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Testicular aging involves mitochondrial dysfunction as well
as an increase in UCP2 levels and proton leak
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Abstract To address the possibility that mitochondria are in-
volved in the age-related loss of testicular function, we character-
ized mitochondrial bioenergetics in rat testis. A peak of
mitochondrial functionality was detected in adult animals, with
a decrease in both young and older animals. In the latter group
a decrease in mitochondrial function was matched with an in-
crease in proton leak and expression and activity of uncoupling
protein 2 (UCP2), suggesting that proton leak may be involved
in managing age-dependent mitochondrial dysfunction.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Although men do not show a clear-cut cessation of repro-

ductive capacity, increased life expectancy, in conjunction with

a trend towards increased paternal age, have renewed interest

in the issue of aging and male fertility [1].

In the past decade, several molecular mechanisms of aging

have been proposed, including cumulative damage by reactive

oxygen species (ROS) produced during aerobic metabolism [2],

thus implicating mitochondria as a main target of free-radicals

that culminate into the process of aging [3–6]. Mitochondria,

beside being the major generators and ROS target in the ani-

mal cells, also play a role in signaling pathways leading to

apoptosis [4,7]. Additionally, senescent mitochondria produce

less ATP and may have a higher production of ROS [4]. On the

other hand, there may be mitochondrial components with a

protective role in the ageing process. Uncoupling proteins

(UCPs) are mitochondrial H+ carrier proteins able to dissipate

the proton gradient across the inner mitochondrial membrane.

Although this process may decrease the amount of ATP gener-

ated, some studies suggest a central role for UCPs in avoiding

mitochondrial membrane hyperpolarization and ROS forma-

tion, thus potentially slowing the aging process [8–11].

Energy metabolism in the testis involves a unique network of

reactions, involving several testis-specific enzymes [12,13]. A
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gradient in mitochondrial activity has also been described in

the testis, with the stem cell spermatogonia presenting the least

active mitochondria [14]. Although a role in aging has not yet

been described, it has been demonstrated that UCP2 is the pre-

dominant UCP isoform present in the testes [15]. Also, varia-

tions in the expression levels of UCP2 in testis subjected to

hyperthermia, suggest the involvement of these proteins in tes-

ticular physiology [16]. Since mitochondrial alterations have

been associated with aging and fertility problems [4,6,17],

mitochondrial respiration defects might contribute to age-

related loss of reproductive potential. To better understand

the contribution of mitochondria in the age-related decline

observed in testicular function, we have characterized mito-

chondrial bioenergetics in the rat testis and discuss possible

implications to testicular function and aging.
2. Materials and methods

2.1. Materials
All chemicals were obtained from Sigma, St. Louis, MO, unless

otherwise described.
2.2. Animal groups
Male Wistar rats were kept under controlled conditions with free ac-

cess to food and water. Rats were divided into three age groups taking
in account the rat reproductive cycle: Group I (young, before full
reproductive maturity): 21 days up to 2 months old (n = 32); Group
II (adult, fully active): 2–5 months old (n = 31); and finally Group
III (old, low litter production signaling breeding problems): 9–16
months old (n = 12).

2.3. Isolation of testicular mitochondria
Our aim was to study the effects of age in the testis as a whole

and not individualized germ cell types, given the low yield in terms
of functional mitochondrial protein. Testis mitochondria were pre-
pared according to a modified methodology of Gazzotti et al. [18].
Following cervical dislocation the testis were immediately excised,
weighed, decapsulated and minced in isolation medium containing
250 mM sucrose, 0.2 mM EGTA, 0.1 mM EDTA, 5 mM HEPES-
KOH (pH 7.4) and 0.1% defatted BSA. The minced tissue was then
homogenized with a Potter–Elvehjem homogenizer. The homogenate
was centrifuged at 2500 · g for 10 min (Sorvall RC-5c, Plus, SS 34
Rotor, 4–8 �C), and the supernatant fluid centrifuged at 10000 · g
for 10 min. The pellet (mitochondrial fraction) was resuspended
and repelleted twice at 10000 · g for 10 min. EGTA, EDTA and
defatted BSA were omitted from the washing medium. Mitochon-
drial protein content was determined by the biuret method. To en-
sure that assay interpretation was not skewed due to distinct
mitochondrial content, citrate synthase activity was also monitored,
according to Coore et al. [19].
blished by Elsevier B.V. All rights reserved.
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2.4. Mitochondrial oxygen consumption
Oxygen consumption of isolated testis mitochondria was monitored

