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In this paper we present some algorithms allowing an exhaustive

account on the number of edges and faces of the acyclic Birkhoff

polytope.
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1. Earlier results

In the previous paper [2], we studied some geometric properties, in terms of graph theory, of

�n(T) = Tn, that is the set of real square matrices [aij], with nonnegative entries and all rows and

columns sums equal to one, such that aij = 0 provided ij is not an edge, for i /= j, in the given tree T . The

setTn is a convex polytope and is called acyclic Birkhoff polytope. In this work we are concerned with

the problem of counting the faces of Tn. We present algorithms for counting the number of edges of

Tn in general, and also we find explicit expressions for this number when T has certain forms such
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as stars and spiders. Moreover, we describe algorithms for counting the number of faces of Tn. Some

examples are provided.

In [2] we also established a bijection between the faces of any dimension of Tn, and the union of a

finite number of bicolored subgraphs of the three following types:

Type 1. A closed vertex, •.
To this type of subgraph we associate a one-by-one matrix [1].

Type 2. An open edge, ◦ − ◦.
To an open edge we associate the “adjacency” matrix

[
0 1
1 0

]
.

Type 3. This type is not one of the previous two types, and is a bicolored subgraph obtained from

any connected subgraph of T , with all endpoints closed.

To this type of subgraph we can also associate an “adjacency” matrix such that to closed vertices

and to the edges it will correspond entries in the matrix equal to one and zero elsewhere.

In fact, given the path P5, the path with five vertices,

◦ − ◦ − ◦ − ◦ − ◦,
one of its bicolored subgraph of Type 3 is, for example,

• − • − ◦ − •.

Its associated “adjacency” matrix is⎡
⎢⎢⎣
1 1 0 0

1 1 1 0

0 1 0 1

0 0 1 1

⎤
⎥⎥⎦ .

The definition of inner entry, introduced in [12] by da Fonseca andMarques de Sá, was extended by

the authors in [2], to the acyclic Birkhoff polytope:

Definition 1.1. A T-component is a bicolored subgraph of T of Type 3. An inner entry of a T-component

is a non-terminal closed vertex.

Note that the concept of bicolored subgraph is also knownas a 2 -stratified graph, i.e., a graphwhere

the vertex set is partitioned into two subsets (cf. [10]).

The face of Tn corresponding to a boolean sum A of n × n permutation matrices is denoted by

FA = {X ∈ Tn|aij = 0 ⇒ xij = 0}.
We provided in [2] a closed formula for its dimension.

Proposition 1.1. Let tA be the number of T-components of the bicolored subgraph of T corresponding to

FA. Let θA and ιA be, respectively, the sum of all closed endpoints and the number of inner entries in all

T-components of the same bicolored subgraph of T . Then

dimFA = θA + ιA − tA. (1.1)

One of the faces of �5(P5) of dimension 2 results from the union of a subgraph of Type 1 and the

subgraph of Type 3 given above:

• • − • − ◦ −•
To the configuration of this face corresponds the “adjacency” matrix

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 1 0 0

0 1 1 1 0

0 0 1 0 1

0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ .
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As a consequenceof Proposition1.1,weestablished a recurrence relation for counting thenumber of

vertices (0-faces) of the acyclic Birkhoff polytope. A vertex ofTn was identified as a bicolored subgraph

of T whose diameter is at most one, it corresponds to the union of bicolored subgraphs of Types 1 and

2. Here, we consider the diameter of disconected graphs as the maximum diameter of its connected

components.

If G is a graph and S is a subgraph of G, G\S denotes the subgraph of G deleting all the edges incident

on S, without deleting the vertices. We also denote the subgraph of G induced by the subset of vertices

V ′ ⊂ V(G), by G[V ′].
Note also, it follows from the bijection between the faces of any dimension of Tn and the union of

a finite number of bicolored subgraphs of Types 1, 2 and 3, that if T and T ′ are two disjoint trees with n

and n′ vertices, respectively, and if gm is the number of bicolored subgraphs of a graph corresponding

to faces of dimension m, then, form � min{n,n′},

gm(T ∪ T ′) =
m∑

k=0

fm−k(T)fk(T
′).

Let f0(T) be the number of vertices of Tn and f0,ij(T) the number of bicolored subgraphs of T that

contains the edge ij and whose diameter is at most one. Let ij be any edge of the tree T . Then

f0(T) = g0(T\ij) + f0,ij(T\{i, j} ∪ ij) (1.2)

with initial conditions f0(∅) = f0(v) = 1, where v is a vertex of T .

Later on, for p ∈ {1, 2, 3} we presented in [3], some explicit formulas allowing the enumeration of

p-faces of �t
n, the tridiagonal Birkhoff polytope. The case p = 0 has been considered by Dahl in [11]

and it corresponds to the (n + 1)th Fibonacci number, denoted by fn+1.

