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Abstract: 4,6-Diacetylresorcinol (1) and 3-O-methylellagic acid dihydrate (2), both biologically signif-
icant compounds, were extracted from Bixa orellana and studied using IR, 1H, and 13C NMR, and
UV-vis spectroscopic techniques. X-ray crystallographic techniques were also used to establish the
molecular structure of the isolated compounds 1 and 2. Geometric parameters, vibrational frequen-
cies, and gauge including atomic orbital (GIAO) 1H and 13C NMR of 1 and 2 in the ground state
were computed by the density functional theory (DFT) using B3LYP/6-311G(d,p) basis set backing
up experimental studies and established the correct structure of isolated compounds. The parameters
obtained from the combined DFT, and X-ray diffraction studies are mutually agreed to establish
correct structures of 1 and 2. In addition, an electrostatic potential map and HOMO−LUMO energy
gap were made using the DFT calculation to determine the distribution of energy and the chemical
reactivity region of the isolated compounds. The current study also provides further insights into
the interaction of compound 2 with ct-DNA using numerous biophysical and in silico techniques.
Moreover, in silico studies indicate that compound 2 binds to the DNA in the minor groove. Lipinski’s
rule of five revealed a higher tendency of compound 2 towards drug-likeness. The bioavailability
and synthetic accessibility score for compound 2 was found to be 0.55 and 3.21, suggesting that
compound 2 could serve as an effective therapeutic candidate.

Keywords: Bixa orellana (Family: Bixaceae); 4,6-diacetylresorcinol; 3-O-methylellagic acid dihydrate;
X-ray diffraction; DFT; NMR; frontier molecular orbitals

1. Introduction

The Bixaceae family includes Bixa orellana L., also known as annatto. It is a Central
and South American shrub that grows 3–6 m tall and is one of the oldest plants to produce
natural colors. Originally, the herb was used as body paint, a treatment for heartburn,
an insect repellant, a sunscreen, and to fight off evil. It was named after Francisco de
Orellana, a Spanish conquistador [1]. Constipation, fevers, heartburn, asthma, scabies,
ulcers, diarrhea, stomach upset, skin diseases, measles, anecdotal treatment of diabetes,
allergy, leprosy, infectious diseases, burns, measles, gonorrhea, diarrhea, asthma, angina,
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tumors, skin problems, and urinary infections have all been treated with Bixa orellana in
different areas of the globe (oral and topic) [2,3] for centuries. Indigenous people have
conventionally utilized the pulp from this plant’s seeds externally to increase lips radiance,
which is how Bixa orellana obtained its moniker, “lipstick tree” [4]. Bixa orellana is widely
used in dairy food coloring and bleaching, specifically bakery products, cream desserts,
buttermilk deserts, rice flour, and corn starch [5–7]. In recent decades, several distinct
groups of phytoconstituents, including aliphatic compounds, carotenoids, apocarotenoids,
sterols, volatile oils, monoterpenes, sesquiterpenes, triterpenoids, and other miscellaneous
substances, have been isolated from all parts of this plant [8–10].

In continuance of our ongoing research [11], we herein report the extraction, isolation,
spectroscopic, X-ray crystallographic techniques of two compounds [4-acetylresorcinol (1),
3-O-methylellagic acid dihydrate (2)], derived from the Bixa Orellana leaves. Physiochemical
spectral data (FTIR, UV, 1H NMR, 13C NMR, and MS spectral analysis), including Single
Crystal X-ray Diffraction was used to establish the chemical structure of two isolated
phytoconstituents. Compound 1 has not yet been isolated out of this plant source, to our
knowledge. The structure of 2, which crystallized as white crystals, was validated by X-ray
crystallography. Quantum chemical calculations using the DFT (B3LYP) theory have yet
to be performed on these molecules 1 and 2. The B3LYP functional was adopted because
to its significance in quantum chemistry as well as its precision Geometry calculation, IR,
NMR spectra, and a variety of other molecular properties for compounds were investigated
in this study at the B3LYP/6-311(d,p) level of theory. The FTIR vibrational bands are
interpreted using harmonic force field calculation without scaling, which has a lower
computational cost and is sometimes important in extremely large chemical substances.
Gauge independent atomic orbital (GIAO) approach is used to analyze NMR spectra (1H
and 13C) in gaseous and solvent phases at the same level of theory. Theoretical results were
compared to experimental data and found to be in good agreement.

2. Materials and Methods
2.1. Reagents and Apparatus

Silica gel (60–120 mesh) used for various chromatographic procedures was supplied
by Merck (India) and Merck (Germany). The various solvents systems employed for thin
layer chromatography were benzene-chloroform (8:2) and petroleum ether (60–80 ◦C)-
benzene (1:1). A Kofler block was used to record melting points of compounds and were
uncorrected. Carlo Erba analyzer model 1108 was used for elemental analysis (C, H, N).
The IR spectra on KBr pellets were obtained using Interspec-2020 (FTIR) and Shimadzu
IR-408 Perkin-Elmer 1800 (FTIR). UV-Vis recordings in methanolic solution were made
with a Shimadzu UV-1800 UV-Vis spectrophotometer (Shimadzu, Japan). 1H NMR and 13C
NMR spectra were performed in CDCl3/DMSO-d6 with TMS as an internal standard on
Bruker Avance II 400 MHz spectrometers. Chemical shifts were expressed in ppm (δ). In
the MS (EI) mode, mass spectra were recorded on JEOL D−300 mass spectrometer. Iodine
vapor was used to verify purity for the compounds by observing spots on TLC.

2.2. Plant Material

Dr. Athar Ali Khan, Taxonomist, Department of Botany, Aligarh Muslim University,
Aligarh, identified a specimen plant of Bixa orellana L. (Family: Bixaceae) taken from
Allahabad University in Allahabad, India. A specimen with voucher number 243 was
registered at the Botany Department, AMU, Aligarh.

