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Abstract

Hypertension affects around 1.28 billion people and is one of the leading causes of

cardiovascular disease, the major cause of death and disability worldwide. The poor

prognosis of this disease is associated with high death and hospitalization rates.

Studies on blood pressure have proved the importance of self-monitoring in hyper-

tension control, treatment, and prevention. The development of digital solutions

that promote lifestyle behaviors addressing the self-monitoring of blood pressure

to manage the disease, improve compliance to treatment and achieve healthy liv-

ing are therefore of major importance. In this sense, the present study focuses on

the development of both a blood pressure prediction model and a knowledge-based

recommendation system.

For the prediction module, four machine learning models for blood pressure predic-

tion were developed and evaluated: a simple linear regression model, a long short-

term memory (LSTM) neuronal network model, a jump neuronal network (JNN)

model, and a case-based reasoning (CBR) model. Models were trained according to

two prediction modalities, one focused on single day prediction (the last day of the

prediction horizon) and another on multiple days prediction (all days of the predic-

tion horizon). For each, different input data lengths and different prediction horizons

were considered. All models were developed using data from the MyHeart study,

which contains a blood pressure variable measured over 60 days for 41 patients. As

for the recommendation module, a set of rules regarding changes in lifestyle habits

for disease management and prevention was established by review of guidelines for

hypertension control and treatment, issued by specialized cardiology institutions and

societies. The rules were used as conditions in the development of a knowledge-based

recommendation system to analyze patient information concerning factors such as

exercise, diet, and alcohol consumption, and provide recommendations to improve

these lifestyle habits, if necessary.

From the analysis of the results obtained from the prediction models, the JNN model
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Abstract

was considered the most suitable for blood pressure prediction, having obtained the

best performances in both modalities for all prediction horizons. Overall, the best

result for this model was achieved for single day prediction, with a mean absolute

percentage error of 3.64% and a root mean squared error and mean absolute error

of 4.41 mmHg. These results are considered satisfactory for the purpose of this

study, but due to the complexity of the problem, its practical application requires

further analysis. Extending the prediction model by introducing other variables re-

lated to the evolution dynamics of blood pressure may be a promising approach to

be explored. In the future, a clinical data collection study for this purpose will be

carried out in collaboration with Altice Labs and CHUC, which will allow the vali-

dation and improvement of the already developed modules, both to be implemented

concurrently in Altice’s SmartAL remote monitoring solution for hypertension man-

agement.

Keywords: Hypertension, Blood pressure, Prediction, Knowledge-based recom-

mendation system, Machine learning, Chronic diseases, Telemonitoring.
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Resumo

A hipertensão afeta cerca de 1,28 mil milhões de pessoas e é uma das principais

causas de doenças cardiovasculares, a principal causa de morte e incapacidade em

todo o mundo. O mau prognóstico desta doença está associado a elevadas taxas de

morte e hospitalização. Estudos acerca da pressão arterial provaram a importância

da auto-monitorização no controlo, tratamento e prevenção da hipertensão. O de-

senvolvimento de soluções digitais que promovam estilos de vida orientados à auto-

monitorização da pressão arterial, a fim de controlar a doença, melhorar a adesão

ao tratamento e alcançar uma vida saudável, são, portanto, de grande importância.

Neste sentido, o presente estudo centra-se no desenvolvimento tanto de um modelo

de previsão da pressão arterial como de um sistema de recomendação baseado em

conhecimento.

Para o módulo de previsão, foram desenvolvidos e avaliados quatro modelos de ma-

chine learning para a previsão de pressão arterial: um modelo simples de regressão

linear, um modelo de rede neuronal long short-term memory (LSTM), um mod-

elo de rede neuronal jump (JNN) e um modelo de racioćınio baseado em casos

(CBR). Os modelos foram treinados segundo duas modalidades de previsão, uma

focada na previsão de um único dia (o último do horizonte de previsão) e outra na

previsão de vários dias (todos os dias do horizonte de previsão). Para cada uma,

foram considerados diferentes tamanhos de dados de entrada e diferentes horizontes

de previsão. Todos os modelos foram desenvolvidos com uso dos dados do estudo

MyHeart, que contém uma variável de pressão arterial medida ao longo de 60 dias

para 41 pacientes. Relativamente ao módulo de recomendação, foi estabelecido um

conjunto de regras relativas a mudanças nos hábitos de vida para a gestão e pre-

venção da doença, através da revisão de diretrizes para controlo e tratamento de

hipertensão, emitidas por instituições e sociedades especializadas em cardiologia.

As regras foram utilizadas como condições no desenvolvimento de um sistema de

recomendação baseado em conhecimento, com o intuito de analisar informações do

paciente relativas a fatores como exerćıcio, dieta e consumo de álcool, e fornecer
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Resumo

recomendações no sentido de melhorar esses hábitos de vida, caso necessário.

Pela análise dos resultados dos modelos de previsão, o modelo de JNN foi consid-

erado o mais apto para a previsão da pressão arterial, tendo obtido as melhores

performances em ambas as modalidades para todos os horizontes de previsão. No

geral, o melhor resultado para este modelo foi alcançado para a previsão de um

único dia, com um erro percentual médio absoluto de 3,64% e um erro quadrático

médio de raiz e erro absoluto médio de 4,41 mmHg. Estes resultados são considera-

dos satisfatórios para o objetivo do presente estudo, mas, devido à complexidade do

problema, a sua aplicação prática exige uma análise mais aprofundada. A extensão

do modelo de previsão através da introdução de outras variáveis relacionadas com

as dinâmicas de evolução da pressão arterial poderá ser uma abordagem prof́ıcua

a explorar posteriormente. No futuro, realizar-se-á um estudo de recolha de dados

cĺınicos para este fim, em colaboração com a Altice Labs e o CHUC, que permitirá a

validação e melhoria de ambos os módulos já desenvolvidos e a sua implementação

em paralelo na solução de monitorização remota da SmartAL da Altice para a gestão

da hipertensão.