In [12], it was established a closer connection between vertex counting in �t
n and Fibonacci num-

bers. In particular, the main results on alternating parity sequences – strictly increasing sequences of

integers, with a finite numbers of entries, such that any two adjacent entries have opposite parities

– are applied to determine the number of vertices of an arbitrarily given face of �t
n. The authors also

gave an expression for the number of edges of�t
n. For p ∈ {0, . . . ,n − 1}wedenote by fp(T), the number

of p-faces of Tn. The case p = 0 has already been presented in recurrence relation (1.2) (c.f. [2,11,12]).

The summary of this paper is the following: we start Section 2 introducing an illustrative example

for counting the edges of the polytope associated to a particular tree. Led by this example, we present

an algorithm for counting, in the general case, the number of edges ofTn. In Section 3we give another

algorithm for f1(T). In Section 4 and 5 we approach the question of counting the faces of Tn. We also

present two algorithms and, in addition, we test our techniques presenting some examples. Finally, in

Sections 6 and 7, we give explicit expressions allowing us to count the number of faces of�n(S), where

S is a star, and the number of facets of Tn.

Those algorithms allow us to find the number of faces of any acyclic Birkhoff polytope. For stars

and spiders we present some explicit formulas. For a general tree it seems harder to present concise

formulas.

In the figures in this paper, when it is necessary, we enumerate the edges of a tree T from the left

to the right and from the top to the bottom. The vertices of T are labeled in the same way.

2. Counting the edges of Tn

In [3], we presented a formula to count the number of edges of the tridiagonal Birkhoff polytope,

�t
n:

f1(Pn) =
n−2∑
p=0

n−2−p∑
k=0

fk+1 fn−p−k−1, (2.1)

where Pn is a path with n vertices. This section is devoted to present algorithms for counting the

number of edges of Tn.
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According to [2], and due to Proposition 1.1, an edge of Tn is the union of bicolored subgraphs of

Type 1, Type 2, and exactly one bicolored subgraph of Type 3, without any inner entries and exactly

two closed endpoints, consequently of the following type:

Hi • − ◦ − ◦ · · · ◦ − • Hj ,

whereHi andHj are the union of a finite number of bicolored subgraphs of Types 1 and 2, respectively.

When i × j = 0, H0 represents the empty set and, in this case, it is conventioned that f0(∅) = 1.

We start presenting the edges of �5(T5), where T5 is the tree

The 15 edges of T5 are

If the number of vertices of the tree increases, even with a small growth, an exhaustive exhibition

of all edges of Tn becomes harder.

The next example provides amotivation for an algorithm to calculate the number of edges of�n(T).

In this example, we consider the spider S′ = S1,2,3 with three branches of lengths 1, 2, 3 presented

below:

Bearing in mind Proposition 1.1, the number of edges of the polytope �7(S
′) is equal to the number of

bicolored subgraphs of S′ that have one bicolored subgraph of Type 3 with two closed endpoints and

without inner entries.

The bicolored subgraph of Type 3 (T-component) has one of the following configurations:

• − •, • − ◦ − •, . . . , • − ◦ − ◦ − ◦ − ◦ − •.
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As diamS′ = 5, there is no other possibility for the configuration of the T-component. Each of those

possibilities gives rise to several distinct bicolored subgraphs that corresponds to an edge of �7(S
′).

For example, if the T-component has the first configuration, it can occupy the same position as the

edges of S′. Using the procedure introduced before, we will distinguish cases to discuss.

Suppose that the T-component “occupies” the position of:

(1) the first edge of S′,

(2) the fourth edge of S′,

(3) the sixth edge of S′,

The number of edges of the polytope �7(S
′) having the T-component in each of the previous posi-

tions is given, respectively, by f0(P3)f0(P2) = 3 × 2 = 6, f0(T5) = 7 and f0(P5) = 8.

For the remaining cases not presented in this description, the calculation of the number of edges

of �7(S
′) is determined using similar arguments. Therefore, the total number of edges obtained from

this T-component is given by the expression:

f0(P3) f0(P2) + f0(P1) f0(P2) f0(P2) + f0(P4) f0(P1)

+f0(T5) + f0(P1) f0(P3)f0(P1) + f0(P5) = 33.

If the T-component has the second configuration, it can “occupy” the same position as two consec-

utive edges of S′, as we can see next. Assume that it “occupies” the position of:

(1) the first two edges of S′,

(2) the first and fifth edges of S′,

(3) the last two edges of S′,
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The number of edges of the polytope �7(S
′) having the T-component in each of the previous

positions is given respectively by: f0(P2) f0(P2) = 2 × 2 = 4, f0(P3) f0(P1) = 3 × 1 = 3 and f0(P1) f0
(P3) = 3.

