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a b s t r a c t

We analyze the presence of the Taylor property in a well-known class of models for
financial time series, the threshold ARCH (TARCH) model. This property is the theoretical
counterpart of the stylized fact known as Taylor effect, detected in several empirical
studies which have shown that the autocorrelations of the absolute returns are larger
than those of the squared returns. We establish that the Taylor property is present for
some parameterizations of the first order TARCH model. As this fact is strongly dependent
on the distribution of the generating white noise, we analyze and compare, for several
distributions of that process, the sets of parameterizations of the model presenting the
Taylor property. Finally, a simulation study strongly suggests that TARCH models are
considerably more likely to capture the Taylor effect than ARCH ones.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In time series analysis, the selection of the class ofmodels well-fitted to data determines the validation of the subsequent
studies and conclusions. This decision is, in particular, based on our knowledge of the theoretical models’ properties, as we
choose the class that better captures the empirical properties detected in data.
In the case of high-frequency financial return series, several studies have shown that they share empirical regularities,

usually called stylized facts (Cont, 2001). Thus, themodels proposed for these series should satisfy the theoretical properties
corresponding to such stylized facts. However, some of these properties are still not completely studied for manymodels, as
is the case of the Taylor property. This property is the theoretical counterpart of the stylized fact known as Taylor effect and it
states that the autocorrelations of the absolute value time series are larger than those of the squared time series. The studies
on this property are generally based on simulations, due to the difficulty of handling the autocorrelations of such models.
In this work, we develop a theoretical study about the presence of the Taylor property in awell-known class ofmodels for

financial time series, the threshold ARCH (TARCH) models. More precisely, we establish that the Taylor property is present
for a set of parameterizations of a TARCH model with a symmetrical generating error process. Moreover, we analyze and
compare, for several distributions of that process, the sets of parameterizations of themodel presenting the Taylor property.
We observe that for some distributions, namely the fat tailed ones, these sets only depend on the existence of the fourth
order moment of the generating white noise.
This study was motivated by the work of He and Teräsvirta (1999) on conditionally Gaussian absolute value generalized

ARCH (AVGARCH) models, where, in particular, they assure the presence of the Taylor property for some of these models.
We point out that in our paper, besides considering much more general models, the threshold ARCH ones, and assuring the
presence of the Taylor property, we establish the explicit regions of the models parameterizations verifying that property.
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Finally, following the empirical study developed byHe and Teräsvirta (1999) on conditionally Gaussian ARCH andGARCH
models, we compare conditionally non-Gaussian TARCH and ARCH models in what concerns the presence of the Taylor
property. He and Teräsvirta (1999) conclude, in their paper, that ARCH and GARCH models are not the best ones to capture
the Taylor effect in real data. From our simulation study, as our findings for the ARCHmodel point out to the same conclusion
drawn by He and Teräsvirta (1999), we observe that TARCH models are much more able to capture the Taylor effect than
ARCH ones.

2. From the Taylor effect to the Taylor property

Taylor (1986) analyzed some features of financial returns and, to point out their non-linear structure, he studied, for 40
returns series, the autocorrelations of transformed returns. He observed that, for most of them, the sample autocorrelations
of the absolute returns, ρ̂n (1) = ĉorr (|εt | , |εt−n|), were larger than those of the squared returns, ρ̂n (2) = ĉorr

(
ε2t , ε

2
t−n

)
,

for lags between 1 and 30.
Subsequent works widened the research to the autocorrelations of the powers of absolute observations, ρ̂n (δ) =

