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Preamble  

The purpose of the work presented in this thesis was to establish the role of innate 

lymphoid cells in preterm birth, through progesterone actions. There is growing amount 

of evidence in the literature highlighting the relevance of innate lymphoid cells amongst 

the diverse actions of the innate immune system. These range from their role in disease, 

namely in the response against intracellular pathogens and allergy; mediating 

inflammatory responses; in tissue remodeling and repair, amid others.  

The nomenclature and characterization of these cells has been evolving in the last 

decade. Despite the fact that this group of cells now includes natural killer cells and 

lymphoid tissue inducer cells, this work focuses on the most recently discovered groups 

one, two and three innate lymphoid cells. It is in these latter groups that there is scarce 

data regarding their role in pregnancy.  

Of all the different actions of innate lymphoid cells, their ability to mediate 

inflammation raised our interest. In fact, in pregnancy there are two major inflammatory 

events: implantation and labor itself. It was in this context that we sought out to study 

preterm birth as an inadequate or premature inflammatory event. The decision to include 

progesterone as key mediator in this process derived from the knowledge that 

progesterone is a key anti-inflammatory hormone throughout pregnancy, and because 

progesterone is currently administered to pregnant women who suffer from preterm labor, 

with good clinical outcomes, based on international guidelines.  

The relevance of this work resides in the fact that the incidence of preterm birth has 

increased in developed countries regardless of multiple strategies carried out to avoid it. 

Moreover, this work deliberately raises several scientific questions important in the 

development of the immunology field. 
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The thesis presented herein, aims to contribute to a more complete understanding of 

the mechanism underlying preterm birth. Moreover, this work aims to expand our 

previous knowledge in the immunology of pregnancy, giving rise to the development of 

new clinical protocols by identifying new therapeutic targets. In doing so, the author aims 

to contribute significantly to promote the reduction in children morbidity and mortality 

and hospital costs.  
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Summary 

One of the most complex areas in perinatal-neonatal medicine remains the care of 

women anticipating a preterm delivery.  

Preterm Birth (PTB), defined as delivery occurring before 37 completed weeks of 

gestation, globally represents 15 million babies born prematurely1. 

PTB can result from a range of causes such as exposure to environmental triggers, 

maternal stress, fetal or maternal genetic abnormalities, and hormonal imbalance, 

amongst others. Progesterone acts as an immunosteroid by contributing to the 

establishment of a pregnancy protective milieu. Previous results from our group have 

demonstrated the benefits of progesterone therapy in PTB, through the actions of 

membrane progesterone receptors (PRs) in regulatory T cells (Tregs) 2,3. 

The act of giving birth is widely regarded as an inflammatory event4. Very likely, it is 

the immune response of the host that presumably leads to the inflammatory response and 

preterm labor4.  

Randomized studies and individual patient data meta-analysis have shown that in 

women with a short cervix, progesterone reduces PTB and adverse neonatal outcomes5. 

However, there is no evidence that women with PTB have lower progesterone levels, or 

that administration of progesterone vaginally increases its concentration in peripheral 

blood. Therefore, the mechanism by which a modest additional amount of progesterone 

could achieve its therapeutic effect is unclear, suggesting that it may be exerted locally6.  

Recently, a new cell type belonging to the innate immune system, termed innate 

lymphoid cell (ILC), was characterized. Functionally, ILC resemble T helper 1 (Th1), T 

helper 2 (Th2) and T helper 17 (Th17) cells and have revealed an essential role in the 

initiation, regulation and resolution of inflammation7. Dysregulation or expansion of pro-



 

15 
 

inflammatory ILC populations may directly interfere with pregnancy, ultimately resulting 

in pregnancy loss or adverse outcomes. 

In this work, we investigated the role of progesterone in spontaneous preterm labor 

(PTL), through the actions of ILC. Moreover, we analyzed the relative frequencies of ILC 

subsets in pregnancy and the levels of Interleukin (IL)-4, IL-17, IL-22, and interferon 

(IFN)-γ as inflammatory mediators. Besides, this work aims to expand our previous 

knowledge in the immunology of pregnancy, giving rise to the development of new 

clinical protocols by identifying new therapeutic targets. In doing so, the author aims to 

contribute significantly to promote the reduction in children morbidity and mortality and 

hospital costs. For this purpose, we included a study group composed of women with 

spontaneous PTL attending the Obstetric Department of Coimbra Hospital and University 

Centre (CHUC); and a control group comprising healthy pregnant women attending 

prenatal consultation in the same institution. Administration of natural progesterone was 

done, once daily, in a 200mg vaginal dosage in the study group. ILC were isolated and 

characterized from maternal peripheral blood, maternal-fetal interface, and cord blood 

samples, using flow cytometry. Plasmatic cytokines were determined in peripheral blood 

and cord blood samples by enzyme-linked immunosorbent assay (ELISA), at the time of 

labor. 
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Resumo 

Uma das áreas mais complexas da medicina perinatal e neonatal continua a ser o 

cuidado de mulheres grávidas, antecipando o parto de uma criança prematura. 

O parto pré-termo,  definido como o parto que ocorre antes das 37 semanas completas 

de gestação, representa globalmente o nascimento de 15 milhões de crianças prematuras. 

O parto pré-termo pode resultar de uma variedade de causas, como a exposição a 

fatores ambientais, stress materno, variações genéticas fetais ou maternas, desequilíbrio 

hormonal, entre outras. Neste contexto, a progesterona atua como um imuno-esteróide, 

contribuindo para um ambiente de proteção da gravidez. Dados publicados recentemente 

pelo nosso grupo demonstram os benefícios da terapia com progesterona no parto pré-

termo, mediados pelos recetores da progesterona  nas células T reguladoras. 

O parto é amplamente considerado como um processo inflamatório. Muito 

provavelmente esta resposta inflamatória tem origem numa resposta imunitária por parte 

do hospedeiro. 

Estudos randomizados e meta-análises individuais demonstraram que, em 

mulheres com colo do útero curto, a progesterona reduz o parto pré-termo e um resultado 

neonatal adverso. No entanto, não há evidências que mulheres com trabalho de parto pré-

termo tenham níveis mais baixos de progesterona ou que a administração de progesterona 

por via vaginal aumente sua concentração no sangue periférico. Portanto, o mecanismo 

pelo qual uma quantidade adicional modesta de progesterona poderia alcançar um efeito 

terapêutico não é claro, sugerindo que este possa ser exercido localmente. 

Recentemente, identificou-se um grupo de células pertencente ao sistema 

imunológico inato, denominadas células linfoides inatas, que funcionalmente se 

assemelham às células T auxiliar 1 (Th1), T auxiliar 2 (Th2) e T auxiliar 17 (Th17) e 
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revelaram um papel essencial na iniciação, regulação e resolução da inflamação. A 

desregulação ou expansão das populações pró-inflamatórias de células linfoides inatas 

poderá interferir diretamente na gravidez, resultando em perda da gravidez ou em 

resultados adversos. 

Neste trabalho, propusemo-nos investigar o papel da progesterona no trabalho de parto 

pré-termo, pela sua ação nas células linfoides inatas. Analisámos as frequências relativas 

das células linfoides inatas, bem como os níveis plasmáticos de IL-4, IL-17, IL-22, e IFN-

γ. Para esse efeito, incluímos um grupo de estudo de mulheres com trabalho de parto pré-

termo atendidas no Departamento de Obstetrícia do Centro Hospitalar e Universitário de 

Coimbra (CHUC), e um grupo controlo composto por grávidas saudáveis seguidas em 

consulta pré-natal da mesma instituição. A administração de progesterona natural foi 

realizada com 200mg, via vaginal, uma vez ao dia (no grupo de estudo). As células 

linfoides inatas foram isoladas e caracterizadas a partir de amostras de sangue periférico 

materno, interface materno-fetal e sangue do cordão umbilical, utilizando a citometria de 

fluxo. As concentrações plasmáticas de citocinas foram determinadas em amostras de 

sangue do cordão e sangue periférico utilizando a técnica de ELISA, no momento do 

parto.
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1. Introduction  

The fact that there is a special connection between the mother and her offspring no one 

argues. Considering the latest advances in reproductive medicine, and that we are getting 

close to the announcement of an artificial womb7, the debate regarding the biological 

nature of the relationship between mother and fetus gains a new momentum.  

When looking at pregnancy, two distinct lines of reasoning can be addressed: on one 

hand the fetus can be considered as part of the mother (Parthood model); and on the other 

hand, the mother might be considered as a vessel and a provider for fetus development, 

which is an entity on its own right (Container model). Both views have enormous ethical 

philosophical implications. However, reducing such a complex biological event in two 

extreme views, fails to reflect the true nature of the process itself. 

From the immunology point of view, we may first consider self-non-self-

discrimination, since half the mother genetic heritage and half the father compose the 

newly developing being. In this sense, we may consider the fetus as a semi-allograft, a 

concept initially put forward in 1953, by Sir Peter Medawar8. In this view, taken from 

the knowledge attained in transplantation science, the fetus trophoblast, carrying paternal 

antigens, has to invade the mother uterine mucosa, in a process called implantation, while 

escaping immune defense mechanisms against alloantigens. This has become the first 

paradox in the biology of pregnancy. Indeed, the three major events in pregnancy, after 

the fertilization of the oocyte, involve an immunologic response. The implantation of the 

trophoblast, widely regarded as an inflammatory process on its own, then a protective 

anti-inflammatory milieu, needed throughout the whole development of the fetus, and 

labor itself, which is also regarded as an inflammatory event9,4 . The mother immune 

system has to carry out two fundamental tasks during pregnancy. On one hand it has to 
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successfully protect the fetus and mother from pathogens, while at the same time 

achieving the necessary tolerance to a half genetically different organism. 