2.3. Extraction and Isolation

The leaves of Bixa orellana (Family: Bixaceae) were shade-dried and ground into pow-
der (2 kg). A dark green gummy mass was obtained after extracting the air-dried powdered
leaves 3 times with 95% ethanol at reflux temperature and evaporating the solvent under
reduced pressure. Petroleum ether (60–80), benzene, ethyl acetate, acetone, and methanol
were applied to extract the dark green gummy mass. Distillation was used to extract the
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solvent. Under reduced pressure, the petroleum ether and benzene extracts were concen-
trated, yielding a greenish sticky substance. The TLC study revealed that petroleum ether
and benzene extracts acted the same way in different solvents, thus extracts were mixed.
To elute the mixed petroleum ether–benzene extract from a silica gel column, a gradient
of increasing solvents was used, including petroleum ether, petroleum ether–benzene,
benzene, ethyl acetate, and eventually methanol. Those fractions with similar TLC char-
acteristics and similar IR spectra were grouped. To obtain pure compounds 1 and 2, they
were purified using repeated column chromatography followed by fractional crystallization
and obtained 4,6-diacetylresorcinol (compound 1) and 3-O-methylalgeic acid dihydrate
(Compound 2) was identified by comparison of m.p., TLC, Co-TLC and spectral data (IR,
1H NMR, 13C NMR and Mass) of authentic samples.

2.4. Spectral Analysis of Isolated Compounds

(1) 4,6-diacetylresorcinol: Colorless shining crystals (40 mg), m.p. 164–166 ◦C (lit. [12]
164–166 ◦C). Anal. Calc. for C10H10O4; C, 61.85; H, 5.19; found: C, 61.83; H, 5.21. UV
(MeOH) λmax: 212, 275 and 312 nm. IR (KBr, νmax cm−1): 1589, 1490 (C=C), 1658 (C=O),
3430 (OH). 1H NMR (400 MHz, DMSO-d6, ppm) δ: 2.79 (s, 6H, 2 × COCH3), 6.43 (s, 1H,
H-2), 8.21 (s, 1H, H-5), 12.91 (s, 2H, 2 × OH); 13C NMR (100 MHz, DMSO-d6, ppm) δ: 26.12
(2 × CH3), 104.99 (C-5), 113.66 (C-3), 136.31 (C-2), 168.93 (C-4, C-6), 202.52 (C-1); MS (ESI)
(m/z): 194.06 [M+] (C10H10O4).

(2) 3-O-methylellagic acid dihydrate: Ethyl acetate fraction yielded compound 2.
Crystallization from chloroform and methanol gave greenish white crystals (60 mg), m.p.
350–352 ◦C (lit. [11]). Anal. Calc. for C15H12O10; C, 51.14; H, 3.41; found: C, 51.13; H,
3.43. UV (MeOH) λmax: 245–400 nm. IR (KBr) ν cm−1: 3310 (OH), 1721 (C=O), 1450 (C=C),
1171 (C-O). 1H NMR (400 MHz, DMSO-d6, ppm) δ: 10.59 (s, 2H, C-4 OH, C-4′ OH), 8.72
(s, 1H, C-3′ OH), 7.51 (s, 1H, H-5), 7.46 (s, 1H, H-5′), 4.15 (s, 3H, OCH3). 13C NMR (100
MHz, DMSO-d6) δ: 159.02–159.03 (C-7 and C-7′), 154.10–154.14 (C-4 and C-4′), 143.24 (C-3′),
142.02–142.04 (C-2 and C-2′), 141.35 (C-3), 113.20–113.22 (C-6 and C-6′), 112.02–112.04 (C-1
and C-1′), 111.10–111.12 (C-5 and C-5′), 62.56 (3′-OCH3). MS (EI): (m/z) 352.41 [M+•]
(C15H12O10).

2.5. Crystallographic Analysis

A Bruker Kappa APEXII CCD X-ray diffractometer was used for X-ray diffraction
of single crystals of compounds 1 and 2 at ambient temperature using graphite-based
Mo-K radiation of monochromatic wavelength (λ = 0.71073 Å). SADABS [13] was used to
make absorption adjustments. The direct technique of SHELXL−97 was used to identify
the expected structure of compounds 1 and 2 and anisotropically refined (non-H atoms)
using SHELXL−97’s complete matrix least-squares on F2 [14]. The hydrogen atoms in the
structures were placed in a superlative location and refined using isotropic displacement
parameters. PLATON [15,16] and ORTEP−3 [17] were used to analyze the layout of the
figures of the structures. The experimental parameters related to the monocrystalline X-ray
examination of 1 and 2 are described in Table S1 (Supplementary Material).

2.6. Computational Procedure

The isolated compounds (1 and 2) from Bixa orellana in their ground electronic states
were subjected to density functional theory (DFT) calculations using density functional
B3LYP-GD3 (Becke’s 3 parameter hybrid functional for the exchange part, the Lee–Yang–
Parr (LYP) correlation function, and Empirical D3 Dispersion [18]) and 6-311G(d,p) basis set
by Gaussian package [19] using WebMO interface [20]. Under a strict convergence criterion,
the isolated compound geometries in Cartesian representation were completely optimized
in the ground electronic state. The ground state optimized geometry of the molecule was
used to detect harmonic vibrational frequencies at the same level of theory. As a result,
no imaginary frequencies were found, leading to the discovery of a true minima on the
potential energy surface. The visualization programs GaussView [21], ChemCraft [22],
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and GaussSum [23] were used to construct realistic images, electronic transitions and
vibrational assignments using animated modes. In the solution phase (CHCl3 for com-
pound 1 and DMSO for compound 2), the GIAO-B3LYP/6-311G(d,p) level of theory was
employed to measure NMR spectra of compounds applying gauge independent atomic
orbital (GIAO) approach. In addition, UV-Vis spectra of the isolated compounds 1 and 2
were simulated using polarizable continuum model (PCM). Excitation energy, oscillatory
power, wavelength and HOMO–LUMO energy differences were obtained at the basis set
of TD-B3LYP-D3/6-311G (d,p). Molecular electrostatic potential (MEP) diagrams of both
isolated compounds were generated using same level theory applied for optimization of
the isolated compounds in order to predict interactions with neighboring molecules in term
of electrophilic and nucleophilic sites.