Palavras-chave: Hipertensão, Pressão arterial, Previsão, Sistema de recomendação

baseado em conhecimento, Machine learning, Doenças crónicas, Telemonitorização.
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1

Introduction

1.1 Motivation

Hypertension refers to a higher than normal blood pressure in the arteries.

Known as the ”silent killer”, hypertension affects over 150 million people across

Europe and more than 1 billion throughout the world, and it is considered one of

the leading causes of cardiovascular disease, the major cause of death worldwide

[6, 7]. The high death and hospitalization rates associated with heart problems

are mainly due to their poor prognosis and that is why telemonitoring could help

executing the needed therapy in hypertension management by involving the patient

in their own treatment [8]. Studies on Blood Pressure (BP) have suggested that its

self-measurement can be a more efficient approach in BP control than when it comes

to the care only based on office measurement [9–11]. Therefore, self-monitoring of

BP is an increasingly important part of hypertension management, since Home

Blood Pressure (HBP) is a better predictor of hypertension events than standard

office measurements and self-monitoring strategies are easily introduced into the

patient’s routine [12]. For that matter, the development of digital solutions, like

remote monitoring systems, aimed at enhancing lifestyle behaviors addressing the

BP and disease management are of utmost importance in achieving healthy living.

1.2 Context

The project

The present thesis is integrated in the ”POWER - Empowering a digital future”

project, that aims to design innovative cloud and cognitive technologies based prod-

ucts and services, aligning with multiple strands of technological transformation: 5G

networks, Edge / Cloud computing continuum, data-driven technologies and busi-

ness models, and Artificial Intelligence. Being divided into five sub-projects, this

thesis fits into sub-project 4 - ”Future Services”, in which Altice labs, alongside with

1



1. Introduction

the Centre for Informatics and Systems of the University of Coimbra (CISUC) and

the Coimbra Hospital and Universitary Centre (CHUC), aim to the development of

platforms for the analysis and prediction of physiological signals, and their use in

the management of chronic diseases, such as, in this particular case, hypertension.

Main goal

The main goal of the development of a remote management system for hyper-

tension patients based on BP prediction is to create a model that can anticipate a

significant raise or reduction in one’s blood pressure and act on it, ultimately in or-

der to enable the early detection of a hypertensive or hypotensive crisis. By means

of remote monitoring solutions, the clinical data collected by the self-monitoring

system introduced into the patient’s routine will allow the analysis and supervision

of their condition and the autonomous establishment of BP-lowering habits in their

lifestyle.

Challenges

Various barriers may still be inhibiting a broadened implementation of telemon-

itoring in management of hypertension. One of them may be related to the lack of

quality and easily accessible databases containing relevant contextual data, that can

provide a broader insight on patients’ conditions and risk of developing hypertension.

Even though some databases exist, the majority is not publicly accessible.

Additionally, in order to build tailored and patient-specific systems, each pa-

tient needs to be profiled, which could require a significant amount of background

information about the patient’s clinical history (e.g., stage of the disease and other

comorbidities). This can be a complex task that might have to involve healthcare

providers at an early stage. Also at the patient level, it is still a reality that some

people have fewer technological skills or unreliable equipment and internet access,

which is inconvenient for approaches where data entries are critical [13].

Proper data collection for the creation of the necessary databases and the es-

tablishment of certain implementation protocols and user guidelines may boost the

establishment of telemonitoring systems for hypertension in healthcare.

Methodology

This thesis’ work can essentially be divided into two components: the prediction

module and the recommendation module. The former concerns the development and

testing of different algorithms and models in the context of blood pressure prediction

2



1. Introduction

and the latter covers the recommendation model responsible for the patients’ lifestyle

optimization in order to maintain healthy BP values.

Blood pressure is the most fundamental aspect to consider when monitoring

hypertension patients, since it is directly correlated with the disease. It describes

the arteries’ resistance to blood flow and is as high as the more blood is pumped

by the heart and the narrower the arteries. Hypertension is known to be one of

the leading causes of several cardiovascular and renal diseases and it is caused by

a significant raise in blood pressure over time, being the first grade of hypertension

defined by systolic and diastolic BP values over 140 and 90, respectively [6].

The variation and tendency of BP values are defined by a time series problem

and, therefore, multiple machine learning and deep learning algorithms are found

useful for its analysis and forecast. To solve this problem, BP prediction algorithms

must be trained, making use of databases containing the necessary data. The per-

formance of the existing algorithms is then assessed using evaluation metrics, and

the overall best performing model is selected as the prediction algorithm to be used

along with the recommendation model.

The recommendation module is designed to advise patients into optimizing

their own life habits (e.g., physical exercise, dietary habits, weight control, etc.). A

knowledge-based recommendation system is used to address this issue, relying on

professional help from experts at Coimbra Hospital and Universitary Centre (CHUC)

for its research and implementation.

1.3 Goals and Contributions

Besides the main goal, which is to research and implement a set of models to

improve hypertension patients’ lives by supporting remote monitoring systems, the

expected contributions of this thesis are as follows:

• Specializing an already existing Case-Based Reasoning (CBR) framework, de-

veloped by the project’s research team, for blood pressure prediction.

• Development of other models for the same end, namely using deep learning

algorithms.

• Research on information that allows the creation of a set of rules on lifestyle

habits (related to diet, exercise, etc.), that can be suggested to patients in the

context of a knowledge-based recommendation system.

• Data collection study performed in collaboration with the Cardiology Depart-

ment of CHUC, to complement the data currently available to the team on

private databases.

3



1. Introduction

• Support the studies related to diabetes taking place in the framework of the

POWER project.

1.4 Structure

This document contains five chapters beyond the introduction.

Chapter 2 presents background information related to multiple concepts that

will be referred throughout this document, such as the cardiovascular system, blood

pressure, hypertension, and time series and its prediction.

Chapter 3 presents the state of art concerning telemonitoring, the blood pres-

sure prediction module, and the recommendation module in this context.

Chapter 4 describes the methodology proposed to achieve the mentioned ob-

jectives, of both the blood pressure prediction algorithm and the recommendation

system.

Chapter 5 contains the results obtained for the application of the proposed

methodology and their discussion taking into consideration the context of the study.

