ⊕ · · · ⊕ zλs Ims+Ns

where zλk Imk+Nk = zλk Imk zNk . It is straightforward that zλk Imk = zλk Imk and

zNk = eNk log z = Imk + log zNk +
log2 z

2!
N2

k + · · ·+ logmk−1 z
(mk − 1)!

Nmk−1
k ,
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where we have used the nilpotency of N j
k = 0N for j ≥ mk. So we can conclude that the en-

tries of zA are linear combinations of zλj with polynomials coefficients in the variable log z.

3.3. Constant Jump Fundamental Matrix

According to the above notation and given a regular matrix of weights as described
in (11), we introduce the constant jump fundamental matrices

ZL
n (z) := YL

n (z)

[
WL(z) 0N

0N (WR(z))−1

]
, (12)

ZR
n (z) :=

[
WR(z) 0N

0N (WL(z))−1

]
YR

n (z), (13)

for n ∈ N.

Proposition 2. The constant jump fundamental matrices ZL
n (z) and ZR

n (z) satisfy, for each n ∈ N,
the following properties:

(i) They are holomorphic on C \ γ.
(ii) Present the following constant jump condition on γ

(
ZL

n (z)
)
+
=
(
ZL

n (z)
)
−

[
(WL

0 )
−1 e−2π i AL

WL
0 (WL

0 )
−1 e−2π i AL

WL
0

0N WR
0 e2πiAR

(WR
0 )−1

]
,

(
ZR

n (z)
)
+
=

[
WR

0 e−2πiAR
(WR

0 )−1 0N

WR
0 e−2πiAR

(WR
0 )
−1

WL
0
−1

e2π i AL
WL

0

](
ZR

n (z)
)
−,

for all z ∈ γ.

Proof. (i) The holomorphic properties of ZL
n are inherited from those of the fundamental

matrices YL
n and zA and taking into account that HL(z) is an entire matrix function.

(ii) From the definition of ZL
n (z), we have

(
ZL

n (z)
)
+
=
(
YL

n (z)
)
+

[(
WL(z)

)
+

0N

0N
(
WR(z)

)−1
+

]
,

and taking into account Theorem 1 we successively obtain

(
ZL

n (z)
)
+
=
(
YL

n (z)
)
−

[
IN

(
WL(z)WR(z)

)
+

0N IN

][(
WL(z)

)
+

0N

0N
(
WR(z)

)−1
+

]

=
(
YL

n (z)
)
−

[(
WL(z)

)
− 0N

0N
(
WR(z)

)−1
−

][(
WL(z)

)−1
− 0N

0N
(
WR(z)

)
−

]

×
[(

WL(z)
)
+

(
WL(z)

)
+

0N
(
WR(z)

)−1
+

]

=
(
ZL

n (z)
)
−

(WL(z)
)−1
−
(
WL(z)

)
+

(
WL(z)

)−1
−
(
WL(z)

)
+

0N
(
WR(z)

)
−
(
WR(z)

)−1
+


=
(
ZL

n (z)
)
−

[
(WL

0 )
−1 e−2π i AL

WL
0 (WL

0 )
−1 e−2π i AL

WL
0

0N WR
0 e2π i AL

(WR
0 )−1

]
.

Hence, we obtain the desired constant jump condition for ZL
n (z).
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To complete the proof we only have to check that

ZR
n (z) =

[
0 −IN

IN 0

]
(ZL

n (z))
−1

[
0 IN

−IN 0

]
, (14)

which is a consequence of (13).

3.4. Structure Matrix and Zero Curvature Formula

In parallel to the matrices ZL
n (z) and ZR

n (z), for each factorization we introduce what
we call structure matrices given in terms of the left, respectively right, logarithmic deriva-
tives by,

ML
n(z) :=

(
ZL

n
)′
(z)
(
ZL

n (z)
)−1, MR

n (z) :=
(
ZR

n (z)
)−1(ZR

n
)′
(z). (15)

It is not difficult to prove that

MR
n (z) = −

[
0 −IN

IN 0

]
ML

n(z)

[
0 IN

−IN 0

]
, n ∈ N. (16)

Proposition 3 ([52]). We have the following properties:

(i) The transfer matrices satisfy

TL
n (z)ZL

n (z) = ZL
n+1(z), ZR

n (z)T
R
n (z) = ZR

n+1(z), n ∈ N.

(ii) The zero curvature formulas[
IN 0N

0N 0N

]
= ML

n+1(z)T
L
n (z)− TL

n (z)ML
n(z),[

IN 0N

0N 0N

]
= TR

n (z) MR
n+1(z)−MR

n (z)T
R
n (z),

n ∈ N, are fulfilled.

Now, we discuss the holomorphic properties of the structure matrices just introduced.

Theorem 3. The structure matrices ML
n(z) and MR

n (z), cf. (15), are, for each n ∈ N, meromorphic
on C, with singularity located at z = 0, which happens to be a removable singularity or a simple pole.