polarographically with a Clark-type oxygen electrode [20] connected to
a Kipp and Zonen flatbed recorder in a thermostated closed chamber
with magnetic stirring, at 27 �C. The respiratory medium consisted of
65 mM KCl, 125 mM sucrose, 10 mM Tris, 20 lM EGTA, 2.5 mM
KH2PO4, pH 7.4. Mitochondria were suspended at a concentration
of 0.8 mg/ml in the medium and energized with both glutamate–malate
(substrate for Complex I) and succinate (substrate for Complex II).
When succinate was used, 3 lM rotenone was added to the medium
to inhibit Complex I. ADP (25 lM) was added to induce state 3 respi-
ration. Such a low concentration was chosen in order to avoid the sat-
uration of the mitochondrial phosphorylative machinery, so that a
physiological situation could be mimicked [21]. State 4 respiration
was measured after ADP depletion (Fig. 1B). Respiratory control ratio
(RCR) was determined as the ratio between mitochondrial respiration
states 3 and 4. The ADP/O ratio was expressed by the ratio between
the amount of ADP added and the oxygen consumed during state 3
[22].

2.5. Mitochondrial transmembrane electric potential
The mitochondrial transmembrane electric potential (DW) was esti-

mated with a tetraphenyl phosphonium (TPP+) electrode according
to the equation of Kamo et al. [23]. A matrix volume of 1.1 lL/mg pro-
tein was assumed. Reactions were carried out, at 27 �C, in 1 ml of the
reaction media supplemented with 2 lM TPP+ and 0.8 mg mitochon-
dria. Mitochondria were energized with 5 mM glutamate–malate
(Complex I) and succinate plus 3 lM rotenone (Complex II) as dis-
cussed above (Fig. 1B).

2.6. Proton leak
In the presence of oligomycin (ATP synthase inhibitor) the respira-

tion rate is proportional to the rate of protons leaking through the
mitochondrial inner membrane. The kinetic response of the proton-
conductance pathway to its driving force can therefore be measured
as the relationship between respiration rate and mitochondrial mem-
brane potential, when the potential changes by titration with elec-
tron-transport-chain inhibitors. Briefly, oxygen consumption and
inner membrane potential were simultaneously recorded using a
Clark-type oxygen electrode and a TPP+ electrode, respectively. Testis
mitochondria (0.8 mg) were incubated in 1 ml of reaction medium with
2 lM of oligomycin, 3 lM of rotenone and 80 ng/ml of nigericin
(added to abolish DpH so that the total protomotive force can be equal
to DW). The reaction was started with succinate. Oxygen consumption
and electric potential were progressively inhibited with sequential addi-
tions of malonate up to a total of 2 mM. At the end of each experi-
ment, valinomycin was added to dissipate the DW [24]. To study
UCP2 activation, Linoleic Acid (a known UCP2 activator) [25] was
added before the additions of malonate, at a final concentration of
5 lM. In some experiments GDP, a known UCP2 inhibitor, was also
employed (750 lM).