Chapter 6 presents a conclusion to this study and future work.

Finally, appendix A contains the application programming interface (API) of

the prediction module and B the API of the recommendation module.

4



2

Background

This chapter introduces the basic concepts needed to understand this docu-

ment. Section 2.1 presents an overall view on the cardiovascular system and its

constituents. Section 2.2 presents an explanation on blood pressure, as well as

physiological and non-physiological factors that influence it. Section 2.3 adds an

objective view of hypertension and its distinct types. Finally, section 2.4 introduces

a background on time series prediction and algorithms used to address this matter.

2.1 The Cardiovascular system

The cardiovascular system is a sophisticated system in the human organism

that is necessary to meet cells’ demands for exchanges with the environment. There

are three components of the cardiovascular system: the heart, blood vessels, and

even though it doesn’t contain blood, the lymphatic system, that allows important

exchanges to happen between itself and blood vessels. The heart pumps blood into

two circulations: the pulmonary circulation and the systemic circulation. The pul-

monary circulation concerns the blood flow through the lungs and is involved in the

exchange of gases between the blood and the alveoli. The pulmonary circulation is

responsible for carrying venous (deoxygenated) blood to the lungs, returning arterial

(oxygenated) blood to the heart, whereas the systemic circulation involves all re-

maining blood vessels that are not located in the lungs. The right side of the heart is

responsible for receiving, through the superior and inferior vena cava, venous blood

from the systemic circulation and pumping it, through the pulmonary artery, into

the pulmonary circulation. After the gas exchanges in the lungs, arterial blood re-

turns to the left side of the heart, by means of the pulmonary veins, and is pumped

again into the systemic circulation, through the aorta, reaching all the remaining

tissues [1]. Figure 2.1 presents a schematic representation of the cardiovascular

circulation.

5



2. Background

Figure 2.1: Schematic representation of cardiovascular circulation. RA: right
atrium; RV: right ventricle; LA: left atrium; LV: left ventricle; PA: pulmonary artery;
Ao: aorta. Adapted from [1].

2.1.1 The heart

The heart is divided in four chambers: right and left ventricle and right and

left atrium. The right atrium is connected to the superior and inferior vena cava,

receiving venous blood, returning from the systemic circulation, through them. This

atrium can accommodate the incoming blood at low pressure due to its ability to

highly expand. From there, the blood flows across the tricuspid valve, into the right

ventricle. The blood then flows out of the ventricle, into the pulmonary circulation,

through the pulmonary artery, which is separated from the right ventricle by the

semilunar pulmonary valve. Returning from the lungs, the arterial blood enters

the left atrium of the heart via the four pulmonary veins and then flows across the

mitral valve, moving into the left ventricle. Due to its thick muscular wall, the left

ventricle can achieve high pressures while contracting, causing the blood to cross

the aortic valve and, consequently, be ejected into the aorta, once again initiating

the systemic circulation [1].

2.1.2 Blood vessels

Allowing the blood to flow from and into the heart, the blood vessels are cru-

cial in blood circulation. Due to their ability to constrict and dilate, blood vessels

are essential in the regulation of arterial blood pressure, blood flow within organs,
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capillary blood pressure, and distribution of blood volume within the body, provid-

ing the required blood flow in all body tissues. Autonomic nerves, biochemical and

metabolic signals from outside the blood vessel, and vasoactive substances released

by endothelial cells that encircle the blood vessels are responsible for the adjust-

ment of vascular diameters, through the activation of the vascular wall’s smooth

muscle. The substances produced by the cells in the endothelial lining also influence

homeostasis and inflammatory responses [1].

Blood vessels are divided into five classes: arteries, arterioles, capillaries, venules,

and veins. Arteries are characterized by their strong vascular walls, allowing blood

under high pressure to flow at high velocity, and be delivered to the tissues. The

arterioles, small branches at the end of the arteries, are also provided with strong

muscular walls that allow these vessels to regulate the blood flow, by contracting

completely or dilating, according to the needs of the tissues. Unlike the previous,

the capillaries have very thin and porous walls that allow the exchange of fluids,

nutrients, hormones, electrolytes and other small molecular substances between the

blood and the interstitial fluid. From the capillaries, the blood is collected by the

venules that progressively merge into veins. In turn, the veins not only conduct the

blood from the venules to the heart but also serve as a reservoir for extra blood.

Due to the low pressure present in the venous system, these vessels’ walls are thin

but still muscular enough to contract or expand in order to accommodate different

amounts of blood that are not being needed in the circulation [14].

2.2 Blood pressure

Blood pressure represents a measure of the force it takes the heart to pump

blood throughout the body. It is usually measured in units of millimeters of mercury

(mmHg) and there are two types of blood pressure: Systolic Blood Pressure (SBP),

that represents the peak aortic pressure measured when the blood leaves the heart,

and Diastolic Blood Pressure (DBP), that is the measure of the minimal arterial

pressure found right before the blood is ejected from the left ventricle into the

aorta. Directly dependent on the two types of blood pressure mentioned is the pulse

pressure, which represents the force the heart produces in each contraction and is

measured as the difference between the systolic and diastolic pressures. Thus, any

change in systolic or diastolic pressure directly affects pulse pressure [1].

Despite the clinical importance of the aforementioned pressure measurements,

the pressure value that primary represents the blood flow driven to the organs is

the average pressure over time, also called Mean Arterial Pressure (MAP). When
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at regular resting heart rates, it is possible to determinate the MAP value using the

systolic (Psys) and diastolic (Pdias) blood pressure values:

MAP ∼= Pdias +
1

3
(Psys − Pdias) (2.1)

At higher rates, as blood is pumped into the systemic circulation and the pres-

sure within the arterial vessels rises due to vascular resistance, the MAP is directly

estimated by the Cardiac Output (CO), Systemic Vascular Resistance (SVR), and

Central Venous Pressure (CVP):

MAP = (CO · SV R) + CV P (2.2)

The SVR, also referred as Total Peripheral Resistance (TPR), is the measure of the

force that needs to be applied by the systemic vasculature on circulating blood. The

CVP is the measure of BP in the vena cavas, right before entering the right atrium.

