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ABSTRACT Epiretinal membrane (ERM) is an eye disease that affects 7% of the world population,
with a higher incidence in people over 75 years old. If left untreated, it can lead to complications in the
central vision, resulting in severe vision loss. Early detection is important for progress follow-up, treatment
monitoring, and to avoid total vision loss. Optical coherence tomography, a non-invasive retina imaging
technique, can be used for effective detection and monitoring of this condition. To date, automatic methods
to detect ERM have received little attention in the research literature. This article describes the application
of deep learning to the automatic detection of ERM. The proposed solution is based on four widely used
convolutional neural network architectures adapted to the task using transfer learning, and fine-tuned with a
proprietary dataset. The architectures were specialized by optimizing the network hyperparameters and two
loss functions, cross-entropy and focal loss. A detailed description of themethods is provided, complemented
with an exhaustive evaluation of their performance. Overall, the methods reached an accuracy of 99.7%, with
sensitivity and specificity of 99.47% and 99.93%, respectively. The results showed that transfer learning
enabled a successful use of deep learning to detect ERM in optical coherence tomography retinal images,
even when only relatively small training datasets are available.

INDEX TERMS Artificial intelligence, deep learning, epiretinal membrane, macular puker, neural networks,
optical coherence tomography, transfer learning.

I. INTRODUCTION
Epiretinal Membrane (ERM) is an ophthalmic condition that
burdens 7% of the total human population, being a major
problem in people older than 75 years [1]–[3]. Even though
most cases are asymptomatic during the initial stages of
the disease, its early detection and treatment can help to
delay or avoid a negative evolution. Unfortunately, due to the
increasing numbers of elderly people inmodern societies, and
the relative scarcity of medical ophthalmologists, thorough
screening for ERM is not always possible. A solution to this
logistic problem involves the use of automatic image anal-
ysis techniques in computer-aided diagnosis (CAD) systems
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tools, to aid non-medical ophthalmology technicians perform
pre-clinical screenings.

In recent years, convolutional neural networks (CNNs),
an important part of deep learning (DL) techniques, have
transformed the landscape of image-based CAD systems.
CNNs revolutionized the design of systems based on image
classification by learning features directly from sample data,
reaching higher levels of classification performance than
those of hand-crafted solutions. However, one of the main
requirements for these architectures to produce outstanding
results is the availability of large number of labeled samples
to use in the learning process. This requirement is a major
obstacle to the application of CNNs to ophthalmic problems,
since the availability of large datasets of retinal images,
annotated by experts is limited. To overcome this limitation,
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transfer learning techniques have become the best option to
access the benefits of DL when small amounts of data are
available.

Different modalities of retinal images and DL tech-
niques have been extensively used in the literature, mostly
on the detection of diabetic retinopathy [4]–[6], detection
and assessment of macular edema and fluid accumulation
[7]–[9], segmentation of retinal layers [10]–[12] and blood
vessels [13]–[15], among others. In contrast, there are few
works concerned with automatic ERM detection. A literature
review identified some research works that address this prob-
lem, [16]–[20]. A common factor to these studies is the use
optical coherence tomography (OCT) retinal images as the
source of information for the detection algorithm. Regarding
methodology, two of the studies apply traditional machine
learning approaches by extracting hand-crafted features, two
use CNNs, and one presents a comparison between traditional
machine learning and deep learning.

While these works advanced the state-of-the-art in ERM
detection, some questions or design options were not fully
addressed or explored like: (a) the effect of different CNN
models and different hyperparameters on the performance of
the methods, (b) the use of datasets containing OCT images
captured at widely separated times, by different makes and
models of OCT scanners, (c) the detection of ERM in images
from patients with other eye diseases, (d) the detection of
ERM in images previously identified by experienced medical
ophthalmologist as difficult to assess, (e) the detection of
ERM in images of early-stage ERM cases. Compounding
these gaps it was observed that some of the works reviewed
provided little or no information about the training process,
hardware and software used, as well as hyperparameters and
model choice methodologies.

The present work contributes to cover these gaps while
furthering the knowledge about the problem at hand and
providing a ready to use solution. Trained models are avail-
able in a github repository, including documentation to pre-
dict whether an OCT B-scan shows sign of ERM. These
goals are fulfilled by providing a detailed description of
all the steps followed to develop and test the solution
proposed.

The major contributions and differentiating aspects of this
research work are as follows:

• Use dataset with image mix close to real-life clinical
data: Inclusion of different stages of ERM, from early to
advanced stage. Inclusion of many images from patients
with more than one condition in the same eye.

• Explore different CNN architectures: four widely used
CNN architectures (AlexNet, SqueezeNet, ResNet and
VGGNet) were evaluated following transfer-learning
and fine-tuning methodologies.

• Thorough architecture optimizations and tests: the CNN
based ERM detectors were optimized and their perfor-
mance assessed following well documented steps with
exhaustive data presented and analyzed.

FIGURE 1. (a) Retina with ERM: retinal surface and vasculature is affected
by ERM. Red circles indicate the areas where the abnormality can be
seen. (b) Normal fundus images.

• Use diversified dataset: dataset images were obtained at
different times with different Heidelberg Spectralis and
Zeiss Cirrus devices operated by different technicians.

• Evaluated alternative loss functions: besides the com-
monly used cross-entropy loss function, a weighted loss
function designed to down-weigh the impact of the
dataset majority class was tested.

• Propose fully evaluated high performance ERM detec-
tion algorithms: the central major contribution of this
work are the state-of-the-art ERM detection algorithms
that were trained and evaluated as described in the next
sections.

The remainder of this article is broken down into the
following sections. In Section 2, we provide some medi-
cal and epidemiological information about ERM, review the
techniques used in our experiments and describe the related
works found in the literature. Section 3 provides an in-depth
explanation of the methods proposed for ERM detection.
In section 4 we present and analyze the results of the exper-
iments and discuss the more important findings. Finally,
Section 5 concludes the article by summing-up the work and
outlining future research explorations.

