SoftwareX 14 (2021) 100694

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

Fast-DENSER: Fast Deep Evolutionary Network Structured R

Representation

Check for
updates

Filipe Assuncdo *, Nuno Lourenco, Bernardete Ribeiro, Penousal Machado

University of Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 28 May 2019

Received in revised form 30 September 2020
Accepted 1 April 2021

Keywords:

Artificial Neural Networks
Automated machine learning
NeuroEvolution

This paper introduces a grammar-based general purpose framework for the automatic search and
deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast
Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously
optimising the topology, learning strategy and any other required hyper-parameters (e.g., data
pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object
recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed
and tested in Python3, and made available as a library. A simple and easy to follow example is
described for the automatic search of CNNs for the Fashion-MNIST benchmark.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies

If available Link to developer documentation/manual
Support email for questions

v2.1.0

https://github.com/ElsevierSoftwareX/SOFTX_2019_192

Apache License, 2.0

git

Python3.7

CUDA > 10, CuDNN > 7, tensorflow > 2.0 (with GPU support), keras, scipy,
sklearn, jsmin, Pillow

https://github.com/fillassuncao/fast-denser3

fga@dei.uc.pt

1. Motivation and significance

The normal approach to the use of Artificial Neural Network
(ANN) involves a cyclic manual trial-and-error process where
the user optimises the: (i) topology of the network, i.e., type,
position, and hyper-parameters of each layer; and (ii) the learning
algorithm and its hyper-parameters. The problem is that the
topology and learning strategy are not independent from each
other. Moreover, when we require DANNs, the number of op-
timisable hyper-parameters can easily reach thousands or even
millions.

To overcome the difficulty of deploying DANNs we can resort
to NeuroEvolution (NE): a set of methods that apply Evolution-
ary Computation (EC) to the automatic optimisation of ANNs.

* Corresponding author.
E-mail addresses: fga@dei.uc.pt (Filipe Assungdo), naml@dei.uc.pt
(Nuno Lourengo), bribeiro@dei.uc.pt (Bernardete Ribeiro), machado@dei.uc.pt
(Penousal Machado).

https://doi.org/10.1016/j.s0ftx.2021.100694

The current paper focuses on a NE approach known as Fast-
DENSER [1,2]: a variant of Deep Evolutionary Network Struc-
tured Representation (DENSER) [3]. The main advantage of Fast-
DENSER over other NE methods is that not only it can generate
high performing networks, but it does so in a fraction of the time,
and using significantly less computational resources. Compared
to the standard DENSER implementation, Fast-DENSER reports a
speedup of 20x, without compromising the performance of the
found solutions. In addition, Fast-DENSER is easy to use by a
non-expert user: all the parameters and settings are defined in a
text human-readable format. The software is flexible and easy to
extend, giving the user the possibility to define new layers and/or
operators.

The tool described in this paper has been successfully applied
to automate the search for CNNs for object recognition tasks [1,2],
where it generated networks that surpass or are competitive with
the performance of other automatic methods, and that surpass
the performance of human-designed models. Experiments have

2352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100694
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100694&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_192
https://github.com/fillassuncao/fast-denser3
mailto:fga@dei.uc.pt
mailto:fga@dei.uc.pt
mailto:naml@dei.uc.pt
mailto:bribeiro@dei.uc.pt
mailto:machado@dei.uc.pt
https://doi.org/10.1016/j.softx.2021.100694
http://creativecommons.org/licenses/by/4.0/

Filipe Assungdo, Nuno Lourengo, Bernardete Ribeiro et al.

also been conducted in a problem from the physics domain, with
the goal to distinguish between ground impact patterns of gamma
and proton radiations [4]. The generated networks surpassed by a
factor of 2 the performance of previous classic statistical methods.

2. Software description

The current section describes the architecture of the Fast-
DENSER framework. The main objective and functionality of this
library is to automate the search for DANNs. An example of
the application of the framework to search for DANNs for a
classification problem is described in Section 3.