ĉorr
(
|εt |

δ , |εt−n|
δ
)
and, in particular, Granger and Ding (1995) called Taylor effect the empirical relation ρ̂n (1) > ρ̂n (δ), for

any δ 6= 1. However, studies referred to by Mora-Galán et al. (2004) indicate that maximum autocorrelation is not always
obtained when δ = 1. Nevertheless the same studies show that the empirical relation analyzed by Taylor (1986) holds.
This stylized fact observed by Taylor (1986) is well documented, but the analysis concerning the presence of the

corresponding theoretical property in financial time series models is, as we already mentioned, very incomplete. In fact, to
the best of our knowledge, until 1999 only some simulation studies had been done. In 1999, He and Teräsvirta determined
the autocorrelations expressions for some models and then studied the theoretical relation for one of those models. More
precisely, they concentrated their study on the autocorrelation of lag 1 and called the theoretical relation

ρ1 (1) > ρ1 (2) (1)
the Taylor property; they explored it for the AVGARCHmodel with normal generating distributions, proving the presence of
the Taylor property for the first order absolute value ARCH (AVARCH)model. The aim of this paper is to analyze the presence
of the Taylor property for more general models, the TARCH ones with a generating symmetrical error process. These models
have the advantage of taking into account in the volatility, in different ways, positive and negative reactions of the process.
Moreover, the proof considered for establishing the main result allows us to obtain, explicitly, the set of parameterizations
verifying the property, which is a new result, even for AVARCH models.

3. The first order TARCH model

A real stochastic process ε = (εt , t ∈ Z) is said to be a first order threshold autoregressive conditional heteroscedastic,
TARCH(1), model if, for any t ∈ Z,{

εt = σtZt
σt = α0 + α1ε

+

t−1 − β1ε
−

t−1
(2)

with α0 > 0, α1 ≥ 0, β1 ≥ 0, ε+t = εtI{εt≥0}, ε
−

t = εtI{εt<0} and where Z = (Zt , t ∈ Z) is a sequence of independent and
identically distributed real random variables, with zero mean and unit variance, such that Zt is independent of the σ -field
generated by the past of ε, εt−1 = σ (εt−1, εt−2, . . .).
This model (Rabemananjara and Zakoian, 1993; Zakoian, 1994) has the particularity, as one can easily observe from σt ,

that it takes into account different reactions of volatility according to the sign of past values of the process.We point out that
AVARCH(1) model, studied by He and Teräsvirta (1999), is a particular case of the TARCH(1) model, obtained when α1 = β1,
that is, when that characteristic of different reactions of volatility is not taken into account.
To develop our study about the Taylor property we assume that Zt has a symmetrical density and take into account

the expressions obtained by He and Teräsvirta (1999) for the first order autocorrelation of the absolute value process,
ρ1 (1) = corr (|εt | , |εt−1|), and of the squared process, ρ1 (2) = corr

(
ε2t , ε

2
t−1

)
. Let us consider, under the corresponding

existence conditions,

γi =
αi1 + β

i
1

2
E
(
|Zt |i

)
, for i = 1, 2, 3, 4. (3)

If the process ε verifies the condition of strict and weak stationarity, that is γ2 < 1, then ρ1 (1) exists and is equal to

ρ1 (1) = γ1, (4)
and, if γ4 < 1, then ρ1 (2) exists and is equal to

ρ1 (2) = γ2 + 2γ1 (1− γ2) (1− γ4)

[
E
(
|Zt |3

)
E (|Zt |)

(1+ 2γ1 + 2γ2 + γ1γ2) (1− γ1)− (1+ γ1) (1− γ3)

]
×
[
E
(
Z4t
)
Ψ (1− γ1) (1− γ2)− (1+ γ1)2 (1− γ3) (1− γ4)

]−1
, (5)

where Ψ = 1+ 3γ1 + 5γ2 + 3γ3 + 3γ1γ2 + 5γ1γ3 + 3γ2γ3 + γ1γ2γ3. We note that the parameter α0 is free.
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4. Main result

Let ε = (εt , t ∈ Z) be a process following the TARCH(1)model defined in (2).When γ4 < 1, we can consider the function
F such that F (α1, β1) = ρ1 (1)− ρ1 (2). Suppose ∂F

∂β1
satisfies the following condition:

Hypothesis H1. The function ∂F
∂β1
is not null in at least one of the sets

A1 =

{
(α1, β1) ∈

]
0, 4
√
2
[
E
(
Z4t
)]−1[2

: β1 ≤ α1 and F (α1, β1) = 0

}
or

A2 =

{
(α1, β1) ∈

]
0, 4
√
2
[
E
(
Z4t
)]−1[2

: β1 ≥ α1 and F (α1, β1) = 0

}
.

