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Abstract: Environmental innovations play a vital role in reducing air pollution and the number of 

pollution-related mortality. Most of the previous studies have examined the role of eco-innovations 

in environmental quality. However, to our knowledge, no study has evaluated the effects of eco-

innovation on air pollution as a cause of mortality. For this purpose, this research examines the 

effect of eco-innovations on premature deaths from indoor and outdoor air pollution in twenty-

nine European countries from 1995 to 2019. The Method of Moments Quantile Regression (MM-

QR) is used to assess the impacts. The results confirm the heterogeneous effects of the main 

variables in both models. Both models indicate that eco-innovations reduce premature deaths from 

outdoor and indoor air pollution, and these effects are more significant in high quantities (75th and 

90th). Also, the effect of eco-innovations on reducing mortality due to indoor pollution is more 

significant than that related to outdoor pollution. Eco-innovation, economic growth, renewable 

energy consumption, and urbanization reduce premature mortality indoors and outdoors, but CO2 

emissions increase this mortality. The results of the Dumitrescu-Hurlin causality test also support 

that all variables, including eco-innovation and CO2 emissions, have a bidirectional causal 

relationship with indoor (LIND) and outdoor (LOUT) mortality due to air pollution. Governments 

and politicians can help mitigate this problem by providing more environmental innovations by 

increasing support packages and reducing taxes. 
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1. Introduction 

 

By outdoor air pollution, we mean emissions caused by combustion processes from solid fuel 

burning, motor vehicles, and industry (NSW Government, 2022). According to Our World in Data 

(2022a), burning solid fuel sources like dung, crop waste, and firewood for heating and cooking 
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generates indoor air pollution. Six pollutants play a significant role in creating outdoor and indoor 

air pollution. Namely lead, particulate matters of different-size fractions, carbon monoxide, 

nitrogen dioxide, ozone, and sulfur dioxide (Koengkan et al., 2022). Indeed, the outdoor and indoor 

air pollution caused by combustion processes are among the significant causes of global health 

problems (Our World in Data, 2022b). Moreover, according to Koengkan et al. (2022) and the 

World Health Organisation (WHO) (2018), these gases increase the risk of some of the world's 

most important causes of death (for example, stroke, lung cancer, heart disease, and respiratory 

diseases). Indeed, the health problems caused by indoor and outdoor air pollution tend to worsen 

in countries with higher incomes and transitioning from low to middle incomes (Koengkan et al., 

2022). 

According to Our World in Data (2022b), in 1990, outdoor air pollution accounted for 2.14 

million premature deaths. In 2017, this value reached 3.41 million deaths globally. In some 

countries, outdoor air pollution accounts for more than (8%) of deaths. For example, in Egypt, 

outdoor air pollution accounted for (12%) of deaths in 2017; the percentage of deaths caused by 

this air pollution was (10%) in China and Turkey and equal to (8%) in India in the same period. 

On the other hand, indoor air pollution was responsible for 2.71 million deaths worldwide in 1990. 

In 2017, it was responsible for 1.64 million deaths (Our World in Data, 2022a). Moreover, indoor 

air pollution accounts for  (6%) of premature deaths in low-income countries. In 2017, this range 

was from less than (1%) across most of North America and Europe to approximately (11%) in 

Papua New Guinea, with more than one in ten deaths. 

In 1990, outdoor air pollution caused (6.72%) of premature deaths in the European Union 

(EU). This value reached (3.71%) in 2019. In the same years, indoor air pollution was responsible 

for (1.05%) and (0.19%) of premature deaths in 1990 and 2019. These are shown in Figure 1 

below.  

 

 
Figure 1. Share of premature deaths from indoor and outdoor air pollution in EU-27, between 

1990 and 2019. This figure was created using Our World in Data (2022a,b).  

 

In other words, there was a reduction of (-45%) in the share of premature deaths resulting 

from outdoor air pollution between 1990 and 2019 and a reduction of (-82%) in the share of 

premature deaths resulting from indoor air pollution in the same period. Indeed, the decline in the 

share of premature deaths resulting from indoor and outdoor air pollution is related to initiatives 
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to mitigate air pollution in EU countries (for example, eco-innovative initiatives, electrification of 

road transport, and energy transition) (European Environmental Agency, 2021). In fact, according 

to Eurostat (2022), the exposure to the air pollutant PM2.5, an important particulate matter, has 

dropped by fourteen percent in EU-27. This result is shown in Figure 2 below.  

 

 
Figure 2. Share of premature deaths resulting from indoor and outdoor air pollution in the 

European Union (EU) between 1990 and 2019. This figure has been created using data from 

Eurostat (2022). 

 

As shown in Figure 2 above, the exposure to air pollution by particulate matter (PM2.5) 

was (14.5%) in 2000, and this value dropped to (12.60%) in 2019. According to European 

Environmental Agency (2021), this reduction mitigated premature deaths attributed to air pollution 

in EU-27 by (33%) in 2019. Therefore, if air quality continues to improve and the number of 

premature deaths per year continues to fall at a comparable rate, then the zero-pollution target will 

be achieved by 2032. 

The main concern is to reduce the exposure of poorer residents of the EU to air pollution. 

These people live next to industrial areas or busy roads and, as a result, are exposed to higher levels 

of air pollution. In some European cities, central areas, which are also more polluted, are inhabited 

by wealthier people. On the other hand, in some other cities, poorer communities live in central 

areas (European Environmental Agency, 2021). Moreover, in some Eastern and South-eastern 

Europe countries, regions with lower Gross Domestic Product (GDP) per capita are further 

exposed to PM2.5. This situation is mainly caused by the combustion of solid fuels of low quality, 

like wood and coal, for domestic heating in low-efficiency ovens. Therefore, in particular regions, 

the higher exposure of the population to PM2.5 leads to a more significant number of premature 

deaths caused by air pollution, consequently generating increased economic costs. Moreover, 

according to Europa (2020), the economic costs of premature deaths from air pollution are well 

over €20 billion per year in the EU. 

The European Commission is committed to reducing air pollution to minimize 

environmental and human health risks. However, mitigating exposure to air pollution is a systemic, 
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complex challenge that needs the concerted action of economic sectors and political and societal 

actors. Several governments, cities, and businesses have implemented eco-innovative solutions 

like pioneering ways to reduce pollution from farming practices, advanced household heating 

technologies, or strategic urban mobility plans (Europa, 2020). 

In the EU, green and eco-innovation technologies are essential to the future. Indeed, the 

economic prosperity of the EU is intrinsically related to preserving its environment and the global 

demand for resource-efficient solutions and renewable energy. Moreover, it will be a source of 

economic growth and jobs in the forthcoming years (Europa, 2022a). The growth of the 

environment industry by more than fifty per cent in the period from 2000 to 2011 reveals that green 

industries are booming. In the EU, more than three million people are employed by eco-industries. 

