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Abstract
Understanding the physical basis of corneal transparency has been a subject of
interest amongst physicists, basic scientists and ophthalmologists. Impairment of
corneal clarity is a significant cause of visual morbidity worldwide. Thus, it is essential
to understand the mechanisms behind corneal transparency and how the alterations
due to corneal pathologies affect vision. We use Maxwell’s equations to model light
propagation in ocular tissues and a nodal discontinuous Galerkin method combined
with an explicit Runge-Kutta method to simulate light propagation in normal and
pathological corneas. Our simulation results illustrate that an increase in the diameter
of some fibres causes an increase in backscattering. Thus, these may represent some
of the physical changes in the cornea that might result in loss of transparency and
visual morbidity.

Keywords: Maxwell’s equations; Discontinuous Galerkin method; Low-storage
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1 Introduction
The eye is a slightly asymmetrical globe composed of various tissues (see Fig. 1), about an
inch in diameter, which possesses a quite complex and sensitive mechanism.

The cornea is the transparent, clear tissue at the front of the eye. It is a differentiated tis-
sue to allow refraction and transmission of light. Its characteristics are highly specialised in
maintaining transparency and resisting external adverse factors like dehydration, micro-
bial invasion, and trauma. Optically, it is a convex-concave lens with an average refractive
power of 43 diopters, which corresponds to about 70% of the total refractive power of the
optical ocular system [8].

The cornea comprises six layers: the epithelium, basement membrane, Bowman’s layer,
the stroma, Descemet’s membrane, and the endothelium (see Fig. 1). Many corneal
pathologies are caused by changes in at least one of these layers, leading to increased light
scattering and consequent loss of corneal transparency. The stroma is the layer that gives
the eye essential corneal strength and constitutes 90% of the cornea’s thickness [3, 22].

Corneal transparency is achieved and maintained by combining several features: the
specific structural organisation of the collagen fibres in the stroma, the absence of blood
vessels in the corneal layers, the lack of myelin sheath in the corneal nerves and the ability
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Figure 1 Anatomy of the human eye with corneal cross-section. Autor: National Eye Institute (licensed under
CC BY 2.0)

to preserve a tightly controlled hydration state. These factors contribute to the cancella-
tion of light scattering in all directions except forward and to the low absorption in the
spectral range from 300 nm to 1400 nm (UV-A, visible and IR-A light).

The corneal stroma consists of collagens, keratocytes and other extracellular matrix
components (EMC). The collagen molecules are organised into fibrils1 with uniform di-
ameters between 25 nm and 35 nm, further gathered into collagen lamellae. There are
from 200 to 300 lamellae of various thicknesses in the stroma lying parallel and interwo-
ven together. Lamellae are quite interwoven in the anterior region, whereas parts near
Descemet’s membrane seems to be less interwoven, allowing the cornea there to swell
easier. Getting closer to the sclera, the collagen lamellae get disorganised and therefore
less transparent [22].

Explaining which factors lead to corneal transparency deterioration, the respective ex-
tent and where the responsible changes occur within the cornea, are still open questions
that this works aims to address and shed light on.

1In ophthalmology, some authors use the term fibre instead of fibril, as e.g. in [3].
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The paper is organised as follows. Section 2 describes the mechanisms that explain
corneal transparency and the causes of light scattering in corneal pathologies. In Sect. 3,
we propose a computational model that mimics light propagation through the eye’s tis-
sues. We use Maxwell’s equations to model electromagnetic radiation and, as discretisa-
tion methods, we use a nodal discontinuous Galerkin method for space discretisation and
a low-storage explicit Runge-Kutta method for time discretisation. Section 4 presents the
results obtained for the computational simulation of light propagation in a normal and
pathological corneas. Section 5 discusses the results.

2 Corneal transparency
Corneal transparency depends strongly on the structural organisation of the stromal col-
lagen fibres, namely on the uniformity of their diameter fibres [15] and on the regularity
of their spatial arrangement. Many different ideas have emerged on this topic over time
[4, 5, 9, 10, 12, 13, 15, 19, 21–23]. In particular, to ensure corneal transparency, it is suffi-
cient that the distance between adjacent fibres is constrained. This structural organisation
ensures that while light is scattered by the collagen fibres, the scattered light interferes de-
structively in all directions except the forward direction. This way, the cornea acts as a
waveguide, allowing light to travel forward through the cornea to reach the retina [25].