The following theorem states the existence of an open set of parameterizations of the TARCH(1) model that verifies
the Taylor property. We point out that this set depends on the generator process law and strictly contains the set of
parameterizations of the AVARCH model verifying the Taylor property.

Theorem 1. Let ε = (εt , t ∈ Z) be the TARCH(1) model defined in (2) where Zt has a symmetrical density and E (|Zt |) >
4
√[
E
(
Z4t
)]−1. If the Hypothesis H1 is verified, there exists an open set in R2, included in

{
(α1, β1) ∈ R2 : γ4 < 1

}
, of

parameterizations of TARCH(1) models satisfying the Taylor property.

Proof. We consider four parts in this proof. First, we establish that the equations γ4−1 = 0 and ρ1 (1)−ρ1 (2) = 0 express
β1 implicitly as a continuous function of α1 in a neighborhood of

B1 =

{
(α1, β1) ∈

]
0, 4
√
2
[
E
(
Z4t
)]−1[2

: β1 ≤ α1

}
or of

B2 =

{
(α1, β1) ∈

]
0, 4
√
2
[
E
(
Z4t
)]−1[2

: β1 ≥ α1

}
.

Then, we show that these two equations have at most six common solutions in B1 ∪ B2 (they may not even have common
points in that set). In the third part, we prove that, for α1 = β1 = α, there exists a subset of

{
α ∈ R+ : γ4 < 1

}
whose

elements satisfy the condition ρ1 (1) > ρ1 (2). Finally, we extend this conclusion to the case of α1 6= β1.
(i) It is easily seen that the equation γ4 − 1 = 0 expresses β1 implicitly as a continuous function of α1 in]
0, 4
√
2
[
E
(
Z4t
)]−1[.

To show that the equation ρ1 (1) − ρ1 (2) = 0 defines implicitly β1 as a continuous function of α1 in a neighborhood
of B1 (respectively, or in a neighborhood of B2), we consider A1 = B1 ∩

{
(α1, β1) ∈ R2 : F (α1, β1) = 0

}
and A2 =

B2 ∩
{
(α1, β1) ∈ R2 : F (α1, β1) = 0

}
, where F (α1, β1) = ρ1 (1) − ρ1 (2); it is enough to establish that ∂F

∂α1
and ∂F

∂β1
are

continuous functions in a open set containing A1 (respectively, or containing A2) and that ∂F
∂β1

(
ᾰ1, β̆1

)
6= 0, for all

(
ᾰ1, β̆1

)
in A1 (respectively, or in A2).
The functions ∂F

∂α1
and ∂F

∂β1
are well-defined if γ4 ≤ 1, because ρ1 (2) exists (He and Teräsvirta, 1999). These functions

are obviously continuous and the last condition mentioned, concerning the non nullity of the function ∂F
∂β1
, is verified from

Hypothesis H1.
(ii) Let us nowdetermine the number of intersections between the graphics of the two functions defined by the equations

γ4 − 1 = 0 and ρ1 (1)− ρ1 (2) = 0.
Note that, in (i), we have shown that these functions are defined implicitly in a neighborhood of B1 or of B2. However,

as F (α1, β1) = F (β1, α1) and G (α1, β1) = G (β1, α1), with G (α1, β1) = γ4 − 1, the curves defined by F (α1, β1) = 0 and
G (α1, β1) = 0 are symmetrical in relation to the axis β1 = α1. So, we conclude that

(
ᾰ1, β̆1

)
∈ B1 is one of the intersection

points of interest if and only if
(
β̆1, ᾰ1

)
∈ B2 is also one of those points. Therefore we will omit the set, B1 or B2, to which

the point belongs.
We intend to solve the system{

γ4 = 1
ρ1 (1) = ρ1 (2)
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which is equivalent to1− E
(
Z4t
)

2

(
α41 + β

4
1

)
= 0

E (|Zt |) (α1 + β1)−
(
α21 + β

2
1

)
= 0.