A second key issue that has been puzzling gynecologists for long is the inflammation 

paradox or “good inflammation”. As stated earlier the implantation process is achieved 

through an inflammatory response, which promotes tissue remodeling at the level of the 

uterine wall. It has been suggested by Barash and colleagues, 2003, that deliberate 

injuring of the endometrium, will yield better implantation outcomes10, supporting the 

notion that a local induced inflammation would in some way aid the implementation of 

the trophoblast; however in a later study, Liu W. and colleagues, 2017 have not come to 

the same conclusion10. The divergence in results regarding this approach, highlights our 

lack of knowledge of what is the real nature of this “good inflammation” that seems to 

prompt the implantation event. Beyond the implantation process, labor is in itself an 

inflammatory process, which when prompt prematurely may yield a premature baby, with 

enormous psychological and clinical implications. As so, in an attempt to enlighten 

scientific knowledge, we hope to shed some light on the possible underlying mechanism 

responsible for PTL, in light of a newly discovered set of immune cells generally referred 

to as innate lymphoid cells (ILC).  
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2. Innate lymphoid cells 

ILC are a group of cells that share a common lymphoid progenitor. Initially these cells 

were classified in three distinct groups ILC1, ILC2 and ILC3 but later were grouped with 

the previous already classified natural killer (NK) cells and lymphoid tissue inducer 

(LTi). ILC are characterized by the absence of recombination activating gene (RAG)-

dependent rearranged antigen receptors, lack of myeloid cell and dendritic cell 

phenotypical markers, hence denominated lineage negative (Lin-). These cells share the 

expression of common γ chain, IL-7Rα (CD127). In addition, ILC2 are characterized by 

the expression IL-2Rα (CD25), a receptor that is also present in CD56bright NK cells but 

has lower expression in ILC1 and ILC3 11,12.  

ILC are functionally diverse and belong to the innate component of the immune 

system11. They were classified based on their relative cytokine profiles, centered on 

effector phenotypes that mirror T helper cells. Over the years, the classification of ILC 

has been subject of great debate, mainly due to their heterogeneity. ILC were initially 

classified as NK cells in 197513, afterwards, in 1997, another cell type was added, named 

lymphoid tissue inducer (LTi)14. While NK cells represent cytotoxic-ILC capable of 

killing virus-infected or tumor cells and release pro-inflammatory cytokines15, LTi are 

critical for the development of secondary lymphoid organs during embryogenesis16. 

However, the nomenclature approved by the International Union of Immunological 

Societies (IUIS) considers five distinct groups: NK cells known to produce IFN-γ; Group 

1 (ILC1) also known to produce IFN-γ, a Th1 like cytokine; Group 2 (ILC2), 

characterized by the expression of transcription factor Gata3 and the ability to produce 

Th2 like cytokines; Group 3 (ILC3), known to produce IL-22 and IL-17; and LTis, 

important in secondary lymphoid organ formation12,17.  
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These cells play an essential role in tissue homeostasis, defense against infection, 

inflammation and tissue repair17. ILC are mainly tissue resident cells found in the mucosal 

surfaces 18, as well as in the decidua of pregnant women19.  

Moreover, it has become evident that ILC have great plasticity. Their effector 

characteristics are highly dependent on their microenvironment, mainly on the cytokines 

secreted by tissue resident cells, and other cells from the innate component of the immune 

system20. Due to ability of some ILC to produce pro- and anti-inflammatory cytokines 

and to the fact that ILC express Major Histocompatibility Complex Class II (MHC II) 

molecules, their importance in the regulation of labor is rational. 

Immune tolerance and controlled inflammation are key processes in a successful 

pregnancy. Dysregulated inflammatory reactions often lead to complications such as 

spontaneous abortion, preterm labor, preeclampsia and intrauterine growth restriction21,22.  

 

2.1 Natural killer Cells and Group 1 innate lymphoid cells   

The importance of NK cells in pregnancy is paramount, not only because these cells 

belong to the innate immune system, but also because NK cells play an important role in 

placentation, remodeling of the spinal arteries and control of trophoblast invasion 23–26. 

Decidual NK (dNK) cells differ substantially from peripheral NK cells: peripheral NK 

cells are predominantly CD56dim CD16+ instead, dNK cells are CD56bright CD16- 27,28. This 

phenotype is accompanied by functional differences, since CD56dim CD16+ have a strong 

cytolytic activity, while dNK cells are predominantly cytokine-producing cells.  

 Even though NK cells were discovered many years ago, it has only been more recently 

that these cells were included in the ILC group. Recent work by Vento-Tormo et al. 2018 

proposed three main dNK subsets: dNK1, dNK2 and dNK3 cells. This classification has 
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been further confirmed by Huhn et al. 2020 29,30.  Also, a previous work by Yudanin et 

al. 2019, conducted in different tissues other than uterine origin, highlights the 

overlapping characteristics of NK cells with ILC1, a fact also reported by Huhn et al. 

2020 which poses the question of dNK3 subsets may be in fact ILC131. The nature and 

consequent nomenclature of the different dNK subsets and ILC1 is still a matter of great 

dispute. The implications of dNK cells being in fact ILC1 are enormous for the role of 

ILC in pregnancy; however, this discussion falls beyond the scope of this work. 

Classically, uterine ILC1 are characterized by the expression of T-bet, eomesodermin 

(Eomes) and produce IFN-γ. ILC1 do not express perforin and have the inability to 

produce Th2 and Th17 type cytokines19,32. 

ILC1 can be further characterized by their surface markers CD56-, CD94-, CD127+, 

CD117- 19 , and have been identified low numbers in human decidua  (< 3% of total ILC), 

suggesting a lesser role in pregnancy33.  
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2.2. Group 2 innate lymphoid cells 

Group 2 ILC are phenotypically characterized by the surface markers CD56-, CD127+, 

CD161+ and chemoattractant receptor-homologous molecule expressed on T helper 2 

cells (CRTH2) 34,19. ILC2 are dependent on GATA binding protein 3 and transcription 

factor retinoic-related orphan receptor alpha (RORα) for their development 11,35. ILC2 

produce type 2 cytokines (IL-4, IL-5 and IL-13), under the control of IL-25 and IL-33, 

important in extracellular parasite infections and allergic responses12. The expression of 

CRTH2 is of great interest for labor, since it is a G protein–coupled receptor for 

prostaglandin D2, which promotes ILC2 differentiation and a type 2 pro-inflammatory 

responses36. Another important feature of ILC2 population, found in a study conducted 

in a mouse model, is the expression of MHC class II, as well as the co-stimulatory 

molecules CD80 and CD8637. In this study conducted by Oliphant et al.2014, it has been 

showed that ILC2 can not only perform endocytosis, but also process and present 

antigens37. These characteristics allow ILC2 to present antigens to T CD4+ cells and 

induce proliferation towards a Th2 phenotype, in an IL-2 dependent manner 37. These 

data, albeit conducted in mouse models, reinforces the notion of a crosstalk between the 

innate and the adaptive immune system38–40.  
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2.3. Group 3 innate lymphoid cells 

Group 3 ILC are characterized by the expression of the surface marker CD117 and the 

transcription factor RORγt. In a mouse model, it has been proven that ILC3 express MHC 

class II and have been shown to promote T cell mediated responses 41. Two different 

studies suggest that ILC3 might promote neutrophil activation with pro-angiogenic 

abilities, contributing to the inflammatory phase needed for implantation 42,43. ILC3 can 

be further divided based on the presence of the natural cytotoxic receptor (NCR) NKp44. 

ILC3 NCR+ produce IL-22, while ILC3 NCR- produce IL-17 44,45; both subsets have been 

found in human decidua19. NCR is also present in activated peripheral NK cells and in 

dNK. In NK cells, NCRs mediate cytotoxic responses46 and antitumor responses47; 

however, when present in uterine NK cells, NCR receptors have an important role in 

placentation through the production of IL-8, VEGF, IP-10 and SDF-148. 

The ability of ILC3 to act as pro-inflammatory agents, releasing IL-17, suggests a 

preponderant role in pregnancy, which both favours embryo implantation, and has an 

innate antimicrobial role. In fact, decidual ILC3 seem to be important to pregnancy 

maintenance through innate defences and tissue remodeling19. Nevertheless, the 

inappropriate release of pro-inflammatory cytokines during the quiescent phase of 

pregnancy may prompt complications, mainly the precocious activation of the normal 

mechanism of labor49.   

According to the above explanation, we can recognize that the classification of ILC is 

based on functional criteria. ILC functionally resemble adaptive lymphocytes, with the 

distinction that ILC lack antigen-specific receptors. Instead, ILC are known to exert their 

effects through the production of cytokines and cell surface molecules with important 

consequences for tissue homeostasis, inflammation, and disease. Dysregulation or 

expansion of pro-inflammatory ILC populations may directly promote disease through 
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production of pro-inflammatory cytokine, which seems to be important in the 

pathogenesis of PTL.  

A summarized diagram of ILC ontogeny is presented in Figure 1, which highlights the 

similarities between ILC and T-helper cells (Th). 

 

Figure 1- A common lymphoid progenitor (CLP), originated from a Hematopoietic Stem Cell (HSC) can 

give rise to adaptive and innate lymphocytes. Downstream of the CLP, a common ILC precursor (CILP) 

would then divide in: 1) a branch that differentiate into NK cells; 2) a branch that generate a common 

helper-ILC precursor (CHILP). The CHILP would further differentiate towards different branch of the ILC 

family namely ILC1, ILC2, ILC3 and generate LTi population.  

Abbreviations: AHR: aryl hydrocarbon receptor; CRTH2: Chemoattractant receptor-homologous molecule 

expressed on TH2 cells; Eomes: eomesodermin; GATA3: GATA binding protein 3; IFNγ: interferon-γ; IL: 

interleukin; LTi: lymphoid tissue inducer; NCR: natural cytotoxicity receptor; NK: natural killer; ROR: 

Retinoic acid–related orphan receptor; T-bet: T-box transcription factor 21. (Figure credit: João Mendes) 
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3. Innate lymphoid cells in uterine and fetal compartments 

Male et al. 2010 first made the distinction between uterine NK cells and ILC subsets 

in humans. In this work, ILC were first considered precursors of uterine NK cells, 

however these cells showed differences in function and phenotype through the expression 

of RAR Related Orphan Receptor C (RORC), Lymphotoxin α and IL2 genes50, latter 

attributed to ILC3 and LTi subsets. Subsequent studies identified ILC151, ILC252 and 

ILC351,52 in human endometrium and decidua, based on evidence that ILC share a 

common lymphoid progenitor. 

ILC1 can be found in the endometrium and decidua of pregnant women as early as 9–

12 weeks of gestation19, representing an important source of IFN-γ51, implying a relevant 

role in the immune response against intracellular pathogens. In addition, the expression 

of CD103, an adhesion molecule that promotes the communication between lymphocytes 

and epithelial cells, suggests an epithelial localization of ILC1 in the endometrium and 

decidua53.  

