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ABSTRACT This paper describes the lattice problems that are key in the study of lattice-based cryptography,
identifies and categorizes methods for solving these problems, analyzes existing implementations of these
algorithms, and extrapolates on the future of lattice-based cryptanalysis, based on the foreseeable advances in
computer architecture. Some future lines of work are given, considering the existence of parallel architectures
that seem adequate for current attacks.

INDEX TERMS Lattices, cryptanalysis, parallel.

I. INTRODUCTION
Cryptology is the science that studies both cryptography and
cryptanalysis. ‘‘Cryptography’’ can be defined as the process
of creating and understanding codes or systems that keep
information secret, commonly for use in digital communi-
cation. Oftentimes, one refers to these codes and systems
as ‘‘schemes’’ and ‘‘cryptosystems’’, terms that we also use
throughout this paper, interchangeably. ‘‘Cryptanalysis’’ can
be defined as the science that studies processes and methods
to recover secrets when the key is unknown.While cryptogra-
phy is the process of creating new systems, cryptanalysis, on
the one hand, enables the analysis of existing cryptosystems,
so that we either trust them or find out that these schemes are
vulnerable to attacks. At the same time, cryptanalysis is an
essential tool to define parameters for new cryptosystems, so
that they are simultaneously secure and efficient.

In the mid-nineties, due to a breakthrough work of Shor
on quantum algorithms, it turned out that most cryptosystems
currently deployed in practice, such as RSA and ElGamal, are
insecure against adversaries with access to quantum comput-
ers [21], [103], [104]. More specifically, the problems that
underpin the security of these classical cryptosystems, such
as factoring large numbers or computing discrete logarithms,
become practical in the presence of large-scale quantum com-
puters. Soon after, the community started to work towards
‘‘post-quantum’’ cryptosystems based on other computation-
ally hard problems, which are presumably more resistant
against attacks operated with quantum computers.

In the late 90s, Ajtai discovered that certain lattice prob-
lems have interesting properties for cryptography, such as
worst-case/average-case reductions,1 and that lattices can be
used for building cryptosystems [6]. Since to date no fast
quantum algorithms have been found to solve hard lattice
problems efficiently, cryptography based on lattices is also
a candidate for post-quantum cryptography. Today, lattice-
based cryptosystems are becoming increasingly popular due
to a variety of reasons, including supporting advanced cryp-
tographic primitives such as fully homomorphic encryption,2

its relative efficiency, and its expectancy to be safe against
quantum adversaries [21], [72].

Lattices are discrete subgroups of the n-dimensional
Euclidean space Rn, with a strong periodicity property.3

A lattice L generated by a basis B, a set of linearly indepen-
dent vectors b1, . . . ,bm in Rn, is denoted by:

L(B) =
{
x ∈ Rn

: x =
m∑
i=1

uibi, u ∈ Zm
}
, (1)

1Roughly speaking, this means that breaking cryptosystems based on
randomly chosen, average-case lattice problem instances, is at least as hard
as solving certain lattice problems in the worst case.

2A cryptosystem that supports Fully Homomorphic Encryption can imple-
ment any operation on encrypted data, without decrypting data. This is
particularly useful when e.g. outsourcing sensitive computations on private
data to a cloud server. The reader is referred to the survey [88] for a practical
perspective of Fully Homomorphic Encryption.

3We refer the reader to the papers [82], [94] in order to learn more about
lattices, especially in the context of lattice-based cryptography.
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where m ≤ n is the rank of the lattice. When m = n, the
lattice is said to be of full rank. When n is at least 2, each
lattice has infinitely many different bases.

Although there are non-integer lattices, lattice-based
cryptography commonly uses integer lattices: solving lat-
tice problems on integer lattices is still hard, and integer
lattices are easier to handle computationally (e.g. there are
no precision/numerical problems). In the literature, there
are various types of lattices, such as Goldstein-Mayer lat-
tices (also referred to as random lattices [107]) and Ajtai
lattices [5] (which typically have vectors with relatively small
coordinates). Some lattices, such as ideal lattices, have addi-
tional structure [60]. Ideal lattices are particularly important
in lattice-based cryptography because some cryptosystems
take advantage of their additional structure to obtain smaller
key sizes, which translates into improved efficiency for the
resulting cryptosystems [61], [106]. Adversaries may how-
ever also be able to take advantage of this additional structure
leading to weaker security, as discussed later in this paper.

As an example, Figure 1 shows a lattice in R2, where the
basis B = {b1,b2}. The vector b3 shown in the picture is
a linear combination of the basis vectors. This linear combi-
nation also shows that b1 can be made shorter (in terms of
Euclidean norm) at the cost of b2, given that b3 is smaller
than b1. This process of making lattice vectors (bases) shorter
by adding/subtracting other lattice vectors is often referred
to as vector (basis) reduction, and is widely used in various
lattice algorithms.

FIGURE 1. Example of a lattice in R2 and its basis (b1,b2) in red.

As described above, cryptosystems base their security on
hard mathematical problems. For instance, the security of
the RSA cryptosystem is based on the hardness of factoring
certain large integers. Put roughly, if an attacker is able to
efficiently factor such large numbers, with the same number
of bits as the key, then he can break the system. The foun-
dation of the security of RSA (and other cryptosystems) is
therefore that, as factoring large integers is a computationally
hard problem and its complexity grows fast with the input
size, no attacker can factor a sufficiently large number in a
reasonable amount of time and thus break the system.

The security of lattice-based cryptosystems is also based
on hard mathematical problems, but problems that are built

on lattices. These include 1) lattice basis reduction, 2) the
Shortest Vector Problem (SVP), 3) the Closest Vector
Problem (CVP), 4) the Learning with Errors (LWE) and
several variants of these. There are many other problems
that lattice-based cryptosystems base their security on, but
these are perhaps the most relevant to cover in a practical
survey. Here the input size commonly scales with the lattice
dimension: in low dimensions (say n ≤ 100), solving these
problems remains feasible in practice, but when the lattice
dimension becomes very large (e.g. n ≥ 10000), these prob-
lems become intractable with current methods.

Due to the connection between the problems and the secu-
rity of the corresponding cryptosystems, the algorithms that
solve these problems are sometimes referred to as attacks.
The main reason why it is important to study the potential of
attacks is because they provide insights for parameter selec-
tion (e.g. key sizes) of lattice-based cryptographic primitives.
Parameter selection is typically a two-phase process: first,
the community assesses the practical potential of attacks,
implemented on high-end computer architectures. Then, the
parameters for the cryptosystems are selected such that reach-
ing such parameters becomes impractical, based on the results
of the first phase. This has to be the case even when the
best attacks are implemented on the highest-end computer
architectures. This is why the last years have witnessed con-
siderable efforts towards efficient implementation of attacks.
Implementing the best attacks to date on modern, parallel
multi- and many-core systems provides a solid idea of how
hard it is to solve lattice problems, and how to accurately
select parameters for lattice-based cryptosystems guarantee-
ing both security and efficiency.

A. CONTRIBUTIONS
In this survey, we identify how these high-end parallel pro-
cessors can be used to efficiently solve the problems that
underpin the security of lattice-based cryptosystems, and
what are the main challenges found when trying to attain full
performance in such scenarios.

To this end, we gather, categorize and analyze the advances
on the practical side of lattice-based cryptanalysis, with focus
on lattice basis reduction, the SVP, the CVP and the LWE
problem. After gathering the most relevant implementations,
and categorizing them in various classes of solvers, we report
on their throughput performance and scalability, based on
results from the literature. At the end we further provide
references to various tools and libraries available online that
can be used to further assess the practical performance of
various attacks.

B. ROADMAP
The remainder of this paper is organized as follows. Section II
introduces the lattice problems that lay at the the foundation
of lattice-based cryptography. In Section III, we identify
and categorize the algorithms for solving the problems pre-
sented in Section II. Section IV gathers the work around the
implementations of these attacks, and presents and comments
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on their throughput performance and scalability on paral-
lel architectures. Section V describes libraries and software
modules that contain implementations of the attacks men-
tioned in Section III and other algorithms that are useful in the
context of lattice-based cryptanalysis. Section VI discusses
so-called ‘‘challenges’’ which are available online, that can
be used for evaluating the performance of algorithms, as well
as for assessing the security of lattice-based cryptosystems.
Finally, Section VII extrapolates on the future of lattice-based
cryptanalysis, based on the foreseeable advances in computer
architecture, and provides some future lines of work.