From the second equation, we obtain

β1 =
E (|Zt |)
2
±

√
−α21 + E (|Zt |) α1 +

(
E (|Zt |)
2

)2
and, so,

P (α1) = −16α81 + 32E (|Zt |) α
7
1 − 16 (E (|Zt |))

2 α61

− 8

(
(E (|Zt |))4 −

4
E
(
Z4t
))α41 − 32E (|Zt |)E

(
Z4t
) α31

−
16 (E (|Zt |))2

E
(
Z4t
) α21 +

32 (E (|Zt |))3

E
(
Z4t
) α1

+
8

E
(
Z4t
) ((E (|Zt |))4 − 2

E
(
Z4t
)) = 0.

By the Descartes’ sign rule, the maximum number of positive roots of this equation is equal to the number of sign
changes of the coefficients of the polynomial P , as we proceed from the highest to the lowest power. Since the sign of(
(E (|Zt |))4 − 2

E
(
Z4t
)) and that of ((E (|Zt |))4 − 4

E
(
Z4t
)) depend on the Z law, we can only state that the number of sign

changes varies between 3 and 6. Therefore, the maximum number of positive roots of this equation is 6 and, consequently,
the maximum number of intersections between the graphics of the two functions defined by the equations γ4 − 1 = 0 and
ρ1 (1)− ρ1 (2) = 0 is also 6.
(iii) Let us now consider the points such that α1 = β1. We denote α1 and β1 by α and, to stress the fact that the

autocorrelations depend of α, ρ1 (1) by ρ1 (1, α) and ρ1 (2) by ρ1 (2, α). As α > 0 and γ4 < 1, then α > 0 and α4E
(
Z4t
)
< 1,

therefore 0 < α < 4

√
1

E
(
Z4t
) . Moreover, we have ρ1 (1, α) = γ1 = αE (|Zt |) and ρ1 (2, α) = γ2 + (1− γ4) × Γ =

α2+(1− γ4)×Γ , whereΓ = Γ (α) is obtained from (5). Note thatρ1 (1, α) andρ1 (2, α) are both continuous functions ofα.
Moreover,

ρ1 (1, α) = αE (|Zt |) converges to 4

√
1

E
(
Z4t
)E (|Zt |)

and

ρ1 (2, α) = α2 + (1− γ4)× Γ converges to

(
4

√
1

E
(
Z4t
))2 ,

when α converges, by smaller values, to

(
4

√
1

E
(
Z4t
)
)
. In addition, as we suppose that E (|Zt |) > 4

√
1

E
(
Z4t
) , there exists a left

neighborhood of 4
√

1
E
(
Z4t
) such that ρ1 (1, α) > ρ1 (2, α).

(iv) Considering now the general form of ρ1 (1) and of ρ1 (2) (as functions of α1 and β1, not necessarily equal), we

can finally state, by the continuity of these functions, that, in a neighborhood of the point

(
4

√
1

E
(
Z4t
) , 4√ 1

E
(
Z4t
)
)
inter-

sected with the set
{
(α1, β1) ∈ R2 : γ4 < 1

}
, we have ρ1 (1) > ρ1 (2). Thus, there exists a region of the plane or, even-

tually, a reunion of two or three regions of the plane (depending on the number of intersections), which is a subset of{
(α1, β1) ∈ R+ × R+ : γ4 < 1