Xu et al.2018 showed that, in term pregnancies, ILC2 is the most abundant population 

in human decidua, capable of producing Th2-type cytokines, such as IL-4, IL-5, and IL-

13. In this study, the authors suggest that the pro-inflammatory properties of ILC2 might 

underlie the pathological process prompting PTL33. In fact, they also detected ILC3 in the 

decidua parietalis, capable of producing IL-17 and IL-22, suggesting that these cells may 

be responsible for inflammation-driven PTL. 

ILC3 were also initially described as a subset of NK cells in human endometrium, 

expressing CD127, CD161, RORC and IL-2250. Later, work by Vacca et al. confirmed 

the ILC3 phenotype and their presence in human endometrium and decidua during 

pregnancy and further divided them into two subgroups ILC3 NKp44+ and ILC3 NKp44- 
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51,19. It has been shown that, similarly to Th cells, ILC display some degree of plasticity 

in response to their microenvironment. Studies conducted in mouse models show that in 

response to IL-12 and IL-18, ILC3 reveal an increased expression of T-bet and decreased 

expression of RORγt, which results in IFN-γ production and loss of their capacity to 

produce IL-17 and IL-22 54,55. This data may explain in part the low numbers of ILC1 

found by Xu et al.2018 in late gestation, due to overlapping functions with ILC3 

phenotypes. Whether the inflammatory response considered to take place in preterm birth 

is attributed to the actions of ILC1 or ILC3 remains to be elucidated.  

Amniotic fluid surrounds the embryo and fetus, protecting it mechanically during 

development in the event the maternal abdomen is subject to trauma. Amniotic fluid also 

protects the fetus from infectious agents due to its inherent antibacterial properties 56 and 

provides the fetus with a reservoir of fluid, nutrients, and growth factors to allow normal 

development and growth of fetal organs56. The main population identified in amniotic 

fluid is ILC3 of fetal origin, expressing CD127, CD117, CD161, and CD56 56. Indeed, 

ILC3 are abundant in the amniotic fluid until the second trimester56, when their numbers 

start to decay as gestation progresses57. In this context, the ability of ILC3 to produce 

IL17 suggests a role in regulating intra-amniotic infection56.   

Fetal ILC have been identified in the liver, secondary lymphoid organs (SLOs), 

intestine, lung and cord blood58,59. In the liver, ILC assume a preponderant role since it is 

in this organ that hematopoiesis takes place60,61, and where ILC precursors (ILCPs) 

originate,58 . In their work, Lim et al.2017 have suggested that circulating ILCP can 

migrate to different tissues where they differentiate according to fetal development needs 

and organogenesis58. Moreover, studies from animal models suggest that the presence of 

LTi cells in the fetus is essential for the successful formation of SLOs such as the spleen, 

mesenteric lymph nodes, and Peyer’s patches62–65.  
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Previous work has demonstrated that NK, ILC1, ILC2, and ILC3 subsets can be readily 

identified in the human fetal intestine44,56,66,67. It has been shown that intestinal ILC2 

produce IL-13 66, while ILC3 and LTi-like cells produce IL-17A and IL-22 44. 

Mjösberg et al. 2011 report the presence of ILC2 in the fetal lung66, while Marquardt 

et al.2016 have detected increased numbers of ILC3 in the second trimester when 

compared to the first trimester56.  

Most of the information available regarding ILC comes from animal models. However, 

considering the great degree of similarity between mouse and human ILC ontology 12, we 

attempted a reasonable extrapolation to human biology. 

The ubiquity of ILC presence in uterine and fetal compartment denotes the importance 

of innate immune system in pregnancy. Not only ILC take part in organ formation, but 

they also act as key mediators in protecting the fetus against infection and pathogens. The 

main findings that are the object of this work are summarized on table I. 
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Table I – Main findings in the literature regarding human ILC in uterine and fetal compartments. 

 

Resident ILC 

population 

 

Species 

 

Tissue 

 

Gestation   

 

Main Findings 

 

Reference 

 

ILC1/ILC2/ILC3 

 

Human 

 

Liver 

 

6 to 10 

weeks 

In this study the authors identified that fetal liver 

harbored almost exclusively NKp44− ILC3s, with 

ILC1s, ILC2s, and NKp44+ ILC3s being detectable 

only at later gestational age. Also, NKp44− ILC3s 

in the fetal liver were different from the 
corresponding population in the adult since fetal 

ILC3s expressed NRP1. 

 

Forkel M. 

et al. 2017 

 

ILC3 

 

 

Human 

 

Amniotic fluid 

Intestine 

Lung 

 

15 to 16 

Weeks 

ILC3 are the main ILC population in the amniotic 

fluid, producing high levels of IL-17 and TNF. 

ILC3s are abundant in fetal intestine and lung. 

 

Marquard 

et al. 2016 

 

 

 

ILC1/ILC2/ILC3 

 

 

 

Human 

 

 

 

Umbilical cord 
blood, Fetal liver 

 

 

 

14 to 20 
weeks 

Human ILCPs robustly generate all ILC subsets in 

vitro and in vivo. This study identified unipotent 

ILCPs. 

that could give rise to IFN-g+ ILC1s, IL-13+ ILC2s, 
or IL-17A+ and/or IL-22+ ILC3s. 

 

 

 

Lim et al. 

2017 

 

ILC1/ILC2/ILC3 

 

Human 

 

Gut 

 

16 to 22 

weeks 

The study applied mass cytometry to analyze ILC in 

the human fetal intestine, distinguished 34 distinct 

clusters and identified a previously unknown 

intermediate innate subset that can differentiate into 

ILC3 and NK cells. 

 

Li N. et al. 

2018 

 

ILC1/ILC3 

 

Human 

 

Decidua 

 

1st Trimester 

Decidual ILC3 have a frequency comparable, if not 

higher, with that of tonsil ILC3. 
Results from this study indicate that NCR+ ILC3 and 

LTi-like cells present in decidua can produce pro-

inflammatory cytokines including IL-8, IL-22, IL-

17A, TNF, and IFN-γ. 

 

Vacca et 
al. 2015 

 

ILC1/ILC2/ILC3 

 

 

 

Mouse/ 

Human 

 

Endometrium/ 

Decidua 

 

1st 

Trimester 

CD127+ ILC1s are absent in human endometrium or 

decidua. ILC2s were found deep in the uterine wall 

and not in human or murine decidua, nor in human 

endometrium. NCR+ ILC3s and LTi-like ILC3s are 
present in both human endometrium and decidua. 

 

Doisne et 

al. 2015 

 

ILC3 

 

Human 

 

  Decidua 

 

1st Trimester 

NCR+ ILC3 are present in decidual tissue where they 

produce CXCL8 and GM -CSF, suggesting that they 

may have a role in neutrophil recruitment and 

survival. 

NCR+ ILC3-derived GM-CSF induces the 

expression of both Heparin-binding EGF-like 

growth factor and IL1ra in neutrophils, important in 
angiogenesis and trophoblast growth/invasion. 

 

Vacca et 

al. 2016 

 

ILC3 

 

 

Human 

Amniotic fluid 

(AF)/1st and 2nd 

trimester fetal 

tissue 

 

 

1st Trimester 

CD45+ cells in AF contained very low frequencies 

of T cells, B cells and monocytes.  

Fetal CD103+ ILC3s in AF are functional and 

produce high levels of IL-17 and TNF. Similar 

subset was identified in second trimester fetal gut 

and lung, suggesting that CD103+ ILC3s develop in 
fetal tissues and subsequently egress to the AF. 

 

Marquardt 

et al. 2016 

 

ILC2 

 

 

Human 

 

lung and gut 

 

 

 

- 

 

In fetal gut, ILC2 expressed IL-13 but not IL-17 or 

IL-22. 

 

Mjösberg 

et al. 2011 

 

ILC3 

 

Human 

 

PBMCs 

 

3rd Trimester 

Increased IL-17 levels observed in patients with 

preeclampsia, gestational diabetes and chronic 

diabetes are associated with innate lymphoid cells 3 
(ILC3). 

 

Barnie et 

al. 2015 

 

ILC1/ILC2/ILC3 

 

Human 

 

Decidua 

 

Term and 

Preterm 
Pregnancies 

The proportion of total ILC was increased in the 

decidua parietalis of women with preterm labor. 

ILC1s were a minor subset of decidual ILC during 
preterm and term gestations; ILC2s were the most 

abundant ILC subset in the decidua during preterm 

and term gestations. The proportion of ILC2s was 

increased in the decidua basalis of women with 

preterm labor. The proportion of ILC3s was 

increased in the decidua parietalis of women with 

preterm labor; during preterm labor, ILC3s had 

higher expression of IL-22, IL-17A, IL-13, and IFN-
γ compared to ILC2s in the decidua. 

 

Xu et al. 

2018 
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4. Innate Lymphoid cells and the induction of tolerance 

In pregnancy, after a successful fertilization of the oocyte by the spermatozoa, and 

after reaching the phase of blastocyst, implantation in the uterine wall has to occur.  At 

this point fetal-derived placental cells, denominated trophoblast, have to invade a 

modified layer of the maternal uterus, the decidua. These cells might follow two different 

pathways: some differentiate into the syncytiotrophoblast layer, representing the interface 

with maternal blood, to regulate oxygen and protein transport; while others follow an 

invasive pathway and differentiate into extravillous trophoblast (EVT) cells68. 

In order to escape the maternal immune system, trophoblast cells only express human 

leukocyte antigen (HLA) HLA-C, and the non-classical HLA-E, HLA-F and HLA-G 

molecules69–72. In pregnancy, one key mechanism regulating induction of tolerance is 

through the actions of HLA-G molecules. HLA-G gene is located at chromosome 6, 

within the class I gene cluster of MHC. HLA-G belongs to the non-classical HLA-class I 

(or class Ib) gene; it is expressed mainly in the fetal-maternal interface on the extravillous 

cytotrophoblast73, amnion74, thymus75 and its soluble form can be detected in peripheral 

blood76. HLA-G exerts its effects by modulating antigen presenting cells 77; suppressing 

proliferation of CD4+ T lymphocytes78,79 and inhibiting of NK cells’ actions. In fact, 

HLA-G inhibits NK cells76 cytolytic actions, upregulates NK inhibitory receptors80 and 

is essential for implantation81.  