II. BACKGROUND INFORMATION
This section first provides information about the context of
this work describing the underlying problem of ERM disease
early detection. It then introduces the concepts to be used in
the development of this work and describes summarily the
few recent studies found in the literature, that propose ERM
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FIGURE 2. Training set retinal OCT B-scans (a) ERM and (b) Normal. Arrows indicate the location of epiretinal membranes.

automatic detection methods designed to operate on OCT
images.

A. EPIRETINAL MEMBRANE
Epiretinal Membrane (ERM), also known as macular pucker,
consists on the development of a thin layer of glial cells over
the central retina or macula. When this membrane grows it
can cause retinal surface wrinkling or traction and vascular
changes, with subsequent vision alterations [21]. The disease
can be caused by trauma or illnesses such as diabetic retinopa-
thy, retinal vein thrombosis, retinal tear, retinal detachment,
and posterior vitreous detachment, among others. Fig. 1
presents four fundus retinal images, two of them showing the
effects of ERM on the retinal surface.

ERM is a common cause of visual acuity loss and image
distortion, a condition known as metamorphopsia. ERM
affects 7% of the general population [1], mostly individuals
over 50 years old [2]. It is most common in patients above
75, with 20% of patients in this group showing evidence of
ERM [3], but when it appears in people over 60, it is usually
idiopathic [1].

The symptoms of ERM depend on the location, opac-
ity, contraction magnitude, and degree of distortion that the
membrane induces in the retina. Most patients with ERM
are asymptomatic, but for some of them, symptoms such
as double or blurry central vision, distortion of objects size
(macropsia or micropsia), and waves in straight forms may
appear. The treatment for ERM is known as vitrectomy with
membrane peeling, a surgical intervention that peels off the
membrane. After membrane removal, most patients recover
the lost vision [3], [22]. Early-stage detection of ERM usu-
ally has a good prognosis because it enables timely treat-
ment [23]. An imaging modality that is useful to assess,
diagnose, and monitor the development and treatment of
ERM is OCT, a non-invasive technology that uses light to
generate cross-sectional images of the retina. OCT images
allow ophthalmologists to analyze the retinal structure and

detect morphological alterations, like changes in thickness
and form of the retina and its layers. In an OCT B-scan, ERM
is visible as a hyperreflective layer over the internal limiting
membrane (ILM) of the retina. This reflective layer usually
appears as a non-smooth line and in many cases, the under-
lying retinal layers present physical distortions. Additionally,
cystoid spaces between the membrane and the ILM can be
found [3], [22]. Fig. 2a illustrates three examples of retinal
OCT images with ERM, where the arrows indicate the sec-
tions where the membrane is visible. Fig. 2b shows examples
of OCT images with no signs of ERM. These images belong
to the dataset used in this research work.

B. CONVOLUTIONAL NEURAL NETWORKS
ARCHITECTURES
Convolutional neural networks are signal processing architec-
tures based on convolution operations and neural networks,
which can be trained using machine learning (ML) tech-
niques. CNNs are designed to compute color, spatial, and
temporal domain features of image and video signals, which
are then fed to additional processing layers to classify the
inputs or detect certain conditions. CNNs have proven to be
effective for visual recognition tasks [24]–[26], autonomous
driving [27], among many others. CNNs are organized as
stacks of layers, usually an input layer, multiple hidden lay-
ers, an output layer. Hidden layers are several convolutional
layers followed by end-of-chain fully connected layers for
the classification or regression computation. Fig. 3 shows a
basic structure of a CNN, with two convolutional layers, one
pooling layer, and one fully connected layer.

The convolutional layers is where most of the processing
takes place. These layers extract features by using filters
of different sizes which are convolved with the output of a
previous layer, as shown in Fig. 4.

In general, the final section of a CNN is a fully connected
network, which performs the classification by processing
the feature maps produced by the last convolutional layer.
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FIGURE 3. Schematic representation of a basic convolutional network.

FIGURE 4. Feature computation through 2D convolution.

In between convolutional layers, there can be other types of
layers such as pooling and dropout layers. Pooling layers
reduce the amount of data to be processed by the network
and introduce scale invariance by subsampling intermediate
feature maps, while dropout layers avoid overfitting of the
network.

Before CNNs, the features used as inputs by classifiers
were designed by experts, usually image processing spe-
cialists knowledgeable in the classification problem to be
solved. In contrast, when using CNNs, during training the
network weights and biases of each layer are gradually
adjusted to ensure that the collective action of the filters, and
other processing operations, extract features that optimize the
performance of the classifier. Since the number of network
parameters and coefficients is large, it is necessary to use
large sets of training data (classification examples in the form
of image and class label pairs) to have the training algorithm
(usually backpropagation) do its job well. The chain of con-
volutional layers can be seen as performing a transformation
that produces features at different levels of abstraction. As an
example, the first layers can detect edges and lines, middle
layers round edges and corners that are part of objects, and
the upper layers can detect larger parts or complete objects.

The state-of-the-art models for image classification that
won the ImageNet Large Scale Visual Recognition Chal-
lenges (ILSVRC) from 2012 to 2017 were all based on CNN
architectures, a fact that clearly shows the advantages of this
type of image classifiers. These models were trained and
evaluated on ImageNet, a very large image dataset containing
around fourteen million samples manually sorted into about
1000 classes [28], [29].

In this work, we use some of these CNN architectures,
AlexNet, SqueezeNet, VGGNet, and ResNet, that due to their

good performance have contributed to the popularization of
deep learning. AlexNet was introduced by Krizhevsky et al.
and won the ILSRVC in 2011. The version used in the
challenge consisted of 8 layers, 5 of which were convolu-
tional layers followed by the Rectified Linear Unit (ReLU)
as activation function, and the last 3 layers were fully con-
nected. In total the network comprises about 60 million
parameters. The innovation brought by AlexNet was the use
of the non-linear ReLU function as the activation function,
instead of the common tanh or sigmoid functions, resulting
in faster training [30]. This model marked a milestone in the
development of CNNs and was influential to the advances of
subsequent deeper networks with better performance.