II. LATTICE PROBLEMS USED IN CRYPTOSYSTEMS
This section introduces some of the most relevant prob-
lems underlying the security of lattice-based cryptography.
Although there is a large variety of hard lattice problems,
this survey will focus on lattice basis reduction, the SVP,
the CVP, and the LWE problem, as these are among the
most important in the context of lattice-based cryptanalysis.
For a broader compilation of lattice problems, including the
Shortest Integer Solution (SIS) problem, the reader is referred
to the surveys [70], [72], [93]. The rest of this section intro-
duces the aforementioned four lattice problems and some of
their relaxed versions, i.e. problems where the solutions are
allowed to be slightly off, by a given amount, from the exact
solutions to these problems.

A. LATTICE BASIS REDUCTION
Although lattice basis reduction is typically not mentioned
when enumerating hard lattice problems, it is a prime pro-
cess in this context. Lattice basis reduction is the process of
transforming a given lattice basis B into another lattice basis
B′ of the same lattice (i.e., L(B) = L(B′)), whose vectors
are shorter and more orthogonal than those of B. Figure 2
shows a basis transformation in order to reduce the original
basis B = (b1,b2) into a shorter, more orthogonal basis
B′ = (b3,b4).

FIGURE 2. Example of a lattice basis reduction process in R2. The original
basis B = (b1,b2) is drawn in red and the resultant basis B′ = (b3,b4) is
in blue.

All too often, reduced bases are called ‘‘superior’’ bases.
There is not a universal definition for the quality of lattice

bases, but Mariano has recently enumerated in his PhD thesis
a series of metrics that can be used to assess the quality of
lattice bases (see [63], Chapter 2, Section 2.1.1.). Intuitively,
all these metrics aim to capture the main goals of lattice basis
reduction: to make the basis vectors as short and orthogonal
as possible.

Lattice basis reduction is a well studied problem, and there
are several practical algorithms for reducing lattice bases,
such as the Lenstra-Lenstra-Lovász (LLL) algorithm [57]
and the Block Korkine-Zolotarev (BKZ) algorithm [98].
Lattice basis reduction is relevant in the context of lattice-
based cryptanalysis as there is a strong correlation between
the quality of the basis and the performance of SVP- and
CVP-solvers, which we present in the following. Moreover,
approximate versions of these problems (in particular the
SVP) can be solved with lattice basis reduction algorithms.

B. THE SHORTEST VECTOR PROBLEM (SVP)
Formally, the SVP can be defined as: given a basis B of the
lattice L, find a non-zero vector p ∈ L such that: ‖p‖ =
min{‖v‖ : v ∈ L(B), ‖v‖ 6= 0}. The norm of such a shortest
non-zero vector4 of a lattice is sometimes denoted by λ1(L).
In 1998, Ajtai showed that for the Euclidean norm, solving the
SVP is NP-hard under randomized reductions [6]. Figure 3
shows the shortest vectors in the lattice of Figures 1 and 2,
which are the solutions for the SVP.

FIGURE 3. Example of the SVP, on a lattice in R2. Shortest vectors in blue.

The above is the definition of the exact version of the SVP;
in an approximate version of the problem, typically referred
to as α-SVP, the solution is a vector whose norm is, at most,
a factor α ≥ 1 bigger than λ1(L). For a comprehensive
review of the variants and approximate versions of the SVP,
the reader is referred to [72]. As an example, the Ajtai-Dwork
cryptosystem, one of the earliest cryptosystems based on
lattices, bases its security on the γ -Unique SVP, a problem
that derives from the SVP [7].

The cryptographic community has developed in-depth
knowledge of the SVP. However, this knowledge is primarily
theoretical, and the practical performance of these algorithms

4Note that due to the natural symmetry in lattices, there is not only one
shortest vector.
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has only started to be seriously studied over the last years.
In fact, there remain many gaps in knowledge, particularly
regarding the difference of performance between the theoret-
ical expectations and actual practical performance of many
SVP-solvers. This is problematic, as the security parameters
of cryptosystems are selected based upon the practical per-
formance of attacks, which theoretical expectations are often
not congruent with.

C. THE CLOSEST VECTOR PROBLEM (CVP)
Formally, the CVP can be defined as: given a basis B of a
lattice L, and a target vector t, find a lattice vector p that is
closest to t, i.e. such that: ‖p − t‖ = min{‖w − t‖ : w ∈
L(B)}. This problem was shown to be NP-hard by Van Emde
Boas [26]. Figure 4 shows an example of the CVP, where the
target vector is in red and the solution is in blue.

FIGURE 4. Example of the CVP, on a lattice in R2. Target vector t in red,
solution in blue.

Like the SVP, the CVP also has derivative problems and
approximate versions (see [70], [72] for additional details).
Cryptosystems whose security is based on the hardness of
the CVP, directly or indirectly, include, among others, the
Goldreich-Goldwasser-Halevi (GGH) cryptosystem [46].

The CVP is also a very well studied problem (even though
the SVP has been attracting more attention over the past
years) and there are various algorithms to solve exact and
approximate versions of the CVP, some of which are very
closely related to SVP solvers.

D. THE LEARNING WITH ERRORS (LWE) PROBLEM
Having been introduced in 2005 by Regev [95], the LWE
problem is more recent than the previous problems and is
a generalization of the Learning Parity with Noise (LPN)
problem [90]. The parameters of this problem are the (lattice)
dimension n ≥ 1, an integer modulus q ≥ 2, and an error
distribution χ over Zq. Intuitively, χ can be thought of as a
narrow (discretized) Gaussian centered around 0. In essence,
there are two main versions of this problem [93], [95]:
a search version and a decision version. In both these prob-
lems, one is given samples of the form (ai, bi) where the
vectors ai ∈ Znq are chosen uniformly at random, and the
scalars bi are of the form bi = 〈ai, s〉 + ei mod q where
s ∈ Znq is a (fixed) secret vector and the ei ∈ Zq are small

hidden ‘‘errors’’ chosen according to the distribution χ . In the
search version, the problem is to find s, given (arbitrarily)
many samples (ai, bi) (without knowledge of the ei’s). In the
decision version, the problem is to decide whether a set of
provided samples (ai, bi) is indeed of the above form, or that
the bi were in fact chosen uniformly at random from Zq.

For the LWE problem, the link with lattices is not as
immediate as for the SVP and the CVP. Given several samples
(ai, bi), we can gather them into (A,b) where A is a matrix
with the vectors ai as its rows, and b = As + e mod q is
the vector of bi’s. The vector b can be viewed as a lattice
vector As (where the lattice is generated by the columns
of A, and s determines the integer linear combination of
these lattice vectors) plus a small noise vector e. Finding the
closest lattice vector to bwould imply findingAs, fromwhich
one can easily extract s, and so solving the LWE problem is
related to (a variant of) the CVP with target vector t = b in
this lattice modulo q.

Typically, in the context of lattice-based cryptography,
we are concerned with discrete Gaussian error distributions
χ = DZ,s over the integers, where α := s/q ∈ (0, 1) is
often called the (relative) error rate [58]. These are essentially
continuous Gaussians with support restricted to the lattice.
Importantly, the LWE problem is easily solved without the
error term by applying Gaussian elimination. Otherwise it
can be shown to be as hard as certain worst-case lattice
problems [28].

Extensions of the LWE problem appear in the literature
such as the binary-LWE problem [71], where the secret
vectors are chosen uniformly from a binary set, rather than
from Znq. This reduces the key size of s, but comes at the cost
of having to increase the parameters to guarantee security.
Motivated by the fact that cryptographic schemes based
on LWE are not efficient for practical applications due to
the large size of A (resulting in key sizes of order n2),
Lyubashevsky et al. proposed cryptography based on the ring-
LWE problem [61]. This is an algebraic variant of the LWE
that operates over elements of polynomial rings instead of
vectors. Intuitively, this modification adds additional struc-
ture to the sample matrix A so that it only requires storage of
order n instead of n2.
The LWE problem emerged as a basis for many crypto-

graphic constructions such as public-key encryption schemes,
identity-based encryption, and leakage-resilient encryption,
among many others ([58], [89], [94], [95]).

