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When can an (n − k) × (n − k) normal matrix B be imbedded in an

n × n normal matrix A? This question was studied for the first time

50 years ago by Ky Fan and Gordon Pall, who gave the complete

answer in the case k = 1. Since then, a few authors obtained addi-

tional results. In this note, we show how an approach inspired by

the Hermitian case can throw some light on the problem.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Given complex matrices A n × n, and B (n − k) × (n − k), we say B is imbeddable in A – or, equiva-

lently, B is a compression of A – if B is a principal submatrix of U∗AU for some U n × n unitary.

Fifty years ago, Fan and Pall [3] posed, and solved, the following problem: if A and B are Hermitian,

when is B imbeddable in A? The answer—a necessary and sufficient condition involving the eigen-

values α1 � · · · � αn of A and β1 � · · · � βn−k of B—is given by thewell-known interlacing inequalities

αj � βj � αj+k , j = 1, . . . ,n − k.
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In the same paper, Fan and Pall asked the same question for normal matrices. They solved the

problem in the k = 1 case. The answer is that imbeddability happens essentially only (apart from a

rotation and a translation) in the Hermitian case.

Theorem 1.1 [3]. Let A be an n × n normal matrix with eigenvalues α1, . . . ,αn, B an (n − 1) × (n − 1)

normal matrix with eigenvalues β1, . . . ,βn−1. Renumber the eigenvalues so that αj = βj−1, j = q + 1, . . . ,n

and α1, . . . ,αq are each distinct from β1, . . . ,βq−1. Then B is imbeddable in A if and only if the 2q − 1 points

α1, . . . ,αq,β1, . . . ,βq−1 are collinear and the β ’s separate the α’s on that line.

The sufficiency part in this result is trivial (because of the Hermitian result). The real content of the

result is the necessity part.

In the Hermitian case, only the the n − 1 case is needed for the reciprocal in the general n − k case:

we just need to insert intermediate sequences of eigenvalues, for a chain of matrices. This is not so in

the normal case, as shown by the following example in [3]. Take

A = diag(0, 1, i, 1 + i) and B = 1

10
diag(5 + 8i, 5 + 2i).

Then B is imbeddable in A but there does not exist a 3 × 3 normal matrix C such that B is imbeddable

in C and C is imbeddable in A.

Fan and Pall’s interesting result for normal matrices in the k = 1 case was not followed by the

analysis of what happens for larger k. We know about only two later papers about this kind of

question.

In 1984, Carlson and Marques de Sá [1] proved the following result on the same problem.

Theorem 1.2. Let A be an n × n normal matrix with (nonzero) eigenvalues α1, . . . ,αn, satisfying γ + π >

arg α1 � · · · � arg αn � γ for some γ � 0. Let B be an (n − k) × (n − k) normal principal submatrix of A.

Then the eigenvalues β1, . . . ,βn−k of B may be ordered so that γ + π > arg β1 � · · · � arg βn−k � γ and

arg αj � arg βj � arg αj+k , j = 1, . . . ,n − k.

Later, in a work published in 1998 [5], Ikramov and Elsner studied the slightly different question of

finding conditions under which an (n − k) × (n − k) normal matrix B can be—nontrivially—dilated to

an n × n normal matrix A, with special attention to the k = 1 and k = 2 cases.

There is some literature concerningprincipal (notnecessarilynormal) submatrices of normalmatri-

ces. We mention here one of the earliest papers on that other problem, by Thompson [9], and two of

the most recent, one by Malamud [7], and one by Savchenko [8].

In this paper, we explore the idea of using the lexicographic order in C tomimic the Hermitian case

(where interlacing is the complete answer), and we find that this throws some light on the normal

imbeddability problem.

2. Lexicographic orders in C

The lexicographic order is characterized by the positive cone

H = {a + ib : a > 0, or a = 0 and b > 0}.
For real θ , define �θ as the total order with positive cone eiθH (so the lexicographic order is �0).

These orders are total (i.e., all numbers are comparable) and compatible with addition and with mul-

tiplication by positive reals (i.e., α �θ β ⇒ α + γ �θ β + γ and, if ρ is positive, α �θ β ⇒ ρα �θ ρβ).

They are the only orders in C having those properties. We have of course

α �θ β ⇐⇒ e−iθ α �0 e−iθ β.

The condition α �θ β means that, when we sweep the plane with parallel lines orthogonal to the

arg θ direction, intersecting that direction before going to the arg(θ + π) one, we find α before we find
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β (in case of a tie, α is found to the right of β). The numbering of elements in decreasing sequences of

course depends on θ .