SqueezeNet is based on AlexNet, but it uses fifty times
fewer parameters, a reduction that does not affect perfor-
mance while speeding up computation. This network is based
on Fire Modules, which consist of two types of convolutional
layers: (i) squeeze layer and (ii) expand layer. The squeeze
layer uses 1 × 1 filters, and the expand layer 1 × 1 and
3× 3 filters. The entire architecture is structured as a convo-
lutional layer at the beginning, followed by 8 Fire modules,
ending with convolutional layers instead of fully connected
layers [31].

VGGNet is a deeper network architecture presented at the
2014 ILSRVC by the Visual Geometry Group at Oxford.
It was the 1st runner-up in that year’s competition for clas-
sification. The main novelty of this network is the use of
small 3 × 3 filters instead of the 11 × 11 and 5 × 5 used in
AlexNet. This change decreased the number of parameters in
the individual convolutional layers. The two versions, VGG-
16 and VGG-19 consisted of 16 and 19 layers, respectively.
In both cases, the 3 last layers were fully connected, and the
first 13 and 16 layers, respectively, were convolutional [32].

One problem that affects the previous CNNs models is the
loss of the first layers’ information as we go deeper in the
layer stack. To overcome this problem, in 2015, He et al.
presented ResNet, a very deep network that introduced a
cross-layer connection that performs identity mapping. This
connection consists in adding the output of a previous layer
after one or more (two in the paper) weight layers, instead
of having a sequential input/output model. Fig. 5 shows a
building block with this type of connection. The model of the
entire network consists of several such building blocks inter-
connected. Depending on the number of convolutional layers,
several versions of ResNet have been defined, for instance
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-
152 which won the ILSVRC in 2015 [33] competition.

Table 1 lists top-5 performing image classification accu-
racies for some of the most prominent convolutional neural
network architectures and respective parameter counts.

C. TRANSFER LEARNING
One of the requirements to get outstanding results fromCNNs
is the availability of large quantities of data properly labeled.
In some cases like medical applications, for a variety of
reasons it is not easy to obtain large datasets labeled by
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FIGURE 5. Building block [33] of ResNet networks.

TABLE 1. CNNs models top-5 accuracy (adapted from [34]).

specialists. Transfer Learning is a network adaptation tech-
nique that helps to overcome these limitations by using mod-
els that were pre-trained with large generic datasets, which
are then specialized by fine-tuning to solve a problem from
another (related) domain. Besides easing the data availability
constraints, transfer learning also reduces the computational
cost of training a model. Usually, fine-tuning is applied only
to the classifier stages, adapting the models to get the number
of classes that the application requires, but it is also possible
to adjust the weights and biases in one or more intermediate
layers. During this limited retraining process, the model is
adapted to the characteristics of the dataset of interest [35].

Several research reports describe the successful applica-
tion of transfer learning to solve medical diagnosis prob-
lems involving automated image analysis, with the most
common reason for using transfer learning being the lim-
ited access to labeled data [36]–[39]. The advantages of this
approach are also reported in some of the works reviewed
by Zou et al. [40]. This article presents a classification of
the methods used in CAD systems for automatic breast can-
cer diagnosis, and transfer learning has its own subcategory
because of its numerous applications. Another example of
transfer learning is the work by Liang and Zheng [36], that
developed amethod to diagnose pneumonia in children, using
a self-designed CNN model based in residual blocks. The
model was pre-trained in-house with a large dataset compris-

ing 112,120 chest X-ray images belonging to 14 classes. After
the pre-training process, it was fine-tuned using 5,856 chil-
dren chest X-ray scans. The recall value reported was 96.7%.

Hon et al. also use transfer learning to classify mag-
netic resonance imaging (MRI) images to detect Alzheimer’s
Disease (AD). Two CNN architectures were used, VGG-16
and Inception V4, pre-trained with ImageNet dataset and
fine-tuned with the author’s own 6,400 specialized image
dataset. The accuracy improved from 74.12% when training
the VGG-16 model from zero state, to 92.3% when using
transfer learning [37]. These and other works show that trans-
fer learning is an important technique that could successfully
solve the labeled data availability problems that affect many
real-world application areas.

D. CLASS IMBALANCE PROBLEM
In classification problems, it is not uncommon for datasets
to have very skewed class distributions. In the medical field
and for image-based diagnosis, it is easier to find normal
images, or where the disease to be detected is not present
than images showing pathology signs. Image datasets, where
the number of samples of one class is greater than the num-
ber of samples of another class, can be heavily imbalanced.
If used in training deep learning models, this imbalance can
cause low classification or detection performance. This prob-
lem arises because the training process updates the network
weights to improve the classification of the majority class,
down weighing the minority class classification errors. This
problem can have severe negative consequences in the case
of medical applications as it can lead to classifiers with high
false-negative rates.

The Focal Loss is a type of weighted loss function that can
be used to reduce the problem of dataset imbalance during
the training/fine-tuning process of the models. The operating
principle of the focal loss is minimizing the contribution of
correctly classified and majority class samples and maximiz-
ing that of those erroneously classified and minority class to
the loss function value. This loss function was introduced
by Lin et al. [41], and it is based on the cross-entropy loss
function for binary classification. Provided that for binary
classification, we defined as p the probability that a sample
belongs to the positive class or the class with label equals to 1,
the cross-entropy (CE) for binary classification is defined
by (1).

CE = −log(pt )

pt =

{
p if ground truth is 1
1− p otherwise

(1)

The focal loss adds two factors to the loss function: (i) a
modulating factor (1−pt )γ to reduce the impact of well (easy)
classified samples, and (ii) a balancing factor α to increase the
contribution of theminority class. The Focal loss is calculated
according to (2).