III. ATTACKS: SOLVERS FOR LATTICE PROBLEMS
In this section, we identify the main existing attacks in the
context of lattice-based cryptanalysis. Attacks, in this con-
text, are algorithms that solve the various problems under-
pinning the security of lattice-based cryptosystems, which we
enumerated and described in Section II.

A. LATTICE BASIS REDUCTION
Lattice basis reduction forms a cornerstone of lattice theory.
In cryptanalysis, it is used to solve many of the problems
mentioned in Section II. In fact, LLL, a seminal lattice basis
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reduction algorithm, was used to break other cryptosystems
even before lattice-based cryptosystems existed (e.g. [87]),
and can still be used to attack certain lattice-based cryptosys-
tems today.

LLL was the first algorithm for lattice basis reduction.
Although originally described with rational arithmetic, the
standard implementations today are LLL floating-point vari-
ants, which are considerably more efficient. These versions
may incur errors, which are handled by the implementation
itself. The most important variants of LLL include Schnorr
and Euchner’s floating point variant (LLL-SE) [102], and
Nguyen and Stehle’s variant (L2) [81]. These variants are
described in detail by their authors in a survey on LLL
and its applications, published on the occasion of LLL’s
25th birthday (see [83], [100], [105]). In 1994, Schnorr and
Euchner presented another important variant of LLL, which
uses a technique called ‘‘deep insertions’’ [102]. The liter-
ature indicates that this variant improves the quality of the
basis substantially, while not increasing the running time of
LLL toomuch; however, it is not as fast as LLL-SE in practice
(see [105, pp 20–21], [110, Sec. 4.4.]).

Proposed by Schnorr in 1987 [98], the Block Korkine-
Zolotarev (BKZ) algorithm is a generalization of LLL, and
lays the foundation for the most efficient lattice basis reduc-
tion algorithms to date. BKZ offers a trade-off between the
running time and the quality of the yielded basis, which
is controlled by a parameter β. The algorithm solves the
SVP on sliding windows (also called blocks) of β vectors,
projected orthogonally to the span of the previous vectors
in the basis [98]. Although in theory the SVP could be
solved by any SVP-solver, enumeration-based SVP-solvers
(see Section III-B) are usually used in this process. The
shortest vector of the projected basis is then inserted into the
original basis, and LLL is executed upon the whole basis so
that linear dependencies are removed. The algorithm stops
when a full set of sliding windows, from the beginning of the
basis till the end, does not result in new vectors.

The most efficient lattice basis reduction algorithms today
are variations of BKZ. These include BKZ 2.0 (proposed by
Chen and Nguyen in 2011 [32]), progressive BKZ [14], and
primal-dual BKZ [76].

B. THE SHORTEST VECTOR PROBLEM
The SVP has received considerable attention in lattice-based
cryptanalysis over the last decades. The SVP is very impor-
tant in this context as it is necessary to solve a relaxed version
of the SVP, called α-SVP, to break specific cryptosystems.
Most existing α-SVP-solvers do use SVP-solvers as part of
their logic and thus the importance of understanding the SVP
in practice. In particular, the BKZ algorithm referred in the
previous section, can be used to solve the α-SVP, and it uses
a SVP-solver (typically enumeration) as an essential building
block.

There are various different SVP-solvers, but they can
essentially be classified in two classes: enumeration-based
solvers, running in superexponential time in the dimension

but requiring almost no storage, and sieving-based solvers
running in exponential time, but also requiring storage of size
exponential in the lattice dimension.

Enumeration algorithms have been studied since the
eighties, and progressively enhanced over time. In 2010,
Gama et al. gave a comprehensive theoretical overview of
different ‘‘pruning’’ strategies, including ‘‘extreme pruning’’,
achieving significantly better results than with standard enu-
meration [42]. Pruning reduces the workload substantially,
while at the same time the probability of success is reduced
(but by a much smaller factor). The class of enumera-
tion methods further includes the recent ‘‘discrete pruning’’
variant, based on Schnorr’s Random Sampling Reduction
method [13], [31], [41], [99].

Progress in sieving algorithms is considerably more recent.
The first description of this method was only in 2001 [9],
and the first truly practical implementations were released in
2008-2010 [74], [84]. There were no sieving algorithms capa-
ble of competing with enumeration until recently, with the
appearance of HashSieve and LDSieve. The biggest down-
side of sieving algorithms is the large memory requirement,
which becomes a serious bottleneck when solving the SVP
in high lattice dimensions. Besides pure sieving algorithms,
one might also include Voronoi cell approaches [4], [56],
[73], [108] and discrete Gaussian sampling methods [2], [3]
as sieving-based approaches, requiring exponential time and
space, and following similar methodologies for solving
the SVP.

Sieving algorithms have a few properties worth mention-
ing. First, they are asymptotically faster than enumeration
(2O(n) vs. 2O(n log n)), which means that they will be faster
than enumeration in sufficiently high dimensions n. Second,
some of these methods can take advantage of specific lattices,
such as ideal lattices, whereas for enumeration algorithms
it is not known how to exploit these ideal structures
(see [97, Sec. 6.1]). Third, as convergent algorithms, sieving
algorithms may be modified and still converge. This has in
fact enabled many parallel variants to be designed over the
last years, as we show in Section IV-B.

C. THE CLOSEST VECTOR PROBLEM
The CVP has been receiving less attention than the SVP.
In particular, it was not until recently that the computational
practicability and the scalability of CVP-solvers has been
addressed. One of the reasons why the CVP has attracted
less attention than the SVP may have to do with the fact
that there is no public repository for the CVP. Furthermore,
for certain methods it is known that they can solve SVP and
CVP in practice in approximately the same amount of time,
and so for these methods a CVP challenge would not be very
useful.

There are two algorithms to solve the exact version of
the CVP: the enumeration algorithm by Pohst, presented
in 1981 [92], and an algorithm presented by Kannan [52],
in 1983. Both extensions and improved versions of these algo-
rithms have been published after that. In particular, in 1994,
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Schnorr and Euchner proposed a significantly better version
of Pohst’s method [102], and recently, Ghasemmehdi and
Agrell showed how one can eliminate some redundant oper-
ations in the algorithm [45].

There are also solvers that return an approximate solu-
tion of the CVP: the Nearest Plane algorithm, proposed by
Babai [16], and certain sieving algorithms, such as the AKS
algorithm [8]. The AKS algorithm, proposed by Ajtai et al.,
is a randomized sieving algorithm to solve the SVP [9]. Later,
it was extended to solve an approximated version of the
CVP [8] (Blömer and Naewe proposed improvements for this
algorithm [23]).

D. THE LEARNING WITH ERRORS PROBLEM
The literature suggests two different categories for algo-
rithms solving this problem, namely algorithms solving the
LWE problem directly (without targeting the underlying
lattice) and solving the LWE problem via lattices (e.g. finding
short/close vectors in a lattice). As for direct methods to solve
the LWE problem, a naïve way is to generate enough LWE
samples so that the secret s is recovered [93]. This algorithm
requires both 2O(n log n) equations and running time. A sim-
ilar algorithm uses a maximum likelihood method to solve
the problem, thus requiring fewer samples (O(n)). However,
it also runs in 2O(n log n) time [93].

The Blum-Kalai-Wasserman (BKW) [25] algorithm was
published in 2003 as an attack on the Learning with Parity
Noise (LPN) problem with an associated complexity of 2O(n).
It was generalized and later improved for the LWE
problem [10], [11]. A different algorithm for solving the
LWE problem was proposed in 2011 by Arora and Ge [15]
and in their work it was demonstrated that by reducing the
LWE problem to a system of (error-free) high-degree non-
linear equations and solving this system, it is also possible to
extract the desired solution. The complexity of this algorithm
is 2O(n

2ε) which is exponential when ε ≥ 1
2 . It is important

to mention that both these approaches do not use lattice basis
reduction (or lattices in general) to solve the LWE problem.

The distinguishing attack is one of the oldest attacks on
LWE. It shows a direct relation between the LWE and α-SVP
in certain lattices and can be used in combination with any
α-SVP algorithm. Even though Lindner and Peikert claim
the distinguishing attacked is outperformed by the decoding
attack [58], recent performance estimates of sieving algo-
rithms show that this attack could be the most promising
on certain instances. However, since these arguments do not
take memory consumption into account, they are somewhat
debatable, but still show that the distinguishing attack should
not be discarded.