The framework is based on EC, and thus a set of individuals
(population) is evolved throughout a defined number of genera-
tions. The individuals encode DANNs and need to be mapped into
interpretable models to assess their quality (fitness). To promote
evolution from one generation to the next mutations are applied
to the population. In particular, in Fast-DENSER the evolutionary
engine is a (1+A)-Evolutionary Strategy (ES): the next generation
is formed by the best individual (elite), and A mutations of it.
For an in-depth description of the evolutionary search procedure
refer to [1]

To map the individuals to interpretable models we resort
to Keras [5] with Tensforflow [6] background. The framework
requires the definition of two major inputs: (i) the network
structure that establishes the enabled sequence of evolutionary
units; and (ii) the grammar that defines the search space, i.e., lay-
ers and parameters. These two components are further detailed
in the upcoming sub-sections. There are additional parameters
that are enumerated in the framework GitHub page, which can
be found at https://github.com/fillassuncao/fast-denser3. Fig. 1
shows the interaction between the evolutionary cycle and the in-
puts, and the mapping from the individuals into trainable DANNs
for quality assessment.

The output of the framework is a fully-trained DANN, tailored
to the considered problem. The network is made available as a
Keras/Tensorflow model, but there is also a file specifying the
structure and all network parameters (including weights) so that
the user can later deploy the model in any other framework of
his/her choice. Intermediate files are also generated throughout
generations. In particular, there is a file for each generation;
this file, among other properties, reports the phenotype (i.e., the
actual network), fitness value, number of trainable parameters,
and training time of each of the individuals of the population.

2.1. Network structure

The network structure is divided into 3 parts: (i) the hidden-
layers; (ii) the output; and (iii) the macro blocks. The first part
(hidden-layers) sets the sequence of evolutionary units that the
framework can use to build DANNS, and is defined by the user as
an ordered list of evolutionary units where each position stores
the grammar non-terminal symbols, and the minimum and max-
imum number of evolutionary units of that type. The output sets
the rule that should be used to form the output layer. Finally, the
macro blocks consider the overall settings of the network, such
as, the learning strategy to be used or the data pre-processing
or augmentation policies. Together, the network structure and
the grammar define the search space. An example of the hidden-
layers, output, and macro blocks is respectively, [(features, 1, 10),
(classification, 1, 10)]; softmax; and [learning]. The non-terminals
require a one-to-one mapping to the grammar (discussed next).
That is, the formed networks can have between 1 and 10 feature-
related layers, and between 1 and 10 classification-related layers,
that are followed by a softmax layer. The learning strategy is also
evolved.

SoftwareX 14 (2021) 100694
2.2. Grammar

In Fast-DENSER the domain is defined by means of a Backus-
Naur form (BNF) grammar that encodes the hyper-parameters
of each evolutionary unit. A grammar can be formally defined
by a 4-tuple: G = (N, T,P,S), where (i) N is the set of non-
terminal symbols; (ii) T is the set of terminal symbols; (iii) P
is the set of production rules of the form x = y,x € N
and y € NUT*; and (iv) S is the initial symbol. The | denotes
different possibilities for the expansion of a non-terminal symbol.
A partial example of a grammar is shown in Fig. 2; the complete
grammar can be found in https://github.com/fillassuncao/fast-
denser3/blob/master/example/cnn.grammar. From the example,
it is perceivable that for the expansion of the features non-
terminal symbol, the convolution and pooling layers are repeated
twice. This choice was made because all the expansion possibil-
ities have the same probability of being selected. However, we
want to bias the decision towards convolution and pooling layers.
The non-terminals of the network structure are used as starting
symbols for the encoding of the structure of the networks. The
hyper-parameters can be either integer, float, or closed choice.
The integer and float are parameterised using the block [param-
eter_name, type, num_values, min_value, max_value] (e.g., num-
filters in line 4); the closed choice parameters are parameterised
using the grammatical expansions (e.g., padding in line 7).

The evolutionary units encoding layers must start by layer:
layer_type (e.g., layer:fc in line 12); the evolutionary units encod-
ing the learning strategy must start by learning:learning_algori-
thm (e.g., learning:gradient-descent in line 16). Currently, we
support the following layers: convolutional (conv), max-pooling
(max-pool), average-pooling (avg-pool), fully-connected (fc), dro-
pout (drop), and batch normalisation (batch-norm); and the fol-
lowing learning algorithms: gradient-descent, rmsprop, and adam.
Nonetheless, to extend the framework to deal with other layer
types, and/or learning algorithms, the user just needs to add
the mapping code in the utils.py file /assemble_network and/or
assemble_optimiser functions. An example of the extension to
new layers is shown in the GitHub’ page.

3. Illustrative example

To illustrate the functionalities of the framework we will ad-
dress the evolution of CNNs for the Fashion-MNIST [7]: a dataset
composed by greyscale fashion items of 10 independent classes.
To promote the evolution of CNNs for the Fashion-MNIST dataset
we use the grammar of Fig. 2, the outer-level structure [(features,
1, 30), (classification, 1, 10)], with the softmax to encode the
output. The learning strategy is also evolved (learning production
rule of the grammar).