2.7. ct-DNA Binding Studies
2.7.1. Sample Preparation for DNA Binding Experiments

To make a 4 mM stock solution, compound 2 was dissolved in ethanol. The compound
working solutions were formed in accordance with the requirements. To dissolve calf
thymus DNA, 10 mM Tris HCl (pH 7.4) was added to the buffer (ct-DNA). The DNA was
kept at 4 ◦C. To achieve a homogeneous solution, the solution was occasionally stirred. To
evaluate dissolved calf thymus DNA purity, the (A260/A280) absorbance ratio was utilized.
The absorbance ratio of solution was 1.81, indicating that it is clean and does not require
to be purified further. DNA content was calculated using the extinction value of molar
6600 M−1cm−1 at 260 nm for a single nucleotide.

2.7.2. UV-Visible Absorption Spectroscopy

UV-visible absorption spectrum of compound 2 was measured using a Shimadzu
UV-1800 spectrophotometer. At a fixed concentration of 200 M compound 2, the reaction
mixture was titrated with sequential concentrations of ct-DNA (0–50 M). A 10 mM Tris HCl
buffer was used to adjust the baseline (pH 7.4).

2.7.3. Steady State Fluorescence

An RF-6000 Shimadzu spectrofluorometer was used to obtain steady-state fluorescence
spectra of compound 2. Spectra were obtained by adding ct-DNA (0–125 M) to a constant
concentration of compound 2 (200 M). Compound 2 has a 273 nm excitation wavelength.
The emission wavelength was adjusted accordingly, but the widths of the excitation and
emission slits remained at 5 nm. Stern–Volmer constant (Ksv), binding constant (Kb) and
constant (Kq) of bimolecular enhancement were all calculated using the data.

2.7.4. Circular Dichroism (CD)

A JASCO J-1500 circular dichroism spectrophotometer was used to collect and analyze
the structural changes in ct-DNA produced by compound 2 interaction. The samples,
which contained 200 µM of ct-DNA alone and 200 µM of compound 2 complexed with
ct-DNA (1:1), were photographed at 200 nm/min in 190–340 nm wavelength range. In
each batch of the experiment, a 10 mM Tris HCl (pH 7.4) buffer was utilized, as well as any
necessary background adjustments. An average of 2 scans was used to produce the results.

2.7.5. Docking Studies

Docking analysis of 3-O-methylellagic (2) acid dihydrate was performed using Auto-
dock 4.0 to describe the binding mode of compound 2 to DNA. The crystallographic
information file (cif) of compound 2 was converted to PDB format using Mercury (Cam-
bridge Crystallographic Data Centre). The RCSB database was used to retrieve the crystal
structure of the synthetic DNA dodecamer d(CpGpCpGpApApTpTpCpGpCpG) with Pdb
ID:1BNA. Avogadro was used to minimize the energy of the structures. Before docking,
water molecules were stripped from the structures, Kollman charges were introduced,
and polar hydrogen was supplied. Docking consisted of 10 runs using the Lamarckian
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genetic approach. The default settings for all other parameters were used. The x, y, and
z-axis dimensions of the grid box for compound 2 were set to 26, 30, and 48 Å, respectively.
The docking was conducted with a grid spacing of 0.375. UCSF Chimera 1.01, PyMOL
and Accelrys Discovery Studio 4.5 were used to investigate the docked pose in the lowest
configuration in order to determine the likely binding mode of compound 2 with DNA.

2.7.6. Prediction of Drug-Likeness (Lipinski’s Rule of Five)

A rule of thumb (Lipinski’s rule) can be used to analyze the drug-likeness qualities of
chemical compounds and aid in the differentiation of drug-like and non-drug molecules.
The drug-likeness of compound 2 was determined by calculating physiochemical charac-
teristics such as the octanol-water partition coefficient (log P), molecular weight (MW),
molar refractivity, polar surface area, hydrogen bond donors and acceptors. The following
requirements apply: (i) less than 500 Da molecular mass, (ii) less than 5 hydrogen bond
donors, (iii) strong lipophilicity, (iv) fewer than 10 acceptors for hydrogen bonds, and (v) a
molar refractivity of 40 to 130. A tested compound that meets 2 or more of these rules is
referred to as a drug-like molecule. Using online software tools [24], Lipinski’s rule of five
was employed to profile molecules at pH 7.

2.7.7. Synthetic Accessibility and Bioavailability Score Prediction

The SwissADME web tool was used to predict the bioavailability and synthetic acces-
sibility score of the isolated molecule 2. A compound can only be an effective drug [25]
if it has a high bioavailability score and a low synthetic accessibility score (1 = easy to
synthesize; 10 = difficult to synthesize).

3. Results and Discussion
3.1. Crystal Structure, Molecular Geometry and IR Spectral Analysis of 1 and 2

The isolated compounds (Figure 1) have four molecules per unit cell (Z = 4) in a P
21/c crystal structure. From single crystal X-ray diffraction data, it is found that the crystal
of both compounds (Figure 2A,B belongs to monoclinic crystal structure with the following
dimensions; a = 7.095(12) Å, b = 11.374(19) Å, c = 11.66(2) Å and the angle of α = 90◦, β
100.46(3) ◦ and γ = 90◦ for compound 1 that was reported synthetically in literature [11]
and a = 10.1687(6) Å, b = 6.9037(5) Å, c = 21.3367(13) Å with the angle of β = 107.668(3), and
α = γ = 90◦ for compound 2 that was documented elsewhere [26,27]. In the Supplementary
Data (Table S1), full information on crystal structures of compounds 1 and 2 was provided.
Optimization of isolated compounds 1 and 2 were performed using B3LYP-GD3 with
theory level 6–311G (d,p) and optimized structure of both were displayed in Figure 2B and
Figure 3B with numbering pattern of the investigated compounds. Geometric variables
such as bond lengths, bond angle, and torsional angle obtained from optimized structures
(1 and 2) by quantum chemical approach are shown in Table 1. The energy of optimized
structures 1 and 2 has the energy of −1178.55087987 and −688.22154646 au, respectively.
Compound 2 has lower energy (plus the negative) compared to compound 1. It can also
be assumed that compound 2 is more stable than compound 1. In the optimized structure
of 4,6-diacetylresorcinol (1), the bond lengths of C=O, C-O- and -OH were observed as
1.23, 1.24 and 1.05 Å, respectively, as given in Table 1 and these values were correlated to
bond lengths obtained from X-ray single crystallography experiment (Table 1). Similarly, in
the optimized of 3-O-methylellagic acid (2), the bond lengths of C12-O1, C13-O2, C17-O4,
C24=O18, C24-O11, C25-O11, O2-H3, and C13-O1 were noticed as 1.34, 1.35, 1.19, 1.20,
1.39. 1.37, 0.96, and 1.43 Å, respectively, which displayed the presence of carboxylic, ester,
and hydroxyl group in the structure of compound 2. These bond length values were
found to correspond with the values obtained as shown in Table 1. from a single X-ray
study. Bond lengths and angles of certain atoms were found to marginally deviate from
the corresponding experimental data. The deviation between certain atoms of the isolated
compounds was found to be slightly large in the case of dihedral angles (◦). Due to the
non-covalent intermolecular interaction present in the crystal, these deviations may result
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from the fact that the theoretical calculations were performed under vacuum for a single
isolated compound. The molecular geometries of the isolated compounds 1 and 2 obtained
using XRD and DFT computation with basis set B3LYP/6-311G(d,p) were superimposed
atom by atom (Figure 2C and Figure 3C), and RMSE values of both compounds were found
to be 0.1345 and 0.1063 Å, respectively. These low values indicated that theoretical and
experimental structural parameters agreed well.
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Table 1. Comparison of important bond lengths [Å] bond angles [◦] and dihedral angles [◦] obtained
by X-ray study and DFT/B3LYP/6-311G(d,p) for molecules 1 and 2.