At last, the CO is defined by the product of the Heart Rate (HR) by the Stroke

Volume (SV) [1]:

CO = (HR · SV ) (2.3)

Some of these concepts will be discussed in the next section.

2.2.1 Physiological factors

Some physiological mechanisms are known to influence blood pressure.

Stroke volume

Stroke volume refers to the volume of blood ejected in each contraction and is

directly influenced by the energy of contraction of the ventricles and the pressure

measured in the aortic and pulmonary arteries, two inversely related factors. When

arterial pressure is elevated, stroke volume tends to be reduced, since the ejection

can only happen after ventricular pressure surpasses aortic pressure. Under these

conditions, most of the contractile energy is used to increase ventricular pressure,

and less energy is available for ejecting blood. On the other hand, increased con-

traction energy, either by a greater sympathetic activity and circulating adrenaline

or stretching of the myocytes due to an increased pressure at the end of the diastole

(Frank-Starling mechanism), increases stroke volume [15].

BP is directly affected by the stroke volume, since a greater stroke volume

increases the amount of blood that is ejected from the heart and needs to be accom-
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modated in the arteries, resulting in a greater fluctuation in pressure during systole

and diastole [14].

Heart rate

Heart rate represents the number of contractions per minute. Sympathetic or

parasympathetic activation can increase or decrease heart rate, respectively. The

former mediates cardiovascular functions through the release of noradrenaline, being

responsible for an increase in cardiac conduction velocity and contractility, leading

to an increase in heart rate. On the contrary, the latter can slow heart rate through

the release of acetylcholine, a neurotransmitter capable of reducing contractility,

opposing sympathetic activity in the heart [16, 17]. Even though elevated heart

rate is usually associated with elevated BP, heart rate variability does not seem to

have any direct relation with BP variation. For example, an increase in heart rate

does not necessarily increase BP, since blood vessels have the capacity to dilate and

accommodate the incoming blood without a excessive raise in BP [18, 19].

Cardiac output

Measured in L/min, the cardiac output represents the volume of blood that exits

the heart through the ventricles. As described by the equation 2.3, increases either

on heart rate or stroke volume can lead to an increase of the cardiac output and,

consequently, elevate BP. To maintain normal BP levels, cardiac output and sys-

temic vascular resistance must be stabilized. The onset of hypertension is normally

associated to a raised cardiac output which results from an increased sympathetic

activity, while the peripheral resistance is at a normal level [20, 21].

Systemic vascular resistance

Commonly known as peripheral vascular resistance, it refers to the vessels’ com-

pliance, that is the ability to expand and accommodate bigger volumes of content.

The greater the compliance of a vessel, the more efficiently it can expand to ac-

commodate a bigger volume of blood flow without increasing the blood pressure.

Usually, veins are more compliant than arteries. Some vascular diseases, such as

arteriosclerosis, can cause stiffening of arteries, reducing their compliance and in-

creasing the resistance to blood flow. Hence, it results in greater turbulence, greater

pressure within the vessel and reduced blood flow, increasing the work of the heart.

Peripheral resistance is determined by evaluating the work of the walls of small

arterioles, containing smooth muscle cells. A continued contraction of the smooth
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muscles can lead to a permanent increase in peripheral resistance by thickening

of the vessel walls, what is thought to be mediated by angiotensin. Hypertensive

patients normally present a regular cardiac output but an elevated peripheral re-

sistance, believed to be triggered as a response mechanism to the increased cardiac

output [20, 21].

Volume of circulating blood

Amount of blood flowing in the circulation. Specialized baroreceptors, located

in the walls of the atria, can sense the increase of returning blood in the case of in-

creased blood pressure, causing a stimulation of sympathetic activity and inhibition

of parasympathetic activity to increase heart rate. The opposite is also verified [20].

Blood viscosity

Measure of the blood’s thickness. It is directly influenced by the amount of

proteins and other constituents present in the blood. An increase in blood viscosity

causes resistance to flow, having a huge effect on BP [20].

Elasticity of vessel walls

The capacity of the vessel to resume its normal shape after stretching or com-

pressing. Due to the abundance of elastic fibers in their composition, most larger

vessels are typically elastic, allowing them to expand as blood flows through them

and to constrict after. The more rigid the vessels, the lesser its compliance and

greater the resistance to blood flow, which would require a lot more work of the

heart to increase stroke volume and maintain an adequate pressure and flow, in-

creasing BP. With low elasticity and increased pressure, vessel walls would have to

become thicker [20].

Renal function and the Renin-Angiotensin-Aldosterone System

Renin is produced when the arteries that carry blood to the kidneys are nar-

rowed and there is an insufficient blood flow in the area, when there is a reduced

sodium intake, or simply by stimulation from sympathetic activity. Renin is a hor-

mone that controls the production of angiotensin II, a vasconstrictor that affects the

width of the arteries and stimulates production of aldosterone, that in turn regu-

lates sodium and water retention. This is called the Renin-Angiotensin-Aldosterone

System (RAAS), an important mechanism for regulation of the kidney’s pressure-

volume homeostasis, being necessary in states of low extracellular fluid volume and

10



2. Background

suppressed when there is an increase in extracellular fluid. RAAS is a system that

widely controls BP by regulating many factors that influence it, such as sodium re-

tention, reabsorption and excretion, salt sensitivity (a condition characterized by an

increase of at least 10 mmHg in SBP, after a few hours of ingesting a certain amount

of sodium), vasoconstriction, fluid volume and endothelial dysfunction (which causes

diminish in the production of the vasodilator molecule nitric oxide and, consequently,

increases BP) [14, 21–23].

Sympathetic nervous system

Sympathetic Nervous System (SNS) can induce both vascular dilatation and

constriction and is an important system in BP regulation, even in cases when the

changes in BP are only momentary (e.g., during physical activity). When the

carotid artery is stretched due to the effect of high BP, the baroreceptors located

in the carotid sinus induce a reduction in sympathetic activity in order to reduce

BP. Hypertensive patients also manifest a decrease in parasympathetic activity.