FL = αt (1− pt )γCE
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where :

αt =

{
α if ground truth is 1
1− α otherwise

(2)

In [41], the focal loss was used for dense object detec-
tion, with good results reported for γ between 0.5 and 5
and α between 0.25 and 0.75, with the best result obtained
for γ = 2 and α = 0.25. Other studies have reported
improvements in performance when using this weighted loss
function. Tran et al. [42] describe a classifier of lung nod-
ules using deep learning, reporting an accuracy improve-
ment from 95.6% when using cross-entropy loss to 97.2%
when using the focal loss. Similarly, the work published
by Al Rahhal et al. [43] which evaluated the cross-entropy,
over-sampling of the minority class, and the focal loss when
using an imbalanced dataset demonstrated that focal loss
produced better results.

E. STATE OF THE ART ON EPIRETINAL MEMBRANE
AUTOMATIC DETECTION METHODS
Successful application of recent artificial intelligence meth-
ods for classification, detection, and segmentation of image
and video, has allowed researchers to develop systems for
health care applications. Image classification, segmentation,
and detection are the most common tasks when analyzing
medical images, with the most common application being
deciding about the presence or absence of a specific disease.
In the context of eye diseases expressed as retinal anomalies,
researchers have demonstrated the efficacy of deep learning
for the detection of macular edema [39], diabetic retinopa-
thy [4], retinal detachments [44], retinopathy of prematu-
rity [45], among others. These computer-aided systems help
health care professionals diagnose and decide starting treat-
ment of these diseases in a timely and efficient manner.

There are not many automatic methods for the detec-
tion of ERM in OCT retinal images described in the
literature. The relatively few studies available are based
on two approaches for feature extraction, traditional and
involving deep learning. Baamonde et al. [16], [18] and
Fang et al. [46] reported methods based on conventional fea-
ture extraction and machine learning. Lo et al. [20] and
Lu et al. [17] proposed deep learning methods to identify
the presence of ERM. Finally, Sonobe et al. [19] compared
support vector machines (SVM) and deep learning tech-
niques using the reconstructed surface of the retina fromOCT
images to detect ERM.

Baamonde et al. in their two works [16] and [18], formu-
lated the detection of ERM as a classification problem based
onmanually pre-defined features andmachine learningmeth-
ods. In both studies, the process consisted of three main
steps: (i) pre-processing, (ii) feature definition and extraction,
and (iii) classification. Image pre-processing involved the
definition of the region of interest. The algorithm extracted
features reflecting image characteristics like luminosity, tex-
ture, contrast, among others, by processing sets of 17×17 [18]
or 13 × 13 [16] pixels centered on ILM pixels. For the

classification stage, they used classifiers such as Multilayer
Perceptron, Naïve Bayes, K-nearest neighbors, and Random
Forests. To train the classifiers of [16] 129 OCT B-scans
were used whereas in [18] 285 were used. Reported disease
detection accuracies were 91.25% and 89.35%, respectively.

The study by Lu et al. [17] applied deep learning tech-
niques to detect four pathologies: cystoid macular edema,
serous detachment, ERM, and macular hole. For ERM dis-
ease, the dataset consisted of 20,458 OCT images, from
which 2,393 images had ERM. The authors trained a convo-
lutional neural network using transfer learning and reported
95.7% of accuracy for ERM detection. However, the experi-
ment is limited to only single-disease images which are rare
in clinical practice as most patients are elderly and quite often
have other ophthalmic problems. The ERM detection perfor-
mance on images with multiple diseases is not documented
with only the global value of sensitivity being reported.

Similarly, Lo et al. [20] proposed a method to detect
ERM at a medical specialist level. A ResNet-101 architecture
was employed with a dataset comprising 3,618 OCT images
(2,171 normal and 1,447 ERM). The authors reported 98.1%
accuracy and 0.99 AUROC. The study did not consider the
different stages of ERM, and the images that presented incon-
sistent labeling across annotators were discarded. The authors
reported that the classifier of this study failed with images
showing early stage ERM signs.

Sonobe et al. [19] presented a comparison between the
performance of support vector machines and deep learning
in the detection of ERM using 3D surfaces reconstructed
from OCTs. The inputs for both classifiers were 529 3D
reconstructions of the retinal surface. The AUROC of the
deep learning model was 0.993 surpassing the AUROC
value of 0.988 obtained when using SVM. Unfortunately the
authors did not provide any details about hardware, software,
and training hyperparameters used in the study.

Taken together, all these studies indicate that the use of
DL techniques is appropriate to detect ERM. However, most
have some shortcomings: (i) most use images sourced from
a single device, (ii) some of them did not perform cross-
validation, (iii) none looked into the class imbalance problem,
and (iv) all evaluated only one network architecture with one
set of hyperparameters, and in some cases, did not report the
hyperparameter values.With ourworkwe aimed at improving
this state of affairs, by providing more information about the
performance of CNNs when applied to ERM detection, fully
documenting all the steps followed and analyzing the results
obtained.

III. MATERIALS AND METHODS
We propose to detect ERM on OCT B-scans using CNNs
constructed using a transfer-learning approach. Our method
fine-tunes CNNs pre-trained in the ImageNet dataset to
train a classifier with an imbalanced proprietary dataset.
The detection problem is modeled as a binary classi-
fication task, where the positive and negative classes
denote the presence or absence of ERM, respectively. Four
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TABLE 2. Dataset composition and size.

different pre-trainedCNNarchitectureswere tested: AlexNet,
SqueezeNet, ResNet, and VGGNet, with different sets of
hyperparameters. The next sub-sections describe the dataset,
the algorithm’s development, testing methodology, and the
experiments conducted to evaluate the final classifiers.

A. DATASET
For the development of the present work, anonymized
macula-centered spectral-domain OCT (SD-OCT) B-scans
images were acquired at a local clinic. All OCT images in the
dataset were captured by experienced operators using several
Heidelberg Spectralis or Zeiss Cirrus devices over a large
period of years.

We used a total of 2,160 B-scans from 608 patients.
The dataset was divided into a training subset consisting
of 1,560 B-scans, and a testing subset with 600 B-scans.
The patients in the training set are different from the ones
in the test set. The retinal images were labeled by medical
ophthalmology specialists as showing signs of membrane or
not and assigned to ERM and not-ERM classes, respectively.
Table 2 shows the breakdown of the dataset into the two
classes, showing that 23%of the images in the training dataset
are labeled as ERM and the remaining 77% as not-ERM,
meaning that the dataset is mildly imbalanced.