Also, in this perspective, there is evidence that progesterone, a key immunomodulatory 

steroid hormone, contributes to a pregnancy protective milieu by promoting HLA-G 

expression82 and regulating NK activity83,84. 

Tolerance is widely regarded as an adaptive response. Accordingly, it is a process that 

involves antigen presentation, clonal expansion, and the formation of memory cells; the 
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expression of HLA class II molecules in ILC2 and ILC3 population suggests that these 

cells might also have a role in pregnancy by presenting paternal antigens to the mother’s 

immune system. While ILC2 seem capable of eliciting T helper proliferation, Hepworth 

et al. 2013 reported in animal models that ILC3 lack classical co-stimulatory molecules 

such as CD40, CD80 and CD86. If it is the case, ILC3 antigen presentation may, in fact, 

limit T cell responses by negatively regulating CD4+ T cell responses in vivo38 through 

T cell anergy85. 

In respect to NK cells, it is suggested that the fetus evades dNK actions, due to the less 

polymorphic nature of the HLA-C genetic locus. In fact, in a review by Su Liu et al. 2017, 

it is highlighted that the dimorphic nature of HLA-C and the highly polymorphic nature 

of killer cell Ig-like receptors (KIR), might promote the interaction of paternal HLA-C 

antigens with uterine NK KIR receptors from the mother. Moreover, HLA-E, HLA-F, 

and HLA-G also have ability to bind dNK cells86.  

Three classes of different Nk receptors can bind HLA-I molecules, in the context of 

pregnancy: CD94/NKG2; KIR; and Ig-like transcripts (ILT) also called leukocyte 

immunoglobulin-like receptors (LILR)86.  

As put forward in his review King A. et al (2000), HLA-E will bind CD94/NKG2 

receptor, and this signal inhibits cell lysis, due to the overexpression of the variant 

NKG2A. It is also mentioned that KIRD2 expressed on NK cells, have the ability to 

discriminate between two distinct HLA-C; one for self HLA-I, and other for non-self. 

This might be a preponderant feature in the evasion of EVT cells. As regard to HLA-G, 

it will bind to ILT receptors on NK cells, and depending on the type of receptors it binds 

(ILT2, ILT4) the signal might be inhibitory or activator87.   
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In this context, there is evidence that progesterone, a key immunomodulatory steroid 

hormone, contributes to a pregnancy protective milieu by promoting HLA-G expression82 

and regulating NK activity.  

Whether ILC are on the forefront in establishing tolerance towards the fetus is a matter 

that requires further research.  

 

5. Innate Lymphoid cells in pregnancy related diseases 

Studies in NK cell biology corroborate the involvement of the innate immune system 

in preterm birth, preeclampsia, fetal growth restriction, morbidly adherent placentation, 

as well as, spontaneous abortion88–93. Dysregulation or expansion of pro-inflammatory 

ILC populations may directly promote disease, through production of pro-inflammatory 

cytokines, namely IL-17, considered important in the pathogenesis of preeclampsia and 

preterm birth94. In addition, high levels of IL-18 and IFN-γ have been associated with 

preeclampsia95. Moreover, in preterm birth there is evidence for an inadequate 

inflammatory response96. 

Progesterone has been known to play an important role in reproductive health for the 

initiation and maintenance of pregnancy, with good results in the prevention of 

spontaneous abortion and recently in preterm labor5,97,98  

The immunosuppressive effects of progesterone have been recognized for a long time. 

Despite its mode of action remaining largely unknown, progesterone has been widely 

adopted by clinicians around the world for prevention of preterm birth. Our group has 

already demonstrated that progesterone modulates human T regulatory cell population 

during pregnancy2,3,97,99. There is also evidence, conducted in a small sample of T cell 

clones, suggesting that progesterone favors Th2, while dampening Th1 and Th17 
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responses, and thus participates in the establishment of a favorable environment for 

pregnancy by its effects on T-cells100. Work from Henderson et al. 2003 shows that NK 

cells do not express progesterone receptors101; however, the expression of CRTH2 in 

ILC2 suggests that ILC are subject to hormonal regulation. Also work done by Gibson et 

al. 2020 shows that uterine NK (uNK) cells are regulated by membrane estradiol receptors 

(E46), highlighting the relevance of hormone regulation in NK activity during pregnancy. 

 

6. Preterm birth with spontaneous preterm labor 

Preterm Birth (PTB) is defined as delivery occurring before 37 completed weeks of 

gestation. Approximately 75% of preterm births (PTB) occur between 34 and 36 weeks. 

Although these late preterm infants experience significant morbidity, the great majority 

of perinatal mortality and most serious morbidity occur amongst the 16% of them whose 

birth occurred before 32 weeks102. 

PTB can result from a range of causes such as exposure to environmental triggers, 

maternal stress, fetal or maternal genetic abnormalities, and hormonal imbalance, 

amongst others.  

In spite of the definitions chosen and the methods used to determine gestational age, 

the true incidence of PTB has increased in developed countries regardless of multiple 

strategies being carried out to avoid it. Hence, current estimate rates vary between 5% 

and 11% in developed countries and 18% in developing countries103. Notwithstanding the 

efforts to identify the main reasons for this increase, the biological mechanisms 

underlying PTB are still unknown. Therefore, the development of evidence-based 

management approaches for medical and obstetrical complications before 37 weeks 

gestational age is mandatory. 
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Preterm labor (PTL) falls into two broad categories, according to whether one or more 

steps of the parturitional process. The first group, often called spontaneous preterm labor, 

comprises preterm labor with intact membranes, preterm premature rupture of the 

membranes (pPROM), preterm cervical effacement or insufficiency, and, in some 

instances uterine bleeding of uncertain origin. The second group, entitled indicated 

preterm labor, comprises preterm labor that are medically initiated because of maternal 

or fetal compromise (preeclampsia, renal disease, diabetes mellitus with vascular disease, 

placenta praevia and intrauterine growth restriction). These categories are sometimes 

indistinguishable in clinical practice but are useful to systematize interventional 

strategies104,105. This research will focus only on spontaneous PTL, without pPROM nor 

preterm cervical insufficiency.  

Amongst the risks that contribute to PTL are multiparous women below the age of 18 

106 and women with previous PTB107.  A meta-analysis conducted by Wendt et al. 2012, 

concluded increased odds of PTL at inter-pregnancy intervals inferior to six or twelve 

months108. Moreover, short cervical length is associated with PTL; shorter lengths are 

associated with greater risk - usually the value 25mm is used as a cut-off109,110. Singletons 

and twins resulted from in vitro fertilization (IVF) have higher risk of PTL than 

spontaneously conceived singletons and twins pregnancies111. Other pregnancy 

complications that contribute to a higher risk of PTL are pre-eclampsia, pregestational 

and gestational diabetes, cervical incompetence, periodontal disease, maternal anemia, 

obesity, short stature, and low maternal vitamin D109,112–119. Placental, uterine, or fetal 

conditions such as placental abruption, placenta previa, polyhydramnios, uterine 

anomalies, leiomyoma, and fetal birth defects have also been associated with increased 

risk of PTL120–125. Smoking and the use of recreational or illicit drugs also contributes to 

an increased risk of PTL126–129. Even though many socio-demographic, obstetric, and 
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environmental factors have been attributed to PTL, its etiology remains largely unknown. 

One key aspect that assumes a preponderant role in this work is infection and 

inflammation. In fact, several infectious conditions have been associated to higher risk of 

PTL including human immunodeficiency virus, bacterial vaginosis, Chlamydia 

trachomatis infection, chorioamnionitis, urinary tract infections (particularly 

pyelonephritis), hepatitis C, malaria, and syphilis130–137. 

 

7. Progesterone 

Pregnancy is considered to defy immunologic principles, since a semi-allogenic 

conceptus is tolerated rather than rejected. Local immune suppression of alloreactive 

responses to paternal antigens is essential for fetal development. Steroid hormones like 

progesterone and estradiol (E2) as well as gonadotropins, such as the human chorionic 

gonadotropin (hCG) are fundamentally involved in the regulation of the menstrual cycle 

and in the establishment and maintenance of pregnancy138,139. 

Progesterone is a steroid hormone primarily produced by the ovaries, placenta, and 

adrenal glands in humans. Progesterone was first identified by Allen and collaborators in 

1933 and were the first to determine the molecular weight and partial molecular 

structure140. During the menstrual cycle, progesterone levels are relatively low during the 

pre-ovulatory phase, rise after ovulation, and are elevated during the luteal phase141. 

When pregnancy occurs, hCG initially maintains progesterone levels by inducing its 

production by the corpus luteum. After the luteal–placental shift, the placenta takes over 

progesterone production142. Progesterone is responsible for the appropriate preparation of 

the uterus for the implantation of the trophoblast, through the differentiation of stromal 

cells into decidual cells, in a process denominated decidualization. Moreover, 
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progesterone decreases the contractility of uterine smooth muscle cells143,144. 

Additionally, although placental progesterone production is maintained, some studies 

suggest that there is a functional decline in its activity that might be associated with the 

initiation of labor145,146. One of the major challenges in studying progesterone withdrawal 

in the initiation of labor, is the fact that the biochemical mechanisms involved in these 

processes are significantly different from species to species, making it very difficult to 

find a suited animal model for studying such process. In humans and primates, the 

placenta is the primary site of progesterone synthesis for most of pregnancy, but in most 

animal species, the corpus luteum is the site of progesterone synthesis throughout 

pregnancy147. 

There is evidence to support the immunomodulatory effects of progesterone in 

pregnancy148. Progesterone has been shown to inhibit NF-kB, COX-2 and PG synthesis; 

thrombin-induced IL-11 and IL-8 production149,150. Also, progesterone promotes T helper 

2 cell differentiation and suppresses T helper 1 cells in vitro151. Moreover, progesterone 

promotes a downregulation of the pro-inflammatory cytokines IL-1β and IL-8 in 

peripheral blood leucocytes and a reduction in CD11b expression (required for 

transmigration) in circulating neutrophils152. Progesterone also contributes to myometrial 

quiescence and exhibits direct tocolytic effects153; increases cyclic AMP and reduces 

intracellular calcium, thereby reducing contractility 154.
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7.1. Progesterone receptors 

Progesterone signaling is accomplished via classic and non-classical pathways. The 

classical signaling pathway preconizes the ligation of progesterone to DNA binding sites 

called progesterone response elements (PREs). PRs exists in two isoforms PR-A and PR-

B that differ only in that human PR-A transcript is 164 amino acids shorter than PR-B155. 