Even though there is no clear evidence that points to SNS hormones as a cause of

hypertension, sympathetic overactivity is associated with endothelial dysfunction,

vasoconstriction, and an increase in arterial stiffness, salt sensitivity and sodium

reabsorption, and may be related to the onset and perpetuation of hypertension

[21, 23].

2.2.2 Non-physiological factors

There are also many lifestyle factors that play a role in the alteration of one’s

blood pressure. Lack of physical activity, overweight and obesity, excessive salt and

sodium consumption, alcoholism, smoking, and stress, stand out as modifiable life

habits that negatively influence blood pressure.

Physical Exercise

Studies indicate that physical exercise helps control BP and is inversely related

to the incidence of cardiovascular diseases [24–27]. Physical exercise triggers several

physiological responses in the body to maintain the cellular homeostasis in the pres-

ence of increased metabolic needs. These physiological effects can be divided into

three types: immediate acute, when the effects occur during and immediately after

the physical exercise periods (like the rise in cardiac frequency, pulmonary ventila-

tion, sudoresis); late acute, when the effects occur along up to 72h after the session

(such as reduction on BP levels – especially in hypertensive people -, and increase of
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plasma volume, endothelial function and insulin sensitivity in skeletal muscles); and

chronic effects, when the effects result from regular physical exercise (e.g., muscular

hypertrophy, physiological left ventricular hypertrophy, promotion of angiogenesis,

rest relative bradycardia and increased maximal oxygen intake). Briefly, the human

body is subject to many cardiovascular and respiratory changes during an exercise

period with the sense to respond to the demands of the active muscles. With the

ongoing repetition of these changes, the performance of the organism is improved.

The cardiovascular system is greatly influenced by the morpho functional effects of

physical exercise, since it promotes increases on cardiac debt and redistribution of

the blood flow, both as a response to the need to have a greater circulatory perfusion

into active muscles. The resistance to blood flow also drops considerably with the

start of exercise sessions, SBP increases directly proportionally to the raise on the

cardiac debt and DBP varies with the capillary density of active muscles, influenced

by the efficiency of their vasodilator mechanisms. Due to the various physiological

and metabolic processes involved in the optimization of blood and oxygen distribu-

tion through active tissues during exercise, it is concluded that the drop in blood

pressure after physical exercise is associated with those hemodynamic, humoral, and

neural processes [28].

Sodium consumption

Sodium is directly related to changes in blood volume and BP, since high serum

sodium concentrations promote water retention. A notable increase in sodium con-

sumption provokes a series of hemodynamic reactions in an attempt to compensate

for changes in BP levels. The most noticeable changes include a reduction in periph-

eral and renal vascular resistances and an increased segregation, by the endothelium,

of nitric oxide, a vasodilator. The major risk factor of this process is associated with

endothelial dysfunction. Chronic salt ingestion can lead to endothelial dysfunction,

which in turn can result in the development of salt sensitivity. Salt sensitive indi-

viduals are subsequently prone to develop hypertension [23].

Weight

Overweight and obese patients are prone to arterial hypertension and present

a higher resistance to treatment. Conversely to the majority of hypertension cases,

where the arterial hypertension is often characterized by an increase in peripheral

vascular resistance, obesity-related hypertension tends to be driven by an increased

cardiac output, that happens to be mediated through expansion of plasma volume

and sodium retention. Even though the blood pressure reduction that results from
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weight loss may be caused by the accompanying dietary manipulation and lifestyle

changes, there is a direct relation between the two. Weight reduction towards a

healthy body weight is proven to decrease BP, and, although the optimal interval is

unclear, maintaining a healthy Body Mass Index (BMI) and waist circumference is

beneficial for the reduction of BP, as well as for the prevention of hypertension in

non-hypertensive individuals [6, 29, 30].

Alcohol consumption

Excessive alcohol consumption is strongly related to the increase of BP and

the increased risk of hypertension and other cardiovascular diseases. Binge drinking

has a great pressor effect since alcohol can affect blood pressure through multiple

mechanisms. Acute alcohol consumption causes an increase of plasma renin activity,

which in turn influences the RAAS. Increased plasma renin leads to an augmented

production of angiotensin II, which functions as a vasoconstrictor and stimulates

the adrenal gland to secrete aldosterone and vasopressin, enhancing sodium and

water retention. All this results in an elevated BP, caused by an increase in pe-

ripheral resistance and blood volume. Alcohol reduction is therefore beneficial for

cardiovascular health [6, 31].

Smoking

Smokers, both hypertensive and not, are prone to present higher daily BP

values that non-smokers. Nicotine, the principal psychoactive constituent present

in tobacco products, works as an adrenergic agonist in the organism, promoting the

release of catecholamines into the circulation. High circulating catecholamine levels

cause positive inotropic effects similar to those caused by the sympathetic nervous

system, leading to stronger muscular contractions in the heart, that increase cardiac

output and raises BP. Smoking is therefore one of the main contributions to the

burden of cardiovascular disease and smoking cessation one of the most effective

lifestyle changes to make in order to lower BP [1, 6, 32].

Stress

Exposition to stressful factors activates the SNS, which in turn may lead to

elevations in cardiac output, heart rate and peripheral vascular resistance. All this

provokes acute elevations in BP and a prolonged exposition to stressful factors may,

in the long term, lead to chronic elevations in BP [33].
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2.3 Hypertension

Hypertension is referred to as the incidence of a persistently high blood pressure

in the arteries and it is defined as seated in-clinic measurements greater than or

equal to 140 mmHg for SBP and/or greater than or equal to 90 mmHg for DBP.

Nonetheless, it is recommended that BP and hypertension grades be classified in

seven distinct levels, based on SBP and DBP, even for people that do not suffer from

hypertension (table 2.1). BP categories are defined according to patient’s seated

office BP measurements and by the highest BP level, either systolic or diastolic.

The classification is valid for people aged from 16 years, regardless of sex [6].