Also, European businesses supply one-third of the global green technologies market, a market with 

a current worth of €1 trillion, which is expected to double in five years. This issue shows the great 

potential of eco-innovation to drive economic growth and jobs and mitigate environmental 

degradation in the region (Europa, 2022a).  

Indeed, in 1990, the share of patents on environmental technologies (% of all technologies) 

was (7.61%). In 2019, this reached the value of (14.09%). This result is shown in Figure 3 below. 

This situation shows that the EU region's green industries and eco-initiatives are booming, as 

Europa (2022a) mentioned. 

 

 
Figure 3. Eco-innovation: Patents on environment technologies (% of all technologies) in EU-

27 from 1990 to 2019. This figure has been created using data from OECD DATA (2022).  

 

Therefore, due to the evidence, eco-innovative initiatives are booming in the EU through 

patents of environmental technologies. Understanding their possible impact on indoor and outdoor 

air pollution deaths is necessary. 

As far as we know, most of the literature examined the impact of eco-innovation projects 

on reducing air pollution or carbon dioxide (CO2) emissions (for example, Alam et al., 2021; 

Cheng et al., 2021; Ahmad et al., 2021; Meirun et al., 2021; Hasanov et al., 2021; Abid et al., 2021; 

Dauda et al., 2021; Chen and Lee, 2020; Wang and Zhu, 2020; Khattak et al., 2020; Koçak and 
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Ulucak, 2019; Petrović and Lobanov, 2019; Hashmi and Alam, 2019; Cheng et al., 2019a; Cheng 

et al., 2019b; Du et al., 2019; Ganda, 2019; Dauda et al., 2019; and Fernández et al., 2018). Indeed, 

if environmental innovations can reduce air pollution or CO2 emissions, these plans could reduce 

premature indoor and outdoor air pollution deaths. Accordingly, there is a gap in the literature 

regarding the possible link between eco-innovation initiatives and reducing premature deaths from 

indoor and outdoor air pollution. For this reason, the present research aims to fill the gap mentioned 

above by analyzing the impact of eco-innovation initiatives on premature deaths resulting from 

indoor and outdoor air pollution. We will answer this question by conducting a macroeconomic 

analysis using a panel with data from twenty-nine European countries from 1995 to 2019. Ordinary 

least squares (OLS) methods with fixed effects, moments quantile regression (MM-QR), and the 

Dumitrescu-Hurlin causality test will be used. 

The innovations of this study and its contribution to the literature can be described as 

follows. (i) This investigation, as a pioneering effort, examines the impact of eco-innovation on 

premature deaths from indoor and outdoor air pollution in twenty-nine European countries from 

1995 to 2019. As mentioned in this introduction, such an investigation has not been done before. 

(ii) The effects of environmental innovation on mortality due to indoor and outdoor pollution have 

been studied separately, and the results have been compared. (iii) This investigation introduces 

novel econometric models, namely, OLS with fixed effects, the MM-QR model, and the 

Dumitrescu-Hurlin causality test. (IV) Given that most European countries have ambitious goals 

to reduce CO2 emissions, investing in green innovation is one of the main policies. To this end, 

this research supports policymakers in developing coherent initiatives that offer innovative 

environmental solutions to improve the environment. 

The remainder of this paper is divided into five sections, described as follows. Section 2 

presents a brief review of the literature. Section 3 discusses the methods and presents the data. 

Section 4 is devoted to the empirical results, and Section 5 discusses the obtained results. Finally, 

Section 6 presents the policy implications and conclusions. 

 

2. A brief review of the literature 

This section is devoted to reviewing previous studies in environmental innovation. Our 

studies show that the effects of eco-innovations on mortality due to air pollution have not been 

studied so far. As a result, we evaluated those research papers that examined the relationship 

between air pollution and eco-innovation. These include Alam et al., 2021; Cheng et al., 2021; 

Ahmad et al., 2021; Meirun et al., 2021; Hasanov et al., 2021; Abid et al., 2021; Dauda et al., 2021; 

Chen and Lee, 2020; Wang and Zhu, 2020; Khattak et al., 2020; Petrović and Lobanov, 2020; 

Koçak and Ulucak, 2019; Hashmi and Alam, 2019; Cheng et al., 2019a; Cheng et al., 2019b; Du 

et al., 2019; Ganda, 2019; Dauda et al., 2019; and Fernández et al., 2018. 

Countries have recently paid special attention to environmental innovations to reduce 

environmental impact. Because environmentally friendly innovations bring maximum economic 

growth at the lowest environmental cost. These innovations include pollution prevention, energy 

saving, waste recycling, and environmental management. (Shao et al., 2021; Ali et al., 2022). 

Renning (2000) states that environmental innovation involves new processes, practices, or systems 

contributing to environmental improvement and sustainability. It also argues that cleaner 

technologies can reduce environmental pollution and minimize the overuse of resources (Dauda et 

al., 2021; Mongoet al., 2021). Environmental innovation also positively affects the ecosystem due 

to green energy and reducing fossil fuel consumption. In addition, these technologies can help 

countries improve the efficiency of their production processes and increase more sustainable and 
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environmentally friendly services (Mongoet al., 2021). In addition to saving energy and efficiency, 

environmental innovations use various environmentally friendly energy sources and help 

economies reduce carbon emissions (Pan et al., 2021). Considering that carbon dioxide emissions 

increase environmental pollution, they have negative effects on human health in two ways: first, 

inhaling high CO2 concentrations damages directly the respiratory system and causes lung cancer,  

asthma exacerbation, and death by respiratory and heart diseases (Koengkan et al., 2021; Ahmad 

et al., 2021). Therefore, eco-innovations can reduce air pollution mortality by saving energy and 

reducing carbon emissions. In their study of thirty OECD countries, Alam et al. (2021) examined 

the effects of R&D investment on environmental quality and clean energy consumption from 1996 

to 2013. They found the positive effect of R&D investment on clean energy consumption while 

reducing CO2 emissions. Cheng et al. (2021) examined the impact of technological innovations on 

CO2 emissions in thirty-five OECD countries from 1996 to 2015. In this study, the quantile panel 

model was used. The results showed the effectiveness of technological innovation in reducing CO2 

emissions.  