The immunomodulatory actions of progesterone are mainly attributed to PR-B, which is 

present for most of the pregnancy. PR-A expression increases markedly during the third 

trimester and is thought to inhibit PR-B actions suggesting a regulatory role156. The non-

classical pathway is achieved by the ligation of progesterone to membrane receptors 

(mPR), belonging to the progestin and adipoQ receptor (PAQR) gene family, that bind 

progesterone at the cell surface and rapidly generate intracellular second messengers157; 

mPR receptors have been shown to be present in T regulatory cells3. Five genetically 

distinct forms of mPRs are known, namely mPR-α (PAQR7), mPR-β (PAQR8), mPR-γ 

(PAQR5), mPR-δ (PAQR6), and mPR-ε (PAQR9)158
. While the actions of PRs are 

genomic and therefore slow, the progesterone signalling through mPRs are non-genomic 

and consequently faster. Work from our group, and others, have demonstrated that mPR-

α is downregulated in preterm birth3,159, while in term pregnancies there is a 

downregulation of mPR-α and mPR-β 159. To date, there is no reference in the literature 

regarding the expression of progesterone receptors in ILC. The only relevant data comes 

from “The Immunological Genome Project” reporting presence of the progestin and 

adipoQ receptor family member 7 gene (PAQR7), a membrane progesterone receptor, as 

well as the nuclear progesterone receptor gene (PGR), in ILC1, ILC2 and ILC3 

populations160.  
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Studies conducted in rodents highlight the importance of progesterone in maintaining 

pregnancy because loss of systemic progesterone production, as a result of ovariectomy, 

or the use of the progesterone antagonist RU-486 induces cervical remodeling and leads 

to PTL161. In contrast, human labor is not preceded by a decrease in serum progesterone 

levels but instead results from a ‘functional’ withdrawal. Moreover, the progesterone 

antagonist RU-486 is widely used in humans to promote cervical ripening and readily 

induces abortion if given in early pregnancy162, demonstrating the essential role of 

progesterone for maintenance of pregnancy. Despite the molecular and biological 

mechanisms of progesterone mode of action remain mostly unknown, some proposals 

are: 1) Modulation of the innate immune function (including inhibition of human 

neutrophil degranulation, suppression of potent type I interferon (IFN)-producing 

dendritic cells); 2) Modulation of the adaptive immune function (Treg proportions 

gradually fall during the course of pregnancy in women who were given progesterone 

treatment); 3) Progesterone dependent regulation of P4-Induced Blocking Factor (PIBF) 

expression (PIBF is a PR-regulated gene and potent immune-modulator capable of 

blocking cytotoxic activity and prostaglandin F2a (PGF2a) synthesis in lymphocytes); 4) 

Suppression of pro-inflammatory cytokines (promoting a Th2 dominant cytokine profile); 

5) Anti-cytolytic activity (progesterone decrease the cytotoxic activity of decidual 

lymphocytes and block their perforin release in a concentration-dependent manner)16
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7.2. Progesterone in Preterm Labor 

Progesterone administration is commonly used in clinical practice to prevent PTB. 

Studies reporting its efficacy date over three decades ago164 and the American College of 

Obstetricians and Gynecologists (ACOG) recognizes its use165. In an attempt to normalize 

protocols a review paper by Tita et al. 2009 propose that the administration of 

progesterone for PTB prevention should follow specific guidelines and defines four 

essential point: “(1) for women with a prior spontaneous preterm birth (SPTB), weekly 

IM 17P (250 mg) initiated at 16-20 weeks, or daily vaginal natural progesterone (at least 

100 mg) beginning before week 24 should be given; (2) for women with a short cervix (≤ 

15 mm), 200 mg of vaginal natural progesterone suppositories; (3) for women with a twin 

pregnancy, progesterone is not routinely indicated, although its use may be prudent in the 

specific scenarios of a prior SPTB (250 mg 17P IM) or significantly (≤15mm) shortened 

cervix (200 mg suppository vaginally); and (4) for women with arrested preterm labor, 

progesterone (400 mg daily vaginal suppository or 341 mg 17P IM twice weekly) may be 

considered” 166. In a systematic review and meta-analysis, Romero et al. 2012 concluded 

that vaginal progesterone was associated with significant lower risk of preterm birth 

occurring from <28 weeks of gestation through <35 weeks of gestation, when comparing 

vaginal progesterone with placebo in women with a singleton gestation and a cervical 

length 25 mm167. Later, in a new study, Romero et al. 2018 reaffirms his claims and in a 

systematic review and meta-analysis of individual patient data, concludes that vaginal 

progesterone decreases the risk of preterm birth and improves perinatal outcomes in 

singleton gestations with a short cervix, without any demonstrable deleterious effects on 

childhood neurodevelopment. These discrepancies in the literature highlight the necessity 

in the scientific and medical community for more clinical trials in order to assess the 
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benefits of progesterone use in the prevention of PTL. Moreover, more scientific studies 

are needed to clarify progesterone mode of action. In this sense, this investigation has a 

high applicability as PTL incidence is rising, despite multiple primary interventions being 

implemented to lower it. As such, the number of women worldwide who may benefit 

from this treatment is high. It is extremely important to point out that each extra day in 

uterus before term, conveys a significant reduction in children morbidity and mortality 

and hospital costs.  

With this work, we intend to describe ILC1, ILC2 and ILC3 populations throughout 

pregnancy. In addition, by analyzing ILC relative frequencies before and after the 

administration of progesterone, we aim to study its effects on labor. Moreover, we will 

determine plasma concentrations of the most representative cytokines within samples of 

pregnant women in the moment of labor. In doing so, we aim to clarify the mechanisms 

underlying PTB, adding knowledge to the field of immunology. Moreover, with the 

increase incidence of PTB cases, this work aims to reduce children morbidity and 

mortality, as well as, hospital costs, through the development of new clinical protocols 

and discovery of new therapeutic targets. 
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8. Methods 

The present study was approved by Coimbra Hospital and University Centre ethics 

committee. Signed informed consents were obtained from all patients whose blood 

samples, placentas and clinical data were used in this study. All methods involving human 

participants, human sera and human data were carried out in accordance with Declaration 

of Helsinki and approved by the Faculty of Medicine from Coimbra University, as well 

as The Ethics Committee for Health of the Centro Hospitalar e Universitário de Coimbra 

(document reference N. º 179/CES). 

 

8.1. Population 

Female patients who planned to deliver at the Obstetric Department of Coimbra 

Hospital and University Centre (CHUC) were invited to participate in the study. 

The study inclusion criteria consisted of pregnant women monitored by normal 

prenatal appointments and women presenting to the emergency room in labor. Inclusion 

criteria for FTB comprised: healthy pregnant women attending normal prenatal 

appointments; full term singleton pregnancies, delivered after spontaneous labor; and first 

prenatal appointment before 14th week gestation. The inclusion criteria for the PTB group 

were as follows: admission to the Fetal Maternal Medicine Obstetric Department of 

CHUC with confirmed spontaneous PTL, singleton pregnancy, gestational age between 

24 weeks + 0 days and 36 weeks + 6 days, intact membranes, cervical length ≤25 mm 

and the use of Atosiban (competitive oxytocin receptor antagonist) for tocolysis (for 

contraction cessation). Administration of natural progesterone was done after tocolysis 

with Atosiban, vaginally, once daily, in a 200mg dosage. 
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Exclusion criteria were the following: multiple gestation; preterm rupture of 

membranes; chorioamnionitis; placenta preavia or placental abruption; intrauterine 

growth restriction; and pre-existent maternal diseases, namely: hypertension, diabetes 

mellitus, autoimmune diseases, and allergies. Clinical chorioamnionitis was diagnosed 

based on histologic evaluation and clinical laboratorial parameters like fever, maternal 

tachycardia, fetal tachycardia, maternal leukocytosis, uterine tenderness, foul-smelling 

amniotic fluid; elevated maternal C-reactive protein and/or amniotic IL-6. 

Women subjected to elective pre-labor caesarean section were not included as they 

had other medical pathologies, not focused on this work. 

 

8.2. Isolation and characterization of innate lymphoid cells 

In the FTB group peripheral blood was taken during routine blood analysis on 3 

occasions: 1st, 2nd and 3rd trimester1. After delivery, peripheral blood, cord blood and 

placenta were collected. In PTB, peripheral blood samples were obtained on two 

occasions: before and 24 hours after treatment with vaginal progesterone. After delivery, 

peripheral blood, cord blood and placenta were collected.  

Cells were isolated using a Ficoll-paque™ gradient and stained as further discussed 

for flow cytometry analysis. 

In both PTB and FTB groups, the placenta was rinsed in phosphate buffered saline 

(PBS, Ca2+- and Mg2+-free) (Corning®, New York, USA), to wash cloths and superfluous 

blood. Decidual tissue was dissected while soaking in 1× PBS (Ca2+- and Mg2+-free). 

Lymphocytes were isolated from the decidua basalis and adjacent tissue (villi) as 

described by Yi Xu et al. 2015 168. Cells were counted on a Beckman Coulter AcT Diff 

                                                      
1 1st Trimester till 13 weeks plus six days; 2nd trimester between 14 and 28 weeks; 3rd over 28 weeks 
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automatic cell counter (Beckman Coulter, Brea, California, EUA), and a 100 µL cell 

suspension containing 1x106 isolated lymphocytes was placed in a cytometry tube and 

labelled with primary antibodies (BD Biosciences, San Jose, USA). For lymphocyte 

discrimination, CD45+ and CD3- were used. Lineage-negative (Lin-) cells were labeled 

with CD1 (clone HI149), CD11c (clone B-ly6), CD34 (clone 581), CD123 (clone 7G3), 

TCRγδ (clone xB1), TCRαδ (clone T10B9), BDCA2 (clone 201A), FcER1 (clone AER-

37), CD19 (clone HI149), CD14 (clone M5E2), and CD94 (clone HP-3D9) and 

discriminated against CD127 (clone A019D5). Cells expressing CD161 (clone HP-3G10) 

were then selected. To ascertain the different ILC populations, CD117 (clone 104D2), 

CRTH2 (clone BM16) and NKp44 (clone p44-8) antibodies were used as described by 

Hazenberg et al. 2014 34. The same procedure was taken for isolated lymphocytes from 

blood samples and cord blood, in whole occasions. Gating strategy can be viewed in 

figure 2 and figure 3. Stained samples were acquired on a BD FACS Canto II flow 

cytometer (BD Biosciences, San Jose, CA, USA) equipped with 3 lasers to allow 

multicolour detection with different fluorophores, using BD FACSDiva v.6.1.3 software 

(BD Biosciences, San Jose, USA). All samples were then analyzed with FlowJo v.10.7 

software (Tree Star Inc., Ashland, OR, USA). 
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Figure. 2 – Gating strategy for identification of ILC3 subpopulations. A. Identification of lymphocyte 

population. B. Gating of CD45+CD3-cells. C. Selection Lin-CD127+ cells D. isolating CD161+ cells. E. 