The algorithms solving the LWE indirectly are exten-
sively studied in the literature and can be characterized
as attacks that use basis reduction such as Regev’s [95]
among many others [28], [32], [47]. To our knowledge, there
is still no precise practical complexity analysis for large
dimensions.

IV. THROUGHPUT PERFORMANCE AND SCALABILITY
This section gathers the implementations for the most
important problems in lattice-based cryptography, while
we comment on their performance, especially on parallel
architectures.

A. LATTICE BASIS REDUCTION
There is substantial work regarding the practicability of lat-
tice basis reduction algorithms, including LLL-SE, L2, BKZ
and BKZ 2.0.

1) LLL
In 2008, Backes and Wetzel published a shared-memory
parallel LLL implementation, using pThreads, with moder-
ate scalability [17]. In a follow-up paper, the same authors
improved the results, achieving speedup factors of ≈3x and
≈4x for 4 and 8 threads respectively [18], as shown in
Figure 5. This is, to our knowledge, the best result on par-
allelizing LLL so far, which means that, to this day, it has not
been shown that LLL can scale linearly for high core counts.

FIGURE 5. Speedup of a parallel LLL implementation presented in [18],
on lattices up to dimension 2000 (reprinted from [18]). Note that ‘‘[2]’’ in
the figure pertains to the second reference in [18], as the figure was
directly reprinted from the paper.

Recently, Mariano et al. presented, for the first time, a
vectorized LLL implementation, based on careful, cache-
friendly data structure arrangements [66]. The authors started
with a standard implementation, similar to that of the most
popular LLL library, and made improvements to favour cache
performance. They arrived at a key result: transforming the
standard implementation to become cache-friendly only pro-
duced results after a certain lattice dimension. Before that
lattice dimension, the additional overhead incurred by the
cache-friendly implementation in accessing elements does
not outweigh the performance boost given by increased local-
ity of reference. The vectorized implementation (i.e. the
cache-friendly implementation with two vectorized kernels)
yielded better results than the standard implementation for
any lattice dimension. In particular, by vectoring the dot
product and the AddMul kernel, the authors achieved a
35% speedup.

The LLL implementation in NTL is algorithmically more
efficient than the implementation used by Mariano et al.,
thus being faster. However, the vectorization process sug-
gested in [66], can improve NTL’s implementation, as well as
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the aforementioned parallel LLL implementation by Backes
and Wetzel.

In 2016, Mariano conducted a series of tests comparing
different LLL implementations (including NTL’s, fpLLL’s,
plll and his own implementation) in his PhD thesis (see [63],
Section 5.2.2). The experiments show the performance of the
various implementations in terms of the quality of the basis
and execution time, when executed with a single thread. fplll
turned out to be faster than all other implementations, but
the final basis was different in the overwhelming majority
of tests (and thus so the quality). Mariano concluded that, in
general, NTL and his own implementation tended to deliver
better bases than fplll and the quality of the bases output by
NTL and his implementation had small differences in terms
of quality. A final important test in this section was to run
an enumeration-based SVP-solver on the various resultant,
LLL-reduced bases. Mariano concluded that, in general, the
SVP-solver was faster on the bases output by his implemen-
tation (in comparison to fpLLL).

2) BKZ
Surprisingly, there are only a few papers on the parallelization
of BKZ.

In 2014, Liu et al. presented a parallel BKZ variant
implemented with MPI. Their variant is based on executing
enumeration on several blocks in parallel, thus extracting
parallelism at a coarse grain level. Whenever a new vector
is found by the enumeration routine, it is inserted in the
beginning of the block. After running the various blocks in
parallel, LLL is executed over the entire basis, as in the
original algorithmic description. The only metric Liu et al.
used to judge the quality of the output bases was the length
of the shortest vector in the basis, which is often smaller than
that of the original algorithm.

In the same year, Arnreich and Correia presented
AC_BKZ, another parallel BKZ variant, which is also
based on running multiple calls of ENUM (the most pop-
ular enumeration-based SVP-solver) on different blocks,
in parallel. Each ENUM call is sequential, and parallelism is
extracted from running multiple ENUM calls in parallel. All
the vectors found during this process are inserted in the basis,
which is LLL-reduced before the subsequent round. The
process is repeated until there are no new vectors resulting
from ENUM calls. The main difference to Liu et al.’s version
is that Arnreich and Correia ignore blocks with less than β
vectors. The implementation scales well up to 4 threads, but
stalls after that, as shown in Table 1. In addition, Correia
concluded that the final bases are not as good as those yielded
by the original BKZ algorithm [33].

In his PhD thesis, Mariano presented two different
parallel implementations of the original BKZ algorithm
(see Section 5.3.2 [63]). Essentially, both BKZ implementa-
tions used a parallel enumeration SVP-solver, implemented
in two different models: task-based and demand-driven
(SVP-solvers are covered in detail in Section IV-B). In the
experiments, Mariano determined that the scalability of the

TABLE 1. Speedup (S) and Efficiency (E) of the AC_BKZ parallel
implementation [33], for a lattice in dimension 60 for
block-sizes 40, 45 and 50. Reprinted from [33].

FIGURE 6. Execution time of the vectorized LLL implementations
introduced in [66], and NTL’s LLL implementation, on Ajtai lattices
(reprinted from [66]). Base is the reference implementation, OPT is
the reference implementation with cache-friendly data structures and
VEC is the vectorized implementation.

BKZ implementations was similar to the scalability of the
enumeration-based SVP-solver itself, as enumeration rep-
resents the majority of the computation in BKZ. The best
scalability figures were achieved for higher block-sizes of
BKZ, given that the scalability of enumeration is better for
higher lattice dimensions (which is the block-size in BKZ).
Increasing the block-size beyond 40, even for lattices in
dimension 80, rendered BKZ impractical, as the complex-
ity of BKZ grows exponentially with the block-size. The
scalability of the demand-driven version was consistently
better for high thread counts, and similar for the remaining
cases. Table 2 shows the scalability of the demand-driven
implementation (as Mariano concluded it is better than the
task-based), for block-size 30.

A paper by Aono et al. from 2016, where the authors
introduce progressive BKZ, presented a comparison of a
few estimates (not actual experiments), including Lindner-
Peikert’s estimation [58], Chen-Nguyen’s estimation [32] and
their own estimation [14]. Aono’s estimates indicate that his
lower bound function offer much better single tread execution
times than the state of the art algorithm, BKZ 2.0. There is no
information regarding a possible parallel implementation of
this variant. To the best of our knowledge, there are no results
published on the performance and scalability of BKZ 2.0.

3) WRAP UP AND OPEN PROBLEMS
The parallelization of lattice basis reduction algorithms and
LLL in particular has been studied, but to date there is no
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TABLE 2. Parallel BKZ (β = 40) with demand-driven parallel enumeration,
for 2-64 threads, on a 32-core + SMT machine. Reprinted from [63].

FIGURE 7. Comparison of various estimates, for a single thread execution
time, of BKZ 2.0, and records on the SVP Challenge. Reprinted from [14].

implementation for multi-core CPUs that scales linearly. The
vectorization of some LLL kernels has been conducted with
success, to which end it was shown that if the right data
structures are used, significant gains can be obtained. The
parallelization of BKZ has also been studied, and the best
parallelization approach to date seems to be based on par-
allelizing the enumeration routine that underlies BKZ, as it
consumes the bulk of the execution time of BKZ. To our
knowledge, there are no papers on the parallelization of
BKZ 2.0 to date. The parallelization of BKZ 2.0 can be done
using the same demand-driven parallel implementation of
ENUM presented in [63], according to the source. However,
no practical experiments have been conducted to this day.

B. SVP
This section goes over the twomain families of SVP-solvers -
enumeration and sieving - pointing out the existent paral-
lel implementations and commenting on their performance,
based on the results available in the literature.

1) ENUMERATION
Enumeration algorithms have been studied thoroughly over
the years, especially when compared to other classes of
SVP-solvers. The first steps with enumeration-based
algorithms date back to the 80s, when Pohst and Kannan

FIGURE 8. Scalability of Dagdelen et al. parallel ENUM implementations,
for 1-16 threads. Reprinted from [37].