}
, whose elements satisfy the condition ρ1 (1) > ρ1 (2). �

5. Applications

In this section we illustrate in a constructive way the region of parameterizations with the Taylor property for some
TARCH(1) models. The aim of this section is also to analyze how this set behaves when we change the distribution of the
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Fig. 1. Curves defined by F (α1, β1) = 0 (thinner line) and by ∂F
∂β1

(α1, β1) = 0 (thicker line), when Zt follows the standard normal distribution.

generator process Z . To achieve this, we use Theorem 1 and then determine such a set for the particular case of the absolute
value ARCH(1) model considering several distributions for the generator noise. The distributions considered for Zt must

be symmetrical, of unit variance and the moments must verify the condition E (|Zt |) >
4
√[
E
(
Z4t
)]−1. Some examples of

these distributions are the standard normal distribution, the unit variance distribution based on the Student’s t-distribution
with n degrees of freedom (n > 4) and the symmetrical and unit variance triangular distribution. In what concerns the
Hypothesis H1, we establish its validity graphically. Namely, we verify if the curves defined by F (α1, β1) = 0 and by
∂F
∂β1

(α1, β1) = 0 do not intersect or, when they intersect, if the intersections points are only above or only below the
line β1 = α1.

5.1. Normal distribution

Let us first consider the case where Zt follows the standard normal distribution, that is, where ε follows a conditionally

Gaussian TARCH(1) model. In this case γ4 < 1 ⇔ 0 < β1 <
4
√
2
3 − α

4
1 , which defines the region of existence of the

autocorrelations. So, from the analysis of Fig. 1, we can state that the Hypothesis H1 is verified whenever this condition is
fulfilled. Hence the Taylor property is present for a subset of parameterizations of this model, some of them shown in Fig. 2
and obtained by an exploratory study.
For the absolute value ARCH(1) model, this conclusion coincides with the one drawn by He and Teräsvirta (1999).

Moreover, we are able to identify completely, in this case, the subset of parameterizations of the absolute value ARCH(1)
model where the Taylor property is present. In fact,
• The case of α1 = β1 = α was considered in the third part of the proof of Theorem 1, where we established that the

Taylor property is present in a left neighborhood of 4
√

1
E
(
Z4t
) . Note that γ4 < 1 ⇔ α < 4

√
1

E
(
Z4t
) is the condition for the

existence of the fourth order moment of the process following the absolute value ARCH(1) model. Therefore we have the

upper limit of the interval, which is 4
√
1
3 ' 0.7598.

• To find the lower limit of the interval, we need to find the solutions of ρ1 (1)− ρ1 (2) = 0 in
]
0, 4
√
1
3

[
, where

ρ1 (1)− ρ1 (2) = α2[−2π + π2 + (2− π)
√
2πα + (6π − 20) πα2

+ (3π − 8)
√
2πα3 +

(
56− 2π − 6π2

)
α4 + (8− 3π)

√
2πα5 + (18π − 48) α6]

× [−π2 − 2π
√
2πα + (10− 6π) πα2 − 4π

√
2πα3 + (6π − 16) πα4

+ 2 (14− 3π)
√
2πα5 + 12πα6 + 12 (−2+ π)

√
2πα7]−1.

So, we need to determine the zeros of sixth order polynomial of the numerator. Sincewe have a sixth degree equation, we
have to use numerical analysis techniques, namely Sturm theorem, to assess the number of real roots and find them. That
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Fig. 2. The curve is the boundary of existence of the autocorrelations, that is, γ4 = 1. The circles (respectively, the circumferences) mark a discretization
of the set of parameterizations of the TARCH(1) model which verify (respectively, do not verify) the Taylor property.

Table 1
Si(α), for i = 0, . . . , 6 and α ∈ {0, 0.6227, 0.6228, 0.76}.