Gating ILC3 cells as CRTH2- CD117+. F. Discrimination between ILC3 NCR+ and ILC3 NCR- based on 

NKp44 expression (Data analyzed in FlowJo®). 
 

 

Figure. 3 - Full minus one (FMO) for CRTH2 (A) and FMO for CD161 (B) 
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8.3. Enzyme-Linked Immunosorbent Assay (ELISA) 

Due to budget limitations, the most representative cytokines were chosen for each ILC 

population: IFN-γ for ILC1, IL-4 for ILC2; IL-17 for ILC3 NCR- and IL-22 for ILC3 

NCR+. The choice of IL-4 and not IL-13 for the most representative cytokine of the ILC2 

group is due to the fact that, despite belonging to the same family, and sharing the same 

receptors, IL-4 is regarded as a regulatory cytokine (responsible for a Th2 polarization) 

whereas IL-13 is regarded as an effector cytokine169. Due to ILC low relative frequencies, 

we chose to valorize a possible regulatory action from IL-4, in detriment to an effector 

role from IL-13.  

For IFN-γ, IL-4, IL-17 and IL-22 ELISA determination we used Biolegend Legend 

MaxTM ELISA Kits. Peripheral whole blood and cord blood were collected in the moment 

of labor to a 6 mL EDTA tube. To separate plasma from whole blood, tubes were 

centrifuged for 15 minutes at 1000g. Samples were stored in 200 µL aliquots at – 80º C 

to prevent repetitive freeze/thaw cycles. 100 µL of plasma was used in triplicate and 

absorbance was determined using a Bio-Rad® model 600 microplate reader, according 

to manufacturer protocols (Bio-Rad, Hercules, CA, USA). Average of triplicate readings 

was performed, and a standard curve was generated using a four-parameter logistic curve-

fit to determine plasma concentrations in pg/mL.
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8.4. Statistical analysis 

Each data set was analyzed using student t-test analysis with a confidence interval of 

95%. Statistical analysis was performed using GraphPad Prism, version 7 (GraphPad 

Software, Inc., La Jolla, CA, USA). Differences were considered statistically significant 

at a p value of <0.05 and are annotated as follows: * p<0.05; ** p<0.01; *** p<0.001 and 

**** p<0.0001. 
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9. Results 

In the current investigation, the full-term group comprises fifteen pregnant women and 

the preterm group comprises six preterm who delivered preterm. In the full-term labor 

group, the median maternal age was 34 years (33 < 95% CI< 37), the median gestational 

age at delivery was 40 weeks (39 < 95% CI< 40), the median birth weight was 3635 grams 

(2962 < 95% CI< 3755), and the median placental weight was 500.5 grams (448 < 95% 

CI< 603). In the preterm labor group, the median maternal age was 32 years (22 < 95% 

CI< 35), the median gestational age at delivery was 36 weeks (34 < 95% CI< 37), the 

median birth weight was 2505 grams (2130 < 95% CI< 3125) and the median placental 

weight 472 grams (413 < 95% CI< 731); these data are summarized in table II. All women 

in this study were non-smokers. In the clinical data we found a significant statistical 

difference in birth weight, which is lower in the PTB group (p < 0.001 t-test, 95% CI). 

Initially, our study consisted of twenty-four pregnant women enrolled in the FTB 

group, but six failed the second trimester sample collection and three failed sample 

collection in the moment of labor. In both cases, these pregnant women opted not to 

continue with the study. Moreover, the PTB was initially comprised of nine pregnant 

women; however, three chose not to continue with the study (dropouts). 
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Table II – Descriptive statistics of full-term and preterm group. We found a significant statistical difference 

in birth weight, which is lower in the study group (* p < 0.001 t-test, 95% CI) 

 

 

 

9.1 Cytometry results: 

 

9.1.1 Peripheral Blood 

In our investigation, we found no differences in ILC1 populations’ relative frequencies 

in peripheral blood in FTB group during the first, second or third trimester (Figure 4). 

Additionally, we found no differences in ILC2 populations’ relative frequencies in 

peripheral blood in FTB group during the first, second or third trimester (Figure 5). 

Likewise, when comparing ILC3 populations’ relative frequencies in peripheral blood in 

FTB group during the first, second or third trimester there weren’t any differences (figure 

6). 

 

  

Median Maternal Age 

(Years) 

 

Median 

Gestational Age 

(Weeks) 

 

Median Birth 

Weight 

(Grams)* 

 

Median Placenta 

Weight  

(Grams) 

 

Full-term birth 

(n=15) 

 

34 

 (33 < 95% CI< 37) 

 

40  

(39 < 95% CI< 

40) 

 

3635 

(2962 < 95% CI< 

3755) 

 

500.5 

(448 < 95% CI< 

603) 

 

 

Preterm birth 

(n=6) 

 

32  

 (22 < 95% CI<35) 

 

36   

(34 < 95% CI< 

37) 

 

2505  

(2130 < 95% CI< 

3125) 

 

472 

(413 < 95% CI< 

731) 
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Figure 4 – Graphic displaying the relative percentage of the ILC1 populations, in relation to lymphocytes, 

in Peripheral Blood samples of the FTB in the 1st, 2nd and 3rd trimester. 

 

  

 

 

 

 

 

 

 

 

Figure 5 – Graphic displaying the relative percentage of the ILC2 populations, in relation to 

lymphocytes, in Peripheral Blood samples of the FTB in the 1st, 2nd and 3rd trimester. 
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Figure 6 – Graphic displaying the relative percentage of the ILC3 populations, in relation to 

lymphocytes, in Peripheral Blood samples of the FTB in the 1st, 2nd and 3rd trimester. 
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9.1.2. Peripheral Blood from labor samples 

Regarding our cytometry analysis, we found no differences when comparing 

peripheral blood samples from the moment of labor in the FTB group, when compared 

with peripheral blood samples from the PTB group (figure 7).  

 

 

Figure 7 - Graphic displaying the relative percentage of the different ILC populations, in relation to 

lymphocytes, in Peripheral Blood samples in the moment of labor in full term birth (FTB) compared to 

preterm birth (PTB). 

 

When observing the ILC3 subsets (NCR- and NCR+ cells) within the FTB and PTB 

group on labor, the ILC3 NCR- population was clearly increased, representing the 

predominant ILC3 subset (p< 0.001, student t-test 95% CI) (Figure 8). The corresponding 

descriptive statistics are presented in table III.   
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Figure 8 – ILC3 NCR Discrimination. Graphic displaying ILC3 subpopulations, in relation to 

lymphocytes, based on the presence of NCR receptor, determined in samples of peripheral blood from the 

moment of labor in the FTB and PTB groups. When analyzing ILC3 population within each group, it was 

possible to determine that NCR- population was clearly increased, representing the predominant ILC3 

subset (* p< 0.001, student t-test 95% CI).  

 

  

        Table III- Descriptive statistics of peripheral blood ILC3 from the moment of labor. 

  

ILC3 

 

NCR + 

Median 

NCR- 

Median 

p Value 

student t-test 95% CI  

 

FTB 

 

0,000 
0,000<95% CI <0,001610 

 

 

0,02100 
0,009420<95% CI <0,03000 

 

 

<0,0001 

PTB 

 

0,0004570 
0,000<95% CI <0,002000 

 

0,02800 
0,008860<95% CI <0,05900 

<0,0001 
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9.1.3. Peripheral Blood from preterm birth samples 

When analyzing peripheral blood samples from women who underwent PTB, we 

found no statistical differences in ILC numbers before or after the administration of 

Progesterone in women who delivered PTB (Figure 9). 

 

Figure 9 - Graphic displaying the relative percentage of the different ILC populations, in relation to 

lymphocytes, in Peripheral Blood samples before (BPgr) or 24h after the administration of Progesterone 

(24h Pgr) in the PTB group. 
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9.1.4. Decidual samples 

Regarding the decidua, there was significant higher relative frequencies of ILC2 and 

ILC3 in the decidua of women from the PTB group when compared with women 

belonging to the FTB (p<0,05 t-test, 95% CI and p<0.01 t-test, 95% CI respectively) 

(Figure 10). Moreover, in decidual samples, we found ILC3 relative frequencies higher 

than those of ILC2 population, both in FTB and PTB groups (p< 0.01, student t-test 95% 

CI), representing the dominant population. 

 

Figure 10 - Decidual ILC in FTB and PTB. Graphic displaying the relative percentage of the different 

ILC populations, in relation to lymphocytes, in full term birth (FTB) compared to preterm birth (PTB), in 

human decidua. Multiple t-student tests were used for statistical analysis with a 95% confidence interval, 

p-value * p<0.05; ** p<0.01 (two tailed). 

 

The same result was obtained when analyzing  ILC3 subsets (NCR- and NCR+ 

cells) within the FTB and PTB group; ILC3 NCR- population was the predominant ILC3 
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subset (p< 0.001, student t-test 95% CI) (Figure 11). The corresponding descriptive 

statistics are presented in table IV.   

 

Figure 11 – ILC3 NCR Discrimination. Graphic displaying ILC3 subpopulations relative percentage, in 

relation to lymphocytes, based on the presence of NCR receptor, determined in samples of decidua from 

the FTB and PTB groups. When analyzing ILC3 population within each group, it was possible to determine 

that NCR- population was clearly increased, representing the predominant ILC3 subset (* p< 0.001, student 

t-test 95% CI). 