Ahmad et al. (2021) explained the effects of innovation shocks on environmental quality 

in twenty-six OECD countries during the period 1990-to 2014. According to their results, negative 

shocks reduce the environmental quality, while positive shocks improve the environment. Meirun 

et al. (2021) explored the effects of green technology innovation on economic growth and CO2 

emissions in Singapore from 1990 to 2018. Their results revealed that these innovations increase 

economic growth in the long run while reducing CO2 emissions. 
According to Hasanov et al. (2021), in a survey concentrated on the BRICS countries, 

technological advances reduce CO2 emissions. Abid et al. (2021) studied the G8 countries and 

examined the effects of technological innovation on environmental quality. Their results revealed 

a negative and long-term relationship between technological innovation and CO2 emissions. The 

empirical results of a survey performed by Dauda et al. (2021) on nine African countries from 

1990-to 2016 indicated a U-inverse relationship between CO2 emissions and eco-innovation. Chen 

and Lee (2020) used the spatial econometrics model to study ninety-six countries. According to 

their results, these innovations do not significantly impact the worldwide reduction of CO2 

emissions. However, technological innovations in countries with higher incomes significantly 

reduce CO2 emissions.  

Wang and Zhu (2020) used a spatial econometric model to examine how energy technology 

innovations affect the reduction of CO2 emissions. The results confirmed the impact of renewable 

energy technology innovation on reducing CO2 emissions. Furthermore, according to the Kuznets 

framework, Khattak et al. (2020), in a survey of BRICS economies from 1980-to 2016, verified 

the reduction of CO2 emissions in India, South Africa, China, and Russia, except Brazil, as a result 

of innovative activities. Finally, Petrović and Lobanov (2020) studied the effect of R&D spending 

on CO2 emissions in sixteen OECD countries from 1981 to 2014. Their results confirmed the 

impact of R&D expenditures on reducing CO2 emissions on average. 

Nevertheless, it was shown that these costs positively affected CO2 emissions in (40%) of 

the countries. Finally, Koçak and Ulucak (2019) used the dynamic panel model to examine the 

impact of energy innovation on CO2 emissions in nineteen OECD countries with high incomes. 

The authors found a non-significant relationship between reduced CO2 emissions and renewable 

energy innovations. 

Hashmi and Alam (2019) discussed the effects of innovation and environmental regulation 

on CO2 emissions in OECD countries from 1999-to 2014. According to their results, 

environmental tax is more effective in reducing CO2 emissions. The reason is that a (1%) increase 
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in innovation (respectively, environmental tax) causes a (0.017%) (respectively, 0.03%) reduction 

in CO2 emissions. Cheng et al. (2019a) used a quantile panel model to investigate the impact of 

innovation on CO2 emissions. Their findings suggest that innovation has small and positive effects 

on CO2 emissions. Cheng et al. (2019b) examined the heterogeneous effects of environmental 

innovations on CO2 emissions in the BRICS countries using the quantile panel model. Using the 

threshold panel model, they found negligible, positive heterogeneous effects of eco-innovations 

on CO2 emissions at 90th and 95th in seventy-one countries. Du et al. (2019) show that in countries 

with lower income thresholds, eco-innovations have a non-significant effect on reducing CO2 

emissions. However, in countries with higher incomes, these have a significant, negative effect on 

CO2 emissions. Also, in selected OECD countries, Ganda (2019) found different effects of 

innovation and technology investments on CO2 emissions. 

Moreover, the findings revealed the potential of these factors in reducing CO2 emissions. 

Dauda et al. (2019) surveyed eighteen developing and developed countries in different regions 

(G6, MENA, BRICS). Their findings revealed that innovation reduces CO2 emissions in G6 

countries and increases CO2 emissions in BRICS and MENA countries. In a study of fifteen 

countries, the United States, the European Union, and China, Fernández et al. (2018) showed the 

reduction of CO2 emissions due to innovations in developed countries. 
As discussed so far, various studies in diverse regions and countries have investigated how 

eco-innovation affects environmental quality using different models. However, as far as we know, 

no study has been conducted on the effects of environmental innovation on reducing premature 

deaths from indoor and outdoor air pollution. On the other hand, in this research, one of the newest 

econometric methods (the MM-QR) is used to investigate the heterogeneous effects of the main 

variables on air pollution mortality. The following section introduces the data/variables and the 

methodology used in our study. 

 

3. Data and the utilized methods 

This section addresses the data/variables and the methods we used to conduct this 

investigation. Therefore, we present the longitudinal data, i.e., variables and countries, in 

Subsection 3.1, while in Subsection 3.2, we describe the research methods. This investigation used 

the econometric techniques (i) ordinary least squares (OLS) with fixed effects and (ii) moments 

quantile regression (MM-QR). 

 

3.1. Data 

In order to analyze the impact of eco-innovation initiatives on premature deaths from 

indoor and outdoor air pollution, twenty-nine countries from Europe were selected: Denmark, 

France, Hungary, Bulgaria, Greece, Belgium, Latvia, Germany, Lithuania, Cyprus, Norway, 

Poland, Finland, Iceland, Austria, Ireland, Croatia, the Netherlands, Italy, Portugal, Luxembourg, 

Slovakia, Romania, Spain, Czechia, Slovenia, the United Kingdom, Sweden, and Estonia. 

Furthermore, the period from 1995 to 2019 was used. 

These twenty-nine countries were selected because, as mentioned in the introduction, the 

European countries have registered a boom in eco-innovative initiatives, and it is needed to 

understand the possible externalities of this boom. Furthermore, this research used data from 1995 

to 2019 because Our World in Data (2022) provided data for the variables IND and OUT until 

2019. Table 1 below shows the variables used to conduct this research. 
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Table 1. Variable acronyms, descriptions, and sources  

Variable acronyms Variable descriptions Sources 

Dependent variables 

OUT 

Death rates resulting from 

outdoor air pollution measure the 

number of deaths per 100,000 

population.  

Our World in Data (2022) 

IND 

Death rates resulting from indoor 

air pollution measure the number 

of deaths per 100,000 population.  

Our World in Data (2022) 

Independent variables 

CO2 CO2 emission tonne per capita.  British Petroleum (BP) (2022) 

PATENT 

Eco-innovation initiatives. This 

variable includes patents on 

environment technologies (% of 

all technologies).  

OECD DATA (2022) 

GDP 
Gross domestic product (GDP) 

per capita (constant = 2010 $). 

World Bank Data (WBD) 

(2022) 

REN 
Renewable energy consumption 

tonne per capita. 
British Petroleum (BP) (2022) 

URB  
Urban population = % of total 

population. 

World Bank Data (WBD) 

(2022) 

 

Therefore, this empirical investigation will use the variables OUT, IND, CO2, PATENT, 

GDP, REN, and URB. The variables OUT and IND are the dependent variables of this 

investigation. At the same time, PATENT, GDP, REN, and URB are the independent variables. 

Moreover, some authors, including Koengkan et al., 2022 and Koengkan et al., 2021, used OUT 

and IND as dependent variables. The same occurred to the variables CO2, GDP, REN, and URB 

that were already used as independent variables in the literature to explain OUT and IND (see 

Koengkan et al., 2022 and Koengkan et al., 2021). However, as far as we know, none of the studies 

has used the variable PATENT to explain the variables OUT and IND. Therefore, the use of this 

variable is a novelty.  