Doutch et al., in 2008, summarised parameters that are believed to be crucial in main-
taining corneal transparency [7]. These are: (i) density of collagen fibres; (ii) diameter of
collagen fibres; (iii) refractive index differences between fibres and interfibrillar space or
EMC; (iv) thickness of stroma, and (v) order in the spacing of the fibre network. Thus,
every model trying to explain corneal transparency should consider the shape and size
of corneal stroma and its elements such as collagen fibres and proteoglycans, and their
refractive indexes because these factors influence the amount and direction of scattered
light. The average refractive index of the stroma has been calculated to be 1.375. It is based
on the refractive index of collagen fibres and interfibrillar fluid and on the volume of col-
lagen fibres and fluid [23].

Another important requirement for maintaining corneal transparency is that colla-
gen fibres do not touch each other. This is achieved due to the negative charge of the
proteoglycan-rich coating around collagen fibres, which prevents their aggregation [5].
The space between the collagen fibres depends on the water content in the matrix. The
transparency is maintained by the balance between the proteoglycan matrix and the col-
lagen fibres [17]. The physiological hydration in the cornea is tightly maintained at about
78% in humans through the pump and barrier functions of the endothelium. When the
cornea swells, the distance between collagen fibres within the lamellae increases, and voids
form within the lamellae [4], increasing light scattering and decreasing the cornea trans-
parency.

The uniformity of the diameters of the collagen fibres and the restriction of the range
of distances between the collagen fibres are two of the most important factors for corneal
transparency. Several corneal pathologies that increase light scatter and result in corneal
opacity are associated with phenomena that affect those two factors.

3 Modelling light propagation
3.1 Maxwell’s equations
We use Maxwell’s equations to model the electromagnetic wave’s propagation through the
eye’s tissue [16, 20]. Maxwell’s equations are the fundamental set of equations that describe
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how the electromagnetic field propagates in free space and in any media. Four-vector fields
describe the electromagnetic field in space and time: E, H , D, B : � × R

+ → R
3, where E

represents the electric field, H the magnetic field, D the electric flux density and B the
magnetic flux density. The SI units of these fields are volt per meter (V /m), ampere per
meter (A/m), coulomb per square meter (C/m2) and weber per square meter (Wb/m2),
respectively. We consider that � is a bounded domain in R

3.
Assuming that there is no electric current density nor electric charge density and using

the constitutive relations D = εE, B = μH , where ε is the medium’s electric permittivity
and μ is the medium’s magnetic permeability, the Maxwell’s equations can be written as:

ε
∂E
∂t

= ∇ × H ,

μ
∂H
∂t

= –∇ × E

for heterogeneous anisotropic media with no source in three-dimensional spaces.
We decompose the electromagnetic wave in transverse electric (TE) and transverse

magnetic (TM) modes, reducing the number of equations implemented in our model. TE
or TM modes describe the propagation when the electric field lays in the plane of propa-
gation or when perpendicular to it, respectively. Those two modes can be decoupled since
they don’t contain any common field vector components. These assumptions are appro-
priate when studying light propagation in two-dimensional spaces. From now on, we will
analyse the time-domain Maxwell’s equations in TE mode where the only non-vanishing
components of the electromagnetic fields are Ex, Ey and Hz. Thus, we have the following
equations:

ε
∂E
∂t

= ∇ × H , in � × (0, Tf ], (2a)

μ
∂H
∂t

= – curl E, in � × (0, Tf ], (2b)

where E = (Ex, Ey) and H = (Hz). These equations are solved on the bounded domain � ⊂
R

2. We use the following notation for the vector and scalar curl operators:

∇ × H =
(

∂Hz

∂y
, –

∂Hz

∂x

)ᵀ
, curl E =

∂Ey

∂x
–

∂Ex

∂y
.

We consider that the electric permittivity ε is an anisotropic tensor,

ε =

(
εxx εxy

εyx εyy

)
, (3)

and that the magnetic permeability μ is isotropic. Both, μ and ε, are functions in space.
We complete the model equations with the initial conditions

E(x, y, 0) = 0 and H(x, y, 0) = 0 in �

and with first-order Silver-Müller absorbing boundary conditions [1, 14]

ν × E = cμν × (H × ν) on ∂�,
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where

c =

√
νTεν

μdet (ε)

is the speed with which a wave travels along the direction of the outward pointing unit
normal ν . These boundary conditions are relevant since we need to consider a truncated
computational domain to mimic an unbounded propagation space. In this case, when the
electromagnetic wave hits the boundary, it should not be reflected but absorbed.

3.2 Discretisation methods
There has been a great interest in solving Maxwell’s equations accurately and efficiently
in realistic applications in the last decades because of their relevance in many different
areas. The first – and most well-known – method for solving Maxwell’s equations is the
so-called finite difference time-domain (FDTD) scheme proposed by Yee in 1966 [27].
Despite its success, FDTD, like all finite difference methods, is difficult to generalise to
irregular domains and unstructured grids.