 

 Table IV- Descriptive statistics of decidual ILC3 samples 

 

  

ILC3 

 
NCR + 

Median 
NCR- 

Median 
p Value 

student t-test 95% CI  

 

FTB 
 

0,001050 
0,000<95% CI < 0,002610 

 
0,02700 

0,01100<95% CI< 0,03400 

 
<0,0001 

 

PTB 
 

0,0004155 
0,000<95% CI < 0,01370 

 

 
0,03550 

0,02600<95% CI < 0,05200 

 
<0,0001 
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9.1.5. Cord blood samples 
 

In our cytometry analysis of cord blood samples we verified higher ILC2 frequencies 

also in PTB group (p<0, 05 t-test, 95% CI) (Figure 12).  

 

Figure 12 - Cord blood ILC in FTB and PTB. Graphic displaying the relative percentage of the different 

ILC populations, in relation to lymphocytes, in FTB compared to PTB in cord blood samples. Multiple t-

student tests were used for statistical analysis with a 95% confidence interval, p-value * p<0.05; (two 

tailed). 

  

Regarding the distribution of the relative frequencies of the different ILC3 

populations, the same result was observed, when comparing ILC3 NCR- and ILC3 NCR+ 

cells within the FTB and PTB group. The ILC3 NCR- population was the dominant ILC3 

subset (p< 0.001, student t-test 95% CI) (Figure 13). The corresponding descriptive 

statistics are presented in table V.   
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Figure 13 – ILC3 NCR Discrimination. Graphic displaying ILC3 subpopulations relative percentage, in 

relation to lymphocytes, based on the presence of NCR receptor, determined in samples of cord blood from 

the FTB and PTB groups. When analyzing ILC3 population within each group, it was possible to determine 

that NCR- population was clearly increased, representing the predominant ILC3 subset (* p< 0.001, student 

t-test 95% CI). 

 

Table V- Descriptive statistics of cord blood ILC3 samples 

 

 

 

  

ILC3 

 

NCR + 

Median 

NCR- 

Median 

p Value 

student t-test 95% CI  

 

FTB 

 

0,000 
0,000 <95% CI < 0,0009450   

 

 

0,1300 
0,05400 <95% CI< 0,1900 

 

 

<0,0001 

 

PTB 

 

0,0004320 
0,000 <95% CI < 0,0007170 

 

 

0,1300 
0,08400 <95% CI < 0,1900   

 

<0,0001 
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The same result was observed in cord blood samples as we found ILC3 relative 

frequencies higher than ILC2 population, both in FTB and PTB groups (p< 0.01, student 

t-test 95% CI), representing the dominant population. A complete and comprehensive 

description of the statistics found on the different samples is presented in table VI.   

 

Table VI - Descriptive statistics found on the different samples studied.  

 

 

ILC 

Population 

 

Median in 

peripheral 

blood 

samples 

1st 

trimester 

 

Median in 

peripheral 

blood 

samples 

2nd 

trimester 

 

Median in 

peripheral 

blood 

samples 

3rd 

trimester 

 

Median in 

peripheral 

blood 

samples 

 

labor 

 

Median 

in cord 

blood 

samples  

 

labor 

 

Median in 

decidual 

samples  

 

 

labor 

 

 

ILC 

Population 

 

 

Median in 

peripheral 

blood 

samples 

 

 

 

 

 

ILC1-FTB 

 

 

 

 

0,0190 

 
0,0150<95% 

CI <0,0250 

 

 

0,0190 
 

0,0130<95% 

CI <0,0310 

 

 

0,0245 
 

0,0160<95% 

CI <0,0310 

 

 

0,0250 
 

0,0140<95% 

CI <0,0340 

 

 

0,0460 
 

0,0220<95% 

CI <0,0650 

 

 

0,0068 
 

0,0150<95% 

CI <0,0400 

 

 

ILC1 

BPgr 

 

 

 

0,0280 
 

0,01737<95% 

CI <0,04441 

 

 

 

ILC1–

PTB 

 

 

 

 

- 

 

 

 

- 

 

 

 

- 

 

 

0,01460 
 

0,00603<95% 
CI <0,0300 

 

 

0,0490 
 

0,0380<95% 
CI <0,0760 

 

 

0,0140 
 

0,0140<95% 
CI <0,0350 

 

 

ILC1 

24h Pgr 

 

 

 

0,0250 
 

0,01456<95% 
CI <0,03161 

 

 

ILC2-FTB 

 

 

0,0205 
 

0,0130<95% 

CI <0,0290 

 

0,0230 
 

0,0150<95% 

CI <0,0360 

 

0,0190 
 

0,0120<95% 

CI <0,0380 

 

0,0240 
 

0,0140<95% 

CI <0,0350 

 

0,0450 

 
0,0180<95% 

CI <0,0560 

 

0,0027 

 
0,00234<95% 

CI <0,0160 

 

 

ILC2 

BPgr 

 

 
 

0,0360 

 
0,02491<95% 
CI <0,05130 

 

 

ILC2-PTB 

 

 
 

- 

 
 

- 

 
 

- 

 

0,0245 
 

0,0110<95% 

CI <0,0670 

 

0,0670 
 

0,0300<95% 

CI <0,0860 

 

0,0124 
 

0,0110<95% 

CI <0,0220 

 

ILC2 

24h Pgr 

 

 

0,0340 

 
0,02431<95% 

CI <0,04880 

 

 

ILC3-FTB 

 

 

0,0310 
 

0,0210<95% 

CI <0,0440 

 

0,0225 
 

0,0170<95% 

CI <0,0340 

 

0,0240 
 

0,0150<95% 

CI <0,0260 

 

0,0200 
 

0,00806<95% 

CI <0,0270 

 

0,1300 
 

0,0540<95% 

CI <0,1900 

 

0,0290 
 

0,0110<95% 

CI <0,0420 

 

 

ILC3 

BPgr 

 

 

0,0260 
 

0,01805<95% 

CI <0,04262 

 

 

ILC3-PTB 

 

 
 

 

- 

 
 

 

- 

 
 

 

- 

 

0,0290 
 

0,00886<95% 

CI <0,0590 

 

0,1300 
 

0,0840<95% 

CI <0,1900 

 

0,0424 
 

0,0260<95% 

CI <0,0520 

 

 

ILC3 

24h Pgr 

 

0,0230 
 

0,01524<95% 

CI< <0,04654 
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9.2. Enzyme-Linked Immunosorbent Assay results: Cord blood samples 

In our ELISA determination of IL-17, IL-22 and IL-4 plasma levels in peripheral blood 

and cord blood samples, there were no differences between FTB and PTB groups (Figure 

14, 15 and 16 respectively). 

 

Figure 14 - Enzyme-Linked Immunosorbent Assay (ELISA) in maternal peripheral blood and cord 

blood in FTB and PTB. Graphic displaying IL-17 plasmatic concentrations plasmatic concentrations of 

IL-17 in maternal Peripheral Blood (PB) as well as, in cord blood FTB and PTB. Student’s t-tests were 

used for statistical analysis with a 95% confidence interval.  
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Figure 15 - Enzyme-Linked Immunosorbent Assay (ELISA) in maternal peripheral blood and cord 

blood in FTB and PTB. Graphic displaying IL-22 concentrations of IL-22 in maternal Peripheral Blood 

(PB) as well as, in cord blood FTB and PTB. Student’s t-tests were used for statistical analysis with a 95% 

confidence interval.  

 

 

Figure 16 - Enzyme-Linked Immunosorbent Assay (ELISA) in maternal peripheral blood and cord 

blood in FTB and PTB. Graphic displaying IL-4 plasmatic concentrations in maternal Peripheral Blood 

(PB) as well as, in cord blood FTB and PTB. Student’s t-tests were used for statistical analysis with a 95% 

confidence interval. 
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Moreover, we found reduced levels of IFN-γ in peripheral blood samples of women 

who delivered PTB (t-student test with a 95% confidence interval, p-value * p<0.05; two 

tailed) (Figure 17). The main findings of the current work are summarized in table VII 

and table VIII. 

 

 

Figure 17 - Enzyme-Linked Immunosorbent Assay (ELISA) in maternal peripheral blood and cord 

blood in FTB and PTB. Graphic displaying IFN-γ plasmatic concentrations in maternal Peripheral Blood 

(PB) as well as, in cord blood FTB and PTB. A statistically significant decrease in IFN-γ plasma 

concentration was found, in peripheral blood samples in women with PTB (t-student test with a 95% 

confidence interval, p-value * p<0.05; (two tailed)). 
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Table VII – Main findings of the present work regarding ILC populations 

 

 

Table VIII – Main findings of the present work regarding cytokine plasmatic concentrations. 
 

  

Cord Blood FTB 

 

Cord Blood PTB 

 

Maternal Peripheral 

Blood FTB 

 

Maternal Peripheral 

Blood PTB 

 

IL-17 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

No significant differences 

 

IL-22 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

No significant differences 

 

IFN-γ 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

Lower levels in PTB 

(p<0.05) 

 

IL-4 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

No significant differences 

 

 

  

Peripheral 

Blood 

(1st, 2nd, 3rd 

trimester) 

 

Peripheral Blood 

Labor 

 

Peripheral Blood 

Pg Administration 

 

Decidual Cells 

 

 

Cord Blood 

 

ILC1 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

ILC2 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

Higher levels in 

PTB 

(p<0.05) 

 

Higher levels in 

PTB 

(p<0.05) 

 

ILC3 

 

No significant 

differences 

 

No significant 

differences 

 

No significant 

differences 

 

Higher levels in 

PTB 

(p<0.05) 

 

No significant 

differences 
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10. Discussion 

Human ILC are mainly tissue resident cells important in mediating inflammation. 

ILC1 are important in promoting immunity to intracellular pathogens and are associated 

with inflammatory bowel disease170. ILC2 support anti-parasite immunity and play an 

important role in airway inflammation171. ILC3 are essential in immunity against 

extracellular pathogens, skin inflammation172 and mediating graft-versus-host disease 

(GvHD) in allogeneic bone marrow transplantation173. Moreover, it is feasible to consider 

that ILC might contribute to the mechanism of immune tolerance during pregnancy. 

Tolerance is widely regarded as an adaptive response, a process that involves antigen 

presentation, clonal expansion, and the formation of memory cells; the expression of HLA 

class II molecules in ILC2 and ILC3 population suggests that these cells might also have 

a role in pregnancy by presenting paternal antigens to the mother’s immune system. While 

ILC2 seem capable of eliciting T helper proliferation, Hepworth et al. 2013 reported that 

ILC3 lack classical co-stimulatory molecules such as CD40, CD80 and CD86. If it is the 

case, ILC3 antigen presentation may, in fact, limit T cell responses by negatively 

regulating CD4+ T cell responses in vivo38 through T cell anergy85. 