Again, for the remaining cases the calculation uses similar arguments. Therefore, the number of

edges obtained from this T-component is given by the following expression:

f0(P2) f0(P2) + f0(P1) f0(P2) f0(P1) + f0(P4) + f0(P3) f0(P1)

+ f0(P1) f0(P2) f0(P1) + f0(P1) f0(P3) = 19.

If the T-component has the third configuration, it can “occupy” the same position as three consecutive

edges of S′. Suppose that it “occupies” the position of:

(1) the three first consecutive edges of S′,

(2) the first, fifth and sixth edges of S′,

The number of edges of the polytope �7(S
′) having the T-component in each of the previous posi-

tions is given respectively by: f0(P1) f0(P2) = 2 and f0(P3) = 3. For the remaining cases the calculation

is similar. Therefore, the total number of edges that is obtained from this T-component is given by the

following expression:

f0(P1) f0(P2) + f0(P1) f0(P2) + f0(P1) f0(P2) + f0(P1) f0(P1) f0(P1) = 10.

If the T-component has the fourth configuration, it can “occupy” the same position as four consec-

utive edges of S′. Consider that it “occupies” the position of:

(1) the first four edges of S′,

(2) the second, third, fourth and fifth edges of S′,

(3) the second, third, fifth and sixth edges of S′,

Similarly, the number of edges of the polytope �7(S
′) having the T-component in each of the

previous positions is given respectively by: f0(P2) = 2, f0(P1) f0(P1) = 1 and f0(P1) f0(P1) = 1.
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If the T-component has the last configuration, it can “occupy” the same position as five consecutive

edges of S′. Consider that it “occupies” the position of:

(1) the second, third, fourth, fifth and sixth edges of S′,

The number of edges of the polytope �7(S
′) having the previous T-component is given by f0(P1) = 1.

Therefore the total number of edges of �7(S
′) is the sum of all the previous values, i.e, f1(S

′) = 67.

The illustration presented above gives rise to the first algorithm that allow us to count the number

of edges of �n(T), for a given tree T .

An edge is a face of dimension 1. From Proposition 1.1, as 1 = θA + ιA − tA, θA � 2, tA � 1 and ιA � 0,

we obtain the unique solution θA = 2, tA = 1 and ιA = 0 . Therefore, the bicolored subgraphs that

represent an edge of Tn, have one T-component with two endpoints and without inner entries.

In fact, eachedge considered individually, is apathof length1andcanbe regardedas a T-component

in thepreviousconditionsbutwithoutopencircles. Eachof thesepathsgivesorigin tog0(T\P2)different
bicolored subgraphs.

Each pair of consecutive edges, consider individually, is a path of length 2 and can be regarded as

a T-component with two endpoints and without inner entries but with an open circle. Each path of

length 2 gives origin to g0(T\P3) different bicolored subgraphs. We continue in a constructive process

until the number of consecutive adjacent edges reaches the diameter of the tree.

We proceed as follows:

Algorithm 1

The input is a tree T such that diam T = p.

Step 1 � For i ∈ {1, . . . , p} consider each path P of T , with i edges, and calculate the value

g0(T \P);

Final step � Sum all the values obtained in the previous steps and exit.

The sum obtained in the final step is the number of edges of Tn.

The application of this algorithm provides a closed formula for the number of edges of the polytope

�n(S), where S is a star with n vertices.

Proposition 2.1. Let S be a star with n vertices, then

f1(S) = n(n − 1)

2
.

Proof. In fact, S has n − 1 edges and each of them gives rise to an edge of the acyclic Birkhoff polytope

�n(S); the graph S has Cn−1
2

pairs of consecutive edges and each pair gives rise again to an edge of

�n(S). Since diamS = 2, there is only one possibility to count the edges of �n(S) and therefore,

f1(S) = (n − 1) + (n − 1)(n − 2)

2
= n(n − 1)

2
. �

3. An alternative algorithm for f1(T)

Note that if T ′ and T are two trees such that T ′ is a subgraph of T and if T ′ has a p-face, p � 0, with

a specific configuration, then T has g0(T\T ′) different p-faces that “contain” the configuration of the

referred p-face.

In order to illustrate this property let us consider the trees T and T ′ presented below:
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One 3-face of �8(T
′) has the following configuration:

The polytope �13(T) has g0(T\T ′) = g0(T5) = 7 faces of dimension 3 that contains the referred config-

uration. The next example is one of these 7 faces:

Expressions giving the number of edges of the tridiagonal Birkhoff polytope are known, [3]. Therefore,

the next algorithm for calculating f1(T) has the underlying idea to consider all different paths obtained

using two terminal vertices of the original tree. We compute the number of the edges of polytopes

associated to them. Some of the configurations of the edges of Tn are going to be repeated and must

be removed.

Algorithm 2

The input is a tree T with n vertices.

Step 1 � for each pair of different terminal vertices of the tree T consider the path P between

them and compute f1(P) g0(T\P);

Step 2 � sum all the numbers obtained in step 1;

Step 3 � for each pair of different paths considered at step 1, let P′ be the path from their

intersection. Compute f1(P
′) g0(T\P′);

Step 4 � sum all the numbers obtained in step 3;

Final step � calculate the difference between the numbers obtained in steps 2 and 4.