Proof. Let us prove the statement for ML
n(z), for MR

n (z) one should proceed similarly.
From (15) it follows that ML

n(z) is holomorphic in C \ γ. Due to the fact that ZL
n (z) has a

constant jump on the curve γ, the matrix function
(
ZL

n
)′ has the same constant jump on the

curve γ, so the matrix ML
n(z) has no jump on the curve γ, and it follows that, at the origin,

ML
n(z) has an isolated singularity. From (15) and (12), it holds

ML
n(z) =

(
ZL

n
)′
(z)
(
ZL

n (z)
)−1

=
(
YL

n
)′
(z)
(
YL

n (z)
)−1

+
1
z

YL
n (z)

[
hL(z) 0N

0N −hR(z)

](
YL

n (z)
)−1,

where

YL
n (z) =

[
PL

n (z) QL
n(z)

−Cn−1PL
n−1(z) −Cn−1QL

n−1(z)

]
.
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Each entry of the matrix QL
n(z) is the Cauchy transform of certain function f (z), where

f (z) = ∑
i∈I

φi(z)zαi logpi z, φi(z) is an entire function, Re(αi) > −1, pi ∈ N∪ {0}, and I is a

finite set of indices.
It is clear that lim

z→0
z f (z) = 0. Now, (see [56] Sections 8.3–8.6) and [58], its Cauchy

transform g(z) =
1

2π i

∫
γ

f (t)
t− z

d t also satisfies the same property lim
z→0

zg(z) = 0. We can

also see that lim
z→0

z2g′(z) = 0. Indeed,

zg′(z) =
∫

γ

z f (t)
(t− z)2 d t =

∫
γ

(z− t) f (t)
(t− z)2 d t +

∫
γ

t f (t)
(t− z)2 d t,

= −
∫

γ

f (t)
t− z

d t− t f (t)
t− z

∣∣∣∣
∂γ

+
∫

γ

(t f (t))′

t− z
d t

= − t f (t)
t− z

∣∣∣∣
∂γ

+
∫

γ

t f ′(t)
t− z

d t.

From the boundary conditions, the first term is zero and we obtain zg′(z) =
∫

γ

t f ′(t)
t− z

d t,

and from the definition of f we obtain that t f ′(t) is a function in the class of f , which we
denote by v and, consequently, lim

z→0
z2g′(z) = 0. From these considerations it follows,

(
YL

n
)′
(z) =

[
O(1) rL1 (z)

O(1) rL2 (z)

]
,

(
YL

n (z)
)−1

=

[
rL3 (z) rL4 (z)
O(1) O(1)

]
, z→ 0,

where lim
z→0

z2rLi (z) = 0N , for i = 1, 2, and lim
z→0

zrRi (z) = 0N , for i = 3, 4, so it holds that

lim
z→0

z2(YL
n
)′
(z)
(
YL

n
)−1

= lim
z→0

z2

[
O(1)rL1 (z) + O(1)rL3 (z) O(1)rL1 (z) + O(1)rL4 (z)

O(1)rL2 (z) + O(1)rL3 (z) O(1)rL2 (z) + O(1)rL4 (z)

]
= 02N .

Similar considerations leads us to the result that

lim
z→0

zYL
n (z)

[
hL(z) 0N

0N −hR(z)

](
YL

n (z)
)−1

= 02N ,

so we obtain that lim
z→0

z2ML
n(z) = 02N , and hence the matrix function ML

n(z) has at most a

simple pole at the point z = 0.

3.5. Differential Relations from the Riemann–Hilbert Problem

We are interested in the differential equations fulfilled by the biorthogonal matrix
polynomials determined by Laguerre type matrices of weights. Here we use the Riemann–
Hilbert problem approach in order to derive these differential relations. We use the notation
for the structure matrices

M̃L
n(z) = zML

n(z), M̃R
n (z) = zMR

n (z),

with M̃L
n(z) and M̃R

n (z) matrices of entire functions.

Proposition 4 (First order differential equation for the fundamental matrices YL
n (z) and

YR
n (z)). It holds that

z
(
YL

n
)′
(z) + YL

n (z)

[
hL(z) 0N

0N −hR(z)

]
= M̃L

n(z)Y
L
n (z), (17)
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z
(
YR

n
)′
(z) +

[
hR(z) 0N

0N −hL(z)

]
YR

n (z) = YR
n (z)M̃R

n (z). (18)

Proof. Equations (17) and (18) follow immediately from the definition of the matrices
ML

n(z) and MR
n (z) in (15).

Corollary 2. Let hL(z) = ALz + BL and hR(z) = ARz + BR be two first degree matrix polyno-
mials. The left and right fundamental matrices are given, respectively, by

ML
n(z) =

1
z

[
ALz + [p1

L,n, AL] + nIN + BL ALC−1
n + C−1

n AR

−Cn−1 AL − ARCn−1 −ARz + [p1
R,n, AR]− nIN − BR

]
, (19)

MR
n (z) =

1
z

[
ARz− [p1

R,n, AR] + nIN + BR −Cn−1 AL − ARCn−1

ALC−1
n + C−1

n AR −ALz− [p1
L,n, AL]− nIN − BL

]
. (20)

Proof. By considering (17), Theorem 3, the asymptotic expansion at infinity of the funda-
mental matrix YL

n and (5), the asymptotic behavior of the second kind matrix functions
at infinity, and using the identities p1

R,n = −q1
L,n−1 and p1

L,n = −q1
R,n−1 (19) follows. The

relation (16) leads to (20).