α S0(α) S1(α) S2(α) S3(α) S4(α) S5(α) S6(α) N(α)

0 3.59 −2.86 −3.55 0.14 3.55 −12.05 831.17 4
0.6227 9.61× 10−4 −10.27 −0.95 0.57 0.94 −11.43 831.17 4
0.6228 −6.61× 10−5 −10.27 −0.95 0.58 0.94 −11.43 831.17 3
0.76 −1.57 −11.80 0.18 14.00 −0.20 −11.30 831.17 3

theorem states that the number of real roots of an algebraic equation with real coefficients in an interval, whose limits
are not roots, is equal to the difference between the number of sign changes of the Sturm chain in both interval limits
(Durand, 1960). Let us define S0 (α) as the the sixth order polynomial of the numerator, S1 (α) the first derivative of S0 (α)
and Si (α) the symmetrical of the polynomial remainder resulting of the division of Si−2 (α) by Si−1 (α), for i = 2, . . . , 6.
Therefore S0 (α) , S1 (α) , . . . , S6 (α) form the Sturm chain in this case. Let N (α) be the number of sign changes of the
Sturm chain calculated at α.
From Table 1, we can conclude that the polynomial has only one real zero in

]
0, 4
√
1
3

[
, which we denote by ᾰ (with an

approximation error inferior to 5× 10−5, ᾰ = 0.62275).

• Thus, the Taylor property is present in the absolute value ARCH(1) model, when α ∈
]
ᾰ, 4
√
1
3

[
.

5.2. Student’s t-distribution

Let us now suppose that Zt follows the unit variance distribution based on the Student’s t-distribution with 6 degrees of
freedom, whose density function is

f (x) =
15
2

(
1+

x2

4

)− 72
, x ∈ R.

This is a leptokurtic distribution, since its kurtosis equals 6. We derive from Fig. 3 that the Hypothesis H1 is satisfied when

0 < β1 <
4
√
1
3 − α

4
1 , hence there is a subset of parameterizations of this model where Taylor property is verified.

Considering the absolute value ARCH(1)model and following the same procedure as in example 1, we determine that the

interval of values of α where the model satisfies the Taylor property is
]
0, 4
√
1
6

[
. We emphasize that this set only depends

on the existence of the fourth order moment of the process.
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Fig. 3. Curves defined by F (α1, β1) = 0 (thinner line) and by ∂F
∂β1

(α1, β1) = 0 (thicker line), when Zt follows the unit variance distribution based on the
Student’s t-distribution with 6 degrees of freedom.

Fig. 4. Curves defined by F (α1, β1) = 0 (thinner line) and by ∂F
∂β1

(α1, β1) = 0 (thicker line), when Zt follows the triangular distribution.

5.3. Triangular distribution

To finalize, we consider Zt following the symmetrical and unit variance triangular distribution, whose density function
is

f (x) =

√
6− |x|
6

I]
−
√
6,
√
6
[ (x) , x ∈ R.

We now have a platykurtic distribution, as its kurtosis is equal to 12/5 = 2.4. In this case, as we can derive from the

analysis of Fig. 4, the Hypothesis H1 is verified when 0 < β1 <
4
√
5
6 − α

4
1 , and so the Taylor property is present for a subset

of parameterizations of this model.
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Table 2
The first and second columns have the values considered for parameters α1 and β1 , respectively, of the TARCH process ε, the third has the kurtosis of ε
and the fourth and fifth ones have the lower and upper bound, respectively, of the 95% confidence interval for the proportion of verifications of the Taylor
effect.

α1 β1 kε Lower bound Upper bound

0.2 0.75 357.48 0.80 0.90
0.58 0.65 112.20 0.84 0.93
0.3 0.3 7.60 0.97 1.00
0.2 0.1 6.40 0.96 1.00

Table 3
The first column has the values considered for parameter α1 of the ARCH process ε, the second has the kurtosis of ε and the third and fourth ones have the
lower and upper bound, respectively, of the 95% confidence interval for the proportion of verifications of the Taylor effect.