It seems that, restricting the complexity of the algorithms only to the number of necessary iter-

ations to get results, maintaining the other operational parameters constant, the Algorithm 1 needs
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δ2 iterations while Algorithm 2 needs δ + δ2, where δ is the total number of paths obtained from

T considering all possible lengths. However, it depends on the implementations that can be done.

The computational implementation of the algorithms is not already done but we present below a

different form towrite Algorithms 1 and 2 in such away that we can study its complexity and compare

them.

Consider the following data structure: V is the set of all vertices of the tree T and Paths is the set

of all different paths in the tree considering all possible lengths. All paths saved in this data structure

have an unique index.

Consider now the following methods:

– diam(T) gives the length of one of the largest path of T;

– LengthPath (P) gives 0 if the path does not exist and gives lP if lP is the length of the path P;

– δ = LengthPaths (T) gives the total number of paths existing in the tree and saved in the data

structure Paths;

– PathTerminal (P) gives true if the path P is formed with terminal vertices of the tree, false

otherwise;

– IntersectPath (Pa, Pb) gives 0 if the path Pa does not intersect the path Pb and gives the path Pi if

Pa ∩ Pb = Pi.

As we said we can rewrite the previous algorithms in the following form:

Algorithm 1

Let Sum = 0

For i = 1 to diam(T)

For p = 1 to LengthPaths (T)

If LengthPath (P) = i then let Sum = Sum + g0(T\P)

Next p

Next i

To get the final result, after running Algorithm 1, the total number of iterations is δ2. Note that, to

determine diam(T) we need to run all the paths of the tree and therefore we need δ iterations.

We present Algorithm 2 in two stages. The Stage I finds all the paths P of the tree with terminal

vertices and, for each one, calculate f1(P)g0(T\P).

The Stage II finds all the intersections P′ between two different paths and, for each one, calculate

f1(P
′)g0(T\P′).
We present the details below:

Algorithm 2

Stage I

Let Sum1 = 0

For p = 1 to LengthPaths (T)

If PathTerminal (P) = true then let Sum1 = Sum1 + f1(P)g0(T\P)

Next p

To obtain a result after running this stage, we need δ iterations.

The Stage II can be implemented in two forms:

Stage II

(Implementation 1)

Let Sum2 = 0

For Pa = 1 to LengthPaths (T)

For Pb = 1 to LengthPaths (T)

If Pa /= Pb then

P′ = IntersectPath (Pa, Pb)
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If P′ /= 0 then let Sum2 = Sum2 + f1(P
′)g0(T\P′)

end If

Next Pb
Next Pa.

To obtain a result after running Stage II with this implementation, we need δ2 iterations.

Stage II

(Implementation 2)

Let Sum2 = 0

For Pa = 1 to LengthPaths (T) − 1

For Pb = Pa + 1 to LengthPaths (T)

P′ = IntersectPath (Pa, Pb)

If P′ /= 0 then let Sum2 = Sum2 + f1(P
′)g0(T\P′)

Next Pb
Next Pa.

We need 1 + ∑δ
j=3(j − 1) = δ2−δ

2
iterations to obtain a result after running Stage II with this imple-

mentation. This expression can be obtained by induction.

Now, we can compare the different implementations of Algorithm 2:

(a) Algorithm 2 with Stage I and Stage II (implementation 1) needs δ + δ2 iterations to obtain the

final result.

(b) Algorithm 2 with Stage I and Stage II (implementation 2) needs δ + 1 + ∑δ
j=3(j − 1) = δ2+δ

2
iter-

ations to obtain the final result.

It seems that (a) is not more efficient than (b).

Now, we can compare Algorithms 1 and 2.

Algorithm 1 is more efficient than Algorithm 2 (with implementation 1) but, Algorithm 2 (with

implementation 2) is more efficient than Algorithm 1.

The following proposition follows from Algorithm 2:

Proposition 3.1. Let S′ = Sp1,p2,...,pn be a spider with n branches of lengths p1, . . . , pn and N = p1 + p2 +
· · · + pn + 1 vertices. The number of edges of �N(S′) is given by

f1(S
′) =

∑
1�i<j�n

⎡
⎣f1(Ppi+pj+1)

∏
k /=i,j

f0(Ppk )

⎤
⎦ − (n − 2)

n∑
i=1

⎡
⎣f1(Ppi+1

)
∏
k /=i

f0(Ppk )

⎤
⎦ .