We introduce the N transform, N (F(z)) = F′(z) +
F2(z)

z
.

Proposition 5 (Second order differential equation for the fundamental matrices). It holds

z
(
YL

n
)′′

+
(
YL

n
)′[2hL + IN 0N

0N −2hR + IN

]
+ YL

n (z)

[
N (hL) 0N

0N N (−hR)

]
= N (M̃L

n)Y
L
n , (21)

z
(
YR

n
)′′

+

[
2hR + IN 0N

0N −2hL + IN

](
YR

n
)′
+

[
N (hR) 0N

0N N (−hL)

]
Yn

R(z) = YR
n N (M̃R

n ). (22)

Proof. Differentiating in (15), we obtain

(
ZL

n
)′′(ZL

n
)−1

=

(
M̃L

n
)′

z
− M̃L

n
z2 +

(M̃L
n)

2

z2 .

so that

z
(
ZL

n
)′′(ZL

n
)−1

+
(
ZL

n
)′(ZL

n
)−1

=
(

M̃L
n
)′
+

(M̃L
n)

2

z
.

Now, using (12) and (10), we obtain the stated result (21). Equation (22) follows in a similar
way from definition of MR

n in (15).

We introduce the following C2N×2N valued functions

HL
n =

[
HL

1,1,n HL
1,2,n

HL
2,1,n HL

2,2,n

]
:= N (M̃L

n), HR
n =

[
HR

1,1,n HR
1,2,n

HR
2,1,n HR

2,2,n

]
:= N (M̃R

n ).

It holds that the second order matrix differential Equations (21) and (22) split in the follow-
ing differential relations

z
(

PL
n
)′′

+
(

PL
n
)′(2hL + IN

)
+ PL

nN (hL) = HL
1,1,nPL

n −HL
1,2,nCn−1PL

n−1, (23)

z
(
QL

n
)′′

+
(
QL

n
)′(− 2hR + IN

)
+ QL

nN (−hR) = HL
1,1,nQL

n −HL
1,2,nCn−1QL

n−1, (24)

z
(

PR
n
)′′

+
(
2hR + IN

)(
PR

n
)′
+N (hR)PR

n = PR
n HR

1,1,n − PR
n−1Cn−1H

R
2,1,n, (25)

z
(
QR

n
)′′

+
(
− 2hL + IN

)(
QR

n
)′
+N (−hL)QR

n = QR
nH

R
1,1,n −QR

n−1Cn−1H
R
2,1,n. (26)
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4. A Class of Laguerre Matrix Weights

Let us consider the matrix weight W(z) = eA1z zα eA2z, z ∈ C, defined in C \ [0,+∞)
with support on γ = [0,+∞). Here α, A1, A2 ∈ CN×N are matrices such that [α, A1] =
[α, A2] = 0N , with spectrum σ(α), Re(σ(α)) ⊂ (−1,+∞). This class of weights contains in
the Hermitian case some of the cases studied in the literature [6,7,11,59].

For this class of Laguerre weights, we obtain, using analytic arguments, an alternative
formula for the residue matrix with the simple pole at z = 0 of the left fundamental matrix.
In a similar manner, we could obtain the result for the right fundamental matrix. Notice
that the fundamental matrix is completely determined in the previous section (19), where
AL, AR, is substituted, respectively, by A1, A2, and BL, BR by α

2 . This alternative formula
enables us to make an important simplification in the Equation (21) previously obtained.

Accordingly, we choose

WL(z) = eA1z z
α
2 , WR(z) = z

α
2 eA2z .

Straightforward calculation shows that hL and hR appearing in (11) are given by

hL(z) = A1z +
α

2
, hR(z) = A2z +

α

2
.

Proposition 6. The structure matrix ML
n defined in (15) has a simple pole given by the follow-

ing expression:

(1) If Re(σ(α)) ⊂ (−1,+∞) and σ(α) ∩N = ∅, then

ML
n(z) =

1
z

FL
n (0)

[
α
2 0N

0N − α
2

](
FL

n (0)
)−1

+ O(1), z→ 0,

where

FL
n (0) = ŶL

n (0)
[

P 0N
0N P

] IN+ 0N+×N−
0N−×N+ 0N−

0N+ 0N+×N−

0N−×N+ e− i π J−

0N+ 0N+×N−

0N−×N+ IN− − e2 i π J−
ei π J+ − e− i π J+ 0N+×N−

0N−×N+ 0N−

[ P 0N
0N P

]−1

,

α has the yielding canonical Jordan form, α = PJP−1 with

J =

[
J+ 0N+×N−

0N−×N+ J−

]
,

and N+ (respectively, N−) being the sum of the algebraic multiplicities associated with
eigenvalues with positive (respectively, negative) real parts and in J+ (respectively, J−),
we gather together the Jordan blocks of all eigenvalues with positive (respectively, negative)
real parts, and ŶL

n (z) being given by

ŶL
n (z) := YL

n (z)

[
z−α 0N

IN − e2 i πα zα

]−1

.