Bonds (Ǻ) Expt. DFT Angles (◦) Expt. DFT Dihedral Angles (◦) Expt. DFT

4,6-Diacetylresorcinol (1)

C1-C2 1.38 1.39 C2-C1-C6 121.0 120.2 C6-C1-C2-H15 −175.2 −179.9
C1-C6 1.41 1.43 C2-C1-O14 117.9 118.1 O14-C1-C2-C3 179.0 180.0

C1-O14 1.34 1.33 C6-C1-O14 121.0 121.6 O14-C1-C6-C5 −179.5 −180.0
C2-C3 1.37 1.39 C1-C2-C3 119.8 120.8 O14-C1-C6-C7 −0.916 −0.004

C2-H15 0.99 1.08 C1-C2-H15 116.9 119.5 C1-C2-C3-O13 −178.7 −179.9
C3-C4 1.42 1.43 C3-C2-H15 122.8 119.5 C15-C2-C3-O13 −5.6 −0.0143

C3-O13 1.34 1.33 C3-C4-C4 117.9 120.2 C2-C3-O13-H23 174.6 179.9
C4-C5 1.38 1.39 C2-C3-O13 118.1 118.1 C4-C3-O13-H23 −5.0 −0.0051

C4-C10 1.46 1.46 C4-C3-O13 120.9 121.6 C3-C4-C10-O12 1.3 0.00076
C5-C6 1.39 1.39 C3-C4-C10 120.0 119.7 C5-C4-C10-O12 −178.2 179.9

C5-H16 0.99 1.08 C5-C6-C7 121.7 122.4 C5-C6-C7-O9 176.9 179.9
C6-C7 1.46 1.46 C6-C7-C8 120.9 120.0 O9-C7-C8-H17 10.5 0.0172
C7-C8 1.48 1.51 C6-C7-O9 119.8 121.0 O9-C7-C8-H18 −106.3 −120.0
C7-O9 1.23 1.23 C8-C7-O9 119.1 118.8 O9-C7-C8-H19 135.7 120.0

O14-H24 1.05 0.99 C1-C14-O24 101.6 106.9 O12-C10-C11-H20 −125.3 −119.9

3-O-Methylellagic acid (2)

O1-C12 1.35 1.34 C12-O1-C28 115.9 120.4 C28-O1-C12-C13 115.1 146.0
O1-C28 1.44 1.43 H3-O2-C13 109.5 108.9 C28-O1-C12-C25 −68.7 −36.5
O2-H3 0.82 0.96 C17-O5-C18 122.1 122.7 C12-O1-C28-H29 −53.0 −42.5
O2-C13 1.34 1.35 H7-O6-C19 109.4 108.0 H3-O2-C13-C12 172.8 179.2
O4-C17 1.20 1.19 C24-O11-C25 122.4 123.6 H3-O2-C13-C14 −7.3 −1.1
O5-C17 1.37 1.39 O1-C12-C13 118.7 116.0 C18-O5-C17-O4 −178.0 179.5
O5-C18 1.38 1.36 O1-C12-C25 122.0 126.0 C18-O5-C17-C16 1.9 −0.4
O6-H7 0.81 0.96 C13-C12-C25 119.0 117.7 C17-O5-C18-C19 178.1 −179.3
O6-C19 1.33 1.34 O2-C13-C12 114.8 115.7 H7-O6-C19-C18 −170.3 179.8
C18-C27 1.38 1.39 O2-C13-C14 124.3 122.9 H7-O6-C19-C20 10.2 −0.1
C23-C24 1.45 1.46 C13-C14-H15 120.4 120.8 O10-C24-O11-C25 178.9 −178.8
C19-C20 1.40 1.41 C13-C14-C16 119.1 120.0 O10-C24-C23-C21 0.9 −0.4
C28-H31 0.95 1.09 O8-C20-C19 113.9 113.6 H15-C14-C16-C17 −0.04 0.2
C21-H22 0.93 1.08 C19-C18-O5 118.3 118.4 H15-C14-C16-C26 179.4 −179.6
C16-C25 1.39 1.40 C18-C27-C26 118.7 118.5 C18-C27-C23-C24 178.5 179.6

The IR frequencies of the optimized geometry of the isolated compounds 1 and 2 were
computed at the same basis set using a double harmonic approximation. Experimental
and simulated IR spectra of compounds 1 and 2 are demonstrated in Figures 4 and 5.
Table 2 displays the positions of some significant infrared (FTIR) vibrational bands of both
compounds as well as their theoretical values (in cm−1), intensities, and assignments. In
general, harmonic frequencies overestimate the experimental frequency due to systematic
errors triggered by basis set incompleteness error, different approximations, and lack of
vibrational anharmonicity used in both compounds in the current DFT calculations. The
IR data of both compounds 1 and 2 obtained from theoretical and experimental were
compared with the literature [11].
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Table 2. Experimental and theoretical IR frequencies (in cm−1) along with IR intensity (in km/mol)
and vibrational assignments of compound 1 and 2.