Proof. For each pair of different branches of S′ of lengths pi and pj , consider the path Ppi+pj+1. Without

loss of generality, for each i ∈ {1, . . . ,n − 1}, jwill run over all values from i + 1 to n. From this, the next

sum represents the number of the configurations of all edges of polytopes associated to thementioned

paths

∑
1�i<j�n

⎡
⎣f1(Ppi+pj+1)

∏
k /=i,j

f0(Ppk )

⎤
⎦ . (3.1)

The previous number includes edges of �N(S′) that appear repeatedly and must be removed. They

correspond to edges of polytopes associated to paths resulting from the intersection of two different

paths that have a common part and that number is given by the following expression:

(n − 2)

n∑
i=1

⎡
⎣f1(Ppi+1

)
∏
k /=i

f0(Ppk )

⎤
⎦ . (3.2)

The final number of the edges of �N(S′) is given by the difference between the expressions (3.1)

and (3.2). �
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Recall that the formulas (3.1) and (3.2) involve only the expressions of f0(Pn) and f1(Pn) for any n,

that can easily be determined (c.f. [2,3]).

Example 3.1. For S′ = S1,2,3 presented in the first part of this section, we count f1(S
′). Here attending

to the last algorithm we have

f1(S
′) = f1(P5) f0(P2) + f1(P4) f0(P3) + f1(P6) f0(P1)

− [f1(P2) f0(P2) f0(P3) + f1(P3) f0(P1) f0(P3) + f1(P4) f0(P1) f0(P2)]
= 18 × 2 + 8 × 3 + 38 × 1 − [1 × 2 × 3 + 3 × 1 × 3 + 8 × 1 × 2] = 67.

4. Counting the 2-faces of Tn

In [3], we presented a formula to count the number of 2-faces of �t
n:

f2(Pn) =
n−2∑
p=1

p

n−2−p∑
k=0

fk+1 fn−p−k−1 +
n−3∑
p=1

p

n−3−p∑
j=0

n−3−p−j∑
k=0

fk+1 fj+1 fn−p−j−k−2. (4.1)

Motivated by [2], we start enumerating the faces of �n(S), where S is a star with n vertices.

Proposition 4.1. Let S be a star with n vertices. The number of 2-faces of �n(S) is

f2(S) = n(n − 1)(n − 2)

6
.

Proof. According to Proposition 1.1, the number of faces of �n(S) is equal to the sum of the number

of all bicolored subgraphs with one T-component, with two closed endpoints and one inner entry,

with the number of all bicolored subgraphs with one T-component with three closed endpoints and

without inner entries.

The T-component can have one of the configurations presented below:

� two closed endpoints and one inner entry:

• − • − •
� three closed endpoints without inner entries:

Recall that S has n − 1 edges. Therefore, due to the configurations of the T-component it follows

that we have Cn−1
2

, in the first case, and Cn−1
3

, in the second case, different bicolored subgraphs

of S. The sum of these two values gives f2(S). �

As in Section 2, we use again Proposition 1.1, to obtain the composition (in number and structure)

of the T-components presented in the configuration of a bicolored subgraph that represents a 2-face.

As dimFA = 2, from the relation 2 = θA + ιA − tA where θA � 2, ιA � 0 and tA � 1, we only have

three possibilities.

(1) θA = 2, ιA = 1 and tA = 1;

(2) θA = 3, ιA = 0 and tA = 1;

(3) θA = 4, ιA = 0 and tA = 2.
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Each one leads to a different stage of the next algorithm that will allowing an exhaustive account

for the number of the 2-faces of Tn.

Algorithm 3

The input is a tree with vertex set V and diamT = q.

Stage I Computation of the number of bicolored subgraphs with a T-component with two

endpoints and one inner entry:

Step 1 � For i ∈ {2, . . . , q} consider each path P of T with i edges calculate g0(T\P), compute

(i − 1)g0(T \P), and sum all the values obtained;

Final step � Sum all the values obtained at step 1 and exit.

Stage II Computation of the number of bicolored subgraphs with a T-component with three

endpoints and without inner entries:

Step 1 � for each vertex v of T whose degree is greater than 2, we consider each of the triplets

of incident edges on v, i.e., stars with three branches and central vertex v;

Step 2 � for each of these stars, S, we consider all spiders, S′ with central vertex v containing S

as a subgraph. For each S′ we calculate g0(T\S′);
Step 3 � sum all the values obtained in step 2;

Step 4 � consider the spiderswithorigin in the samestar andwitha commonvertex i /= vwhose

degree in T is greater than 2, for each pair of these spiders consider their intersection

S� and calculate g0(T\S�);

Step 5 � sum all the values obtained in step 4;

Final step � calculate the difference between the values obtained in steps 3 and 5, respectively.

Stage III Computation of the number of bicolored subgraphs with two T-components each one

with two endpoints and without inner entries:

We start fixing a T-component (called first T-component) and we vary the another

one in configuration and in position. Then, for each p ∈ {1, . . . , diamT} the first T-com-

ponent can occupy the position of a path in T , Pei ,p, with length p, where ei is its initial

edge.