The data thus far published in the literature shows that it is becoming increasingly 

evident that ILC have a preponderant role in mediating immune function. Despite 

apparent overlapping characteristics with Th cells, they are capable of locally secrete a 

vast diversity of cytokines that consent them to maintain tissue homeostasis and immune 

surveillance.  

These preliminary results demonstrate that ILC are present in the decidua of both FTB 

and PTB pregnant women, since we clearly detected them at the maternal-fetal interface, 

as well as in cord blood samples (Figure 10 and Figure 12 respectively).  Moreover, with 
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this work we can also state that ILC are present in peripheral blood of pregnant women, 

with relative frequency values like those found in decidual samples.  In addition, when 

analyzing the relative ILC frequencies in the different samples, we can observe that these 

are higher in cord blood samples, and that ILC3 relative frequencies present the highest 

numbers in both decidua and cord blood samples. Even though data collected from cord 

blood samples are representative of the fetus immune system, a work conducted by 

Kanold et al. 2019 has shown that there are maternal immune cells circulating in the cord 

blood174. This work suggests a bidirectional effect, in which maternal immune cells may 

be orchestrating the fetal immune response. Nonetheless, these effects are poorly 

understood and require additional studies.    

One of the central goals of this work was to investigate the effect of progesterone 

administration on ILC relative frequencies. As such, we found no correlation between 

progesterone administration and ILC numbers. This latter result may be explained in part 

by progesterone exerting its effects only locally6 and by the fact that ILC (namely NK 

cells) have shown functional and phenotypic differences according to tissue location27,28. 

ILC, specifically the ILC2 and ILC3 populations, have been described to play a 

preponderant role in pregnancy33,51.  Additionally, as mentioned by Mjösberg and Spits 

2016 45, ILC3 NCR+ cells produce mainly IL-22, while NCR- cells produce IL-17 45, 

which is intriguing since IL-22 is considered a homeostatic cytokine that contributes to 

tissue and organ integrity. On the other hand, IL-17 mostly functions as a 

proinflammatory cytokine 175. Herein, we found ILC3 NCR- to be the dominant ILC3 

population in peripheral blood, decidua, and cord blood, which is in accordance with the 

findings highlighted by Vacca et al. 2015 19.  Undeniably, ILC3 population can produce 

proinflammatory cytokines in deciduas isolated from women in their first trimester of 

pregnancy, highlighting a potentially important role for ILC3 cells in the first stages of 
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pregnancy. Moreover, Zaretsky et al. 2004 showed that, in vitro, IL-6 can cross the 

placenta, suggesting a bidirectional transfer between mother and fetus of inflammatory 

mediators176. These facts support our results showing elevated ILC2 and ILC3 

frequencies in decidua of women that underwent PTB, as well as IL-17 concentration 

found in our ELISA experiments. Moreover, the concentrations on cord blood and 

maternal PB determined on labor day in the FTB group were comparable to those found 

in the PTB group, denoting an inflammatory role of IL-17 in the instigation of labor 

(figure 14) . Regarding IL-22 levels, a work carried out by Perfetto et al. 2015 177 suggests 

that IL-22 may play a key role in maintaining decidual homeostasis and help to constrain 

inflammation by contracting the effect of IL-17. These authors found lower levels of IL-

22 in deciduas of women with unexplained recurrent pregnancy loss. Again, the fact that 

we found comparable values of IL-22 plasma concentrations in PTB and FTB groups 

(Figure 15), may reflect a loss of the protective role of IL-22 and the prevalence of the 

pro-inflammatory effect of IL-17 in the instigation/ beginning of labor.   

The discovery of reduced plasma levels of IFN-γ in peripheral blood samples of 

women who delivered PTB is noteworthy (Figure 17; t-student test with a 95% 

confidence interval, p-value * p<0.05; (two tailed)). A study by Hanna N et al. 2004 

demonstrated that IFN-γ represses ciclo-oxigenase-2 (COX-2) expression and 

prostaglandin E2 (PGE2) production in human placental samples from both term and 

preterm labor deliveries, suggesting that functional withdrawal of IFN-γ may be involved 

in the onset of term or preterm labor 173. Since our results are from peripheral blood and 

cord samples, further work needs to focus on decidual samples to identify IFN-γ 

producing ILC, namely ILC1 or NK cells.  Nonetheless, we cannot reject the 

assumption that an exacerbated Th2-type response in PTB may be orchestrated by ILC2 

that also have been shown to promote tissue homeostasis178,179,180. However, studies 
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conducted in animal models have shown that ILC2 can also display proinflammatory 

functions in the context of asthma181,182. Moreover, Huang et al. 2015 and Wallrapp et 

al. 2018, suggest that IL-25, a member of the IL-17 family, can induce ILC2 to an 

inflammatory phenotype183,176. The similar results of IL-4 plasma levels of cord blood 

samples found in the FTB and PTB groups (Figure 16) support this hypothesis. In fact, in 

a mouse model, IL-4 has been shown to have inflammatory proprieties by activating 

eosinophils184 which are reported to have an important role in preterm birth185. A possible 

mechanism proposed by this study that needs further investigation, is the passage of IL-

17 through fetal membranes to the fetus, inducing ILC2 to an inflammatory phenotype 

accompanied by reduced levels of INF-γ. Moreover, ILC2 are capable of presenting 

antigens to T CD4+ cells and induce proliferation towards a Th2 phenotype in an IL-2 

dependent manner 37. This is a remarkable finding since it proposes a crosstalk between 

the innate and adaptive immune systems38–40. However, ILC3 have been shown to express 

MHC class II molecules, promoting a T cell-mediated response41. This fact may elucidate 

the role of ILC in mounting an adaptive immune response, potentially representing a 

tolerance mechanism towards the fetus, which is of substantial interest. A strong point of 

this study is its corroboration with existing hypothesis that an inadequate inflammation 

triggered immunological response prompts PTB, suggesting a key role of ILC in this 

process; unfortunately, numerous mechanisms underlying ILC actions in pregnancy 

remain to be ascertained.  

The data herein presented suggest that in PTB group there is an inflammatory response 

orchestrated by an elevation of ILC2 and ILC3 in decidual samples. However, this group 

is being treated with progesterone, which is manly an anti-inflammatory hormone. To 

explain this discrepancy, further work is needed to ascertain the expression of 

progesterone receptors in the different ILC populations. In fact, previous work conducted 
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by Areia et al. 2016 demonstrated a decline in Tregs positive for membrane progesterone 

receptor (mPRα+), theorizing a reduction in progesterone anti-inflammatory actions 

through Treg mPRα+ cells186. 

Our future work will address the possibility of sterile inflammation. Sterile intra-

amniotic inflammation is commonly observed in patients with spontaneous preterm 

labor96; it occurs in response to a variety of triggers, and it is through pattern recognition 

receptors (PRRs) and damage-associated molecular patterns (DAMP), that the innate 

immune system mounts an inflammatory response to non-microbial signals. It has been 

suggested by Horton et al. 2015 that NCR in NK cells may act as PRRs, or DAMPs 

regulating NK function48. We consider this finding relevant since ILC3 also express NCR 

receptors. 

Our study does present some limitations that must be considered. Because our small 

sample size, the results should be interpreted with caution. To address this issue, future 

studies should include a larger number of women, with particular attention to a 

comprehensive analysis of cytokine release throughout pregnancy. Moreover, to 

determine which cytokines are being produced by the different ILC population, cell 

sorting and intracellular assays, as well as expression assays, should be conducted.  

Additionally, sorted cells should be analyzed for the expression of membrane and nuclear 

progesterone receptors, and in vitro assay could be conducted in order to assess ILC 

responsiveness to progesterone.  
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11. Conclusion 

The identification of specific prenatal therapies and their efficacy to improve maternal 

and neonatal outcomes have been a mainstay in Maternal-Fetal Medicine investigation. 

As such, in the present work, we sought to study the role of progesterone in spontaneous 

PTL, through the actions of ILC. Moreover, we aimed to expand the current knowledge 

on the immunology of pregnancy by focusing on ILC fluctuations during pregnancy and 

meticulous analysis of cytokine profile.  

Progesterone has been known to play an important role in the prevention of 

spontaneous abortion and recently in preterm labor; however, in this study, we found no 

effect of progesterone administration in ILC populations. We cannot exclude that such 

effect exists at the maternal fetal interface, since ILC show differences in phenotypes and 

function according to tissues location.  This later fact may also explain the reason we 

found no differences in the relative frequencies of ILC populations in peripheral blood 

samples of pregnant women in the control group during the first, second and third 

trimester.  

Nevertheless, we found a statistically significant increase of the relative frequencies 

of ILC2 and ILC3 populations in decidua samples in the PTB group when compared to 

the FTB. Moreover, we found also a statistically significant increase of the relative 

frequencies of the ILC2 population of cord blood samples in the PTB group, when 

compared to the FTB. Regarding the plasmatic concentrations of cytokines, there was a 

statistically significant decrease of IFN-γ in maternal peripheral blood samples in the PTB 

group, when compared to the FTB. All these findings suggest that labor might be 

characterized by decreased tissue remodeling and repair functions, accompanied by a 
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marked inflammatory response, due to high levels of ILC2 and ILC3. In addition, our 

ELISA experiments propose that labor might be characterized by a functional INF-γ 

withdrawal. Consequently, our results are encouraging, as they suggest a role of ILC in 

the regulation of labor. 

Further research in this field is fundamental to public health because PTB is increasing 

and represents a major public cost. Additional studies could, therefore, diminish patient 

suffering and relieve economic burden. For this reason, clarifying ILC actions in labor 

may have a significant impact in clinical practice.  

Future work focusing on endocrine and environmental factors influencing ILC 

phenotype, as well as cytokine release patterns, will contribute to answer unsolved 

questions in clinical practice, and allow the elaboration of new clinical protocols that will 

significantly contribute to the reduction of children morbidity and mortality. 

Research conducted in ILC biology and their role in pregnancy is still scarce. As such, 

an effort should be made to raise awareness in the different obstetric centers, in order to 

expand this work to a broader population.  
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