After briefly introducing the variables, we need to describe the methods utilized in this 

study. Moreover, in this investigation, all variables will be transformed into natural logarithms (L) 

to linearise the relationships between model variables.  

 

3.2. The methods 

The present subsection describes the methods that we used in our empirical investigation. 

Therefore, this empirical investigation will follow the following strategy that numerous authors 

used (e.g., Koengkan et al., 2022; Koengkan et al., 2021, and Fuinhas et al., 2021). Figure 4 below 

reveals the methodological strategy used in this investigation. 
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Figure 4. Method strategy. The authors created this figure. 

 

As seen in Figure 4, the empirical approach follows rigorous criteria beginning with 

preliminary tests assessing the series' characteristics. Then, respecting the series' properties, the 

adequacy of econometric techniques and the quality of estimated models (OLS with fixed effect, 

and MM-QR) were tested. These procedures assure the reliability of empirical research. 

 

3.2.1. The method of moments quantile regression (MM-QR) 

 

Machado and Silva (2019) developed the MM-QR to capture unobserved distributional 

heterogeneity across countries within a panel (Koengkan et al., 2022). Moreover, as Fuinhas et al. 

(2021) mentioned, the method assumes that the covariate only affects the variables via the location 

channel. Furthermore, it examines the conditional heterogeneous covariance effects of the 

determinants of premature deaths resulting from indoor and outdoor air pollution in different 

quantiles. Therefore, the MM-QR can be defined as follows. 

 

𝑄𝑖𝑡(𝜏|𝑋𝑖𝑡) = (𝛼𝑖 + 𝛿𝑖𝑞(𝜏)) + 𝑦𝑖𝑡
′ 𝛽 + 𝑍𝑖𝑡

′ 𝛾𝑞(𝜏). (1) 

 

Herein, 𝛼𝑖(𝜏) = 𝛼𝑖 + 𝛿𝑖𝑞(𝜏) is a scalar coefficient that denotes the quantile- 𝜏 fixed effects for an 

individual country. Since it is not location-fixed, the distributional impact varies from the classical 

fixed effect (Fuinhas et al., 2021). Moreover, time-invariant traits, depicted by the distribution 

impact, allow other variables to affect the investigated countries in various ways (Machado and 

Silva, 2019). 
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3.2.2. Ordinary least squares (OLS) with fixed effects 

 

 This investigation used OLS with fixed effects to verify the MM-QR results. This option 

means that the method will be used as a robustness check. Fuinhas et al. (2021) mentioned that 

OLS with fixed effects estimates the mean response for the fixed predictors and the slope and 

intercepts for observations. Moreover, OLS results with fixed effects are similar to those obtained 

using the 50th quantile of MM-QR, as Koengkan et al. (2022) mentioned. Therefore, the typical 

definition of OLS with fixed effects is as follows. 

 

𝑎𝑖𝑡 =  𝛽0 + 𝛽1𝑦 + 𝛽2𝑦 + 𝛽3𝑦 + ⋯ + 𝜀𝑖𝑡. (2) 

Here, β denotes the value of fixed covariates, which is fitted to predict the dependent variable ait. 

Also, β0  and εi denote the intercept and the error term, respectively. Moreover, each variable enters 

the regression for country i at year t. 

Before realizing model estimations, preliminary tests were performed to assure the 

correctness of the econometric approach. Subsection 3.2.3 describes the initial. 

 

3.2.3. Preliminary tests 

As mentioned above, we need to compute preliminary tests to identify the characteristics 

of variables and the existence of singularities (Fuinhas et al., 2021). Therefore, the following tests 

must be computed (see Table 2 below). 

 

Table 2. The preliminary tests used in this research 

Type of the test Finality  

Shapiro-Wilk (Shapiro and Wilk, 1965) These tests check the presence of normality in 

the panel model.  Shapiro-Francia (Shapiro and Francia, 1972) 

Variance Inflation Factor (VIF) (Belsley et 

al., 1980) 

This test identifies the presence of 

multicollinearity between the variables of the 

model.  

Cross-sectional dependence (CD) (Pesaran, 

2004) 

This test checks the presence of cross-sectional 

dependence in the model's variables.  

Slope Homogeneity test (Pesaran and 

Yamagata, 2008) 

This test checks the presence of slope 

homogeneity in the model. 

Panel Unit Root test (CIPS) (Pesaran, 2007) 
This test identifies the presence of unit roots in 

the variables.  

Westerlund test (Westerlund, 2007) 
This test identifies the presence of 

cointegration in the variables that are I(I).  

Hausman (Hausman, 1978) 

The finality of this test is to confront the 

models' random effects versus fixed effects 

and heterogeneity. 

 

The econometric software Stata 17.0 was used. More specifically, the Stata commands 

used in this study included sktest, sum, xtcd, swilk, vif, multipurt, xtwest with option constant, xthst, 

xtqreg, hausman, and xtreg. These commands were used to realize the preliminary tests and 

estimate the model. In what follows, we describe the empirical results of our study.  
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4. Empirical results 

To check the robustness of the main model, we present the empirical results obtained using 

the preliminary tests, the MM-QR and OLS with fixed effects. Therefore, in Subsection 4.1, we 

present the results of the preliminary tests. In contrast, in Subsection 4.2, we discuss the results 

obtained using the models of OLS with fixed effects and MM-QR.  

 

4.1. Preliminary tests  

 

Table 3 below shows the statistical characteristics of the variables. According to the table, 

the total number of observations is 725. Moreover, the average number of premature deaths from 

indoor air pollution is 3.3, while that of premature deaths from outdoor air pollution is 32.1. These 

results also show that the minimum and maximum ratios of the variable environmental technology 

inventions (Proxy of eco-innovation initiatives) are 0.84 and 31.6, respectively.  

Table 3. Descriptive statistics of the variables 

Variables 
Descriptive statistics 

Obs. Mean Std.-Dev. Min. Max. 

OUT 725 32.08705 22.48283 2.643612 127.6525 

IND 725 3.29793 6.727683 0.0087768 45.32486 

CO2 725 8.404411 3.923589 2.914405 27.51753 

PATENT 725 10.33236 4.775387 0.84 31.58 

GDP 725 33122.23 22655.35 3784.078 111968.4 

REN 725 1.174155 2.017607 0 12.39415 

URB 725 72.04486 12.18446 50.622 98 

Notes: Max and Min denote the maximum and minimum, respectively; Std.-Dev. and Obs. 

denote the model's standard deviation and the number of observations. 