To initialise the search we execute:

python —m fast_denser.engine —d fashion—mnist
—c config.json —g cnn.grammar

where -d, -c, and -g respectively set the dataset, and the paths
to the configuration and grammar files. The network structure is
one of the parameters of the configuration file. There is another
optional input parameter, -r, that sets which run we want to
perform (defaults to 0). Docker image files are available at https:
//hub.docker.com/r/fillassuncao/f-denser.

The intermediate evolution files with statistics on each gen-
eration are stored by default in a folder called experiments (set
in the config.json file), where there is a sub-folder for each run.
Each file keeps information about the unique identifier of the
individual, phenotype, fitness value, metrics (e.g., training and
validation loss and accuracy), number of trainable parameters,
number of performed training epochs, maximum allowed training

https://github.com/fillassuncao/fast-denser3
https://github.com/fillassuncao/fast-denser3/blob/master/example/cnn.grammar
https://github.com/fillassuncao/fast-denser3/blob/master/example/cnn.grammar
https://github.com/fillassuncao/fast-denser3/blob/master/example/cnn.grammar
https://hub.docker.com/r/fillassuncao/f-denser
https://hub.docker.com/r/fillassuncao/f-denser
https://hub.docker.com/r/fillassuncao/f-denser

Filipe Assungdo, Nuno Lourengo, Bernardete Ribeiro et al.

Fast-DENSER

SoftwareX 14 (2021) 100694

Evolutionary Cycle

Evaluation

User Inputs

Network Structure

Evaluation
Mapping

Grammar Population

Parent Selection
Training
Config File
Variation Operators
Fitness

Output

Keras Model ANN

Fig. 1. Architecture of the framework.

<features> ::= <convolution> | <convolution> (1)

| <pooling> | <pooling> (2)

| <dropout> | <batch-norm> (3)

<convolution> ::=layer:conv [num-filters,int,1,32,256] (4)
[filter-shape,int,1,2,5] [stride,int,1,1,3] (5)

<padding> <activation> <bias> (6)

<padding> ::= padding:same | padding:valid (7)
<classification> ::= <fully-connected> | <dropout> (8)
<fully-connected> ::= layer:fc <activation> (9)
[num-units,int,1,128,2048 <bias> (10)

<bias> ::= bias:True | bias:False (11)
<softmax> ::=layer:fc act:softmax num-units:2 bias: True (12)
<learning> ::= <bp> <stop> [batch_size,int,1,50,300] (13)

| <rmsprop> <stop> [batch_size,int,1,50,300] (14)

| <adam> <stop> [batch_size,int,1,50,300] (15)

<bp> ::=learning:gradient-descent [Ir,float,1,0.0001,0.1] (16)
[momentum,float,1,0.68,0.99] (17)
[decay,float,1,0.000001,0.001] <nesterov> (18)

<stop> ::=[early_stop,int,1,5,20] (19)

Fig. 2. Example of a grammar for encoding CNNs.

time, and performed training time; the files are formatted in
JSON. The best individual found so far is stored in the best.h5 file
- a model that can be loaded to Keras using the following code
(also in Python):

from keras.models import load_model
model = load_model(‘best.h5")

which loads the topology and weights of the best generated
model. New instances can be labelled using the predict method,
ie.:

import numpy as np
label_confidences = model. predict(instance)
label = np.argmax(label_confidences)

4. Impact

Fast-DENSER is a framework that promotes the automatic
generation of DANNSs, and thus avoids the user the burden of
having to manually optimise a network that can solve a specific
problem. Therefore it enables non-expert users to consider ANNs
in their domains, and helps expert users tuning their networks
and obtaining solutions that they would usually do not think of.

The framework is easy to use: all the parameters are defined in
a human-readable format, and the output is a fully-trained DANN
that can be deployed right-off evolution. This is an advantage
comparing to the majority of other NE frameworks; they tend
to evaluate the candidate solutions for a limited amount of time,
and thus require further training by the end of the evolutionary
search. This is a barrier to non-expert users. In addition, according
to Baldominos et al. [8], Fast-DENSER uses an interesting repre-
sentation scheme, and is categorised as a settlement approach,
i.e., a stable work that has proved to effectively evolve DANNs.