(2) If α = mIN , m ∈ N

ML
n(z) =

1
z

FL
n (0)

[
m
2 IN − zm

2πi IN

0N −m
2 IN

](
FL

n (0)
)−1

+ O(1), z→ 0,
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where FL
n (0) = ŶL

n (0)

[
0N

1
2πi IN

−2π i IN 0N

]
, with

ŶL
n (z) := YL

n (z)

[
(log z)−1 IN 0N

−2π i IN log zIN

]−1

.

Remark 1. In the first case, FL
n (0) have a simpler form if Re(σ(α)) are all positive or all negative

• If Re(σ(α)) ⊂ (0,+∞), then FL
n (0) = YL

n (0)

[
IN 0N

0N ei πα− e− i πα

]
.

• If Re(σ(α)) ⊂ (−1, 0), then FL
n (0) = lim

z→0
YL

n (z)

[
0N zα e− i πα

zα
(

IN − e2 i πα
)

ei πα− e− i πα

]
.

Proof. It can be seen that the matrix function ZL
n defined by

ZL
n (z) = YL

n (z)C(z), where C(z) =
[

WL(z) 0

0 (WR(z))−1

]
,

with WL(z)WR(z) = W(z), satisfies the following conditions:

• ZL
n is holomorphic in C \ [0,+∞).

•
(
ZL

n (z)
)
+
=
(
ZL

n (z)
)
−

[
e− i πα e− i πα

0 ei πα

]
over (0,+∞).

Let us start with the first case: Re(σ(α)) ⊂ (−1,+∞) and σ(α) ∩ {N} = ∅.

In this case, the constant jump matrix

[
e− i πα e− i πα

0 ei πα

]
can be block diagonalized. For

that aim, we consider the matrix

P =

[
IN e− i πα

0 ei πα− e− i πα

]
such that

[
e− i πα e− i πα

0 ei πα

]
P = P

[
e− i πα 0

0 ei πα

]
.

So, over the interval (0,+∞), we have

(
ZL

n (z)P
)
+
=
(
ZL

n (z)P
)
−

[
e− i πα 0

0 ei πα

]
.

For z ∈ C \ [0,+∞), let us define the matrix

ψ(z) :=

[
z

α
2 0

0 z−
α
2

]
, (27)

which satisfies, over (0,+∞), the following jump condition

(
ψ(z)

)
+
=
(
ψ(z)

)
−

[
e− i πα 0

0 ei πα

]
.

Consequently, the matrix

FL
n (z) := ZL

n (z)Pψ−1(z),
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has no jump in the interval (0,+∞). The matrix function FL
n has an isolated singularity at

the origin which, as we will show now, is a removable singularity, i.e., lim
z→0

zFL
n (z) = 02N .

From its definition, we have that

zFL
n (z) =

[
O(z) zsL1 (z)

O(z) zsL2 (z)

][
eA1z z

α
2 0N

0N e−A2z z−
α
2

][
IN e− i πα

0N ei πα− e− i πα

][
z−

α
2 0

0 z
α
2

]

=

[
O(z) zsL1 (z)

O(z) zsL2 (z)

][
eA1z eA1z e− i πα zα

0N e−A2z(ei πα− e− i πα)

]
, z→ 0,

and as zsL1 , zsL2 → 0N as z → 0 and O(z)zα → 0N , as z → 0 (because the eigenvalues of α
are bounded from below by −1), we conclude that zFL

n (z)→ 02N for z→ 0. Hence, FL
n (z)

is a matrix of entire functions.
Now, we want to compute FL

n (0) = lim
z→0

FL
n (z). For this fact, we will elaborate with

respect to the sign of the real part of spectrum of α. Notice that,

FL
n (0) = lim

z→0
YL

n (z)

[
eA1z eA1z e− i πα zα

0N e−A2z(ei πα− e− i πα)

]
,

where the limit of each factor does not need to exist.
We separately compute FL

n (0) in the cases, when Re(σ(α)) ⊂ (0,+∞) and when
Re(σ(α)) ⊂ (−1, 0), and then we give FL

n (0) in general.

Case Re(σ(α)) ⊂ (0,+∞) and Re(σ(α)) ∩ {N} = ∅.

When the real part of all the eigenvalues of α are strictly positive then each limit
exists and

FL
n (0) = YL

n (0)

[
IN 0N

0N ei πα− e− i πα

]
.

Case Re(σ(α)) ⊂ (−1, 0) and σ(α) ∩ {N} = ∅.

We cannot proceed as before. However, as the limit exists, if we are able to rewrite

YL
n (z)

[
eA1z eA1z e− i πα zα

0N e−A2z(ei πα− e− i πα)

]
= ŶL

n (z) f (z),

in terms of two matrix factors ŶL
n (z) and f (z), a non singular matrix, with f having a well

defined limit for z→ 0, also being a non-singular matrix, we can ensure the existence of
lim
z→0

ŶL
n (z), and FL

n (0) =
(

lim
z→0

ŶL
n (z)

)(
lim
z→0

f (z)
)
. This can be achieved by considering

ŶL
n (z) := YL

n (z)

[
z−α 0N

IN − e2 i πα zα

]−1

,

f (z) :=

[
z−α 0N

IN − e2 i πα zα

][
eA1z eA1z e− i πα zα

0N e−A2z(ei πα− e− i πα)

]

=

[
z−α eA1z eA1z e− i πα

(IN − e2 i πα) eA1z (− eA1z + e−A2z)(ei πα− e− i πα)zα

]
.