FIGURE 9. Throughput performance of Dagdelen et al. and Correia et al.
enumeration-based SVP implementations, for 1-32 threads on a
16-core + SMT multi-core CPU machine. Reprinted from [33].

presented seminal approaches, based on enumeration, to
solve the SVP. Currently, the most practical full enumeration
algorithms are ENUM [40] and SE++ [45], which differ
mainly in the pre-processing. These algorithms can include
pruning, a technique that discards computation at the cost of
decreasing the probability of success (although by a much
smaller degree).

There is a number of implementations of enumeration-
based algorithms. Dagdelen et al. proposed the first parallel
implementation of ENUM in 2010 [37]. This implementation
scales well with the number of cores, attaining super-linear
speedups in specific instances, as shown in Figure 8.

This implementation does not include any kind of pruning.
In 2016, Correia et al. proposed a parallel version of SE++,
which outperformed the implementation by Dagdelen et al. in
terms of scalability and, more notably, in terms of through-
put performance, with gains between 35% and 60% [35].
Figure 9 compares both implementations, when executing the
SVP on two random lattices, on a 16-core + SMT machine.
Correia also proposed the same parallelization approach to
ENUM [33].

Last year, in his PhD thesis, Mariano presented two other
implementations of ENUM, used in the BKZ implementa-
tion described in Section IV-A.2. The first implementation
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TABLE 3. Scalability of the demand-driven and tasking-based ENUM implementations proposed by Mariano, for lattices in dimensions 30, 40, 50 and 60.
Grayed-out cells represent better scalability. Reprinted from [63].

is based on a demand-driven mechanism and one based on
a tasking mechanism, which builds upon the work from
Correia et al [35]. The results are shown in Table 3. Although
the tasking-based mechanism scales relatively well, the
demand-driven mechanism scales a bit better overall and is
also more throughput-efficient in general. The main conclu-
sion is that the demand-driven implementation allows certain
optimizations that are not enabled by OpenMP in the tasking-
based version. At the same time, Mariano reports that the
demand-driven implementation’s code is considerable more
complex and error-prone, and was substantially harder to
devise.

Another very important study important mentioning is the
parallelization of extreme pruned enumeration. There are
essentially two different studies in this matter, namely the
parallelization by Correia in his MSc thesis [33] and then
generalized in a journal paper [34]. This has been done
with MPI, thus targeting distributed memory systems, and
tested on shared-memory CPU-systems as well. The results
are quite satisfiable given that the proposed implementation
scales linearly for up to 4 processes. For 8 and 16 processes,
the scalability decreases slightly, due to load imbalance. The
authors show a direct correlation with the performance of
BKZ, which ultimately determines the load of each of the run-
ning processes. Yet, the implementation achieves efficiency
levels of over 90% for 4 or fewer processes and close to 90%
for 8 processes, decreasing considerably thereafter.

2) WRAP UP AND OPEN PROBLEMS
The parallelization and throughput performance of enumera-
tion-based SVP solvers are well studied. However, there are
not, to the best of our knowledge, publicly available parallel
implementations of BKZ 2.0, a considerably more efficient
version of BKZ. Although Mariano has claimed that his
demand-driven mechanism for parallelizing ENUM should
work as well on pruned versions of enumeration, this claim
is yet to be verified.

3) SIEVING
It was not until recently that sieving algorithms started to
be regarded as practical and scalable algorithms. Up until
2010, enumeration-based algorithms were the most common
SVP-solver used in practice.

In 2010, Micciancio and Voulgaris proposed
ListSieve and GaussSieve [74], and the latter actually became
the first sieving algorithm to surpass enumeration algorithms.
There was especial interest around GaussSieve because siev-
ing algorithms (and GaussSieve in particular) can take advan-
tage of special lattice structures, such as ideals (in the form
of ideal lattices). Motivated by the potential of GaussSieve,
four particularly relevant GaussSieve implementations were
proposed in the following years [27], [50], [69], [77].

- Milde et al., 2011: Milde and Schneider proposed
the first parallel implementation of GaussSieve [77].
In brief, their implementation is based on a ring structure
composed of several chunks of a global list, managed by
each one of the running threads, whereon vectors float
around. Because vectors may miss one another in the
list, during the reduction process, many reductions are
missed. As a result, the number of necessary iterations
for convergence increases and the scalability decreases
(this was shown to happen for more than 4 threads).

- Ishiguro et al., 2014: Ishiguro et al. presented a
distributed-memory implementation ofGaussSieve [50].
The list of vectors is not split among the running
processes, as every process can access the global list.
The implementation generates samples in batches (of a
parameterizable size r) and synchronizes the processes
between iterations. The authors claim that their imple-
mentation scales reasonably well with the number of
processes, at the same time their implementation can
also take advantage of ideal lattices. Unfortunately, the
source code is not public and there are some important
further details pertaining to synchronization that are
not disclosed in the paper. There are some important
downsides to this implementation, including the fact
that good values for r must be determined empirically.
Figure 10 shows the scalability of the implementation,
presented in [50].

- Mariano et al., 2014:Mariano et al. proposed a parallel
variant of GaussSieve that is based on a lock-free linked
list (in particular an implementation of the Harris lock-
free list [48]) [69]. The vectors in the system are stored
in the lock-free list, which scales very well for most
operations (and in particular better if the operations
are not executed concurrently - which is the case in
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FIGURE 10. Scalability of Ishiguro et al. GaussSieve implementation,
for 1-32 threads on a 16-core + SMT multi-core CPU machine.
Reprinted from [50]).

FIGURE 11. Scalability of Mariano et al.’s and Milde and Scheider’s
GaussSieve implementations, for 1-32 threads on a 16-core
+ SMT multi-core CPU machine. Reprinted from [69]).

GaussSieve). This version also relaxes the properties of
the algorithm a little bit, as it cannot ensure that every
vector can see every other vector in the system. The
implementation was shown to scale very well for any
number threads on a 32-core CPU system. Figure 11
shows the scalability of this implementation, presented
in [69], in comparison to that of Milde and Schneider.

- Bos et al, 2014: Bos et al. proposed a different approach
to parallelize GaussSieve, for distributed systems, which
includes a routine to exploit ideal lattices [27]. Put
simply, the parallelization consists in replicating the
same vector across different processes, which reduce it
against their own chunk of the distributed list. Vectors
are generated in batches and reduced against the indi-
vidual lists, by each process. The surviving vectors are
pairwise reduced and added to the list of one process at
the end of each round. The vectors that do not survive
are moved to a different list, where eventually only the
shorter - or minimal representative - of each vector is
kept. This is joint to a global stack and used as the
vectors of the following iteration. This implementation
has various synchronization at various points, including
broadcasting samples, agreeing on minimal represen-
tatives, and concatenating lists. The efficiency of the

FIGURE 12. Scalability of Mariano et al.’s LDSieve implementation, for
1-64 threads on a 32-core + SMT multi-core CPU machine.
Reprinted from [62]).

implementation is reported in Table 4, retrieved from the
original paper.

Although GaussSieve was a very important mark in
the development of sieving algorithms, enumeration with
extreme pruning was proposed in the same year. As a result,
enumeration remained as the best SVP-solver for random
lattices in the years that followed.

Also in 2014, Becker et al. proposed a sieving algorithm
based on overlattices, called Overlattice sieve [19]. The
authors presented a scalable implementation along with the
introduction of the algorithm. Although no scalability fig-
ures are presented, the authors argue that their algorithm is
‘‘suitable for SIMD implementation, not only multi-
threading’’ (sec. 4.5) and ‘‘highly parallelizable’’ (sec. 4.9).

In 2015, Laarhoven proposed HashSieve [55], putting siev-
ing algorithms back on the map. HashSieve was shown to be
competitive with enumeration with extreme pruning. In the
same year, Mariano et al. proposed a parallel implementa-
tion of HashSieve, which slightly relaxes the properties of
the algorithm and was shown to scale well on CPU system
with up to 64 threads [67], [68]. Later on, on a follow-up
paper, it was shown that with specific improvements, the
parallel variant of HashSieve could in fact scale linearly or
almost linearly on high thread count CPU systems. In addi-
tion, several memory access improvements were proposed,
including prefetching techniques and the use of data mapping
policies [64], [67].