Train and test images were chosen to cover different cases
of ERM, based on the characterization provided by [21],
in which ERM cases are divided into four stages as shown
in Table 3. Moreover, the dataset included images with ERM
and additional abnormalities such as macular edema, and
intraretinal or subretinal fluid, and images that are difficult
to classify even by human specialists due to noise, lack of
image definition, or simply because membrane development
is in its very early stages. Fig. 6 shows samples with ERM
taken from the dataset at the different development stages,
and Fig.7 illustrates images difficult to classify.
All the images were provided by Centro Cirúrgico de

Coimbra (CCC) and their use in this work was approved
by the Ethics Committee of CCC contingent on the use of
anonymity and secure storage measures.

B. CLASSIFIER ARCHITECTURE
After a thorough and careful study of the performance of the
many CNN architectures described in the literature, AlexNet,
SqueezeNet, ResNet, and VGGNet were evaluated as the
possible basis for designing a classifier able to assign OCT
B-Scan retinal images into either the ERM or the not-ERM
class. All deep learning and ancillary processing were per-
formed using python-based PyTorch (v1.5) framework [47].
The four architectures provided by PyTorch were originally

TABLE 3. ERM stages according to [21].

trained to classify input images into a set of 1,000 different
classes. Since in our application we have two classes, ERM
and not-ERM, the last layer of each network was modified to
have two outputs, corresponding to the desired two classes.

Pytorch implementation of the architectures follows the
specifications briefly mentioned in section II-B. AlexNet
consists of five convolutional layers for feature extraction
and three fully connected layers for classification, as illus-
trated in Fig. 8. For this and the following architectures,
we specify the kernel size in case of convolutional layers;
and the input size, and the output size in the case of fully
connected layers. SqueezeNet starts with a convolutional
layer, followed by 8 fire modules for feature extraction, and at
the end a convolutional layer for classification. Fig. 9 shows
the fire module and the complete architecture of SqueezeNet.
For VGGNet, we used the 19 layers implementation, from
which 16 are convolutional for feature extraction and 3 fully
connected for classification (Fig. 10). Lastly, we used the
101 version of ResNet, with 100 convolutional layers. The
basic building block (BB) for this network is shown in Fig. 11.
ResNet101 starts with a convolutional layer with a 7 × 7
kernel, the next layers are divided into 4 stages: (i) stage 1
with 3 BB, (ii) stage 2 with 4 BB, (iii) stage 3 with 23 BB,
and (iv) stage with 3 BB. At the end of the network, a fully
connected layer receives 2048 features and outputs 2 values
for later use by a softmax function.

All these models were pre-trained using the dataset Ima-
geNet. Since all these CNNs expect the input images to have
resolutions equal to 224 by 224 pixels, and as mentioned
in Table 2, our images are 1024 x 496 pixels, the dataset
images were resized to the target resolution using bilinear
interpolation as implemented in the Image.BILINEAR func-
tion from the pillow library [48]. The general process of
adapting the pre-trained models to our dataset is illustrated
in Fig. 12.

The main two steps are: (i) create a new instance of the
pre-trained model, and (ii) after resizing the images, fine-tune
the model using our training dataset. As a result, we have
a model adjusted to classify OCT images into one of two
classes: ERM or not-ERM. For all cases, the probabilities that
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FIGURE 6. Training set B-Scans at different stages of ERM included in the dataset: (a) Stage 1, (b) Stage 2, (c) Stage 3, and (d) Stage 4. Based on the
characterization provided by [21].

FIGURE 7. Examples of hard to classify OCT retinal images: (a) Normal, arrows indicate the areas that can be confusing for the algorithms, and (b) ERM,
arrows indicate where the ERM is located.

FIGURE 8. AlexNet architecture.

a sample belongs to one class or the other are calculated by
applying softmax to the output of the networks.

C. EXPERIMENTAL SETTINGS
1) HYPERPARAMETER OPTIMIZATION
The pre-trained CNNs were fine-tuned with the stochastic
gradient descent with momentum (SGDM) algorithm. This

optimization algorithm has been demonstrated to bemore sta-
ble and converge faster than other stochastic-gradient-descent
methods [49]. Upon selecting the optimization algorithm,
we determined the optimal set of hyperparameters for each
network by grid search. The search space included two values
of learning rate: 0.001 and 0.0001, two values of momentum:
0.8 and 0.9, and four values of mini-batch size: 8, 16, 32, and
64. Every model was trained for a maximum of 100 epochs
with each of the 16 combinations in the hyperparameter
grid. The number of epochs was determined empirically in
preliminary trials upon recording the number of training steps
the models needed to converge. The network parameters were
updated to minimize the binary cross-entropy loss function.
Table 4 list the hyperparameter values used in the grid search.

2) HANDLING OF THE CLASS IMBALANCE
As it can be seen in Table 2, the distribution of our dataset was
skewed towards the negative class. According to the relevant
literature, handling the class imbalance has been reported to
improve the classification performance [41]–[43]. To verify
this assertion, we conducted an experiment in which the
pre-trained networks were fine-tuned to optimized aweighted
loss function – the focal loss. Besides the hyperparameters
of the SGDM algorithm, the focal loss requires setting two
more hyperparameters: alpha (α) and gamma (γ ). This hyper-
parameters were also determined by a grid search with four
combinations of the following values: (i) α: 0.25 and 0.35,
and (ii) γ : 1.5 and 2.0. To find the best set of hyperparameters
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FIGURE 9. SqueezeNet architecture.

we fine-tuned each of the four pre-trained CNNswith the best
set of hyperparameters of the experiment with the binary-
cross-entropy loss and all the combinations of focal-loss
hyperparameters.