3. Min–max for normal matrices

Let θ ∈ R be arbitrary. Take A n × n normal, and let α1, . . . ,αn be the eigenvalues of A, ordered so

that α1 �θ · · · �θ αn. Let v1, . . . , vn be corresponding orthonormal eigenvectors of A. For j = 1, . . . ,n,

denote by Ej and E′
j
the subspaces spanned by v1, . . . , vj and vj , . . . , vn, respectively.

Theorem 3.1. For j = 1, . . . ,n we have

αj = min
x∈Ej ,‖x‖=1

x∗Ax = max
x∈E′

j
,‖x‖=1

x∗Ax.

Here and in similar circumstances max andmin are used in the �θ sense.

The proof is the same as for the Hermitian case (see e.g. [2]). Analogously, we can prove that

αj = max
dim E=j

min
x∈E,‖x‖=1

x∗Ax = min
dim E=n−j+1

max
x∈E,‖x‖=1

x∗Ax.

Actually, all of the known extremal characterization of eigenvalues of Hermitianmatrices bymeans

of the associated quadratic forms carry over to normal matrices using the θ-lexicographic orders. For

example, we have the following generalization of Theorem 3.1:

αj1
+ · · · + αjr = min

L∈�J (E)
tr(A|L) = max

L∈�J′ (E′)
tr(A|L),

where J = (j1, . . ., jr), J
′ = (n − jr + 1, . . .,n − j1 + 1), E = (E1, . . ., En), and E′ = (E′

n, . . ., E
′
1
), the � denote

the Schubert varieties associated to the respective sequences of indices and subspaces, and tr(A|L) is
the Rayleigh trace of A with respect to L (see [4] for the Hermitian case). This characterization can be

applied, by analyzing intersection of Schubert varieties, to obtaining inequalities for the eigenvalues

of a sum of two normal matrices with given eigenvalues, if this sum is itself normal. In the Hermitian

case (where the sum is always Hermitian, of course), the family of inequalities thus obtained is the

complete description of the possible spectra of the sum [6].

Before returning to the imbeddability problem, we obtain a well-known result with a simple appli-

cation of the characterization of the θ-first eigenvalue of A as the θ-maximum of x∗Ax on the unit

sphere.

Theorem 3.2. The numerical range W(A) = {x∗Ax : ‖x‖ = 1} of a normal matrix A is the convex hull of its

eigenvalues.

Proof. Any straight line moving parallel to itself in the plane must touch W(A) first at an eigenvalue

of A. �

4. Interlacing for normal matrices

Theorem 4.1. Let θ be arbitrary. Let A be an n × n normal matrix with eigenvalues α1 �θ · · · �θ αn. If B

is a principal (n − k) × (n − k) normal submatrix of A with eigenvalues β1 �θ · · · �θ βn−k , we have

αj �θ βj �θ αj+k , j = 1, . . . ,n − k.

Proof. The proof is the same as in the Hermitian case [2], using min–max. �

Of course, the eigenvalues of a normal matrix are the complex numbers whose real and imaginary

parts are the eigenvalues of the Hermitian and skew-Hermitian parts of the matrix. But interlacing

of real and imaginary parts does not imply lexicographic interlacing, as simple examples show. The
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interlacing theorem for normal matrices can be obtained from the Hermitian case, but the above

proof is as good as any other, and in any case our interest is in the result itself, which we will apply

immediately.

Corollary 1. Theorem 1.1 above.

Proof. The sufficiency is trivial, sincewe are essentially in the Hermitian case, asmentioned before. As

to the necessity, take q α’s distinct from q − 1 β’s as in Theorem 1.1. From Theorem 4.1 we know that,

for every θ , the β’s separate the α’s with respect to the �θ order. We claim this implies that between

any two α’s there must be a β. Indeed, given two α’s, if we sweep the plane with parallel lines very

slightly rotated with respect to the line through those two points, the interlacing condition for that

rotated direction guarantees that there must be a β between the two α’s. A simple counting argument

now shows that the q α’s and the q − 1 β’s must be collinear. �

Corollary 2. Theorem 1.2 above.

Proof. Assume without loss of generality that γ = 0, i.e. the α’s satisfy π > arg α1 � · · · � arg αn � 0

(this is just for graphical reasons). The β’s then lie also on the upper half-plane, as they belong toW(B)

and triviallyW(B) ⊆ W(A). Order them so that arg β1 � · · · � arg βn−k .