Table 2.1: Classification of office BP and hypertension grades. Adapted from
”2018 ESC/ESH Guidelines for the management of arterial hypertension” [6]

Category SBP (mmHg) DBP (mmHg)

Optimal < 120 < 80

Normal 120 - 129 80 - 84

High normal 130 - 139 85 - 89

Grade 1 hypertension 140 - 159 90 - 99

Grade 2 hypertension 160 - 179 100 - 109

Grade 3 hypertension ≥ 180 ≥ 110

Isolated systolic hypertension ≥ 140 < 90

Depending on what caused the disease, hypertension can be divided into pri-

mary and secondary hypertension. Primary hypertension is the most common type

of the disease (an estimated 90-95% of hypertensive patients suffer from this condi-

tion) and for most people it is a chronic condition with no treatment. Nonetheless,

it needs to be managed, since it can cause damage to organs (e.g., heart and kid-

neys) and blood vessels. Its causes are unknown, and the diagnostic is made by

exclusion, i.e., its diagnostic is made only after the known causes of secondary hy-

pertension are excluded. However, there are theories that suggest that there is a

relation between this type of hypertension and the kidneys’ inability to efficiently

manage sodium, since an increased sodium retention could be a sufficient factor for

a higher blood volume and, consequently, a higher cardiac output that may even-

tually lead to an increase in systemic vascular resistance. Primary hypertension is

also associated with age, race, diabetes and obesity, abnormal response to stress,

heredity, and socioeconomic status. For secondary hypertension, it has a lot lesser

prevalence (5-10% of cases) but it presents identifiable and treatable causes, as renal

disease, primary hyperaldosteronism, sleep apnea, and some other diseases [1].
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2.4 Time series

Time series are described as a set of observations, x(t), of a variable, each

sample recorded at a specific time t. There are two types of time series: continuous

time series and discrete time series. The former is obtained when the measurements

are made continuously through some time interval and are normally used to observe

continuous variables, such as physiological signs (e.g., electrocardiogram). The latter

are verified when the observations are taken at a discrete set of equally distant points

in time. Discrete time series can be derived from continuous time series by sampling,

in which there is an extraction of a given set of points at equal time intervals (for

example, hourly interval measurements), or by aggregation over a period of time

(e.g., total maximum temperature over a month). Currently, the devices used to

record time series are mostly digital, producing signals in discrete time. If not,

derivation of continuous time series is the usual approach for its analysis, since

information loss can be minimal when considering the right sampling interval or

aggregation period, and the complexity of the problem is significantly reduced [34,

35].

Time series prediction can be stated as a function f : RN → R that uses the N

time steps back from time t to obtain an approximation of the value of x at time t

+ p, with p being the prediction horizon, the number of time steps forward from t

[36]:

x(t+ p) = f(x(t), x(t− 1), ..., x(t−N + 1)) (2.4)

Generally, this prediction aims to minimize the error between the estimated values,

x̂(t + i), and the real values, x(t + i), with i = [1, 2, ..., p], being the most accurate

prediction obtained when the result of the sum of squared errors (SSE), described

in equation 2.5, is minimum [2, 37].

SSE = Σp
i=1(x(t+ i)− x̂(t+ i))2 (2.5)

The rest of the present section focuses on the introduction, with special em-

phasis on their architectures and methodologies, of some models collected from the

literature, not only the ones that will be developed in this study and those with

the best overall performances, but also a few that are commonly used for base-

line comparisons or that, although not yet widely implemented, present promising

developments in this field. Linear regression will be considered as a simple linear

method for baseline comparison with the remaining non-linear models, and even

though there are many other linear and nonlinear models that are typically applied
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in time series prediction, their performances were not considered relevant to the

present study, according to literature review.

2.4.1 Linear regression models

Linear algorithms assume that the relation between input features and target

outputs is linear. Autoregressive models are a simple example of these type of

algorithms and are normally used as a baseline for time series prediction.

Autoregressive models

Autoregressive models can predict future values of a time series through a re-

gression of past values of that same time series. These models use a linear combi-

nation of input variables (xt−p) to obtain the series value at time t:

xt = α1xt−1 + α2xt−2 + ...+ αpxt−p + ϵt, (2.6)

where xt is denominated an autoregressive process of order p; αp are the model’s

parameters (weights), estimated by minimizing SSE (2.5); and ϵt a random error

(bias) [37, 38].

2.4.2 Nonlinear regression models

Unlike linear algorithms, nonlinear algorithms are based in the assumption that

features and targets are related in a more complex and non-linear way. For example,

deep learning models are nonlinear models commonly used in this context. This type

of models can learn complex data representations from the data alone, without the

need for human intervention in feature engineering, and provide accurate time series

predictions. This segment presents a description of some deep learning architectures

and other nonlinear models applied in time series prediction.

Jump Neural Network (JNN)

JNN [39, 40] is an alternative to the traditional deep feed-forward network.

Deep feed-forward neural networks comprise an input layer, an output layer and

multiple hidden layers, each containing a determined number of neurons. The input

layer is connected to the first hidden layer and each hidden layer is subsequently

connected to the next layer, with the last hidden layer connected to the output

layer. Every neuron in a hidden layer is connected to each and every neuron in

the next hidden layer. The same happens with input and output nodes and the
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neurons of the first and last hidden layers, respectively. Both the number of neurons

and hidden layers are hyperparameters that affect the network’s architecture and

must be selected beforehand. In prediction problems, the input data is composed

by values measured at past time instants. The described architecture is shown in

figure 2.2.

Figure 2.2: Example architecture of a deep feed-forward network. Adapted from
[2]

During the training phase of the network, a gradient descent optimization algo-

rithm is used to compute weights by minimizing the value of a loss function. These

weights are then responsible for establishing relationships between neurons of two

consecutive layers, which allows the computation of the output neurons values by a

feed-forward operation:

al = g(W l
aa

l−1 + bla). (2.7)

This equation is true for every l-th layer, with al being the vector containing the

values of the neurons in that layer (activation values), W l
a and bla the weight and

bias, and g the activation function of the l-th layer. As seen, the activation values

(al) of each layer are computed using the activation values of the previous layer

(al−1) as input [2].