Indeed, having introduced the descriptive statistics of the variables, we needed to check the 

normality of the data. To this end, the Shapiro-Wilk (Shapiro and Wilk, 1965) and Shapiro-France 

(Shapiro and Francia, 1972) tests were computed. The normal distribution of data was the null 

hypothesis of the tests. Table 4 shows the results obtained using the normal distribution tests.  
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Table 4. Normal distribution tests 

Variables 
The Shapiro-Wilk test The Shapiro-Francia test 

Obs. 
Statistic Statistic 

LOUT 0.97926 *** 0.98023 *** 725 

LIND 0.93591 *** 0.93763 *** 725 

LCO2 0.98924 *** 0.99000 *** 725 

LPATENT 0.94397 *** 0.94355 *** 725 

LGDP 0.97230 *** 0.97353 *** 725 

LREN 0.93049 *** 0.92965 *** 725 

LURB 0.97756 *** 0.97583 *** 725 

Notes: *** denotes statistical significance at the (1%) level; "L" represents the natural 

logarithm. 

As shown in Table 4 above, the null hypothesis on the normality of data was rejected by 

all the variables. Therefore, it was necessary to identify the presence of multicollinearity between 

the model's variables after identifying the presence of non-normally distributed data. Thus, the 

variance inflation factor (VIF) (Belsley et al., 2005) was computed. Table 5 below presents the 

VIF test results for the two models. Therefore, the VIF test was checked for Model I, with LOUT 

as the dependent variable, and in Model II, LIND as the dependent variable. 

Table 5. The VIF test 

Variables 

Model I 

Dependent variable (LOUT) 
Variables 

Model II 

Dependent variable (LIND) 

VIF-test VIF-test 

VIF Mean VIF VIF Mean VIF 

OUT n.a. 

1.64 

IND n.a. 

1.65 

LCO2 1.91 LCO2 1.91 

LPATENT 1.02 LPATENT 1.02 

LGDP 2.03 LGDP 2.04 

LREN 1.49 LREN 1.49 

LURB 1.74 LURB 1.74 

Notes: n.a. denotes not available. 

Table 5 above indicates the absence of multilinearity in both models, where the VIF value 

for each variable is less than the standard 10, and the VIF average is less than 6. Therefore, we 

checked the presence of cross-sectional dependence and the heterogeneity slope (HS) in panel data 

after identifying the presence of low multicollinearity in both models. Thus, the Pesaran CD-test 

(Pesaran, 2004) and the HS-test (Pesaran and Yamagata, 2008) were computed. The null- 

hypothesis was cross-sectional independence. The Pesaran CD and HS-test results are shown in 

Table 6 below. Indeed, the Pesaran CD-test was individually computed in each variable. In 

contrast, the HS-test for Model I and Model II was computed. 
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Table 6. Pesaran CD and HS tests 

Pesaran CD-test 

Variables CD-Statistics p-value 

LOUT 97.29*** 0.000 

LIND 99.01*** 0.000 

LCO2 43.36*** 0.000 

LPATENT 33.69*** 0.000 

LGDP 82.36*** 0.000 

LREN 32.21*** 0.000 

LURB 26.78*** 0.000 

Homogeneity Slope test 

Models Delta Adjusted Delta 

Model I 24.540*** 29.064*** 

Model II 22.127*** 26.206*** 

Notes: *** denotes statistical significance at the (1%) level. 

Table 6 shows that in all model variables, cross-section dependence is present. Moreover, 

the HS-test points to slope heterogeneity in the models, where delta and adjusted delta are 

statistically significant. Therefore, after confirming slope heterogeneity in the models and cross-

section dependence in the variables, we needed to find the unit root in the variables. Thus, the 

CIPS test (Pesaran, 2007) was computed. Table 7 below shows the results of the panel unit root 

test.  

Table 7. Panel unit root test  

Variables 

Panel Unit Root test (CIPS) (Zt-bar) 

Without trend With trend 

Lags Adjusted t Adjusted t 

LOUT 1 -2.987 *** 0.811  

LIND 1 -0.596  -1.800 ** 

LCO2 1 -0.979  -2.353 *** 

LPATENT 1 -10.697 *** -9.299 *** 

LGDP 1 -2.375 *** -1.375 * 

LREN 1 -2.238 ** -1.791 ** 

LURB 1 -3.11 *** -2.341 *** 

Notes: ***, ** and * denote statistical significance at (1%), (5%), and (10%) levels, 

respectively.  

LOUT, LIND, and LCO2 are on the boundary between the I(0) and I(1) orders of 

integration, as the panel unit root test indicated. That is, they are quasi-stationary. However, the 

variables LPATENT, LGDP, LREN, and LURB are stationary or of I(1) order of integration. 

Therefore, it was necessary to identify the presence of cointegration in the presence of stationarity 

variables in the model. Thus, the Westerlund panel cointegration test (Westerlund, 2007) was 

computed. The absence of cointegration in the variables was the null hypothesis of this test. Table 

8 shows the results of the Westerlund test. In this investigation, the cointegration test was used in 

the variables LPATENT, LGDP, LREN, and LURB. The Westerlund test requires all the variables 

to be of I(1) order of integration.  
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The results of the Westerlund cointegration test reveal that the variables LPATENT, 

LGDP, LREN, and LURB are cointegrated, where the null hypothesis can be rejected. After 

realizing the cointegration test, it was necessary to identify the presence of random effects versus 

fixed effects and heterogeneity in Models I and II. Thus, the Hausman test was computed. This 

test's null hypothesis considered the random effects as the best estimators. Table 9 below shows 

the results of the Hausman test in Model I and Model II. 

 

Table 9. The Hausman test 

Models Chi2(5) Prob. 

Model I 123.63*** 0.000 

Model II  23.45*** 0.000 

Notes: *** denotes statistical significance at (1%) level. 

 

The results of the Hausman test indicate that fixed effects are present in the models, where 

the null hypothesis can be rejected. Moreover, this presence is required to calculate OLS with fixed 

effects and the MM-QR. In this subsection, we presented the results of the preliminary tests. The 

results of OLS with fixed effects and the MM-QR will be presented in the following subsection.  

 

4.2. The results of OLS with fixed effects and the MM-QR  

This subsection presents the results of OLS with fixed effects and the MM-QR. The results 

of OLS with fixed effects and the MM-QR from Model I, where the dependent variable is LOUT, 

are shown in Table 10 below.  