Despite considering only a set of layers and learning algo-
rithms the framework can be easily extended. The core is kept
the same independently of the considered evolutionary units. The
user just needs to add the code to map between the grammar
and the Keras model, which is a simple parsing routine, similar
to the mappings that are already in the code. Examples on how
to extend the available layers and evaluation metrics are available
in the GitHub’s readme.

The framework has been widely tested and debugged, and
has led to the generation of deep networks to numerous object
recognition benchmarks [1,3]. Further, in the physics domain it
has helped finding models that improve by a factor of 2 the
gamma/hadron detection based on the ground impact [4]. In [3]
we demonstrate that our approach is competitive with other

Filipe Assungdo, Nuno Lourenco, Bernardete Ribeiro et al.

automatic (evolutionary and non-evolutionary) state-of-the-art
methods, and in some cases even surpasses the performance of
the best networks generated by the state-of-the-art approaches. A
comparison with hand-designed networks is also conducted, once
again showing the advantage of automation.

5. Conclusions

This paper describes the Fast-DENSER framework: a general-
purpose tool for the automatic generation of DANNSs of different
structure, and to different problems. To adapt the method to dif-
ferent domains and network topologies the user is just required
to change the network structure, and the grammar — the two
variables that set the search space. An illustrative example on the
evolution of CNNs for the Fashion-MNIST dataset is presented.

Future work will consider the expansion of the framework
to address incremental and multi-task learning, i.e., it is our
objective to help the user to cumulatively learn to solve new tasks
but, without forgetting how to solve the previous ones. We will
also integrate cloud computing platforms (e.g., Microsoft Azure,
or Amazon AWS), to enable those users that do not have access to
Graphics Processing Units (GPUs) to perform the trains on cloud
services, and consequently speedup evolution. The first experi-
ments on the expansion to incremental learning indicate that it is
possible to speedup the search procedure, without compromising
the end performance [9].

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

SoftwareX 14 (2021) 100694
Acknowledgements

This work is funded by national funds through the FCT — Foun-
dation for Science and Technology, I.P., within the scope of the
project CISUC - UID/CEC/ 00326/2020 and under the Grant No.:
SFRH/BD/114865/2016, and by European Social Fund, through the
Regional Operational Program Centro 2020.

References

[1] Assungdo F, Lourengo N, Machado P, Ribeiro B. Fast DENSER: Efficient deep
neuroevolution. In: European conference on genetic programming. Springer;
2019, p. 197-212.

[2] Assungdo F, Lourengo N, Machado P, Ribeiro B. Fast-DENSER++: Evolving
fully-trained deep artificial neural networks. 2019, arXiv preprint arXiv:
1905.02969.

[3] Assungdo F, Lourengo N, Machado P, Ribeiro B. DENSER: Deep evolu-
tionary network structured representation. Genet Program Evolvable Mach
2019;20(1):5-35. http://dx.doi.org/10.1007/s10710-018-9339-y.

[4] Assungdo F, Correia], Concei¢do R, Pimenta MJM, Tomé B, Lourengo N,
Machado P. Automatic design of artificial neural networks for gamma-ray
detection. [EEE Access 2019;7:110531-40. http://dx.doi.org/10.1109/ACCESS.
2019.2933947.

[5] Chollet F, et al. Keras. 2015, https://keras.io.

[6] Abadi M, et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. 2015.

[7] Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. 2017, arXiv:cs.LG/1708.07747.

[8] Baldominos A, Saez Y, Isasi P. On the automated, evolutionary design of
neural networks: Past, present, and future. Neural Comput Appl 2019;1-27.

[9] Assungdo F, Lourenco N, Ribeiro B, Machado P. Incremental evolution and
development of deep artificial neural networks. In: Hu T, Lourengo N, Med-
vet E, Divina F, editors. Genetic programming. Cham: Springer International
Publishing; 2020, p. 35-51.

http://refhub.elsevier.com/S2352-7110(21)00039-X/sb1
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb1
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb1
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb1
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb1
http://arxiv.org/abs/1905.02969
http://arxiv.org/abs/1905.02969
http://arxiv.org/abs/1905.02969
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1109/ACCESS.2019.2933947
http://dx.doi.org/10.1109/ACCESS.2019.2933947
http://dx.doi.org/10.1109/ACCESS.2019.2933947
https://keras.io
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb6
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb6
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb6
http://arxiv.org/abs/cs.LG/1708.07747
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb8
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb8
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb8
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9
http://refhub.elsevier.com/S2352-7110(21)00039-X/sb9

	Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
	Motivation and significance
	Software description
	Network structure
	Grammar

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