In the specific case of JNN, besides affecting the output through the hidden

layer (nk), inputs (xi) are also directly linearly linked to outputs (y), in what is

called a jump connection [3]. The mathematics for this network is as presented:

nk = wk,0 +
i∗∑
i=1

wk,ixi, (2.8)
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y = γ0 +
k∗∑
k=1

γkNk +
i∗∑
i=1

βixi, (2.9)

where i∗ and k∗ represent the number of inputs and neurons, respectively, β the

coefficients related to the linear relationship, and wk and γk the coefficients of the

nonlinear relationship, with wk,0 and γ0 representing bias. At last, Nk is the activa-

tion function in the hidden layer [3]. For example, for a sigmoid activation function:

Nk =
1

1 + e−nk
. (2.10)

A representation of this network’s architecture, for three input values from past

instants (x1, x2 and x3) and one hidden layer with two neurons, is shown in figure

2.3. y is the predicted output.

Figure 2.3: JNN network. Adapted from [3].

Radial Basis Function (RBF) networks

A RBF network presents two layers, and its architecture is similar to the one

of a two-layer feed-forward network. Each unit in the hidden layer has a prototype

vector (centroid) that is compared to the input vector. The output of each node is

represented by a nonlinear function, the basis function, of the distance between the

two vectors. Multiple types of basis functions exist, being Gaussian function one

of the most used. The network’s output functions can be both linear or non-linear,

being the second one more computationally demanding and complex, as the output

weights need to be optimised. The next equation describes the network output for
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linear output nodes:

yk(x) =
M∑
j=1

wkjϕj(||x− uj||) + bk, (2.11)

where M ∈ N is the number of nodes in the hidden layer, x = [x1, x2, ..., xd] is

the input vector, uj is the prototype vector that defines the centre of the basis

function ϕj, wkj are the weights of the final layer and bk the bias [4, 41]. The typical

architecture of a RBF network is shown in figure 2.4.

Figure 2.4: RBF network configuration. Adapted from [4].

Long Short-Term Memory (LSTM)

LSTM networks are a type of Recurrent Neural Network (RNN). Unlike feed-

forward neural networks, where data is routed only from input to output, RNN

connections contain a feedback loop whereby the current input is combined with the

results from the hidden layer in the previous time step to form the new hidden layer

input [42]. The architecture of a RNN is presented in figure 2.5.

Figure 2.5: Example architecture of a RNN. Adapted from [5].
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Due to the replacement of the activation functions by LSTM units, LSTM

networks are RNNs optimized for long-term prediction on account of their capacity

to process long time series data, regardless of the time span between significant

events [42]. LSTM units incorporate memory cells, each consistent of a forget gate

(Γf ), an update gate (Γu), and an output gate (Γo). The gates alter the cell’s memory

state (ct) by perceiving information as being useful or not, allowing the discarding

of inconsistent information from the cell and solving the vanishing gradient problem

(decrease of the gradient caused by the increase of the number of layers) affecting

RNNs, allowing memory blocks to process and predict events with longer horizons.

As the names indicate, Γf decides either information is saved or discarded, Γu decides

if new information (c̃t) will be used to update ct, and Γo decides the value parsed as

output to be used as input in the next hidden unit [2, 43, 44]. At last, the functioning

of the LSTM units is defined by the input and output activation functions, usually

the tanh and sigmoid (σ) functions, that compute the new information (c̃t) and all

of the mentioned gate values, respectively, using the input information coming from

the previous hidden unit (at−1), along with the information from the current input

(xt):

c̃t = tanh(Wc[at−1, xt] + bc), (2.12)

Γu = σ(Wu[at−1, xt] + bu), (2.13)

Γf = σ(Wf [at−1, xt] + bf ), (2.14)

Γo = σ(Wo[at−1, xt] + bo), (2.15)

ct = Γu × c̃t + Γf × ct−1, (2.16)

at = Γo × tanh(ct), (2.17)

where Wk and bk, with k = [u, f, o], represent the weights and bias of the respective

Γk gate, Wc and bc the weights and bias associated with the new memory state

contender c̃t, and ct−1 the previous memory state. at represents the values of hidden

layer’s neurons in state t [2]. A schematic representation of a LSTM hidden unit is

presented in figure 2.6.
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Figure 2.6: LSTM hidden unit. Adapted from [2].

Gated Recurrent Unit (GRU)

Another type of RNN, GRU is very similar to LSTM, but has a less complex

structure, in comparison. Besides lacking an output gate, this type of architec-

ture presents an update (Γu) and a relevance or reset gate (Γr) that control the

information that is passed as output [2, 45].

Γu is responsible for deciding if the memory state (ct) will be updated by the

new contender to memory state (c̃t) and Γr defines how much of existing memory is

kept, that is, the relevance of the previous memory state (ct−1) for the computation

of the next contender to memory state (c̃t). These processes are defined by the

following equations:

Γu = σ(Wu[ct−1, xt] + bu), (2.18)

Γr = σ(Wr[ct−1, xt] + br), (2.19)

c̃t = tanh(Wc[Γ
r × ct−1, xt] + bc), (2.20)

ct = Γu × c̃t + (1− Γu)× ct−1, (2.21)

at = ct, (2.22)

where Wu, Wr, Wc, and bu, br, bc are the weights and bias of the Γu, Γr, and c̃t,

respectively. As described for LSTM, xt is the input and at the values of hidden

layer’s neurons in state t. A GRU cell is shown in figure 2.7.
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Figure 2.7: GRU hidden unit. Adapted from [2]

Case-Based Reasoning (CBR)

CBR models involve memory processes to integrate problem learning, under-

standing, and solving. This type of method is based on the assumption that similar

problems have similar solutions, and its operation can be summarized in four pro-

cedures: retrieve, reuse, revise and retain. Basically, CBR searches for known cases

that are similar to a new unknown case (retrieve) and uses their information to learn

how to arrange a solution for the new case (reuse). For that, interpreting the new

case at hand is crucial for the reasoner to find relevant cases that can be adapted to

solve a problem. The model can form a novel procedure to deal with each new case.