2.7. Western blot
Frozen mitochondrial pellets were homogenized in lysis buffer

(1 mM urea, 10 mM Tris, 2% SDS, pH 7.5) and aliquots were run
on 12% polyacrylamide gels (50 lg of protein per lane). After electro-
phoresis, separated proteins were transferred to polyvinylidene difluo-
ride membranes, and blocked membranes (1 h in 5% non-fat milk
solution, 37 �C) were incubated overnight at 4 �C with a mix of goat
anti-UCP2 antibodies (1:500, Santa Cruz, SC 6526, 6525 and 6527)
and a rabbit antibody against cytochrome oxidase subunit IV (COX
IV- 1:1000, Cell Signaling # 4844). The proteins were detected sepa-
rately, UCPs visualized with rabbit anti-goat IgG alkaline phospha-
tase-conjugated (1:2500, Sigma A4187) and COX IV with goat anti-
rabbit IgG-AP (1:5000, Santa Cruz, SC 2007). COX was used as a
loading control. The ECF detection system (GE Healthcare) and Versa
Doc imaging system (Bio-Rad) were used. Densities from each band
were obtained with Quantity One Software (Bio-Rad) [26].

2.8. Statistical analysis
All statistical analyses were done using SPSS (Statistical Package for

the Social Sciences Program), version 16.00, software for Windows
(SPSS Inc., Chicago, IL, USA). All variables were checked for normal
distribution. Multiple comparisons were performed using Kruskall–
Wallis test and statistical significance between three age groups was ac-
cessed using the Mann–Whitney U-test. For UCP experiments, statis-
tical significance was accessed using t-test for independent samples and
P 6 0.05 was considered significant. Bivariate correlation (r) in differ-
ent groups was evaluated by calculating the Spearman correlation
coefficient with a two-tailed significance (p).
3. Results

3.1. Animal characterization

Older animals showed an increased testis and epididymus

weight (P 6 0.001) (Fig. 1A). However, there were no signifi-

cant differences in citrate synthase activity, thus demonstrating

similar purity in terms of mitochondria/mg protein in the dif-

ferent age groups (data not shown).
3.2. Mitochondrial bioenergetics

The transmembrane electrical potential (DW) is the main

component of the electrochemical gradient accounting for more

than 90% of the total mitochondrial proton motive force [27].

After substrate addition, the maximum DW was increased in

adult animals when compared with the young group (P 6 0.05)

(Table 1). The same pattern was observed for State 3 respira-

tion in the presence of glutamate–malate (P 6 0.01) (Table 1).

In terms of membrane potential, depolarization following

ADP addition was observed to be higher in the adult group

when compared to the young (P 6 0.001) and older group

(P 6 0.001) (Fig. 1D) suggesting that phosphorylation is more

active in adult animals (also supported by an increase in state 3

respiration in this group). When succinate was used as sub-

strate, a decrease in state 3 was observed in the older animals

relatively to the young and adult groups (Table 1) and the

phosphorylation lag phase was shortened in adult animals

(P 6 0.05), suggesting a faster phosphorylative activity (Table

1).

In the presence of glutamate–malate, ADP/O was increased

in adult animals when compared to young and older rats

(Fig. 1C). Additionally, correlations (P 6 0.05) between age

and ADP-induced depolarization, ADP/O and lag phase, using

glutamate–malate as a substrate, were observed suggesting

that ADP phosphorylation is affected by age.

After ADP depletion (state 4 respiration), again the adult

group showed a higher value of oxygen consumption (Table

1). Older animals also had a higher RCR when compared to

the young and adult animals groups (P 6 0.01) when Complex

II was called upon. However, when the substrate was gluta-

mate–malate, the RCR of older animals was only significantly

different from that of the young group (P 6 0.05) (Table 1).
3.3. Proton leak and UCP2 activity

The titration curves demonstrate that mitochondria from

older animals have a higher proton leak, when compared with

mitochondria from the adult group. This can be inferred by the

fact that more oxygen is consumed by mitochondria from old-

er animals to generate the same value of DW (P 6 0.01)