With the growing need to solve geometrically complex large-scale problems, there has
been an interest in the flexibility offered by finite volumes or finite element schemes [16].
More recently, the development of discontinuous Galerkin (DG) time-domain methods
to solve Maxwell’s equations gained relevance on the simulation of electromagnetic waves
propagations. DG methods gather many desirable features such as being able to achieve
high-order accuracy and easily handle complex geometries. The advantages of using DG
methods when compared with classical FDTD methods, finite volume time-domain meth-
ods or finite element time-domain methods, have been reported by several authors (see
e.g. [11] and the references therein). Our computational algorithm is based on a nodal DG
method for space discretisation and an explicit Runge-Kutta method for time discretisa-
tion.

We start by the conservation form of the TE-mode Maxwell’s equations in 2D equivalent
to (2a)–(2b),

Q
∂u
∂t

+ ∇ · F(u) = 0 in � × (0, Tf ], (4)

with

Q =

(
ε 0
0 μ

)
, u =

⎛
⎜⎝

Ex

Ey

Hz

⎞
⎟⎠ and F(u) =

⎛
⎜⎝

0 –Hz

Hz 0
Ey –Ex

⎞
⎟⎠ .

3.2.1 Space discretisation
Let the domain � be a bounded set with a polygonal boundary ∂� and Th = {Tk}K

k=1 be a
conformal triangulation of �. On each element Tk , the solution fields are approximated
by polynomials of degree less or equal to N . The global solution u(x, y, t) is assumed to be
approximated by piecewise N order polynomials.

u(x, y, t) � uh(x, y, t) =
K⊕

k=1

uk
h(x, y, t),
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defined as the direct sum of the K local polynomial solutions uk
h. The fields are expanded

in terms of interpolating Lagrange polynomials Li(x, y),

uk
h(x, y, t) =

Np∑
i=1

uk
h(xi, yi, t)Li(x, y),

where (xi, yi), i = 1, . . . , Np, states for interpolation points whose number Np is related with
the polynomial order N by Np = (N + 1)(N + 2)/2.

We start by multiplying equation (4) by test functions v (which are usually the Lagrange
polynomials) and integrate over each element Tk . Next, we employ one integration by
parts and substitute in the resulting contour integral the flux F by a numerical flux F∗.
Integrating by parts again yields

∫
Tk

(
Q

∂uk
h

∂t
+ ∇ · F

(
uk

h
))

v dx dy =
∫

∂Tk

ν · (F
(
uk

h
)

– F∗(uk
h
))

v ds,

where ν = (νx,νy) is the outward pointing unit normal vector of the contour.
Introducing the notation for jumps of fields values [uh] = u–

h – u+
h , where “+” refers to the

neighbouring element and “–” refers to the local cell, we define the following upwind flux

ν · (F(uh) – F∗(uh)
)

=

⎛
⎜⎝

–νy
Z++Z– (Z+[Hhz] – (νx[Ehy] – νy[Ehx]))

νx
Z++Z– (Z+[Hhz] – (νx[Ehy] – νy[Ehx]))

1
Y ++Y – (Y +(νx[Ehy] – νy[Ehx]) – [Hhz])

⎞
⎟⎠ ,

where Z± =
√

μ±/εeff ± is the local impedance and Y ± = (Z±)–1 is the local conductance.
The effective permittivity is defined by εeff = det ε/νTεν .

For Silver-Müller absorbing boundary conditions, we consider at the outer boundary

Z–H+
hz = νxE+

hy – νyE+
hx,

which is equivalent to set

[Ehx] = E–
hx, [Ehy] = E–

hy, [Hhz] = H–
hz.

3.2.2 Time discretisation
The discretisation in space leads us to a global semi-discrete scheme, which can be written
as

duh

dt
= Lh(uh, t). (5)

A low storage explicit Runge-Kutta (LSERK) method is applied to these equations to solve
the problem. One of the most celebrated LSERK methods is a fourth-order version with
five stages, LSERK(5, 4), introduced by Carpenter & Kennedy in [6]. When compared to
the classical fourth-order explicit Runge-Kutta methods, the application of LSERK(5, 4) di-
minishes the memory requirements related to arrays storage without increasing the com-
putational cost. One alternative to LSERK(5, 4) is the version that uses 14 stages instead
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of five, proposed by Niegemann et al. in [24], the LSERK(14, 4). Unlike LSERK(5, 4), this
method comes with an extra cost of ten additional functions due to the ten more stages.
However, LSERK(14, 4) allows a large stable time-step [2].