Table 8. The Westerlund panel cointegration test 

The variables LPATENT, LGDP, LREN, and LURB 

Statistic  Value Z-value Robust P-value 

Gt -3.461 -7.015 0.000 *** 

Ga -9.349 1.238 0.080 * 

Pt -28.247 -16.942 0.000 *** 

Pa -14.289 -5.609 0.000 *** 

Notes: *** and * denote statistical significance at (1%) and 10% levels, respectively; Pt and Pa 

test the cointegration of the panel. Also, Gt and Ga individually test the cointegration for each 

country. 
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Table 10. Estimation results of the MM-QR regression model and OLS with fixed effects (Model I) 

Independent 

variables 

The main method 
Robustness 

check 

MM-QR 
OLS 

Model I-Dependent variable (LOUT) 

Quantiles 
Fixed Effects 

10th 25th 50th 75th 90th 

LCO2 0.94766 *** 0.9308 *** 0.9093 *** 0.8912 *** 0.8773 *** 0.9109 *** 

LPATENT -0.0589 *** -0.0636 *** -0.0695 *** -0.0745 *** -0.0783 *** -0.0690 *** 

LGDP -1.005 *** -0.9771 *** -0.9416 *** -0.9116 *** -0.8885 *** -0.9442 *** 

LREN -0.0928 *** -0.0924 *** -0.0919 *** -0.0915 *** -0.0912 *** -0.09195 *** 

LURB -3.2976 *** -3.2833 *** -3.2650 *** -3.2495 *** -3.2377 *** -3.2663 *** 

Notes: *** denotes statistical significance at the (1%) level. 

 

Table 10 above shows that all the variables are statistically significant at a (1%) level in 

all quantiles and OLS with fixed effects. Moreover, the results of the MM-QR indicate that the 

independent variable LCO2 has a positive effect on the dependent variable (LOUT). This result 

means that CO2 emissions increase premature deaths from outdoor air pollution. However, the 

independent variables LPATENT, LGDP, LREN, and LURB negatively affect the dependent 

variable (LOUT). The eco-innovation initiatives, GDP, renewable energy consumption, and 

urbanization mitigate premature deaths from outdoor pollution.  

OLS with fixed effects results indicates that the independent variable LCO2 has a positive 

effect of 0.9109 on the dependent variable (LOUT). However, the independent variables 

LPATENT, LGDP, LREN, and LURB have negative impacts of -0.0690, -0.9442, -0.09195, and 

-3.2663, respectively, on the dependent variable (LOUT). Indeed, the results of the OLS estimation 

confirm that the MM-QR is robust even with the change of method. Moreover, it is worth 

remembering that the OLS results with fixed effects are similar to those of the 50th quantile of the 

MM-QR (Koengkan et al., 2022). Indeed, Figure 5 below summarizes the impact of independent 

variables on dependent ones indicated in Table 10 above. 

 



16 

 

 
Figure 5. Summary of the variable's effect. The authors created this figure. 

 

After realizing the econometric estimation of Model I, it was necessary to carry out the 

estimation of Model II, with LIND as the dependent variable. Table 11 below shows OLS results 

with fixed effects and the MM-QR from Model II. 

 
Table 11. Estimation results of the MM-QR regression model and OLS with fixed effects (Model II) 

Independent 

variables 

The main method 
Robustness 

check 

MM-QR 
OLS 

Model II-Dependent variable (LIND) 

Quantiles 
Fixed Effects 

10th 25th 50th 75th 90th 

LCO2 1.6317 *** 1.5437 *** 1.4185 *** 1.2330 *** 1.1165 *** 1.3894 *** 

LPATENT -0.0931 ** -0.1102 *** -0.1346 *** -0.1708 *** -0.1935 *** -0.1403 *** 

LGDP -1.7150 *** -1.7392 *** -1.7737 *** -1.8249 *** -1.8570 *** -1.7818 *** 

LREN -0.1777 *** -0.1741 *** -0.1689 *** -0.1612 *** -0.1564 *** -0.1677 *** 

LURB -6.9617 *** -6.9962 *** -7.0453 *** -7.1180 *** -7.1636 *** -7.0567 *** 

Notes: *** and ** denote statistical significance at the (1%) and (5%) levels, respectively. 
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Table 11 above shows that all variables are statistically significant at a (1%) level in all 

quantiles and OLS with fixed effects. Moreover, the results of the MM-QR indicate that the 

independent variable LCO2 positively impacts the dependent variable (LIND). Thus, CO2 

emissions increase premature deaths from outdoor air pollution. However, the independent 

variables LPATENT, LGDP, LREN, and LURB negatively affect the dependent variable (LIND). 

The eco-innovation initiatives, GDP, renewable energy consumption, and urbanization mitigate 

premature deaths from outdoor pollution.  

OLS with fixed effects results reveals that the independent variable LCO2 has a positive 

effect of 1.3894 on the dependent variable (LIND). However, the independent variables 

LPATENT, LGDP, LREN, and LURB have negative impacts of -0.1403, -1.7818, -0.1677, and -

7.0567, respectively, on the dependent variable (LIND). Figure 6 below summarizes the impact 

of independent variables on dependent ones indicated in Table 11 above. 

 
Figure 6. Summary of the variable's effect. The authors created this figure. 

 

 

4.3. Robustness check 

To check the model robustness in this research, we estimate both models (Model I and 

Model II) without the urbanization (LURB) variable (control variable). The robustness results of 



18 

 

both models are given in Table 12. As can be seen, the results of both robustness models confirm 

the main models, and their signs and significance are the same. 

Table 12. Robustness check results (Model I and Model II) 

Independent 

variables 

Model I-Dependent variable (LOUT) 

Quantiles 

10th 25th 50th 75th 90th 

LCO2 1.2101 *** 1.1730 *** 1.1298 *** 1.0886 *** 1.0600 *** 

LPATENT -0.0771 ** -0.0856 *** -0.0955 *** -0.1050 *** -0.1116 *** 

LGDP -0.1045 *** -0.1015 *** -0.0979 *** -0.0946 *** -0.0922 *** 

LREN -1.0757 *** -1.0672 *** -1.0574 *** -1.0481 *** -1.0416 *** 

Model II-Dependent variable (LIND) 

LCO2 2.2320 *** 2.1020 *** 1.9070 *** 1.6228 *** 1.4715 *** 

LPATENT -0.1202 ** -0.1472 *** -0.1876 *** -0.2465 *** -0.2779 *** 

LGDP -0.1741 *** -0.1766 *** -0.1804 *** -0.1859 *** -0.1889 *** 

LREN -1.8455 *** -1.9105 *** -2.007 *** -2.1499 *** -2.2255 *** 

Notes: *** and ** denotes statistical significance at the (1%) and (5%) levels, respectively. 

We also applied the Dumitrescu-Hurlin (2012) panel causality test to check the causality 

between the variables. Table 12 shows the Domitresco-Horlin panel causality test results for 

important variables. 