Earlier this year, Mariano et al. proposed a parallel imple-
mentation of LDSieve that scales almost linearly on multi-
core CPUs with up to 64 threads, with linear speedups up to
16 threads and almost linear for higher thread counts [62].
The implementation uses the underlying probable lock-free
mechanism used to parallelize HashSieve in [67], although
applied to the single hash table in the system. The imple-
mentation is also optimized at various levels, including
vectorized routines for vector reduction and memory efficient
access patterns [67]. Figure 12 shows the scalability of the
implementation.

Earlier this year, Yang et al. proposed a GPU imple-
mentation of GaussSieve for ideal lattices, which builds
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TABLE 4. Scalability of Bos et al. GaussSieve implementation, for 1-256 cores (data taken from [27]).

upon Ishiguro’s and Bos’s work [109]. The authors argue
that their implementation works on multi-GPU platforms,
achieving parallel efficiencies of 45-86%, depending on the
lattice dimension and the number of used GPUs. The
authors used this implementation to find a short vector on a
130-dimensional ideal lattice, a computation that required
824h on 8 GPUs.

4) WRAP UP AND OPEN PROBLEMS
The parallelization of sieving algorithms has been extensively
studied, with good results. There are a few open problems
including 1) whether the latest advances in sieving algo-
rithms can be adapted to take advantage of ideal lattices, and
2) whether these more advanced sieving algorithms, such as
HashSieve or LDSieve, can effectively be ported to GPUs.

C. CVP
Unlike the SVP, the CVP has not got much attention in the
past years in terms of practical assessments. A sequential
implementation of an enumeration-based CVP-solver can be
found in Magma.5 However, it requires users to contribute to
distribution costs (licenses start at 1000 euros). fplll includes
a non-supported implementation of the Nearest Planes algo-
rithm for the approximate CVP problem, and an enumeration-
based CVP-solver.

Correia et al. proposed in [35] a parallel implementation
of the SE++, an improved version of the Schnorr-Euchner
enumeration, which was proposed by Ghasemmehdi and
Agrell [45]. The parallel SE++ scales linearly for up to
8 threads and almost linearly for 16 threads. The imple-
mentation can also benefit from the SMT technology, since
the dependencies between the instructions prevent the full
use of the functional units within each core. Figure 13
shows execution time of the implementation, running with
1-32 threads, with BKZ-reduced bases.

To the best of our knowledge, for the CVP, there are neither
publicly available implementations for the Kannan algorithm
nor for CVP-solvers based on sieving.

5http://magma.maths.usyd.edu.au/magma/

FIGURE 13. Scalability of Correia et al.’s SE++ implementation, for
1-32 threads on a 16-core + SMT multi-core CPU machine.
Reprinted from [35].

1) WRAP UP AND OPEN PROBLEMS
Correia et al.’s work showed that enumeration-based
CVP-solvers can scale linearly on multi-core CPUs. How-
ever, it is still unclear if sieving-based CVP-solvers can also
scale well, and what optimization opportunities can in fact be
carried out. Finally, the scalability of CVP-solvers have not
been tested on massively parallel architectures such as GPUs.

D. LWE
Similarly to what happens with the CVP, only few par-
allel implementations of algorithms that solve the LWE
problem were proposed to date. The first parallel imple-
mentation solving this problem dates back to 2014, when
Bischof et al. [22] assessed the performance and scalability of
Lindner and Peikert’s ‘‘decoding attack’’ [58]. This algorithm
converts an instance of the LWE problem to an instance of
the CVP. Bischof et al.’s implementation achieves speedup
factors of more than 11x on a machine with four CPU chips,
totaling 16 cores.

In 2016, Kirshanova et al. developed a parallel implemen-
tation of the same algorithm [53]. It differs from the former
as it uses Liu and Nguyen’s pruned enumeration (see [59])
instead of the nearest planes algorithm. The authors com-
pared this implementation to their own implementation of the
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parallel decoding attack with the nearest planes algorithm.
They showed that the version with the pruned enumeration
runs significantly faster than the version with the nearest
planes algorithm, while achieving almost linear scalability.

1) WRAP UP AND OPEN PROBLEMS
The literature is short in implementations of algorithms for
the LWE problem. The known implementations, developed
by Bischof et al. [22] and Kirshanova et al. [53], show that
algorithms for the LWE can be scalable.

V. TOOLS FOR LATTICE-BASED CRYPTANALYSIS
Other than the spare implementations enumerated in
Sections III and IV, there are some libraries and software
available online that can be used for practical lattice-based
cryptanalysis. In the following, we identify the main libraries
that contain implementations of attacks, while enumerating
those attacks.

A. fpLLL
Currently, fplll is arguably the most important open-source
library available for lattice cryptanalysis. It is written
in C++, and provides efficient implementations of floating-
point LLL variants [78], [81], BKZ, and various SVP solvers
based on enumeration and sieving. For the BKZ, three vari-
ants are available, namely the classical BKZ, the Slide Reduc-
tion and the Self-Dual BKZ variants [43], [76]. Some of
the most recent updates also include implementations of the
BKZ 2.0, which is one of the fastest lattice basis reduc-
tion algorithms to date, and the GaussSieve, a sieving-based
SVP-solver. To the best of our knowledge, the only imple-
mentation of BKZ 2.0 that is publicly available is contained
in fplll. The library also provides an implementation for
the CVP, with an enumeration based algorithm.

B. NTL
Before fplll was released, NTL was the main open library for
lattice algorithms, as well as many other number-theoretic
functions. It is written in C++ and includes several lattice
algorithms, such as LLL and BKZ. These algorithms can be
run either with the Gram-Schmidt orthogonalization process
or Givens rotations. All algorithms are implemented with
several precisions, which allows one to trade performance
for output reliability. Higher precision implies that the chance
for errors, which may change the output, is lower, at the cost
of performance. In the context of lattice-based cryptanalysis,
NTL is still one of the most used libraries in practice, due to
its fast implementations of LLL and BKZ. Some of the best
(closed-source) algorithms to date were implemented based
on NTL, such as BKZ 2.0 and progressive BKZ [14], [32].

C. pLLL
Besides fplll and NTL, plll is one of the most complete
lattice libraries available. plll is written in C++ and contains
several implementations of LLL, BKZ and SVP-solvers. The
available LLL implementations include the classic LLL, the
unprojected LLL and the Siegel LLL. The classic LLL uses

the original Lovász condition [57], which compares the pro-
jected lengths of two adjacent vectors. Vectors are projected
onto the orthogonal complement of all previous vectors. The
unprojected LLL uses a simpler condition that compares the
unprojected lengths of two adjacent basis vectors. This is
essentially an attempt to sort the basis vectors by increasing
norm, while size-reducing the basis. The Siegel LLL uses the
Siegel condition, which allows to prove the same bounds on
the output quality as the Lovász condition. The classic LLL
implementation allows both regular size reduction and deep
insertions (in various modes and with several options).

There is also a number of BKZ implementations avail-
able in plll, including the Schnorr-Euchner BKZ [102], the
simplified BKZ, the terminating BKZ, the Primal-Dual BKZ
and the Slide Reduction, among others. The simplified BKZ
and the terminating BKZ were proposed by Hanrot et al.
in [47]. The Primal-Dual BKZ implementation in plll is a
mixture of slightly different BKZ descriptions, including H.
Koy and Schnorr’s descriptions (see plll’s documentation6

for more). The Slide Reduction algorithm was proposed by
Micciancio and Walter in [75].

plll implements a few SVP-solvers too. Regarding
enumeration-based solvers, plll implements an improved
variant of the Kannan-Schnorr-Euchner enumeration -
including a parallel implementation - and a single threaded
version of Schnorr’s new SVP solver, described in [101].
There are also versions of a few sieving algorithms available,
such as the List Sieve, List Sieve Birthday and the Gauss
Sieve.

Finally, there is also an implementation of the Voronoi cell
algorithm for the SVP. However, the standard Voronoi cell
algorithm is not competitive with enumeration and sieving in
any reasonable dimension (say n ≥ 30).

D. OTHER LIBRARIES AND SOFTWARE
1) LatEnum
LatEnum is a small C++ library that provides enumeration-
based SVP- and CVP-solvers. It also contains a parallel
MPI implementation of enumeration for distributed memory
systems.

2) THE LATTICES PACKAGE FOR HASKELL
The Lattices package for Haskell7 includes an implemen-
tation of the Babai nearest planes algorithm [16], a ‘‘very
basic’’ LLL implementation with exact arithmetic [57] and
a floating point LLL implementation, based on Schnorr and
Euchner’s algorithm, proposed in [102].