FTIR ωharmonic Assignments FTIR ωharmonic Assignments
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1)

3427
3295 νOH
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ag

ic
ac

id
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hy
dr

at
e

(2
)

3433 3848–3778 νOH
3291 νasyOH 3159 3184–3179 νCH (ar)

3082

3212 νCH (ar) 2927 3146, 3119,
3035 νasyCH, νCH

3207 νCH (ar) 1723 1820, 1813 νC=O
3147 νCH (ar)

1600
1659 νCC, βHOC

3146 νCH (ar)
1650, 1634,
1612, 1560,
1549, 1526

νCC, νasyCC
γHCC

2925
2851

3097 νCH 1518 1504
βCOC,
βHCH,
τHCOC

3036 νCH
1422

1489 βHCH,τHCOC

1652
1696 νasyC=O 1450 νCC, βHOC

1694 νC=O 1361 1382 νO-C,
νasyC-O

1661 νasyC=O,
Ar-ring 1340 1372, 1322 νasyCC,

βHOC

1588
1627 νCC, νasyCC,

βHOC 1293
1319 νasyO-C,

βHCC

1527 βHOC 1297 νO-C, γHOC,
βHCC

1486
1482 βHCH,

τHCCC 1190 1221
βHOC,
βHCH,
τHCOC

1472 βHCH,
τHCCC 1175 βHOC,

βHCC

1425 1398 βHCH 1060 1167 βHCH,
τHCOC

1290 νO-Cand
βHCC (ar) 966 1053, 1000 νO-C

1266 νCC, βHOC,
βCCC 912

867

921 γCCC

1214 νO-C, βHCC
(ar) 861 τHCCC

1092 βCCC,
τHCCC 859 outCCCC

964 γ HCH,
τHCCC 800

807 mix vibration

914 τHCCC 759 outOCOC

762 βCCC 699 βCOC,
outOCCC

725 outCCCC 640 βCOC,
βOCC,

674 βCCC
575

614 βCOC,
βOCC

556 βCCC, βCCO 539 νCC, βCCC,

ν-stretching, νasy asymmetric stretching, β-in plane bending, γ-out of plane bending vibrations, t-torsional vibration.

Both compounds 1 and 2 have groups of C-H, aromatic, OH, and C=O in their structure.
Simulated IR spectra using B3LYP/6-311G(d,p) basis set were compared with experimen-
tal IR spectra to explain vibrations of functional groups, as shown in Figures 4 and 5.
All assignments set out in Table 2 are in accordance with the literature [28]. The bands
due to stretching C-H, C=O, C=C, C-C, ring, C-O as well as in-plane and out-of-plane
deformation vibrations are shown in Table 2. The bands that appeared in the region of
the lower wavenumber were mainly due to mixed vibrations of torsion and out-of-plane
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deformation of the rings. In general, the IR bands vibrate in the range of 3700–2700 cm−1

due to OH groups (IR Spectrum Table and Chart available on Sigma Aldrich website),
with different intensities showing the nature of –OH groups such as free, inter, or in-
tramolecular bonding in chemical compounds. The IR bands displayed in a broad peak
in compound 1 and 2 at 3427 and 3433 cm−1, respectively in IR spectra, assigning OH
groups to hydrogen bonding interactions. In the theoretical spectra of 4,6-Diacetylresorcinol
(1) and 3-O-methylellagic acid dihydrate (2), phenolic hydroxyl groups were vibrated at
3295–3291cm−1 and 3848–3778 cm−1, respectively, without applying the scale factor. In
the aromatic structure, the characteristic region for C-H stretching bands usually falls just
above 3000 cm−1. The stretching bands occurred in multiple weak and narrow peaks
at 3082 cm−1 for 1 and 3159 cm−1 for compound 2 of the FTIR spectra while theoretical
values of aromatic C-H were observed at 3212–3146 cm−1 and 3184–3179 cm−1, respectively.
In-plane and out-of-plane C-H bending vibrations exhibit their characteristic bands in the
region 1100–1500, 800–1000, and 650–1000 cm−1. In present compounds 1 and 2 in-plane
deformation vibrations were observed mixing with vibrations of C-C, C-O-C stretching
bands at 1482, 1472, 1290, and 1214 cm−1 for 1 and at 1489, 1319, 1297, 1221, 1175, and
1167 cm−1 for compound 2, while out of plane bending vibration were noticed mixing with
torsional and out vibration as shown in table. The asymmetric and symmetric stretching
bands of the methyl group (C-H) of chemical compounds in FTIR have been documented
below 3000 cm−1 in the 3000–2840 cm−1 range. FTIR spectra of both compounds exhibited
bands at 2925, 2851, and 2927 cm−1, representing asymmetric and symmetric stretching
bands suggested –CH3 groups in both compounds 1 and 2, while the calculated values at
3097, 3146, 3119, and 3035 cm−1 (without scaling factor) were assigned to methyl groups in
the present compounds. In general, the stretching vibration of the normal carbonyl group
referred to without hindrance environment appears with a high intensity peak of about
1700 cm−1. Strong bands visualized at 1652 and 1721 cm−1 with overlapping shoulders
were assigned to C=O stretching vibrations while calculated bands of carbonyl groups
using B3LYP/6–311G(d,p) basis set in IR spectra were identified at 1696, 1694, 1661 cm−1

for 1 and 1820, 1813 cm−1 for 2. In most cases, the C-O stretching vibration of the aromatic
ether, alkyl aryl ether, tertiary alcohol, ester, aliphatic ether, secondary alcohol, and primary
alcohol attached to the heterocyclic moiety can cause a strong to medium intensity band in
the 1310–850 cm−1 region. In the present study, stretching vibration bands at 1425, 1361,
and 1293 cm−1 were observed in FTIR spectra of compounds (1 and 2). Bands at 1290,
1214, 1382, 1319, 1297, 1053, and 100 cm−1 may be due to the various nature C-O stretching
vibrations with mixing of other vibrations in the theoretical study, as shown in table. The
carbon-carbon stretching vibrations of aromatic ring crop up in the region 1625–1430 cm−1.
The C=C stretching vibration of aromatic ring present in compounds (1 and 2) display
their characteristics bands at 1588 and 1425 for 1, 1600, 1422 and 1293 for 2 in FTIR while
calculated bands at 1627 and 1266 for 1, 1659, 1450 and 1297 for 2 were noted with mixing
of other vibrations of various intensity in IR spectra of the isolated compounds.