Step 1 � If the first T-component occupies the position of a path in T with initial edge e1 and

length p, Pe1,p, compute f0(∅)g1(T [V\V(Pe1,p)];
Step 2 � If the first T-component occupies the position of a path in T with initial edge e2 and

length p, Pe2,p compute f0(P1)g1(T [V\(V(e1) ∪ V(Pe2,p))];
Step i � If the first T-component occupies the position of a path in T with initial edge ei and

length p, Pei ,p compute g0(H)g1(T [V\(V(H) ∪ V(Pei ,p))].
Here, H is the subgraph of T with edge set

E(H) = {e1, e2, . . . , ei−1}\{e : e is incident on some vertex of Pei ,p},
and vertex set:

V(H) = V(e1 ∪ e2 ∪ · · · ∪ ei−1)\V(Pei ,p).

Final step � Repeat the previous step until the diameter of each connected component of the in-

duced subgraph T [V\(V(H) ∪ V(Pei ,p))] is equal to 0 and sum all values obtained at this

stage.

Stage IV Sum all values computed at Stages I, II and III.

In order to illustrate this algorithm we present a description of the way we can count the 2-faces

of T5.

Stage I. If we have exactly one T-component, then one of the following configurations may occur:

� the T-component has two endpoints and one inner entry:

• − • − •
From the first step of the algorithmwehave: g0(T\{1, 2, 3}) = g0(T\{2, 3, 5}) = g0(T\{2, 3, 4}) = f0(P1) =
1 and g0(T\{3, 4, 5}) = f0(P2) = 2 . We sum all of these numbers. Therefore we have five 2-faces of T5
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and the respective configurations are

� the T-component has one open circle and its configuration can be

• − ◦ − • − •
From the application of the step 2 we have

g0(T\{1, 2, 3, 4}) = 1 and g0(T\{1, 2, 3, 5}) = 1.

We compute 2g0(T\{1, 2, 3, 4}) + 2g0(T\{1, 2, 3, 5}) = 4. The corresponding configurations of the four

2-faces of T5 are

Note that the two last one are due from the fact that the configuration of the T-component can also be

• − • − ◦ − •
As diam(T5) = 3 we do not have other possibility, we finish this stage adding the values obtained:

5 + 4 = 9.

Stage II. If the T-component has three endpoints without inner entries it can have the following

configuration:

or
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As in T5, we only have one vertex with degree greater than 2 and we only have a triplet of incident

edges in this vertex, which corresponds to the 2-faces, respectively,

Note that from the application of step 2 we only have two spiders.

As result of this stage we have two faces of T5 and this number of faces results from the sum of

g0(T\{2, 3, 4, 5}) = f0(v) = 1 with g0(T\{1, 2, 3, 4, 5}) = f0(∅) = 1.

Stage III. If the bicolored subgraph has two T-components with two endpoints and without inner

entries.

We start fixing the first T-component without open circles. The second one can have or not open

circles. As diam(T5) = 3, the number of open circles must be necessarily one. Therefore we have two

possibilities:

• − • • −•
and

• − • • − ◦ −•
Attending to step1, we calculate

f0(∅)f1(P3) = 3.

Suppose now that the first T-component will occupy the position of e2, as

diamT [V\V(e1 ∪ e2)] = 0

we must stop the process.

So, the configurations of the three faces obtained are

and

Stage IV. In this way we obtained the number of all the 2-faces of T5

5 + 2 × 2 + 2 + 3 = 14.

5. Counting the faces of Tn revisited

In this section, as we did before for the counting of the edges ofTn, wewill consider paths between

terminal vertices of the tree. We count the faces associated to them.
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So, in order to count the faces of T5 we start with maximal paths between terminal vertices in

T5,that is whose diameter is equal to diam(T5). We have two possibilities:

� let P4 the path constituted by the vertices 1, 2, 3 and 4

The faces of the tridiagonal Birkhoff polytope associated to the previous path corresponds to the

following representations:

� let P′
4
be the path formed by vertices 1, 2, 3 and 5

The faces of the respective tridiagonal Birkhoff polytope corresponds to:

The previous representations will correspond to the 2-faces F1, F2, F3, F6, F7, F8, F9, F12 and F13 of

T5. Observe that the representation of F1 appears in both cases. This is due to the fact that the vertices

1,2 and 3 are common to both paths, P4 ∩ P′
4

= P3, here is the path with vertices 1, 2 and 3. So in the

end we must remove the faces of T5 that appear repeated. Therefore, so far we have nine different

faces.

Nowwe consider all paths between terminal vertices of T5 whose diameter is equal to diam(T5) − 1.

� Let P′
3
be the path constituted by the vertices 3, 4 and 5 of T5
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The face of the respective tridiagonal Birkhoff polytope associated to this path is obtained from:

The representation above corresponds the faces F4 and F5 of T5.

Until here we got 12 2-faces but one of them is repeated. Therefore we have 11 different faces.