α1 kε Lower bound Upper bound

0.405 316.46 0.22 0.34
0.4 126.00 0.24 0.36
0.2 7.58 0.11 0.21
0.1 6.32 0.20 0.32

Following the prior examples, for the absolute value ARCH(1) model the interval of values of the parameter α for which

the Taylor property is satisfied is
]
ᾰ, 4
√

1
2.4

[
, with ᾰ equal to 0.77255, with an approximation error inferior to 5× 10−5.

6. Empirical studies

In this work, our main concern was the study of the presence of the Taylor property in the TARCH(1) models. With the
theoretical study presented here, we obtain a subclass of those models verifying such property. Since the Taylor effect is
common in financial time series, this study reinforces the importance of the TARCH models.
Due to theweight of ARCHmodels in financial time series analysis, a comparison between the ARCH(1) and the TARCH(1)

models is unavoidable. These models differ in the expression of the conditional variance of the process, which is defined,
in the ARCH(1) model, as σ 2t = α0 + α1ε

2
t−1, α0 > 0, α1 ≥ 0. A theoretical comparison study in what concerns the Taylor

property is, for the moment, impossible to be done as the expression of autocorrelations of the absolute value process of the
ARCH model is not available. So, in order to do this comparison, a simulation study is presented here.
Asmentioned in the introduction, He and Teräsvirta (1999) have already considered conditionally Gaussian ARCH(1) and

GARCH(1,1) models, concluding that these models do not appear capable of generating series with the Taylor effect. In our
simulation, we decide to consider ARCH and TARCH models with the same non-Gaussian leptokurtic distribution for the
generating white noise, namely the Student’s t-distribution with 6 degrees of freedom.
He and Teräsvirta (1999) also mention that the kurtosis of the process ε seems to play a role in the presence of the Taylor

property. So, to better compare ARCH(1) and TARCH(1) models, we choose four parameterizations for each model in order
to have series with similar values of kurtosis. We fix α0 = 1 for both models, since this parameter does not appear in the
known theoretical expressions of the kurtosis and of the autocorrelations of the models. Based on 200 simulated series of
100000 observations (after deleting 50 to discard the initial effects), we register the number of times the Taylor effect is
present (that is, ρ̂1 (1) > ρ̂n (2)) and determine the 95% confidence interval for its proportion. The results are presented for
the TARCH(1) model in Table 2 and for the ARCH(1) model in Table 3.
Comparing the results presented in these two tables, we see that the Taylor effect occurs amuchmore significant number

of times in the TARCH(1)model, even almost always for some of these parameterizations. This allows us to conclude that the
Taylor effect is more likely to be captured by the TARCH(1) model than by the ARCH(1) model. Comparing our results with
those of He and Teräsvirta (1999), we observe that the conditionally Gaussian ARCH(1) model that they consider is even less
likely to capture the Taylor effect than the non-Gaussian leptokurtic one studied here. This, along with our findings of the
previous section, support our suspicion that high values of kurtosis of the generating white noise favor the appearance of
the Taylor property.

7. Conclusion

With the study presented here, namely with Theorem 1, we find a methodology to establish the presence of Taylor
property in TARCH models.
This fact is well-illustrated in the examples considered here, in which Taylor property was found for TARCH models

following quite different distributions.
Moreover, we point out that the lower bound of the interval of parameterizations with Taylor property obtained for the

absolute value ARCHmodels approaches zero as the kurtosis of the generating white noise increases. This allows us to infer
that, for sufficiently high values of kurtosis, the Taylor property is verified for all possible parameterizations. Additional
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studies will be done in this direction, namely, analyzing the influence of the distribution tail in the presence of the Taylor
property.
The simulations studies developed to compare the ARCH and TARCH models, strongly suggest that TARCH models are

considerably more likely to capture the Taylor effect than ARCH ones.
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