 

Table 13. Pairwise Dumitrescu-Hurlin Panel causality test results 

Null hypothesis: W-Stat. Zbar-Stat. p-value Results  Causality 

LCO2 ↛ LOUT 3.0610*** 7.8482 0.0000 Yes 
↔ 

LOUT ↛ LCO2 4.6619*** 13.9442 0.0000 Yes 

LPATENT ↛ LOUT 1.7163*** 2.7274 0.0000 Yes 
↔ 

LOUT ↛ LPATENT 2.2030*** 4.5810 0.0000 Yes 

LREN ↛ LOUT 1.9961*** 3.7932 0.0001 Yes 
↔ 

LOUT ↛ LREN 5.3952*** 16.7363 0.0000 Yes 

LGDP ↛ LOUT 0.1874** 2.5211 0.0117 Yes 
↔ 

LOUT ↛ LGDP 2.0714*** 4.0799 0.0000 Yes 

LURB ↛ LOUT 4.1080*** 11.8349 0.0000 Yes 
↔ 

LOUT ↛ LURB 11.6307*** 40.4807 0.0000 Yes 

LCO2 ↛ LIND 7.4009*** 24.3739 0.0000 Yes 
↔ 

LIND ↛ LCO2 5.6267*** 17.6180 0.0000 Yes 

LPATENT ↛ LIND 2.2201*** 4.6459 0.0000 Yes 
↔ 

LIND ↛ LPATENT 2.6532*** 6.2950 0.0000 Yes 

LREN ↛ LIND 2.9672*** 7.4909 0.0000 Yes 
↔ 

LIND ↛ LREN 5.0428*** 15.3945 0.0000 Yes 

LGDP ↛ LIND 4.6822 14.0216 0.0000 Yes 
↔ 

LIND ↛ LGDP 1.6431** 2.4489 0.0143 Yes 

LURB ↛ LIND 10.2332*** 35.1590 0.0000 Yes 
↔ 

LIND ↛ LURB 17.7350** 63.7250 0.0000 Yes 

Note: *, ** and *** indicates (10%), (5%), and (1%) significance levels, respectively; double-side arrows show bi-

direction; a single arrow shows unidirectional and ↛ shows no causality. 
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As can be seen, in Model I (lout), all variables include CO2 emissions (LCO2), economic 

growth (LGDP), environmental innovation (LPATENT), renewable energy consumption (LREN), 

and urbanization (LURB), a bidirectional causal relationship with outdoor air pollution death 

(LOUT). Indeed, Figure 7 below summarizes the causality between independent variables with 

dependent ones found in Table 13 above. 

 

 
Figure 7.  Summary of the variables' causality. The authors created this figure. 

 

The results of the causal relationship for Model II (LIND) also confirm the two-way causal 

relationship between indoor air pollution death (LIND) and all variables affecting it. In addition, 

these results confirmed the robustness of both models. 
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5. Discussion 

This section is devoted to the explanation of the obtained results. The positive impact of 

the independent variable LCO2 on the dependent variables LOUT and LIND was found by 

Koengkan et al. (2021) and Jacobson (2008). According to the authors, CO2 emissions originating 

from the combustion processes of solid fuel burning, industry, and motor vehicles are significant 

air pollutants that cause premature deaths. This result means that the CO2 emissions are directly 

related to premature deaths from air pollution. For this reason, their signal is positive in this 

investigation. 

Given that increased economic growth leads to more CO2 emissions. Therefore, countries 

with higher CO2 emissions are usually associated with high income per capita levels and elevated 

levels of industrialisation. According to Jaunky (2011), in the rich and industrialised countries, the 

increase of (1%) in GDP generates an increase of (0.68%) in CO2 emissions in the short run and 

(0.22%) in the long run. Furthermore, high income per capita levels increase public investment in 

the health sector, provide health facilities, and improve the health system, which can help reduce 

mortality from air pollution, as Koengkan et al. (2022) and Koengkan et al. (2021) found. 

Moreover, another possible explanation could be related to the increase in air pollution or 

CO2 emissions in some European countries. This possible increase could be related to some 

European countries being dependent on fossil fuels to grow or having high participation of fossil 

fuels in their energy matrix. However, several decarbonization initiatives have been implemented 

in the last decades to reduce the consumption of fossil fuels (Fuinhas et al., 2021). According to 

Europa (2022b), in 2019, the energy mix in the EU countries was composed of natural gas (22%), 

nuclear energy and solid fossil fuels (both 13%), petroleum products (including crude oil) (36%), 

and renewable energy (15%). 

Indeed, the shares of diverse energy sources in the total available energy considerably vary 

in the EU countries. For example, a significant share of total energy available in Malta (87%), 

Cyprus (90%), and Luxembourg (65%) belongs to petroleum products (including crude oil). Also, 

natural gas generates over one-third of the total energy in the Netherlands (37%) and Italy (39%). 

Moreover, solid fossil fuels account for more than half of the energy available in Estonia (60%) 

and (43%) of the total energy in Poland. On the other hand, nuclear energy accounts for (31%) of 

the total energy in Sweden and (41%) in France. Finally, renewable energy constitutes (37%) of 

the available energy in Latvia and (41%) in Sweden (Europa 2022b). 

As mentioned in the introduction, the impact of eco-innovative initiatives on premature 

deaths from air pollution has never been approached. As a result, our investigation opted to use 

studies close to this topic of investigation to explain the negative impact of the independent 

variable LPATENT on the dependent variables LOUT and LIND. Therefore, the negative impact 

caused by the independent variable LPATENT could be related to the capacity of eco-innovative 

initiatives to mitigate CO2 emissions in the European countries.  

In the literature, the evidence that eco-innovative initiatives can reduce environmental 

degradation has been confirmed by several authors (for example, Alam et al., 2021; Cheng et al., 

2021; Ahmad et al., 2021; Meirun et al., 2021; Hasanov et al., 2021; Abid et al., 2021; Dauda et 

al., 2021; Chen and Lee, 2020; Wang and Zhu, 2020; Khattak et al., 2020; Koçak and Ulucak, 

2019; Petrović and Lobanov, 2019; Hashmi and Alam, 2019; Cheng et al., 2019a; Cheng et al., 

2019b; Du et al., 2019; Ganda, 2019; Dauda et al., 2019; and Fernández et al., 2018). In a study 

for the G7, Qin et al. (2021) confirmed the role of environmental technologies in controlling CO2 

emissions. On the other hand, Sun et al. (2022) for top-10 polluted countries found that 
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environmental innovations can reduce CO2 emissions only in the middle and upper quantiles. In a 

study for China, Guo et al. (2021) found that investing in green technology can help reduce CO2 

emissions. Indeed, most of these authors explain that investments in eco-innovative initiatives, 

such as patents of renewable energy technologies and technologies that consume less energy, 

reduce the consumption of non-renewable sources of energy and, accordingly, CO2 emissions. 