(Fig. 2A). Using linoleic acid (LA, 5 lM) as a specific UCP

activator, older animals showed a higher stimulation of proton

leak when compared with adult rats (P 6 0.01) (Fig. 2C and

D), suggesting that UCP2 levels may be up regulated in older

animals. GDP, an inhibitor of UCP2 reverted LA effect (data

not shown). Western blot analysis showed a higher UCP2/



Fig. 1. (A) Testis and epididymus weight in the three age groups. (B) Upper recording: representative recording of changes in mitochondrial electric
potential measured by a selective TPP+; the lag phase corresponds to the time elapsed during ADP phosphorylation. Lower record: representative
recording of changes in mitochondrial oxygen consumption measured using a Clark-type electrode, with state 3 respiration (after ADP addition) and
state 4 respiration (after ADP depletion). (C) ADP/O ratios evaluated in the presence of glutamate + malate. (D) ADP-induced depolarization in the
presence of glutamate–malate. Values statistically different from the young group: ***P 6 0.001; and from the adult group: sssP 6 0.001; sP 6 0.05.
All bars show means ± S.E.M.

Table 1
Effects of age on testicular mitochondria respiratory function and transmembrane electrical potential parameters.

Young group Adult group Older group

Complex I State 3 (natmsO/min/mg prot) 19.83 ± 0.6 24.79 ± 1.38** 20.54 ± 1.42
State 4 (natmsO/min/mg prot) 10.52 ± 0.49 12.77 ± 0.67** 9.48 ± 0.85ss

RCR 1.9 ± 0.92 2.04 ± 0.08 2.25 ± 0.14*

DW max (�mV) 200,01 ± 1.94 207.67 ± 1.6** 202.46 ± 2.46
Repolarization DW (�mV) 194.87 ± 1.62 198.59 ± 2.05 198.60 ± 2.42
Lag phase(s) 28.19 ± 1.94 29.22 ± 1.99 35.00 ± 3.22

Complex II State 3 (natmsO/min/mg prot) 31.85 ± 1.11 36.78 ± 1.95 26.44 ± 1.65*,ss

State 4 (natmsO/min/mg prot) 20.79 ± 0.91 24.75 ± 1.06* 13.35 ± 1.02***,sss

RCR 1.52 ± 0.07 1.5 ± 0.053 1.92 ± 0.10**,ss

DW max (�mV) 200.92 ± 1.72 206.72 ± 1.74* 207.5 ± 1.54*

Repolarization DW (�mV) 201.76 ± 1.59 203.64 ± 2.0 204.59 ± 2.2
Lag phase(s) 43.56 ± 3.08 35.67 ± 3.41* 39.82 ± 3.03

Values are given as means ± S.E.M. *P 6 0.05, **P 6 0.01 compared to the young group; sP 6 0.05, ssP 6 0.01, sssP 6 0.001 compared to the
adult group; all values were determined as described in Section 2.
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Fig. 2. UCP2-mediated proton leak. (A) Kinetic response of the proton leak to membrane potential in testis mitochondria (44 weeks old, n = 7; and
12 weeks old, n = 17). Data are expressed as means ± S.E.M. and differences between age groups are significant at P 6 0.01. (B) UCP2 expression in
testicular mitochondria, bars show means ± S.E.M. of UCP2 levels normalized with standard COX IV levels, sP 6 0.05. Representative Western
blot data for both groups of animals are shown above the respective bars. (C, D) Simulation of proton leak using linoleic acid, in adult and old
animal, respectively. The use of the UCP2 inhibitor GDP (750 lM) reverted the effect of linoleic acid (data not shown).
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COX IV ratio in testicular mitochondria from older animals

(P 6 0.05) (Fig. 2B).
4. Discussion

Mammalian germ cells develop in a tubular environment

that is mainly maintained by Sertoli cells, and have different

preferred substrates to obtain energy, including mitochondrial

ATP. Changes in the mitochondrial energy circuit may be re-

lated to testicular metabolism deregulation [12–14]. Therefore,

we examined the effects of age on bioenergetic characteristics

of testicular mitochondria isolated from rats of different ages.