3) LATTICE BASIS REDUCTION IN MATHEMATICA
The ‘‘extended lattice reduce algorithm’’ package8 adds an
extended LLL function to the builtin Mathematica lattice
reduction function. This function computes a reduced basis,

6https://felix.fontein.de/plll/docs/latticereduction.html
7https://hackage.haskell.org/package/Lattices
8http://library.wolfram.com/infocenter/MathSource/681/
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and computes a transformation that relates the reduced basis
with the original list of generators. The documentation does
not describe which basis reduction algorithm it implements,
but practical tests suggest it is a slightly stronger variant
of LLL.

4) LLLBases PACKAGE FOR MACAULAY2 LIBRARY
Macaulay2 is an algebraic geometry and commutative alge-
bra software system. The LLLBases package extends this
software system by implementing several variants of LLL.
Some of these are implemented in the Macaulay2 engine,
while others by NTL. The algorithms were implemented
to work for different precisions. In addition, LLL with
Givens rotations, instead of Gram-Schmidt and BKZ are also
available.

5) ELEMENTAL
Elemental is a C++ library for distributed-memory dense and
sparse-direct linear algebra, conic optimization, and lattice
reduction. The library contains an extension of Householder-
based LLL to real and complex linearly dependent bases and
generalizations of BKZ 2.0 to complex bases incorporating
‘‘y-sparse’’ enumeration.

6) FLINT
FLINT is a number theory library, written in C. It includes
an optimised LLL implementation and a large quadratic sieve
for factorization of integers. Currently, these implementations
are only available in versions 1.x, but they are planned to be
ported to versions 2.x in the future.

7) LiDIA
LiDIA is a C++ library for computational number theory that
contains an implementation of LLL.

8) LLLplus
LLLplus is a lattice reduction package, developed in Julia.
It contains an implementation of the LLL lattice reduction,
the Seysen lattice reduction and an enumeration-based CVP-
solver, which can also be used to solve the SVP.

Figure 14 summarizes the various libraries and packages
and the implementations of attacks for lattice-based crypt-
analysis they provide.

VI. CHALLENGES FOR LATTICE CRYPTANALYSIS
Besides the libraries supporting implementations of various
algorithms used in lattice cryptanalysis mentioned in the
previous section, allowing anyone to test these algorithms in
practice, another useful tool in lattice cryptanalysis is having
public challenges for people to solve. These may be concrete
instantiations of cryptosystems, asking people to recover the
secret keys, or randomly chosen lattices and lattice problems
for anyone to solve. These have greatly aided in providing
anyone an idea of what is feasible/infeasible with current
attacks, and stimulated work on fast implementations of these
algorithms, to achieve higher records.

FIGURE 14. Libraries, packages and available implementations of attacks
for lattice-based cryptanalysis.

A. GGH CHALLENGES
Probably the first public challenges for lattice-based cryptog-
raphy were the GGH challenges [46], which can still be found
online,9 and are based on solving certain CVP instances in
GGH lattices. Explicit instantiations of the cryptosystem are
given, and the public is asked to recover the secrets. Although
the authors initially hoped that the challenges in dimensions
300 and higher would be impossible to solve, two years later
Nguyen showed [110] that the challenges up to dimension
350 can be solved with relative ease. Partly due to the inef-
ficiency of the GGH cryptosystem in high dimensions, and
more efficient lattice-based cryptosystems being designed
in later years, people stopped working on breaking the last
unsolved GGH challenge.

B. NTRU CHALLENGE
The NTRU cryptosystem [49], closely related to cryptogra-
phy based on the ring-LWE problem, is the first and to date
perhaps the only lattice-based cryptosystem which was com-
mercialized into a product. To evaluate the practical security
of NTRU, as well as show potential customers that indeed
NTRU cannot be broken by the world’s leading experts, they
created the NTRU challenge,10 where system parameters and
public keys are provided, and the challenge is to recover
the private key. These challenges came in various diffi-
culty levels (lattice dimensions), with cash prizes of between
$1000-$5000 for anyone who first solves any of these
challenges.

To date, seven challenges (out of 27) have been success-
fully solved, using a combination of BKZ basis reduction, fast
enumeration techniques, and the so-called ‘‘hybrid attack’’
specifically aimed at NTRU and NTRU-like lattices.

C. HIMMO CHALLENGE
Very recently, Philips designed a new key predistribution
scheme called HIMMO [44], for which it was claimed that
the strongest attacks would be based on solving certain lattice
problems underlying this cryptographic primitive. Similar to

9http://groups.csail.mit.edu/cis/lattice/challenge.html
10https://www.onboardsecurity.com/products/ntru-crypto/ntru-challenge
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FIGURE 15. Single-core timings for the SVP challenge records, as provided by the authors in the comments on the records of the SVP
challenge, or in associated scientific publications. The highest records consumed up to 1010 single-core seconds, corresponding to over
150 days of computation on a 1000+ core cluster.

NTRU, to obtain more confidence in their scheme before
commercializing it they set up the HIMMO challenge,11

challenging anyone to recover secrets from randomly chosen
public keys. There were also several cash prizes available to
anyone who first solved these challenges.

In the 2015 edition of this challenge, some of the separate
HI and MMO challenges were solved, and after a vulnera-
bility in the scheme was found, all HIMMO challenges were
solved. The HIMMO scheme was later fixed, and new chal-
lenges were constructed, where the same attack would not
work. However, in late 2016 researchers at Philips discovered
another vulnerability in their scheme [96]. To date this revised
HIMMO scheme has not been fixed, and now only claims to
possess ‘‘limited collusion resistance’’ rather than full, post-
quantum collusion-resistance.

D. LATTICE CHALLENGE
In the class of challenges aimed concretely at underlying
lattice problems, rather than real cryptosystems based on
lattices, the first well-known challenge website is the lattice
challenge12 [30]. Here lattices related to the worst-case/
average-case reduction of Ajtai are constructed, and
researchers are challenged to find sufficiently short vectors in
these lattices. In practice this mostly translated to a ‘‘lattice
basis reduction challenge’’, as the best methods to solve these
challenges were based on a combination of strong lattice basis
reduction with enumeration in a small sublattice of the entire
lattice.

Besides two new records from January 2017, no new
records were found in this database since 2013. The high-
est records attained were in dimension around 800, using a
combination of BKZ and enumeration.

11https://www.himmo-scheme.com/challenge/
12https://www.latticechallenge.org/

E. SVP CHALLENGE
In contrast to the lattice challenge, where only a reasonably
long approximate shortest vector was needed to solve a chal-
lenge, the SVP challenge13 focused on pure SVP solvers,
by asking for (almost) exact solutions to the shortest vector
problem in randomly generated lattices. This challenge has
received and still receives the most attention from the com-
munity, with serious efforts being made to solve the highest
records.

At this point, the highest records are in dimension
around 150, using up to hundreds of core years on giant clus-
ters, and are based on enumeration with discrete pruning [13].
An overview of the records from the SVP challenge is given
in Figure 15. In total, this database contains over 350 entries,
with the highest solved challenge progressing from dimen-
sion 110 in 2010 to dimension 150 in 2017.

F. IDEAL SVP CHALLENGE
With the cryptographic community focusing more and more
on cryptographic primitives based on ideal lattices, due to
their better efficiency, also an ideal SVP challenge14 was
soon launched [91]. Here the randomly chosen lattices are
ideal lattices, and again only exact or almost exact solutions
to the SVP suffice to solve the challenges. This challenge
has received somewhat less attention than the standard SVP
challenge, due to most methods not being able to exploit the
ideal structure of ideal lattices to obtain better records.

The current highest records in this database are based
on lattice sieving methods which do exploit the ideal
structure [20], [27], [50], [109], and standard enumeration
methods. These implementations however have not been

13https://www.latticechallenge.org/svp-challenge/
14https://www.latticechallenge.org/ideallattice-challenge/
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optimized and run on as large clusters as some of the SVP
challenge records, and so the highest solved challenges are
only in dimension around 130.

G. LWE CHALLENGE
With LWE also playing an increasingly prominent role in
efficient lattice-based cryptography, an LWE challenge15 was
also created [29]. Due to the more complex parameter selec-
tion in LWE, a wide spectrum of challenges was created
here, which may assist in learning which parameter choices
to avoid. Being a fairly new challenge, only launched in 2016,
not that many challenges have been solved to date.