3.2. Frontier Molecular Orbital and UV-Visible Spectral Analysis

Frontier molecular orbitals (FMOs) referred to HOMO and LUMO involved in chem-
ical reactions. Figure 6 displays the highest occupied molecular orbitals (HOMO) and
lowest unoccupied molecular orbital (LUMO) for compounds 1 and 2 isolated from plant.
HOMO is the orbital, which primarily acts as an electron donor, and LUMO is the orbital,
which primarily acts as an electron acceptor, and molecular chemical stability is defined
by the difference between HOMO and LUMO. It has been noted that the highest occupied
molecular orbitals (HOMOs) are largely distributed over aromatic rings, including C=O
and –OH functional groups excluding C2H15, C5H16 and methyls in compound 1 and O5
in compound 2 whereas LUMOs is completely delocalized on all of the molecules except
OH groups in compound 1 and two OH groups in compound 2 as seen in Figure 6. The
energy gap (Eg) between HOMO and LUMO is a critical parameter to study the nature of
chemical reactivity because it is a parameter of electron transfer from HOMO to LUMO.
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The large value of the gap specifies the most stability and the least reactivity and vice versa.
The energy gaps of compounds 1 and 2 were found to be 4.73 and 3.97 eV, respectively. The
low energy gaps of the two compounds provide an indication of the efficient electronic
transition as well as their high reactivity. The HOMO energy describes the susceptibil-
ity of the molecule towards electrophilic attacks, while the LUMO energy represents the
susceptibility of the molecule to nucleophilic attacks. The lowest singlet to singlet spin
allowed transitions, oscillator strengths, absorption wavelengths, and excitation energies
for 4,6-diacetylresorcinol (1) and 3-O-methylellagic acid dihydrate (2) in solution phase and
comparison of experimental and theoretical UV-vis absorption spectra of both compounds
1 and 2 are presented in Table 3 and Figures 7 and 8. The UV-vis bands observed at 272
and 323 for compound 1 and 255 and 365 nm for compound 2 in solution were assigned
to H→L + 1, H-1→L + 1, H→L, and H-1→L + 1, H→L, H-3→L + 1, H-2→L transitions
for 1 and H-3→L, H-5→L, H-4→L and H→L, H-1→L, H→L + 1 transitions for compound
2 as shown in Table 3. The corresponding calculated wavelengths were observed to be
268.5, 251.9, 302.6, and 300.1 nm for compound 1 and 259.7, 252.9, 351.7, and 313.6 nm
for compound 2 in solution. The alteration of the predicted wavelengths was due to the
solvent effect as observed in the two compounds (1 and 2).
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(2
)

255.6
259.7 4.77 0.0498 H-3→L(30)

251.9 4.9212 0.7777 H-1→L + 1 (69),
H→L (25) 252.9 4.90 0.0366 H-5→L (25),

H-4→L (50)

323.7
302.6 4.0968 0.1209 H-1→L + 1 (26),

H→L (73) 365.3
351.7 3.52 0.2290 H→L(94)

300.1 4.1314 0.0366 H-3→L + 1 (19),
H-2→L (79) 313.6 3.95 0.0269 H-1→L (51),

H→L + 1 (4)

Abbreviation used: H-HOMO, L-LUMO, λ-wavelength (in nm), E-excitation energy, f-oscillator strength.
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3.3. NMR Spectral Analysis

The 1H and 13C-NMR spectra of compounds (1 and 2) and their chemical shifts were
given in ppm downfield form of tetramethylsilane (TMS) and illustrated in Figures 9–12.
Figure 9 & Figures 10 and 11 & Figure 12 depict the 1H and 13C NMR spectra of com-
pounds 1 and 2, respectively. Theoretical calculations were performed to validate the
accuracy of the experimental data collected. Prior to calculating the theoretical chemical
shifts in term of NMR, the molecular geometry of the compounds was optimized using
GIAO-B3LYP with 6–311G(d,p) level of theory. Deuterium exchangeable proton of the –OH
group in 1 showed a chemical shift at 129 ppm based on its integration of two protons as a
singlet peak in 1H-NMR spectrum of compound 1. Its corresponding calculated chemical
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shift was observed at 12.87 ppm. Other singlets resonated at 8.2 and 6.4 ppm showed
aromatic protons flanked by methyl ketone and hydroxyl groups, respectively, whereas
theoretical singlets of aromatic protons were resonated at 8.1 and 6.3 ppm in solution
phase suggesting that chemical shifts were quite similar to experimental values leading
to the identification of exact structure of compound 1. Chemical shifts at 2.1 and 1.6 ppm
may contribute to the methyls attached to the ketone groups, corresponding singlets at 2.7
and 1.9 ppm in theoretical calculations were very close to experimental studies as shown
in Figure 9. As shown in Figure 11 of compound 2, singlets refer to methyl hydrogens
divided into three and observed in the theoretical spectrum at 3.5, 4.1 and 4.8 ppm, which
were observed as a peak at 4.2 ppm in experimental spectrum because the methyl protons
experienced the same chemical environment that caused their overlaps. At 7.4 and 7.6 ppm,
aromatic protons were noted as singlets of two aromatic ring protons and corresponding
peaks observed in the theoretical spectrum at 7.60 and 7.63 ppm were very close to the
experimental spectrum. The deuterium exchangeable proton of the three –OH groups in
compound 2 displayed chemical shifts at 4.8, 5.0, and 6.0 ppm as three singlet peaks in
theoretical 1H NMR spectrum of the compound 2. However phenolic groups attached to
various chemical environments on aromatic rings were observed at 8.7 ppm for one proton
and 10.5 ppm assigned to two protons. The theoretical values of NMR displayed good
correlation with experimental values for compounds 1 and 2 except discrepancy was noted
for phenolic protons because of lability of the hydroxyl proton and proximity of another
phenolic group for compound 2.
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The signals characterized in the 13C NMR spectra of molecules 1 and 2 (Figures 10 and 12)
showed resonance at 206 and 175 for 1 and 162, 162, 159, 154.4, and 144.1 ppm for compound
2, indicating the presence of carbonyl carbons and carbons attached –OH groups present in
aromatic rings in various chemical environments with different chemical shifts in isolated
compounds 1 and 2. Corresponding signals in experimental 13C NMR of compounds 1 and
2 were observed at 202 and 168.9 ppm for 1 and 159, 154, and 143.2 ppm for 2 are closed
to theoretical 13C NMR spectra of both compounds. Other important signals observed in
the theoretical 13CNMR spectrum at 106.4, 115.3, and 141 ppm were attributed to carbon
flanked by −OH groups, carbons attached to carbonyl groups, and carbon flanked by
carbonyl groups for compound 1 were found to correlate with the signals at 105, 113.6,
and 136.2 ppm in experimental 13C NMR of compound 1. Signals resonated at 26 ppm
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was attributable to carbon atom of the methyl groups bonded to the oxygen atom in
experimental spectrum of compound 1. The estimated theoretical value of 26.4 ppm of
methyl carbon is in accordance with the experimental results. Some other 13C NMR signals
of aromatic carbons directly influenced by functional groups and substituted carbon atoms
including methyl carbon were observed in theoretical spectrum at 140 (-OH-C-C18-O-), 146
(-C12-O-CH3) and 149 ppm (C25-O-C=O), 112.3 (H-C21), 114.2 ppm (H-C14) and 61.2 ppm
(O-C28-) that were resonated in similar pattern with slightly deviation in experiment 13C
NMR of compound 2.
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3.4. Molecular Electrostatic Potential (MEP)