If we sweep the plane left to right with lines parallel to the line through 0 and αj , then clearly αj is

the jth α we find. By Theorem 4.1, βj must lie to the right of the line through 0 and αj . Similarly, if we

sweep the plane right to left with lines parallel to the line through 0 and αj+k , then αj+k is the (j + k)th

α we find. By Theorem 4.1, βj must lie to the left of the line through 0 and αj+k . �

A remark made during the proof of Corollary 1 can be generalized, with the same argument.

Theorem 4.2. Let A be an n × n normal matrix with eigenvalues α′s, having a principal (n − k) × (n − k)

normal submatrix B with eigenvalues β ’s. If k + 1 of the α’s are collinear, there must be a β in the segment

defined by those k + 1 α’s.

Proof. If we sweep the plane with parallel lines very slightly rotated with respect to the line through

the k + 1 α’s, the interlacing condition for that rotated direction guarantees that there must be a β in

the segment defined by those k + 1 points. �

The same reasoning can go even further, to show that, if k + p of the α’s are collinear, there must

be p β’s in the segment defined by those k + p α’s, one between the first and the (p + 1)th α (counting

from one extreme point of the segment to the other), one between the second and the (p + 2)th, and

so on.
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5. Two open questions

Two questions now emerge:

(1) What restrictions does the �θ interlacing theorem impose on the eigenvalue configurations?

(recall the k = 1 case).

(2) What additional conditions must be added to the �θ interlacing theorem (all θ) to obtain the

complete answer for the imbedding problem in the general n − k case?

The first question is purely geometric, with no relation tomatrices. Let usmake some remarks on it.

For n = 3 and k = 2, the interlacing condition is just α1 �θ β1 �θ α3 (all θ), and it is easy to see that

this is equivalent to the single β lying in the triangle defined by the three α’s. It is also easy to see that

this is the complete solution for the imbedding problem.

For n > 3, this can be generalized by the following result.

Theorem 5.1. Given n α’s and n − 2 β ’s, suppose that they satisfy the interlacing condition in Theorem 4.1

for all θ (and k = 2). Take one α on the boundary of the convex hull of the α’s. Draw half-lines from this

point to all the other n − 1 α’s. Then in each of the n − 2 sectors so formed there is a β.

Proof. Of course, sinceW(B) ⊆ W(A), we already know the β’s belong to the convex hull of the α’s.

Name the chosen α as α1, and number the others, starting from α1, so that the half-lines from α1

rotate consecutively (clockwise, say) from one side of α1 to the other.

Denote by 	(αi,αj) the sector formed by the half lines from α1 to αi and αj , including those half

lines. There must a β in the sector 	(α2,α3), because of interlacing with respect to lines parallel to the

segment [α1,α3].
Next, theremust aβ in the sector 	(α3,α4): this is because of interlacingwith respect to lines parallel

to the segment [α1,α4], which forces two β’s to lie in the convex hull of α1,α2,α3,α4: one of them we

already know is in the sector 	(α2,α3), and the other cannot be in (the interior of) the same sector,

as that would mean that, with respect respect to lines parallel to the segment [α1,α3], the second β

would come (strictly) before the second α.

Similarly, there must a β in the sector 	(αj+1,αj+2), for all j. �

An interesting consequence follows immediately in the case of convex independence of the α’s.

Corollary 3. Given n α’s and n − 2 β ’s, suppose that they satisfy the interlacing condition in Theorem 4.1

for all θ , and k = 2. If the α’s are convexly independent (i.e., none of them belongs to the convex hull of the

others), then in any triangle with vertices on α’s there is a β.

Simple examples, already with n = 4, show that the conclusion of Corollary 3 may fail in the non-

independent case.

Theorem 5.1 can be generalized, with the same reasoning, for k > 2. Numbering the α’s as in the

proof of that theorem, the statement then is that, in each of the n − k sectors 	(αj ,αj+k−1), j = 2, . . . ,n −
k + 1, there is a β.

Returning to the case k = 2, we conjecture that the triangle conditionmentioned in Corollary 3 is in

fact necessary and sufficient for the θ interlacing conditions when the α’s are independent. This seems

an interesting geometric problem.When n = 4 (independent case), the condition for interlacing is that

the two β’s lie on opposite sectors with respect to the diagonals of the quadrilateral defined by the α’s

(recall the Fan–Pall example).
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