H. RING-LWE CHALLENGE
Similar to the ideal SVP challenge variant of the SVP chal-
lenge, a ring-LWE challenge16 has also been constructed [36]
to assess the practical feasibility of solving the ring-LWE
problem in low/moderate dimensions. These challenges tar-
get solving the ring-variant of the LWE problem, commonly
used in cryptography due to the smaller related key sizes.
Having been introduced only very recently, none of the ring-
LWE challenges have been solved at the time of writing.

VII. WHAT THE FUTURE HOLDS
In the last years, there has been a considerably body of work
contributing to improving the tools and processes of lattice-
based cryptanalysis. In particular, considerable effort was put
into understanding the potential of attacks against lattice-
based cryptosystems, and improving them. For instance,
in 2010, sieving-based SVP solvers were only able to reach
dimension 66 [73], while in 2016 they reached dimen-
sion 107 [67]. Enumeration-based solvers have also evolved
considerably, especially with the proposal of the extreme
pruning technique [42], which allowed experiments up to
dimension 120. These and many other experiments showed
that certain architectures can be used effectively to implement
SVP-solvers. For instance, sieving algorithms scale well on
multi-core CPUs e.g. [64], [69] and enumeration algorithms
can be effectively offload onto CPUs and GPUs [54].

We think it is important to talk about the limitations found
throughout the scrutiny of these and other attacks, which we
covered earlier in this paper. In the following, we address
these limitations, considering some predictable advances on
computer architecture. We also address computer architec-
tures that have not been used for lattice-based cryptanaly-
sis yet.

A. MEMORY AND COMPUTATION
The experiments with SVP-solvers gathered in this survey
suggest that sieving algorithms are memory-bound and enu-
meration algorithms are compute-bound. In today’s computer
architectures, memory is less efficient than computation [80],
thus penalizing sieving-based algorithms with regard to

15https://www.latticechallenge.org/lwe_challenge/
16http://web.eecs.umich.edu/c̃peikert/rlwe-challenges/

enumeration. The current direction for large computational
systems seems to lead to a decrease in the memory per
core [51], [79], which will not favour sieving algorithms as
they have high memory requirements.

Currently, single GPU models are not practical to imple-
ment sieving, given that GPU cards only have up to 24/32 GB
of memory [1], [85], [86], depending on the manufacturer.
The current roadmaps provided by GPU manufacturers do
not indicate how much memory exactly we can expect in the
next generations of GPUs. Either way, as current practical
dimensions for the latest sieving algorithms require upwards
to one TB of RAM [65], it is unlikely that we can use GPUs
exclusively to run sieving on high dimensions. In addition,
an inherently hard task associated with this is the partition of
data for the latest sieving algorithms, such as HashSieve, and
the impact of data partition in throughput performance and
the convergence rate of the algorithm. In CPU+GPUmodels,
there is the possibility to extend the available memory with
technology such as NVIDIA’s Unified Memory technology,
which permits to use the host’s memory for computation
executed by the GPU. However, there is a latency penalty
incurred by this technology, which makes it unclear whether
it would pay off to use it for sieving algorithms.

B. ENERGY CONSUMPTION
We also argue that energy consumption is a wall that can be
hit by an adversary in practice. An interesting point would
be to determine how big a penalty in throughput would be
if we were to limit the energy consumption. This is to say
that an adversary hits the energy consumption wall, and we
are interested in finding out whether the penalty in execution
time / throughput is enough to compromise the attack. In other
words, we can define this problem as finding whether the
decrease or limitation in energy consumption would translate
into an execution time increase that is favourable, i.e. pro-
portionally bigger, or not. As FPGAs offer the possibility to
trade off execution time for energy consumption, by adjusting
the clock frequency, we could use FPGAs to replicate this
problem at a smaller scale. Either way, this topic deserves
study that goes beyond FPGAs and reconfigurable hardware,
so we point out some future lines of work that build upon this
idea, in the next sub section.

C. RECONFIGURABLE HARDWARE
Reconfigurable hardware has in fact been less explored in
the context of lattice-based cryptanalysis. To our knowledge,
the study that relates reconfigurable hardware to lattice-based
cryptanalysis is limited to the use of an FPGA to accelerate
lattice reduction [38], a study that showed promising results.
A big problem related to the usage of FPGAs pertains to
the synthesizing time and the RTL designing skills. In [12],
the authors proposed a framework for error-correcting codes
(in particular for low-density parity-check (LDPC) decoders)
that solves this problem for that specific context. A similar
framework could be designed for the context of lattice-based
cryptanalysis, allowing C/C++ programmers to conduct
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further experiments in this realm. In fact, high-level synthesis
in general is going in this direction [24]. However, we point
out that regardless of the improvements on the programma-
bility of FPGAs, memory is still a limited resource in these
devices, either in terms of availability or technology (access
time / speed).

We are walking toward a generation of devices that include
reconfigurable and non-reconfigurable hardware physically
close to each other, e.g. [39]. A big step in this direction was
the acquisition of Altera by Intel, in 2015.17 In this setup,
we can envision that the programmable part of the die takes
care of specific operations that are not very efficient on the
CPU/non-reconfigurable component. It would be interesting
to account for this today, using reconfigurable hardware as
a co-processor to speed up the kernels of the current attacks
which CPUs are not particularly effective at solving.

D. ALGORITHMIC ADVANCES
Besides improvements on the practical side of implementa-
tions of existing lattice algorithms, the future will surely bring
new theoretical advances in this area as well. For instance,
from the 1980s up until 2001 enumeration was the only
known method to solve SVP. Then, in 2001 sieving was
invented, which initially appeared completely impractical,
but recently turned out to be quite competitive when making
certain heuristic modifications. In themeantime various mod-
ifications to enumeration were made as well, theoretically
improving upon the initial enumeration methods by huge
factors.

Although it is hard to predict the theoretical advances in
this area, the future will undoubtedly present new ideas and
new techniques, which either help further improve existing
methods in theory and in practice, or suggest completely
new approaches for solving lattice problems. Regardless of
this progress on the algorithmic side, our ever-increasing
experiencewith existingmethods and techniqueswill assist in
estimating their practicability faster, when they arrive. On the
theoretical side, there have been quite some recent advances
on faster quantum algorithms for ideal lattice-based cryptog-
raphy, and a breakthrough like Shor’s may not be far away.
If certain classes of lattice problems turn out to be easy to
solve on quantum computers, the focus of the community will
shift away from these primitives, which will further motivate
a practical assessment of the hardness of the remaining lattice
problems.

1) FUTURE LINES OF RESEARCH
While enumeration has been effectively ported to CPU+GPU
platforms, it is still unclear whether modern sieving algo-
rithms, such as HashSieve and LDSieve, can also be offload
to such platforms, and to GPU-only platforms. We believe
that this would be an important task because as we said
before, current sieving algorithms hit a memory wall before

17https://newsroom.intel.com/news-releases/intel-completes-acquisition-
of-altera/

dimension 110 [65], and it would be interesting to understand
the behaviour of sieving for higher dimensions. Adapting
the current parallel implementations of the best sieving algo-
rithms to take advantage of ideal lattices should also be a high
priority line of research, as understanding whether HashSieve
and LDSieve continue to scale well on ideal lattices is of
major importance.

Regarding lattice-reduction algorithms, it would be very
interesting to test other SVP-solvers, such as sieving, within
BKZ. There are a few reasons to do this. One, sieving is
shown to scale better than pruned enumeration on multi-
cores, so the sliding windows on BKZ could be run with
sieving, and scale well with the number of cores in the system.
Note that the best way to parallelize BKZ is by parallelizing
these windows, as they represent the vast majority of the
execution time for relatively sized lattices. Two, sieving could
also be adapted to discard computation, in a similar way to
what pruning does in enumeration, and thus have a close algo-
rithm to BKZ 2.0. Three, sieving can take advantage of ideal
lattices, which means that BKZ could actually take advantage
of ideal lattices (at least partially as the internal mechanism
of BKZ may actually destroy the ideal properties).

Finally, given that energy consumption may become a bot-
tleneck for a real-world adversary, it would be very interesting
to assess the suitability of low-power parallel architectures,
such as multi-core ARM processors and DSPs, for attacks
such as sieving and enumeration.
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