In the study of biological recognition processes and hydrogen bonding interactions,
the MEP map is a useful tool for qualitatively interpreting electrophilic and nucleophilic
reactions [29–31]. Molecular electrostatic potential of 4,6-diacetylresorcinol (1) and 3-
O-methylellagic acid dihydrate (2) are calculated using the optimized structures of both
compounds applying at B3LYP/6-311G(d,p) basis set, and their plots are shown in Figure 13.
Colored figures of compounds 1 and 2 were a significant sign of inter- and intramolecular
interactions and reactivity of molecules. The red to blue color of the graphs reflects the
electron-rich to electron-poor regions. Carbonyl oxygen and hydroxyl oxygen atoms (O13,
O14, for 1 and O2, O6, O8 with ionizable protons) at the bottom of the reddish region have
an electron rich area of 1 and 2, potentially the most aggressive nucleophilic attack region.
On the other hand, an electron poor region with a bluish color overlying a phenolic proton
of the isolated compounds that may demonstrate an electrophilic behavior.
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3.5. UV-Visible Absorption Spectroscopy

UV–Visible absorption spectroscopy is one of the most fundamental and extensively
used experimental techniques for evaluating the stability of ct-DNA and interactions with
small ligand molecules [32]. Complex formation is usually accompanied by changes in
the intensity and position of the absorption spectra [33]. The absorption maximum of
compound 2 was centered on 273 nm. The maximum absorption band of compound
2 increased with increasing ct-DNA concentrations, accompanied by a shift of 11 nm,
indicating the formation of a complex, as illustrated in Figure 14. Intercalation as a possible
method of binding was discarded because it typically involves hypochromic or isosbestic
points [32].
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3.6. Steady-State Fluorescence

Fluorescence spectroscopy is undoubtedly one of the extensively used techniques
for studying the interactions between small ligand molecules and DNA. High sensitivity,
large linear concentration range, and selectivity are its advantages over other techniques.
It can also be used to determine the pattern of compound binding to ct-DNA, as well
as providing a variety of other details about the binding mode, strength, and number of
binding sites in ct-DNA [34]. Compound 2 (200 µM) was excited at 273 nm and showed
emission maxima at 367 nm. As demonstrated in Figure 15a, after consecutive additions
of ct-DNA (0–125 µM), the intensity of compound 2 emission grew dramatically. This
suggests the possibility of a complex-forming between them [35].

The Stern–Volmer equation [36] was used to estimate the enhancing mechanism
involved in the process of binding between ct-DNA and compound 2:

F0

F
= 1−KSV[Q] (1)

Kq =
KSV

τ0
(2)
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The fluorescence intensities in the absence and presence of the quencher (ct-DNA) are
represented by F0 and F, respectively. The Stern–Volmer and the bimolecular enhancement
constant are represented as Ksv and Kq, respectively. In the absence of the quencher, τ0 is
the fluorophore’s average lifespan (τ0 ≈ 10−8 s) [37].

The binding process can be improved in one of two ways: by using a static or dynamic
method. Static enhancement involves the formation of a ground state complex [38], while
dynamic enhancement is largely associated with molecular diffusion.

The slope of the Stern–Volmer plot was used to obtain the Ksv value for compound
2 in Figure 15b. Equation (2) was used to calculate Kq using the value of Ksv, and both
results are given in Table 1. Since the values of Kq exceeds the threshold value for dynamic
enhancement 2 × 1011 M−1 s−1, this suggests that rather than a dynamic approach [32], a
static improvement technique should be used.

The binding constant (Kb) and interaction stoichiometry (n) were calculated using a
double logarithmic regression plot. [32]:

log(F− F0)

F
= log Kb + n log[DNA] (3)
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where Kb is the binding constant, and n is the number of binding sites of compound 2 in
ct-DNA double helix. As shown in Figure 15c, the log [(F − F0)/F] vs. log [ct-DNA] plot’s
slope and intercept were calculated using Equation (3).

The value of n was discovered to be 1 when compound 2 was complexed with the
ct-DNA interaction. As a result, compound 2 appears to have only one binding site in
ct-DNA. The values of Kb for compound 2 were also determined and are presented in
Table 4.

Table 4. From fluorescence measurements, values of Stern–Vomer, bimolecular enhancement constant,
binding site number and binding constant achieved.