Moreover, this negative impact also could be related to the boom in the green industries in the EU. 

According to Europa (2022a), from 2000 to 2011, the environment industry grew by more than 

fifty per cent in the EU. In the EU, more than three million people are employed by eco-industries. 

Also, European businesses supply one-third of the global green technologies market, a market 

worth €1 trillion, which is expected to double in five years. 

The negative impact of the independent variable LGDP on the dependent variables LOUT 

and LIND was found by Koengkan et al. (2022). According to the authors, this negative impact is 

related to the modernization of industries and infrastructures via green energy technologies that 

consume less energy. The income increase allows the industries, government, and households vast 

access to green energy technologies and technologies that consume less energy or resources. 

Indeed, this would be possible only through heavy investments in R&D, eco-innovative initiatives, 

and the trade and financial liberalization caused by economic development. Furthermore, the 

negative impact of the variable LGDP could result from the boom in the green industries in the 

EU, as mentioned before, where the EU countries have massively invested in initiatives to 

decarbonize their economies. 

Another possible explanation is related to substantial investments in the health sector in 

the EU countries in the last decades. The average ratio of health spending to GDP across the EU 

countries sharply jumped from (3.8%) in 2005 to (8.5%) in 2009 (OECD, 2020). Therefore, the 

mortality caused by air pollution could be reduced by increasing health spending in EU countries. 

The negative impact of the independent variable LREN on the dependent variables LOUT 

and LIND was found by Koengkan et al. (2022) and Koengkan et al. (2021). According to the 

authors, this negative impact is related to the capacity of renewable energy consumption to mitigate 

air pollution. The same authors state that this reduction is possible because of the existence of 

efficiency policies that encourage developing, producing, and consuming green energy 

technologies. Moreover, this negative impact could be related to the increase in the share of 

renewable energy in European countries. While the few investigations mentioned earlier examined 

the effects of renewable energy consumption on mortality from air pollution, several studies 

confirmed the effect of renewable energy consumption on reducing CO2 emissions (for example, 

Adebayo et al., 2022; Khattak et al., 2020; Haldar et al., 2021; Mehmood, 2022; Akram et al., 

2020; Saidi et al., 2020). Therefore, reducing CO2 emissions also decreases mortality from air 

pollution. 

Finally, the negative impact of the independent variable LURB on the dependent variables 

LOUT and LIND could be related to two factors, as mentioned by Koengkan and Fuinhas (2021). 

The first factor is reducing the urban population, which affects energy consumption from 

households, industries, the transport sector, and, accordingly, the CO2 emissions. Second, it could 

be a result of (a) the consideration of diverse sources of energy and renewable sources in the energy 

matrix in large urban centres; (b) the improvement of energy efficiency as a result of the 

introduction and development of new energy technologies; and (c) the introduction of 

environmental regulations to encourage families and industries for the acquisition of technologies 

that restrict the use of cars utilizing fossil fuels and are environment-friendly, as occurred in some 
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large cities in Europe. Furthermore, individual transport can be reduced by investing in public 

transport based on alternative energy sources.  

 

6. Policy implications and conclusions 

The main question of this research can be stated as follows. Do environmental innovations 

play an essential role in the reduction of air pollution? A positive answer to this question will help 

the reduction of pollution-related deaths and represent one more benefit of the challenging 

transition to a sustainable world.  

To assess the validity of the relationship, the effect of eco-innovations on premature deaths 

resulting from indoor and outdoor air pollution was examined in twenty-nine European countries 

from 1995 to 2019. The moments' quantile regression (MM-QR) method was the most suitable 

econometric technique to perform the empirical analysis. Two models were developed to assess 

the relationship. The first model explained the effects of CO2 emissions, patents on environmental 

technologies, GDP, renewable energy consumption, and the percentage of urban population on the 

rates of deaths resulting from outdoor air pollution. The second model explored the effects of the 

same explanatory variables present in the previous model but on the rates of deaths resulting from 

indoor air pollution. 

The most important result of this research was the confirmation of heterogeneous effects 

of the main variables in both models. Indeed, both models indicated that eco-innovations reduced 

premature deaths from outdoor and indoor air pollution. However, these effects were more 

extensive in upper quantities (75th and 90th). Also, it was found that the effect of eco-innovations 

on reducing mortality due to indoor pollution was more pronounced than the one due to outdoor 

pollution. Moreover, eco-innovation, economic growth, renewable energy consumption, and 

urbanization reduced premature mortality due to indoor and outdoor air pollution. Conversely, 

CO2 emissions increased premature mortality. 

Our study filled the gap in the literature concerning the association between eco-innovation 

initiatives and the reduction of premature deaths attributed to outdoor and indoor air pollution. 

Indeed, the contribution to literature was threefold (i) through its innovative addressing of the 

effect of eco-innovation initiatives on premature deaths resulting from outdoor and indoor air 

pollution by studying a representative group of European countries, (ii) by the introduction of 

novel econometric models to the topic under consideration, and (iii) by supporting policymakers 

in developing initiatives promoting the development of eco-innovative solutions to improve the 

environment. 

Assess the indirect effects (the ones the project's promotors cannot capture) are a crucial 

part of fighting the adverse effects of environmental damage. Moreover, innovation requires 

substantial financial resources. Consequently, economists are expected to assess if their uses can 

alleviate humankind's problems. However, here we have focused only on one dimension of 

innovation, the patents on environmental technologies, and evaluate if this eco-innovation can 

mitigate one of the vast environmental problems, i.e., the deaths from inside and outside pollution. 

Furthermore, suppose these environmental technologies reveal positive indirect effects on public 

health. In that case, their benefits increase compared to the financial cost of their research and 

development. This result is what our research revealed. Therefore, when policymakers support the 

financing of eco-innovation, society gets more than what is captured by looking at its financial 

returns. 

Policymakers must incentivize innovation's significant economic and social behaviour 

effects to reduce premature deaths. As this study proved, CO2 emissions should be curbed by 
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encouraging the adoption of electric vehicles using electricity generated from renewable energy 

sources. Interventions in the industry to promote energy efficiency, filter pollution, and store 

carbon emissions are also advised. On the other hand, research should be financed to increase 

patents on environmental technologies. The available innovations can accelerate the modernization 

of industries and infrastructures by deploying green-energy and energy-saving technologies. The 

substitution of fossil energy with renewable sources should be accelerated to reduce CO2 

emissions. Also, investment in public transportation should be increased to take advantage of 

urbanization and achieve more efficiency in transportation. Finally, environmental regulations 

should encourage industries' and households' acquisition of environment-friendly technologies.  

As this research proved, the impact of eco-innovative initiatives on premature deaths from 

air pollution is real. Consequently, policymakers must promote eco-innovations with a substantial 

impact on the environment. 
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