So that,

lim
z→0

f (z) =

[
0N e− i πα

IN − e2 i πα 0N

]
, FL

n (0) = ŶL
n (0)

[
0N e− i πα

IN − e2 i πα 0N

]
.
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General case Re(σ(α)) ⊂ (−1,+∞) and σ(α) ∩ {N} = ∅.

Recalling the canonical Jordan form, we can write α = PJP−1 with

J =

[
J+ 0N+×N−

0N−×N+ J−

]
,

and N+ (respectively, N−) being the sum of the algebraic multiplicities associated with
positive (respectively, negative) eigenvalues and in J+ (respectively, J−), we gather together
the Jordan blocks of all positive (respectively, negative) eigenvalues. Hence,[

eA1z eA1z e− i πα zα

0N e−A2z(ei πα− e− i πα)

]
=

[
P 0N

0N P

][
eA1z eÃ1z e− i π J zJ

0N e−Ã2z(ei π J − e− i π J)

][
P 0N

0N P

]−1

with Ãj = P−1 AjP, j = 1, 2.
Now, as we did in the previous case, with negative eigenvalues only, we left multiply

by the following nonsingular matrix

S(z) :=
[

P 0N
0N P

] IN+ 0N+×N−

0N−×N+ z−J− 0N

0N+ 0N+×N−

0N−×N+ IN− − e2 i π J−
IN+ 0N+×N−

0N−×N+ zJ−

[ P 0N
0N P

]−1

,

to obtain

[
P 0N

0N P

]


[ IN+ 0N+×N−

0N−×N+ z−J−

]
eÃ1z

[ IN+ 0N+×N−

0N−×N+ z−J−

]
eÃ1z

[
e− i π J+ zJ+ 0N+×N−

0N−×N+ e− i π J− zJ−

]

[ 0N+ 0N+×N−

0N−×N+ IN−−e2 i π J−

]
eÃ1z

 0N+ 0N+×N−

0N−×N+ IN−−e2 i π J−

 eÃ1z

 e− i π J+ zJ+ 0N+×N−

0N−×N+ e− i π J− zJ−


+

 IN+ 0N+×N−

0N−×N+ zJ−

 e−Ã2z

 ei π J+ − e− i π J+ 0N+×N−

0N−×N+ ei π J− − e− i π J−




[

P 0N
0N P

]−1

which for z→ 0 has a well defined limit, being a non-singular matrix, given by

[
P 0N

0N P

]
IN+ 0N+×N−

0N−×N+ 0N−

0N+ 0N+×N−

0N−×N+ e− i π J−

0N+ 0N+×N−

0N−×N+ IN− − e2 i π J−
ei π J+ − e− i π J+ 0N+×N−

0N−×N+ 0N−


[

P 0N
0N P

]−1

.

Thus,

FL
n (0) = ŶL

n (0)
[

P 0N
0N P

] IN+ 0N+×N−
0N−×N+ 0N−

0N+ 0N+×N−

0N−×N+ e− i π J−

0N+ 0N+×N−

0N−×N+ IN− − e2 i π J−
ei π J+ − e− i π J+ 0N+×N−

0N−×N+ 0N−

[ P 0N
0N P

]−1

.

By definition,

ML
n =

(
ZL

n
)′(ZL

n
)−1

=
(

FL
n
)′(FL

n
)−1

+ FL
n ψ′ψ−1(FL

n
)−1,

as det FL
n (z) 6= 0, we know that

(
FL

n
)′(FL

n
)−1 has no singularities, while

FL
n ψ′ψ−1(FL

n
)−1

=
1
z

FL
n

[
α
2 0N

0N − α
2

](
FL

n
)−1.

Consequently, ML
n(z) has a simple pole at the origin with

ML
n(z) =

1
z

FL
n (0)

[
α
2 0N

0N − α
2

](
FL

n (0)
)−1

+ O(1), z→ 0.
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Let us move to the proof of second case, i.e., α = mIN , m ∈ N.
It can be seen that the matrix function ZL

n satisfies over (0,+∞) the following jump
condition

(
ZL

n (z)
)
+
=
(
ZL

n (z)
)
−

[
(−1)m IN (−1)m IN

0 (−1)m IN

]
.

For z ∈ C \ [0,+∞), instead of (27), let us define the matrix

ψ(z) :=

[
z

m
2 IN − 1

2πi z
m
2 log zIN

0 z−
m
2 IN

]
,

where we take the branch of the logarithmic function defined in C \ [0,+∞), which satisfies,
over (0,+∞), the same jump condition

(
ψ(z)

)
+
=
(
ψ(z)

)
−

[
(−1)m IN (−1)m IN

0 (−1)m IN

]
.