3) FULLY TRAINING THE MODELS
In this study, we took advantage of pre-trained models to
train classifiers for detecting ERM in retinal OCT images
using a relatively small dataset. We chose this approach
based on the increasing empirical evidence about the use of
transfer learning to train deep learning models with limited
annotated data. To objectively assess the impact of transfer
learning on the classification performance, we initialized
the pre-trained models with random weights and trained
them with the best set of hyperparameters found in the
hyperparameter-optimization experiments. To initialized the
network weights we used the Glorot initializer [50]. The
network parameters were updated with the SGDM algorithm
and the loss function was the binary cross-entropy.

D. HARDWARE AND SOFTWARE
For the development of the classifiers in this work, we used
two desktop workstations with the following configurations:
• GPU: NVIDIA GeForce GTX 1070 8GB, CPU: Intel
Core i7-8700K, RAM: 32GB, OS: Windows 10

FIGURE 10. VGG-19 architecture.

FIGURE 11. ResNet basic building block.

FIGURE 12. Transfer learning general process.

• GPU:NVIDIAGeForceGTX1080 Ti 16GB, CPU: Intel
Core i7-8700K, RAM: 32GB, OS: Windows 10.
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TABLE 4. List of hyperparameters values used in the experiments.

The development framework was based on python ver-
sion 3.7 and the machine learning package pytorch version
1.5 as well as the helper libraries NumPy version 1.18.3,
xlsxwriter version 1.2.8, SciPy version 1.4.1, scikit-learn
version 0.22.2.post1, and pandas version 1.1.4.

E. PERFORMANCE EVALUATION
The classification performance of every CNN was evaluated
using k-fold cross-validation with k=10. Before fine-tuning
the network, the training dataset was divided into 10 partitions
each of them with the same number of ERM images (36) and
not-ERM images (120). For each of the ten folds, one data
partition was designated as the validation set, whereas the
other nine were joined into one single training set. During
training, we observed the validation loss and saved the model
with the lowest loss value. Upon completing all training runs,
we obtained a set of ten models M = {M1 . . .M10} which
were then applied to the test set to obtain the class-label
predictions. Lastly, with the model predictions, we computed
the mean classification performance of the CNN.

1) PERFORMANCE METRICS
After fine-tuning, the models were used to classify the images
in the test set to evaluate their performance. For a greater
insight into the predictive skill of the models, we used several
performance metrics, namely: accuracy, sensitivity, speci-
ficity. The formal definitions of these metrics is presented
below.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Sensitivity =
TP

TP+ FN
(4)

Specificity =
TN

TN + FP
(5)

where TP is the number true positives, TN is the number of
true negatives, FP is the number of false positives, FN is
the number of false negatives. The number of true positive

(TP), true negative (TN), false positive (FP), and false neg-
ative (FN) cases were computed based on the predicted and
target labels.

To further evaluate the robustness of the classification per-
formance we computed the area under the receiver operating
characteristic curve (AUROC). The receiver operating char-
acteristic curve (ROC) is a probability curve that plots the true
positive rate (TPR) against the false positive rate (FPR) for
different values of threshold, this statistical tool is often used
in the analysis of the discriminant capacity of a classification
model. AUROC values were calculated using the module
metrics of Scikit-learn package [51], which receives the labels
and the probability that a sample belongs to the positive class,
the built-in function defines the thresholds according to the
inputs. In this work we defined the images without signs
of ERM as a negative class and the images with ERM as a
positive class.

IV. RESULTS AND DISCUSSION
Four CNN architectures and 16 hyperparameter configura-
tions were considered to train a classifier for the task at
hand. Every CNN was trained and evaluated using 10-fold
cross-validation to estimate the classification performance
on unseen data. In total 160 models per architecture were
fine-tuned, ten models per combination of hyperparameters.
The results of the hyperparameter optimization were sum-
marized by averaging the performance across the ten folds
of each set of hyperparameters. Mean and standard deviation
values of classification accuracy, sensitivity, specificity, and
the AUROC are presented along with corresponding hyper-
parameters for architectures AlexNet (Table 6), SqueezeNet
(Table 7), ResNet (Table 8), and VGGNet (Table 9).
To further evaluate the discriminative capacity of the

obtained classifiers, ROC plots were computed using the
average of the predicted probabilities of the positive class, i.e.
the probability that a given OCT B-scan belongs to the class
ERM. Fig. 13 shows the ROC plots of the mean performance
for the best configuration of each CNN architecture.

The complexity of classifier training was estimated by
measuring the total training time per fold. Inference-time
computational complexity was also estimated, by measur-
ing the computation time, per image, during testing. Model
complexity was estimated by the amount of memory used.
As stated previously, we set to 100 the number of epochs for
each fold. Table 5 presents the (average) time in minutes it
took to complete one fold training, as well as the time to pro-
cess a single image from the input to the final decision. The
table also includes the size of the models for each network
architecture.

Looking at the influence of the hyperparameters on the
classification performance, we observed an inverse corre-
lation between the mini-batch size and the classification
performance. The larger the mini-batch size the lower the
performance, and vice versa. This observation is consistent
with prior work regarding the optimization of this hyperpa-
rameter [39], [52], and suggests that setting the batch size
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TABLE 5. Training complexity (mean training time per fold), inference complexity (testing time for a single image), trained model size (model file size).

to the largest value that fits in memory might constraint
the model to settle at a sub-optimal solution. On the other
hand, we also verified that the mini-batch size is directly
related to the training duration, with smaller mini-batches
leading to longer training times. Thus, there is a trade-off
controlled by the mini-batch size between the classification
performance and the time complexity, where small values of
this hyperparameter result in high classification performance
but longer training, whereas large mini-batch sizes result in
the opposite.

As per the remaining hyperparameters, we observed that
in three of the four fine-tuned CNNs, the highest values of
accuracywere obtainedwith the hyperparameters: mini-batch
size 8, learning rate 0.001, and momentum 0.9. The exception
was VGGNet, for which the best results were obtained using
mini-batch size 16 and the same values for the other two
parameters. Additionally, for all models, the configuration
with the highest accuracy also produced the highest value of
sensitivity.