System Ksv (M−1) Kq (M−1 s−1) n Kb (M−1)

Compound 2 1.9 × 104 1.9 × 1012 1.0 3.8 × 105

3.7. Circular Dichroism (CD)

Modifications in the secondary structure of ct-DNA [35] can be tracked using a useful
tool, CD spectroscopy. By monitoring variations in the CD spectra of ct-DNA, binding
mechanism of compound 2 to ct-DNA was also confirmed. Base stacking interactions cause
a negative peak at 245 nm, and helicity induces a positive peak at 275 nm in the CD spectra
of ct-DNA [39]. Intercalation entails the creation of an intercalation cavity in which the
compounds can bind, as well as the development of new molecular connections that anchor
the complex. Groove binding, on the other hand, does not require such conformational
changes [37]. Intercalative molecules impair the ct-DNA interaction with base stacking,
altering the negative peak as a result. Groove binders have no effect on the structure of
ct-DNA; hence no such modifications are apparent [35]. No substantial change in the CD
spectra of ct-DNA (200 µM) was found when compound 2 (200 µM) was added, indicating
a groove binding interaction as seen in Figure 16.
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3.8. Docking

Molecular docking is a scoring function-based technique for predicting the interaction
mechanism of a small molecule in a protein’s binding site with the optimal orientation
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and affinity [36]. It is also utilized to back up the findings obtained through spectroscopy
and fluorescence-based experiments. Compound 2 was docked against B-DNA dodecamer
d(CGCGAATTCGCG)2 (PDB ID:1BNA). Docking studies reveal that molecule 2 binds in
DNA’s minor grooves with a binding energy of−8.7 kcal mol−1, as illustrated in Figure 17a.
Compound 2 engages with DNA via two hydrogen bonds (DG) with bond lengths of 2.34
and 2.31 Å, which help compound 2 binding to DNA to be stable.
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3.9. Prediction of DRUG-likeness (Lipinski’s Rule of Five)

The early preclinical analysis is greatly assisted by drug-likeness filters, which help
to avoid costly late-stage preclinical and clinical failure. The drug-likeness properties of
the compound were studied by using the Lipinski rule of five. It is a preliminary criterion
for assessing its structural resemblance to an ideal drug [40,41]. Compound 2 under
investigation follows all of the parameters under the ‘Rule of Five’, with no violations
calculated via an online server, and revealed a higher tendency of compound 2 towards
drug-likeness.

3.10. Bioavailability Score and Synthetic Accessibility

Bioavailability difficulties linked with a compound might slow down the therapeutic
development process. For a compound to exhibit its pharmacological action on the body
and be effective as a drug, it must be available in sufficient concentration in the systemic
circulation for a specific duration [42]. To avoid unfavorable outcomes in the future, it is
important to evaluate the compound’s bioavailability early in the therapeutic development
process. Therefore, the bioavailability of compound 2 was determined with the SwissADME
web tool [25]. This web tool determines the bioavailability of the compound based on
the molecular properties and lipophilicity by applying through different principles such
as Lipinski’s rule of five, Ghose filter, Veber filter, Egan filter, and Muegge filter. The
bioavailability score of the isolated molecule (2) was found to be 0.55, which implies that
there is a 55% probability of being bioavailable.

To identify a promising lead compound during the process of virtual screening, it is
preferred to filter out a non-toxic, physiologically active compound with good bioavail-
ability. In addition, the degree of complexity in synthesizing a compound is a factor that
should be considered while choosing the most promising compound [43]. The SwissADME
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web tool was also used to measure the degree of difficulty in synthesizing compound 2.
Synthetic accessibility is a fingerprint-based computational approach for determining how
difficult it is to synthesize a compound. A synthetic accessibility value of 1 indicates that
the compound is relatively easy to synthesize, while the synthetic accessibility score of 10
indicates that the compound is extremely difficult to synthesize. Compound 2 was found
to have a synthetic accessibility score of 3.21, indicating that it will be easier to synthesize.

4. Conclusions

In this paper, two compounds named as 4,6-Diacetylresorcinol (1) and 3-O-methylellagic
acid dihydrate (2), were isolated from the leaves of Bixa orellana, although they have previ-
ously been described in other sources and synthetic methods. The density functional theory
was performed to calculate the electronic structure in support of experimental results. In or-
der to compare spectral data of experimental studies (IR, 1H, 13C NMR, UV and parameters
obtained from single X-ray diffraction) with theoretical exploration, B3LYP/6-311G(d,p)
was used to optimize geometric parameters in the gas phase, while the NMR and UV-Vis
studies of the optimized compounds performed by GIAO-B3LYP/6-311G(d,p) and PCM-
B3LYP/6-311G(d,p) level theory were applied in the respected solution phase, respectively.
The theoretical and experimental observations of the isolated compound were in good
agreement with the establishment of the chemical structures of both molecules. In addition,
energy of HOMO, LUMO and its gap including the MEP for compound 1 was calculated
that were found to be −6.82 eV, 2.09 eV, and 4.73 eV, respectively, while compound 2 was
−6.19 eV, 2.22 eV, and 3.97 eV respectively, these energy gaps of 4,6-diacetylresorcinol and
3-O-methylellagic acid dihydrate, including MEP, were an indicator of successful electronic
transition and their high reactivity including chemical nature of molecules having various
functional groups for the future course of the drug development response. Using multiple
biophysical and in-silico approaches, the present study adds to our understanding of the in-
teraction of molecule 2 with ct-DNA. UV-absorption and fluorescence spectroscopy confirm
the complex formation between compound 2 with ct-DNA. The value of binding constant
(Kb) obtained was in the order of 105 M−1. Circular dichroism results of ct-DNA complexed
with compound 2 suggest groove binding mode. Furthermore, in silico studies also suggest
that the binding of compound 2 occurs in the minor groove of the DNA. Lipinski’s rule of
five revealed a higher tendency of compound 2 towards drug-likeness. The bioavailability
score and synthetic accessibility score of compound (2) was found to be 0.55 and 3.21,
suggesting that compound 2 could serve as effective therapeutic candidate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12030380/s1. Table S1. The experimental parameters related
to the monocrystalline X-ray examination of 1 and 2.
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