There is no possibility to obtain from the original tree, more paths with terminal vertices of T5.

As in the configuration of a face we can have two T-components, we must consider the situation

that involves two disjoint paths. Each T-component belongs to one of the paths, corresponding to an

edge of the corresponding tridiagonal Birkhoff polytope.

The faces of T5 obtained from an 1-face of �2(P2), where P2 has vertices 1 and 2 of T5, and from a

1-face of �3(P
′
3
), that is,

are

In this case the two first 2-faces correspond to F12 and F13 and they have already emerged before

from the polytopes associated to P4 and P′
4
, and the third 2-face corresponds to the face F14 of T5.

Due to the nature of the initial graph the former bicolored subgraphs were the only possibility.

Finally, we are going to analyze the faces which bicolored subgraphs have a T-component with

three endpoints and without inner entries. As this T-component needs at least four vertices, three

endpoints and one open vertex in its interior, it remains only a free vertex. From this, we obtain two

configurations corresponding to the faces F10 and F11 of T5.

Therefore, it is possible to express f2(T5) from the number of faces, edges and vertices of polytopes

corresponding to paths and from the number of bicolored subgraphs which have a T-component with

three endpoints and without inner entries.

This illustration leads to the following algorithm for counting the faces of Tn.

Algorithm 4

The input is a tree T with vertex set V .

Stage I Computation of the number of configuration of all faces of polytopes associated to different

paths.

Step 1 � for each pair of different terminal vertices of the tree T consider the path P between

them and compute f2(P) × g0(T\P);

Step 2 � sum all the numbers obtained in step 1;

Step 3 � for each pair of different paths of step1 let P′ be its intersection. Compute f2(P
′) ×

g0(T\P′);
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Step 4 � sum all the numbers obtained in step 3;

Step 5 � calculate the difference between the numbers obtained in steps 2 and 4;

Step 6 � for each path P considered in step 1 compute f1(P);

Step 7 � delete all edges incident on any vertex of P and call to the remaining graph G;

Step 8 � let G̃ be any connected component of G. For each pair of terminal vertices of G̃ consider

the path P̃ between them and compute f1 (̃P);

Step 9 � compute f1(P) × f1 (̃P);

Step 10 � consider all paths of T formed with all terminal vertices of P and P̃ and distinct from

them;

Step 11 � in each paths formed in step 10, delete all edges that join P and P̃ and let M and M′ be
the two subgraphs obtained;

Step 12 � compute g1(M) × g1(M
′);

Step 13 � sum all the products obtained in step 12;

Step 14 � subtract the value obtained in step 13 to the value obtained in step 9;

Step 15 � calculate g0(T\(P ∪ G̃));

Step 16 � multiply the values obtained in steps 14 and 15;

Final step � sum the values obtained in steps 5 and 16.

Stage II Computation of the number of bicolored subgraphs corresponding to the T-component

which has 3 endpoints and no inner entries.

Step 1 � for each vertex v of T , whose degree is greater than 2, we consider each of the triplets

of incident edges on v, i.e, spiders with branches with maximum length.

Step 2 � for each Sp1,p2,p3 = S′ let i = 0, 1 . . . , p1 − 1, compute

f0(Pp1−i)f0(Pp2−j)f0(Pp3−k)g0(T\S′), forallj = 0, 1, . . . , p2 − 1, k = 0, 1, . . . , p3 − 1;
Final step � sum all the values determined in previous step.

Stage III Sum the values obtained in final steps of stages I and II.

Recall that, as we have seen, the maximum number of closed endpoints of a T-component is at

most three.

Proposition 5.1. Let S′ = Sp1,p2,...,pn be a spider with n branches of lengths p1, . . . , pn and N = p1 + p2 +
· · · + pn + 1 vertices. The number of faces of �N(S′) is given by

f2(T) =
∑

1�i<j�n

⎡
⎣f2(Ppi+pj+1

)
∏
k /=i,j

f0(Ppk )

⎤
⎦ − (n − 2)

n∑
i=1

f2(Ppi+1)
∏
k /=i

f0(Ppk )

+

⎡
⎢⎢⎣

∑
1�i<j�n
j /=k /=i

(f1(Ppi+pj+1) − f1(Ppi+1) − f1(Ppj+1))f1(Ppk )

⎤
⎥⎥⎦

∏
� /=i,j,k

f0(Pp�
)

+
∑
j /=k /=i
i /=j

⎛
⎜⎜⎜⎜⎜⎝

∑
0�r�pi−1

0�s�pj−1

0�t�pk−1

f0(Ppi−r)f0(Ppj−s)f0(Ppk−t)
∏

� /=i,j,k

f0(Ppl )

⎞
⎟⎟⎟⎟⎟⎠

.

Proof. For each pair of different branches of S′ pi and pj , consider the path Ppi+pj+1. Without loss of

generality, for each i, i = 1, . . . ,n − 1, j will run all values from i + 1 to n.