Interestingly, testicular mitochondria seem to consume less

oxygen to generate the same electrical membrane potential

when compared to mitochondria from other tissues [27–29],

which could constitute an adjustment of mammalian testis to

low O2 pressure in the seminiferous tubules [30], and stresses

the importance of using testicular mitochondria as models

when assessing the effect of compounds/procedures with possi-

ble impact on testicular physiology.

Mitochondrial respiratory and phosphorylative function

were also correlated with the rat reproductive cycle, being de-

pressed in both young and older animals and, as shown both

by increase in state 3 respiration, ADP/O ratio, ADP-induced

depolarization and DW, increased in adult animals. The lower

respiratory function found in young animals could be ex-

plained by an increased spermatogonia/spermatocyte ratio
[31], which would mean that the less active spermatogonia

mitochondria are more prevalent. In opposition, both adult

and older animals should have lower spermatogonia/spermato-

cyte [31] ratios, thus containing more active mitochondria.

However, it is clear that mitochondria from older animals

are less functional, and this cannot be explained by the type

of mitochondria, but rather by age-induced altered mitochon-

drial function. Previous studies observed that the activity of

most oxidative phosphorylation complexes decrease with age

[32], but the functional relevance of these findings in intact

mitochondria had not been established. Although a declining

mitochondrial function in older animals was observed, there

was also evidence of the triggering of protective mechanisms,

namely the increase in mitochondrial UCP2 content and func-

tion (as assessed by LA stimulation and GDP inhibition),

which can promote proton leak, and attenuate ROS levels by

causing a controlled decrease in mitochondrial membrane po-

tential [8–11,16,33]. However, other mechanisms, such as the

possible role of ANT, cannot be discarded. Further studies

should also evaluate whether different types of testicular cells

respond differently to aging at this level.

From the data obtained during proton leak measurements,

several interesting questions can be raised. First, the older ani-

mals present a higher RCR and a slightly lower state 4 respi-

ration. The results found for UCP2 protein levels and proton

leak would predict that the older rats would have a decreased

membrane potential and increased state 4 respiration. This is a

very curious phenomenon that is not unique to our system. In
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fact, Herlein et al. [34] recently demonstrated that heart and

muscle mitochondria from diabetic animals were actually more

coupled compared to controls despite an approximate 2–4 fold

increase in uncoupling protein-3 content, which demonstrates

that expression of UCPs, respiration and proton leak are not

completely inter-connected. On the other hand, having a high-

er expression of UCP2 does not entirely correlate into in-

creased proton leak, since different co-factors including

superoxide anion, hydroxynonenal, and other alkenals or their

analogues appear to be required for full UCP activity [35].

Also, it is important to note that titration assays for measuring

proton leak were performed with oligomycin present in the

media, which act to prevent proton leak through the ATP syn-

thase and thus exclude this contribution from the overall pro-

ton backflux into the matrix. With the data obtained in the

absence of oligomycin (states 3 and 4 rate measurements)

and in its presence (proton leak titrations), it appears that

ATP synthase-independent passive proton flux through the li-

pid membrane (which can be UCP-related) is clearly higher in

the older animals.

A second important aspect regards the lack of effect of LA

on the protein leak in the younger animals despite the presence

of UCP2. Published data appears to suggest that both free

fatty acid and superoxide anion cause UCP-mediated uncou-

pling [36]. In our case, we hypothesize that LA per se was

not enough to induce visible uncoupling in the younger ani-

mals because (a) the amount of UCP was not enough for a vis-

ible effect on respiration/membrane potential or (b) additional

co-factors such as superoxide anion are absent in the younger

but present in the older animals. In fact, an attractive idea is

that superoxide anion production by the respiratory chain is

increased in the older animals, which can again explain the in-

creased levels of UCP2 to counteract such effect.

Altogether, our results suggest that age-induced alterations

in reproductive function may be caused by testicular mito-

chondrial dysfunction in agreement with the reported de-

creased fertility in aged individuals. This decrease is

correlated with an increase in proton leak and UCP2 levels,

which could possibly serve as a protective effect.
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