The training process requires large amounts of com-
putational resources and time. To contribute to future
works and allow easy performance comparisons with
other methods yet to appear, we have published the
best models for each architecture in a github reposi-
tory (https://github.com/Esther-ParraMora/
ERM-detection.git), along with a detailed explanation
of the use of these models.

A. ERM DETECTION PERFORMANCE
Overall, the models developed achieved high classification
accuracy, sensitivity, and specificity. The best performing
architecture was ResNet with a mean accuracy of 99.7%,
mean sensitivity of 99.47%, mean specificity 99.93%, and
AUROC value of 1.0. Conversely, the lowest performance
was obtained by an AlexNet network with a mean accuracy
of 98.42%, mean sensitivity of 96.87%, mean specificity
99.97%, and AUROC value of 1.0. The robustness of the
classifiers is further demonstrated by the AUROC values.
As it can be seen from tables 6 to 9, the AUROC was
consistently high across all hyperparameter combinations,
with a minimum of 0.998 and a maximum of 1.00. Similarly,
the ROC plots in Fig. 13 show that the models have a good
measure of separability between the two classes.

To understand which regions of the images had a
strong influence on the decision made by the CNN,
gradient-weighted class activation maps (Grad-CAM) [53]

were computed and plotted. Fig. 14 shows three examples of
images belonging to the ERM class but from cases at differ-
ent ERM development stages that were correctly classified.
Besides the original OCTs, the figure shows their Grad-CAM
maps. The regions where ERM is visible were successfully
identified in the early-stage case (Fig. 14a), as well as in the
more advanced stage case (Fig. 14b). Additionally, we present
an image with ERM and macular edema to demonstrate that
the decision is heavily based on the part of the image where
the membrane is visible (Fig. 14c).
According to the accuracy results and the number of test

images, approximately 10 images were misclassified by the
network with the lower accuracy (AlexNet), and only one by
the best performance network (ResNet). Upon visual inspec-
tion of the misclassified images, we found that classification
errors correspond to images showing very early stages of
ERM which were predicted as not-ERM. Fig. 15 shows three
of those images that stand out because they were wrongly
classified by more than one network. Fig. 15a was labeled
as not-ERM in three of the four architectures, and it is the
only ERM sample that was misclassified by the ResNet best
model. The other two images, Figures 15b and 15c, failed in
two of the four architectures. A possible explanation for this
might be that less than 5% of the images in the training dataset
show a very early stage ERM. Classifying such images is
challenging as they are very similar to images of healthy
retinas. Being a problem caused by the under-representation
of this type of image, we expect the failure rate to drop by
adding more samples of very early stage ERM to the training
dataset.

B. WEIGHTED LOSS FUNCTION
Upon determining the optimal set of hyperparameters for
fine-tuning the pre-trained CNNs, we sought to improve
the classification performance by tuning the models with a
weighted loss function. To find the optimal pair of hyperpa-
rameters of the weighted loss function, four sets of values
were evaluated with each network. Table 10 presents mean
and standard deviation values of accuracy, sensitivity, and
specificity along with corresponding hyperparameter values
in the grid search.

As with the experiment with the binary cross-entropy,
we observed a high performance across all hyperparameter
sets. However, we did not observe gains in performance due to
the weighted loss function. Compared to fine-tuning with the
cross-entropy loss, the performance obtained with focal loss
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TABLE 6. AlexNet: test set performance metrics. The best result for each mini-batch size value is highlighted with boldface, and the overall best result is
underlined.

TABLE 7. SqueezeNet: test set performance metrics. The best result for each mini-batch size value is highlighted with boldface, and the overall best result
is underlined.

was lower overall. This does not discount prior work in class
imbalance using weighted loss but suggests that penalizing
trivial predictions could be detrimental in mild imbalanced
datasets like the one used in this work.

C. FULLY-TRAINING VS. TRANSFER LEARNING
To validate the transfer learning approach used in this work,
we fully trained the four architectures, using the same val-
ues of hyperparameters that produced the best classifiers
described earlier. Table 11 shows a performance comparison
of the two approaches. The accuracy improvements when
using transfer learning ranged from 3.89% for SqueezeNet
to 8.33% for ResNet. The most evident gain is in terms
of sensitivity, which ranges between 7.4% for SqueezeNet

and 13.4% for ResNet. Transfer learning made possible to
improve the probability of correctly classifying positive cases
of ERM.

Fig. 16 visualizes some instances of the training process
progress for both transfer learning and full training, showing
the number of epochs that were necessary to obtain the best
results, and the evolution of the key performance indicators
with the epoch number. The performance indicators presented
are the estimated mean validation accuracy and the validation
loss. These plots show that even the performance of the
initial network with pre-trained weights is higher than the
best performance of the fully trained network. Furthermore,
using transfer learning, the architectures converged faster and
reached better performances than those obtained when fully
training the networks.
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TABLE 8. ResNet: test set performance metrics. The best result for each mini-batch size value is highlighted with boldface, and the overall best result is
underlined.

TABLE 9. VGGNet: test set performance metrics. The best result for each mini-batch size value is highlighted with boldface, and the overall best result is
underlined.

D. COMPARISON WITH RELATED WORKS
The development of fully automatic methods for ERM detec-
tion in OCT images is a relatively new research problem, and
as such only a few studies on this subject have been published
in recent years. The common denominator in the state-of-
the-art methods is the application of machine learning algo-
rithms including multilayer perceptrons, random forests [16],
[18], support vector machines and convolutional neural net-
works [17], [19], [20]. All these methods were developed and
evaluated on private datasets, acquired with different OCT
devices, annotated by a variable number of clinicial experts,
and gathered following diverse exclusion criteria.

Table 12 presents a comparison of the classifica-
tion performance of these methods and of the proposed
approach. As mentioned, it is necessary to consider that all

the competing methods were tested with different datasets
and under different experimental settings. Taking this obser-
vation into account, we can observe that our method attains
performance levels at least as good as that of the state-of-the-
art approaches [16]–[20].