The next sum represents the number of the configurations of all faces of polytopes associated to

the referred paths
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∑
1�i<j�n

⎡
⎣f2(Ppi+pj+1

)
∏

i /=k /=j

f0(Ppk )

⎤
⎦ .

When we consider the faces of the polytopes corresponding to those paths,

(n − 2)

n∑
i=1

f2(Ppi+1)
∏
k /=i

f0(Ppk )

is the number of faces that are going to appear repeated. Therefore that number has to be excluded

from the previous expression.

Now, we must consider the 2-faces resulting from two T-components, where one of them is in

a branch and the other T-component has its two endpoints in two different branches. It results the

following number:⎡
⎢⎢⎣

∑
1�i<j�n
j /=k /=i

(f1(Ppi+pj+1) − f1(Ppi+1) − f1(Ppj+1))f1(Ppk )

⎤
⎥⎥⎦

∏
� /=i,j,k

f0(Pp�
).

Finally, the number of bicolored subgraphs corresponding to the T-components which have three

endpoints and no inner entries is

∑
j /=k /=i
i /=j

⎛
⎜⎜⎜⎜⎜⎝

∑
0�r�pi−1

0�s�pj−1

0�t�pk−1

f0(Ppi−r)f0(Ppj−s)f0(Ppk−t)
∏

� /=i,j,k

f0(Pp�
)

⎞
⎟⎟⎟⎟⎟⎠

.

Here, if k � n, then fn(Pk) = 0.

From the previous considerations we get the desire result. �

6. Counting faces of any dimension of �n(S)

For a given star with n vertices, we have already seen that

f1(S) = (n − 1) + Cn−1
2

= n(n − 1)

2

and

f2(S) = Cn−1
2

+ Cn−1
3

= n(n − 1)(n − 2)

6
.

In this section our aim is to obtain an expression for the number of p-faces of the acyclic Birkhoff

polytope associated to S, for 3 � p � n − 1.

This number is equal to the number of bicolored subgraphswith one T-component andwhose sum

of closed endpoints and inner entries equals to p + 1.

Bearing in mind that diamS = 2, the T-components that we can consider to characterize a p-face,

with 3 � p � n − 1, are only of the two different types:

(i) with p closed endpoints and one inner entry; and

(ii) with p + 1 closed endpoints and without inner entries.

The number of p-faces of�n(S), whose bicolored subgraphs have, respectively, the first and second

T-component is given by

Cn−1
p and Cn−1

p+1
.

Therefore, the number of p-faces of �n(S) is given by

fp(S) = Cn−1
p + Cn−1

p+1
= n!

(p + 1)!(n − p − 1)! .
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7. Counting facets of Tn

Finally, we present an expression for the number of facets of Tn. Taking into account Proposition

1.1, the next proposition allows us to determine the number of facets of any acyclic Birkhoff polytope

Tn. Here, an end-edge is an edge of the tree that is terminal, i.e., one of its vertices is an endpoint of

the graph and an inner-edge is an edge of the tree that is not an end-edge, i.e., whose both vertices are

not endpoints of the tree.

Proposition 7.1. Let T be a tree with n (n � 2) vertices, where p of them are endpoints. The number of

facets of the polytope �n(T) is 2n − p − 1.

Proof. Considering Proposition 1.1, we are looking for all different bicolored subgraphs of T verifying

n − 2 = θA + ιA − tA.

We know that in any bicolored subgraph θA + ιA � n. Therefore the bicolored subgraphs that we are

searching for have at most two T-components. If the bicolored subgraph has only one T-component,

we can have two different cases:

Case 1. All the endpoints of T are endpoints of the T-component as well. By (1.1), the T-component

has n − p − 1 inner entries. Therefore, the T-component must have one (and only one) vertex of T that

is not an inner entry. As this vertex can occupy n − p different positions in T , we have n − p different

bicolored subgraphs and each of them represents a facet.

Case 2. The T-component has p − 1 endpoints that are also endpoints of the graph T and one

endpoint that does is not an endpoint of the graph T , i.e, one of the end-edges of the graph T is not an

edge of the T-component.

The number of different end-edges of the graph T is p. Therefore we have p different possibilities

to get the bicolored subgraph and we have p different bicolored subgraphs whose corresponding face

has dimension n − 2, and each of them represents a facet of Tn.

If the bicolored subgraph has two T-components, all the vertices of the bicolored subgraph must

be closed. In this particular situation, the T-component must be “apart” by one inner edge. Since

the number of edges of the tree T is n − 1, we have n − 1 − p inner edges and consequently we have

n − 1 − p bicolored subgraphs of the graph T and each of them represents a facet of Tn. From the

previous calculations we obtain the number of facets of the polytope Tn:

(n − p) + p + (n − 1 − p) = 2n − p − 1. �
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