Consequently, the matrix

FL
n (z) := ZL

n (z)ψ
−1(z)

has no jump in the interval (0,+∞). The matrix function FL
n has an isolated singularity at

the origin which, as we will show now, is a removable singularity, i.e.,

zFL
n (z) =

[
O(z) zsL1 (z)

O(z) zsL2 (z)

][
O(1) 0N

0N O(1)

][
O(1) O(log z)
O(1) O(1)

]

=

[
O(z) + zsL1 (z) O(z log z) + zsL1 (z)

O(z) + zsL2 (z) O(z log z) + zsL2 (z)

]
, z→ 0,

and as zsL1 , zsL2 → 0N as z→ 0, we conclude that zFL
n (z)→ 02N , as z→ 0. Hence, FL

n (z) is
a matrix of entire functions. To compute FL

n (0) we notice that,

FL
n (0) = lim

z→0
YL

n (z)

[
eA1z 1

2πi z
m log z eA1z

0N e−A2z

]
.

For m = 1, 2 . . . it holds that FL
n (0) = YL

n (0). For m = 0, the limit of each factor inside the
limit does not need to exist. As the limit exists, let us write

YL
n (z)

[
eA1z 1

2πi log z eA1z

0N e−A2z

]
= ŶL

n (z) f (z),

with

ŶL
n (z) := YL

n (z)

[
(log z)−1 IN 0N

−2π i IN log zIN

]−1

,

f (z) :=

[
(log z)−1 IN 0N

−2π i IN log zIN

][
eA1z 1

2π i log z eA1z

0N e−A2z

]

=

[
(log z)−1 eA1z 1

2π i eA1z

−2π i eA1z − log z(eA1z− e−A2z)

]
.
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So that,

lim
z→0

f (z) =

[
0N

1
2π i IN

−2π i IN 0N

]
, FL

n (0) = ŶL
n (0)

[
0N

1
2πi IN

−2π i IN 0N

]
.

Using the same kind of reasoning as above, we find that ML
n(z) has a simple pole at the

origin with

ML
n(z) =

1
z

FL
n (0)

[
m
2 IN − zm

2πi IN

0N −m
2 IN

](
FL

n (0)
)−1

+ O(1), z→ 0,

which ends the proof.

Proposition 7. The structure matrix ML
n has the yielding expression

ML
n(z) =

1
z

[
A1z + [p1

L,n, A1] + nIN + α
2 A1C−1

n + C−1
n A2

−Cn−1 A1 − A2Cn−1 −A2z + [p1
R,n, A2]− nIN − α

2

]
.

Proof. Substitute AL, AR, respectively, by A1, A2, and BL, BR by α
2 in (19) and (20).

Proposition 8. Let α, A1 and A2, such that [α, A1] = [α, A2] = 0N , and the real part of spectrum
of α, σ(α), is contained on (−1,+∞) with σ(α) ∩ {N} = ∅. If there exists λ ∈ (0,+∞) such
that α2 = λIN , or α = mIN , for some m ∈ {0, 1, 2, . . .}, then the second order differential equation
is simplified to

z
(
YL

n
)′′

+
(
YL

n
)′[α + IN + 2A1z 0N

0N IN − α− 2A2z

]

+ YL
n

[
A1 + A1α + A1

2z 0N

0N −A2 + A2α + A2
2z

]

=

[
A1 + [p1

L,n, A2
1] + (nIN + α)A1 + A2

1z A2
1C−1

n − C−1
n A2

2

−Cn−1 A2
1 + A2

2Cn−1 −A2 − [p1
R,n, A2

2] + (nIN + α)A2 + A2
2z

]
YL

n (z).

Proof. If we take into account that M̃L
n(z) = M̃L

n(0) + z(M̃L
n)
′(0) and that

N (M̃L
n(z)) = (M̃L

n)
′(0) + (M̃L

n(0))
2 1

z
+ (M̃L

n)
′(0)M̃L

n(0)

+ M̃L
n(0)(M̃L

n)
′(0) +

(
(M̃L

n)
′(0)

)2z,

we find that (21), the second order differential equation that the fundamental matrix
satisfies, can be written as

z
(
YL

n
)′′

+
(
YL

n
)′[α + IN + 2A1z 0N

0N IN − α− 2A2z

]

+ YL
n

[
A1 +

1
2 A1α + 1

2 αA1 + zA1
2 0N

0N −A2 +
1
2 A2α + 1

2 αA2 + zA2
2

]
+

1
z

YL
n

[
( α

2 )
2 0N

0N ( α
2 )

2

]

=
(
(M̃L

n)
′(0)+ (M̃L

n(0))
2 1

z
+(M̃L

n)
′(0)M̃L

n(0)+ M̃L
n(0)(M̃L

n)
′(0)+

(
(M̃L

n)
′(0)

)2z
)

YL
n (z).



Mathematics 2022, 10, 1205 20 of 25

Under the restriction that the real part of the spectrum of α is contained on (−1,+∞) and
σ(α)∩ {N} = ∅, the matrix ML

n =
(
ZL

n
)′(ZL

n
)−1 has a pole of order 1 at z = 0, with residue

given by

M̃L
n(0) = FL

n (0)

[
α
2 0N

0N − α
2

](
FL

n (0)
)−1.