4 Numerical experiments
We consider a two-dimensional model of backscattered light intensity in two different
(healthy and pathological) scenarios that correspond to the organisation of the fibres rep-
resented in Fig. 2. Our simulation settings are composed of 38 randomly distributed col-
lagen fibres denoted by circles in the mentioned figure. Figure 2 (left) represents a healthy
human cornea with fibres of diameter 31 nm and where the distance between every two
adjacent fibres is not less than its doubled diameter [22]. In Fig. 2 (right), we mimic a patho-
logic situation where positions of fibres are kept and 20% of those (8 fibres) are randomly
chosen to have doubled diameter [22].

On the computational domain � = [–1, 1]2, we represent by F the union of circles that
model healthy corneal collagen fibres’ positions. � \F represents the EMC stromal com-
ponents. The union of circles F ′ represents a pathologic cornea where the diameter of
some of the fibres is doubled.

Since the eye’s tissues are non-magnetic media, the relative magnetic permeability is
μ = 1 [26]. The refractive indices n of collagen fibres and EMC are well-established in the
literature. Taking those values from [18] we define

n =

⎧⎨
⎩

1.411, (x, y) ∈F , (x, y) ∈F ′,

1.365, (x, y) ∈ � \F , (x, y) ∈ � \F ′.

In our experiments, we consider ε = εI , where ε = n2 and I is the identity matrix. This
yields that the relative permittivity of the medium is given by ε0 = 1.3652.

To simulate the scattering of light in the cornea, we use the scattered field formulation of
the TE-mode. We begin by separating the electromagnetic fields u = (Ex, Ey, Hz)T into two
fields: the incident fields ui = (Ei

x, Ei
y, Hi

z)T and the scattered components us = (Es
x, Es

y, Hs
z)T;

thus we have

H = Hs + Hi and E = Es + Ei. (6)

Figure 2 Stromal collagen fibres arrangement. Left: healthy cornea; Right: cornea with some fibres whose
diameter is doubled
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Figure 3 Mesh used for the simulations corresponding to the geometries in Fig. 2

Assuming that the incident field is also a solution of Maxwell’s equations (4), with coef-
ficients ε0 and μ0 = μ being the relative permittivity and permeability of the medium in
which the incident field propagates in the absence of scatterers, we insert (6) into (4) and
we obtain the scattered field formulation

ε
∂Es

x
∂t

=
∂Hs

z
∂y

+ (ε0 – ε)
∂Ei

x
∂t

,

ε
∂Es

y

∂t
= –

∂Hs
z

∂x
+ (ε0 – ε)

∂Ei
y

∂t
,

μ
∂Hs

z
∂t

=
∂Es

x
∂y

–
∂Es

y

∂x
.

We want to solve for the scattered fields with initial conditions us(x, y, 0) = 0 and the inci-
dent fields given by the planar wave ui(x, y, t) = (0, cos (10(x – t)), 0)T.

For the discretisation, we use the DG method with the LSERK(14, 4) with the spatial
meshes illustrated in Fig. 3. The evolution in time of the scattered electric field intensity

Is =
√(

Es
x
)2 +

(
Es

y
)2

is illustrated in Fig. 4, where the solution is approximated by a polynomial of order N = 4
and plotted for different values of simulation time T . The results in Fig. 4 show an in-
crease in backscattering caused by the increase in the diameter of some fibres, which is
compatible with previous findings (e.g. [22]).

All simulations were done using the MATLAB software package on a computer with
one 11th Gen Intel Core i7-1165G7 @ 2.80 GHz × 8 processor and 8 GB of RAM. The
meshes used in the paper were designed using the software package FreeFem++ and the
computational time ranged from 26 seconds, for T = 0.25, and 105 seconds, for T = 1, in
both scenarios.

5 Conclusion
This study assessed the impact of a small percentage of stromal fibres being modified on
their properties, specifically, the increase of their diameter and the consequences of that
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Figure 4 Time evolution of scattered electric field intensity Is . Left: healthy cornea; Right: cornea with some
fibres whose diameter is doubled

change in corneal transparency. We, therefore, simulated a corneal pathology resorting to
computational methods to find that an increase in backscattering occurs being compati-
ble with previous findings in [22]. We may also note that the planar characteristic of the
wavefront is significantly lost in the situation where we double the diameter of 20% stro-
mal fibres. Our results, depicted in Fig. 4 for these conditions, demonstrate the increase in
the background scattering of light that results from the aggregation of adjacent fibres and
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the resulting loss of its transparency. Our mathematical model can be used to simulate
other pathological scenarios, for instance, considering other spatial arrangements in the
increased fibre diameters or allowing regions devoid of fibres ([22]).
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