Regarding the differentiating aspects of the methodology
and novelty of this study, we highlight that, to the best of
our knowledge, there is no other work that investigates the
computational costs associated to train deep learning mod-
els in the context of ERM detection. From the comparative
analysis of representative CNN architectures we observed
that the incremental computational cost associated with more
complex networks does not necessarily result in consider-
able gains in performance. In fact, in some cases larger
computational expenditures might return no performance
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TABLE 10. Test set performance metrics using focal loss. The best result for each network architecture is highlighted with boldface, and the overall best
result is underlined.

FIGURE 13. Best results ROC-AUC curves: (a) AlexNet, (b) SqueezeNet, (c) ResNet, and (d) VGGNet.

gains whatsoever. This observation is exemplified by the
comparison between the top performer in our evaluation
(ResNet-101) and the architecture with the lower training
time (SqueezeNet). Although the ResNet-101 network is
0.5% more accurate that SqueezeNet, this marginal gain

comes at the cost of 50 times more space in disk, and 30 times
more memory. On the other hand, chosing SqueezeNet over
VGGNet saves almost 100 times memory, and 150 times
space in disk, with only a 0.2% loss in classification accuracy
(see Table 5).
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FIGURE 14. Grad-CAM for correctly classified ERM images: (a) early ERM, (b) advanced stages of ERM, and (c) image with macular edema and ERM. The
columns represent: first, the original image. Middle column the complete heatmap, and in the last column the zoom of the region of interest.

FIGURE 15. Examples of wrongly classified images: (a) 3 out of 4 classifiers failed, (b) and (c) 2 out of 4 classifiers failed.

Besides the impact on the computational cost of the learn-
ing process we also investigated and compared the inference
time of the classifiers. Once again comparing ResNet-101 and
SqueezeNet, as reported in the Table 5, fine tuning the earlier
took thrice the time required to train the latter, and the infer-
ence time per image of the ResNet-101 was four times longer
than that of the SquezeeNet. These observations are very
relevant for the development and deployment of CAD sys-

tems incorporating deep learning classifiers. Moreover, these
findings provide further insight to inform design choices,
particularly in low-cost solutions developed for first points of
care, or mass screening where the logistics relies in commod-
ity hardware which commonly have modest computational
and storage capabilities.

Regarding the robustness of the proposed method,
we remark that our approach was evaluated with test data
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FIGURE 16. Mean validation accuracy and loss value of fully and transfer learning training process. (a) AlexNet, (b) SqueezeNet, (c) ResNet, and
(d) VGGNet.

TABLE 11. Comparison between transfer learning (TL) and fully
trained (FT) networks.

that fits more closely the real-life conditions that clinicians
face in practice. We deliberately decided to include hard-
to-classify examples, including very early-stage ERM cases
and images showing multiple abnormalities. In addition, our
dataset includes images acquired using several OCT scanners
from two manufactures, Zeiss and Heidelberg. By contrast,
related works reported having used exclusion criteria that left
out images showing multiple abnormalities [17] and images
with disagreements in the manual annotation stage [20].
Despite the heterogeneous nature of the test data, the pro-

TABLE 12. Previous works results for automatic ERM detection methods.

posed approach showed consistent high perfomance regard-
less of the ERM stage (Figures 14a, and 14b) or the pres-
ence of multiple lesions (Fig. 14c). Prior works reported low
accuracy in detecting early-stage ERM and pointed out that
classification errors occurred as a result of class imbalance
which was presumably exacerbated by the exclusion criteria
of the data collection protocol [17], [20].

The learning approach used in this research work is similar
to that of related works in that the classifiers were trained in a
supervised fashion. Ideally, supervised learning is conducted
with large sets of annotated data to prevent classifiers to
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overfit the training data. However, the cost of annotating
large sets of data is prohibitive in the medical domain, not
only because it is labor-intensive but also because it requires
expert knowledge which is in short supply. Consistent with
the availability of labeled data in clinical practice, we trained
our classifiers with a smaller set of labeled data than related
works, but used the weights of pre-trained models to initialize
our classifiers thus avoiding the problem of data scarcity.
This transfer-learning approach proved to be effective in
training deep CNNs without overfitting the training data.
Furthermore, a comparative analysis revealed that transfer
learning led to faster convergence and higher classification
performance as opposed to fully training (see Table 11).

V. CONCLUSION
In this work, we designed a fully automatic method for ERM
detection in OCT scans based on CNNs. The proposed algo-
rithm achieved 99.7% detection accuracy when evaluated on
a heterogeneous test dataset that includes various stages of
ERM and images showing other retinal abnormalities besides
the target class. The proposed approach showed high discrim-
inative performance at separating the positive and negative
classes. The best classifier from amongst all that were trained
and tested attained 99.47% sensitivity, 99.9% specificity, and
a AUROC of 1.0. Analysis using Grad-CAM revealed that the
proposed algorithm discriminates correctly ERM diagnostic
patterns in the OCT scans, such as wrinkling or traction of
the retinal surface, or retinal swelling. Taken together, these
results show that the proposed method provide a reliable
alternative to manual OCT interpretation.

The approach followed builds upon transfer learning and
fine-tuning with limited data. Compared to similar works in
the literature, our method requires much less annotated data
to achieve state-of-the-art performance. It was observed that
fine-tuning pre-trained networks as opposed to training from
zero state brought significant gains in performance and faster
convergence. These findings show that by using available
pre-trained CNNs and high quality small datasets one can
avoid the need for large volumes of costly annotated data
while reaching high classification performance.

Comparative analysis of four CNN architectures showed
that in general the more complex the network the higher the
classification performance. However, we also observed that
the increase in the model complexity does not warrant signif-
icant gains in performance. Relative to the architecture with
the lowest training time, the best architecture was 0.5% more
accurate, but required as much as 40 times more memory, and
50 times more space in disk. Conversely, training the least
performing network required 60% less time than training the
best performer.

To sum up, the results reported in this article provide com-
plete information of CNN architectures and configurations
that produce the best results for ERM detection. Furthermore,
we demonstrated that transfer learning makes it possible the
use of deep learning techniques even when the size of the
dataset is limited.
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