If we now also assume on the matrix α that α2 = λIN , we obtain

(M̃L
n(0))

2 = FL
n (0)

[(
α
2
)2 0N

0N
(

α
2
)2

](
FL

n (0)
)−1

=
λ

4
I2N .

In the case that α = mIN , for some m ∈ {0, 1, 2, . . .}, we find that

(M̃L
n(0))

2 = FL
n (0)

[(m
2
)2 0N

0N
(m

2
)2

](
FL

n (0)
)−1

=
m2

4
I2N .

In both cases, we have

z
(
YL

n
)′′

+
(
YL

n
)′[α + IN + 2A1z 0N

0N IN − α− 2A2z

]

+ YL
n

[
A1 + A1α + A1

2z 0N

0N −A2 + A2α + A2
2z

]
=
(
(M̃L

n)
′(0) + (M̃L

n)
′(0)M̃L

n(0) + M̃L
n(0)(M̃L

n)
′(0) +

(
(M̃L

n)
′(0)

)2z
)

YL
n (z).

and substituting

M̃L
n(z) =

[
A1z + [p1

L,n, A1] + nIN + α
2 A1C−1

n + C−1
n A2

−Cn−1 A1 − A2Cn−1 −A2z + [p1
R,n, A2]− nIN − α

2

]
.

The result follows.

Remark 2. If the spectrum of α is contained in (−1,+∞) \N then:

• when |λ| < 1, then the ±λ are admissible eigenvalues for α,
• when |λ| > 1, then only positive and bigger than 1 eigenvalues are admissible for α, and we

have α = λIN .

Corollary 3. Let us consider N = 1 (i.e., the scalar case). If A1 = A2 = − 1
2 , and α > −1, then

the second order equation for
{

PL
n
}

n∈N and
{

QL
n
}

n∈N is given by

zP′′n (z)− (z− α− 1)P′n(z) = −nPn(z),

zQ′′n(z) + (z− α + 1)Q′n(z) = −(n + 1)Qn(z).

Proof. In the scalar case, this equation reduces to

z
(
YL

n
)′′

+
(
YL

n
)′[α + 1 + 2A1z 0

0 1− α− 2A1z

]

+ YL
n

[
A1 + A1α + A1

2z 0

0 −A1 + A1α + A1
2z

]
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=

[
A1 + (n + α)A1 + A2

1z 0

0 −A1 + (n + α)A1 + A2
1z

]
YL

n (z),

as A2
1C−1

n = C−1
n A2

1 and A1 = A2 = − 1
2 , and so

z
(
YL

n
)′′

+
(
YL

n
)′[α + 1− z 0

0 1− α + z

]
+ YL

n

[
− 1

2 0

0 1
2

]
=

[
− n+1

2 0

0 − n−1
2

]
YL

n (z),

now, considering the (1, 1) and the (1, 2) entry of this differential matrix equation the
result follows.

5. Matrix Discrete Painlevé IV

We can consider, using the notation introduced before, the matrix weight measure
W = WLWR such that

z(WL)′(z) = (hL0 + hL1 z + hL2 z2)WL(z), z(WR)′(z) = WR(z)(hR0 + hR1 z + hR2 z2).

From Proposition 5 we find that the matrix

M̃n = zML
n

is given explicitly by(
M̃L

n
)

11 = C−1
n hR2 Cn−1 + (hL0 + hL1 z + hL2 z2) + hL1 q1

R,n−1 + p1
L,nhL1

+ z(hL2 q1
R,n−1 + p1

L,nhL2 ) + hL2 q2
R,n−1 + p2

L,nhL2 + p1
L,nhL2 q1

R,n−1 + nIN ,(
M̃L

n
)

12 = (hL1 + hL2 z + hL2 q1
R,n + p1

L,nhL2 )C
−1
n + C−1

n (hR1 + hR2 z + hR2 p1
R,n + q1

L,nhR2 ),(
M̃L

n
)

21 = −Cn−1(hL1 + hL2 z + hL2 q1
R,n−1 + p1

L,n−1CL)

− (hR1 + hR2 z + hR2 p1
R,n−1 + q1

L,n−1hR2 )Cn−1,(
M̃L

n
)

22 = −Cn−1hL2 C−1
n − (hR0 + hR1 z + hR2 z2)− hR1 p1

R,n − q1
L,n−1hR1

− z(hR2 p1
R,n + q1

L,n−1hR2 )− hR2 p2
R,n − q2

L,n−1hR2 − q1
L,n−1hR2 p1

R,n − nIN .

From the three-term recurrence relation for {PL
n }n∈N we find that p1

L,n − p1
L,n+1 = βLn and

p2
L,n − p2

L,n+1 = βLn p1
L,n + γL

n where γL
n = C−1

n Cn−1. Consequently,

p1
L,n = −

n−1

∑
k=0

βLk , p2
L,n =

n−1

∑
i,j=0

βLi βLj −
n−1

∑
k=0

γL
k .

In the same manner, from the three-term recurrence relation for {QL
n}n∈N, we deduce that

q1
L,n − q1

L,n−1 = βRn := CnβLnC−1
n and q2

L,n − q2
L,n−1 = βRn q1

L,n + γR
n , where γR

n = CnC−1
n+1.

If we consider that W = WL and WR = IN , and use the representation for {PL
n }n∈N

and {QL
n}n∈N in z powers, the (1, 2) and (2, 2) entries in (17) read

(2n + 1)IN + hL0 + hL2 (γ
L
n+1 + γL

n + (βLn)
2) + hL1 βLn

= [p1
L,n, hL2 ]p

1
L,n+1 − [p2

L,n, hL2 ]− [p1
L,n, hL1 ],

βLn = γL
n
(
hL2 (βLn + βLn−1) + [p1

L,n−1, hL2 ] + hL1
)
−
(
hL2 (βLn + βLn+1) + [p1

L,n, hL2 ] + hL1
)
γL

n+1.

We can write these equations as follows

(2n + 1)IN + hL0 + hL2 (γ
L
n+1 + γL

n)) + (hL2 βLn + hL1 )βLn
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=
[ n−1

∑
k=0

βLk , hL2
] n

∑
k=0

βLk −
[ n−1

∑
i,j=0

βLi βLj −
n−1

∑
k=0

γL
k , hL2

]
−
[ n−1

∑
k=0

βLk , hL1
]
, (28)

βLn − γL
n
(
hL2 (βLn + βLn−1) + hL1

)
+
(
hL2 (βLn + βLn+1) + hL1

)
γL

n+1

= −γL
n

[ n−1

∑
k=0

βLk , hL2
]
+
[
−

n−1

∑
k=0

βLk , hL2
]
γL

n+1. (29)

We will show now that this system contains a noncommutative version of an instance of
discrete Painlevé IV equation, as happens in the analogous case for the scalar scenario.

We see, on the right hand side of the nonlinear discrete Equations (28) and (29) nonlocal
terms (sums) in the recursion coefficients βLn and γL

n , all of them inside commutators. These
nonlocal terms vanish whenever the three matrices {hL0 , hL1 , hL2} conform an Abelian set.
Moreover, {hL0 , hL1 , hL2 , βLn, γL

n} is also an Abelian set. In this commutative setting, we have

(2n + 1)IN + hL0 + hL2 (γ
L
n+1 + γL

n)) + (hL2 βLn + hL1 )βLn = 0N ,

βLn − γL
n
(
hL2 (βLn + βLn−1) + hL1

)
+
(
hL2 (βLn + βLn+1) + hL1

)
γL

n+1 = 0N .

In terms of ξn :=
hL0
2

+ nIN + hL2 γn and µn := hL2 βLn + hL1 the above equations are

βLnµn = −(ξn + ξn+1), βLn(ξn − ξn+1) = −γnµn−1 + γn+1µn+1.

Now, we multiply the second equation by µn and taking into account the first one we
arrive at

−(ξn + ξn+1)(ξn − ξn+1) = −γnµn−1µn + γn+1µnµn+1

and so

ξ2
n+1 − ξ2

n = γn+1µnµn+1 − γnµn−1µn.

Hence,

ξ2
n+1 − ξ2

0 = γn+1µnµn+1 and βLnµn = −(ξn + ξn+1) (30)

coincide to the ones presented in [60] as a discrete Painlevé IV (dPIV) equation. In fact,
taking νn = µ−1

n we finally arrive at

νnνn+1 =
hL2
(
ξn+1 − hL0 /2− nIN

)
ξ2

n+1 − ξ2
0

and ξn + ξn+1 =

((
hL2
)−1

hL1 −
(

hL2
)−1

ν−1
n

)
ν−1

n .

If we take hL1 = 0 in (30), then µn = hL2 βLn, and so

(βLn)
2hL2 = −(ξn + ξn+1).

Now, taking square in the first equation in (30) we obtain

(
ξn + ξn+1

)(
ξn+1 + ξn+2

)
=
((

ξn+1 −
hL0
2
− nIN

)−1(
ξ2

n+1 − ξ2
0
))2

,

which is an instance of dPIV by Grammaticos, Hietarinta, and Ramani (cf. [61]).
Thus, (28) and (29) for BL = 0N may be considered as a non-Abelian extension of this

instance of dPIV.
We have just seen that,
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Theorem 4 (Non-Abelian extension of the dPIV). When BL = 0N , the following nonlocal
nonlinear non-Abelian system for the recursion coefficients is fulfilled

(2n + 1)IN + hL0 + hL2 (γ
L
n+1 + γL

n)) + hL2 (βLn)
2

=
[ n−1

∑
k=0

βLk , hL2
] n

∑
k=0

βLk −
[ n−1

∑
i,j=0

βLi βLj −
n−1

∑
k=0

γL
k , hL2

]
,

βLn − γL
n
(
hL2 (βLn + βLn−1)

)
+
(
hL2 (βLn + βLn+1)

)
γL

n+1

= −γL
n

[ n−1

∑
k=0

βLk , hL2
]
+
[
−

n−1

∑
k=0

βLk , hL2
]
γL

n+1.

Moreover, this system reduces in the commutative context to the standard dPIV equation.

6. Conclusions and Future Work

In this paper, using the Riemann–Hilbert problem for the Laguerre-type weight matri-
ces, we obtain differential properties of the corresponding matrix biorthogonal polynomials
as well as for the second kind matrix functions. It is remarkable to notice that we do not
explicitly know the matrix measure, but only its differential properties.

We will consider in future work the case that the support of the measure has two finite
end points, the Jacobi-type weight matrices, trying to also obtain differential properties and
extensions of Painlevé discrete systems.
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