If the procedure has a successful execution and is found appropriate to solve the

problem (revise), it can be indexed in the reasoner and retrieved when found useful

(retain). Later on, if the same procedure is inaccurate in dealing with a new situa-

tion, it can be refined, resulting in an incremental learning process through feedback,

improving the model’s capacity to accurately deal with new problems [46, 47].

For simplicity of explanation, input data from a certain dataset will be referred

as problem and its outputs as solution. Time series data, TS, from each subject is

therefore organized in (problem, solution) pairs named cases, (xt, yt), with xt being

the N observations before t, xt = [TS(t−N+1), ..., TS(t−1), TS(t)] and yt the time

series observations after t, up until a prediction horizon P , yt = [TS(t+ 1), TS(t+

2), ..., TS(t+ P )]. For a new problem to which the solution is not known, the CBR

model establishes a distance-based similarity search (usually using distance functions

such as euclidean distance, Minkowski distance, etc.) to find similar problems in the

database. A given number of the most similar cases is retrieved from the process

and the values at each instant of the different solutions are processed (by averaging,

weighted averaging, or other methods) to obtain the value of the respective instant

in the new solution. For example, taking averaging as the adaptation method, the

22



2. Background

solution for the new case, ynew,t, will be obtained as follows:

ynew,t =

∑K
j=1 yj,t

K

with K being the number of retrieved most similar cases, and yj,t the values of their

known solutions at each instant t = [1, 2, ..., P ] in the prediction horizon. This makes

CBR a personalized model that adapts to changes, since a new model is created for

each new situation [47].

2.5 Summary

The cardiovascular system is composed by the heart and the vascular system,

and ensures the necessary blood flow to the organs, facilitating exchange of gases,

fluid, electrolytes, large molecules, and heat between cells and the and the surround-

ing environment [1].

An indicator of the proper functioning of this system is BP, the measure of

force it takes the heart to pump blood throughout the body. BP can be greatly

influenced by many physiological and non-physiological factors, each mediated by

different mechanisms and having distinct impacts in BP.

A persistently high BP incidence, triggered by the action of adverse factors,

can lead to hypertension, a chronic disease of great prejudice to the organism. Even

though most cases have no treatment, the disease can be controlled by monitoring

of BP levels, which allows timely action to reduce negative effects.

Regular measurement of BP can be described as a time series variable and,

therefore, the early detection of discrepant BP values can be treated as a time series

prediction problem. Such task can be accomplished through the implementation of

certain machine learning models.

In this study, four of the mentioned models will be considered for development:

LR, LSTM, JNN, and CBR. According to literature, these models have proven

useful in predicting time series. LR was selected as the simple baseline linear model,

LSTM the nonlinear model and JNN a nonlinear model with great influence from

the linear component of the input signal. These three models allow a comparison

of the influence of the variable’s linear and nonlinear dynamics in the prediction.

At last, CBR can be useful for assessment of prediction that is not based on the

dynamics of the physiological signal.
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State of the art

This chapter provides a brief explanation of the current state of the art on

BP prediction, recommendation models and telemonitoring in general. Section 3.1

refers to telemonitoring strategies for home blood pressure management. Work re-

lated to the prediction module of the study is presented in section 3.2, including

existent datasets (3.2.2), and prediction algorithms and strategies (3.2.1). Section

3.3 provides a state of the art of the recommendation module, that includes existing

guidelines for hypertension management (3.3.1) and knowledge-based recommenda-

tion systems (3.3.2).

3.1 Telemonitoring and Home Blood Pressure

Telemonitoring consists in the use of information technologies to remotely mon-

itor patients’ conditions, interpret data, and make clinical decisions, transforming

occasional office management in continuous management that extends into the pa-

tients’ routine. With technological development, multiple telemonitoring modalities

already exist but, as mentioned, the focus of this study is patient’s self-management,

which allows a frequent collection of clinical data that are easily measured by pa-

tients (e.g., weight and BP), and its transfer from the patients’ home to the health

care or telemonitoring center [48, 49].

Remote management has proved to be more effective than usual office care and

it is mainly applied in the management of chronic diseases, like primary hyperten-

sion. It can reduce diseases’ complications due to a better follow-up that allows early

detection of worsening symptoms as well as early intervention. Accordingly, this set-

ting is commonly advised to hypertensive patients with uncontrolled blood pressure,

multiple comorbidities, and high risk of developing cardiovascular diseases, as well

as patients living in isolated regions and older patients, since it ensures continuity of

care. It also allows the detection of masked hypertension, that is defined by normal

ranged office BP readings and elevated home or ambulatory BP measurements, and

white coat hypertension, that happens when the opposite is true [50, 51].
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The use of telehealth strategies to assist hypertensive patients in reduction and

management of BP was first specifically recommended only in the 2017 American

Heart Association (AHA)/American College of Cardiology (ACC) clinical practice

guideline for high BP [52]. Until then, major guidelines only issued partial or in-

complete recommendation of these techniques [50].

There are currently multiple accessible services of this sort, but none seems to be

a possible reference to form a standard telemedicine healthcare model, since they are

usually not interoperable or integrated into existing healthcare systems. However,

several studies have noted that the employment of telemonitoring to the detriment

of usual care approaches resulted in a more significant BP reduction and control,

which is possible due to an improvement in patient engagement and knowledge on

their condition, adherence to the care plan, and satisfaction with the intervention

[50, 53].

Omboni et al. (2020) [53] aimed to review the clinical utility and barriers of

the application of telemonitoring in hypertension management. For that matter, a

systematic review and meta-analyse was conducted on fifteen studies on the efficacy

of telehealth compared with usual care on hypertension management, based on type

of intervention, type of subjects (division into subgroups differentiated by existent

comorbidities), application setting (e.g. communities, hospitals, pharmacies, etc.),

number of studies compared, number of subjects, evaluated results and other factors.

It was concluded that the main benefits of the use of this type of strategy happened

in services that established a remote monitoring of vital signs (e.g. BP) allied with

adherence to the medication plan, education on healthy lifestyle habits and risk

factors, and an asynchronous feedback (periodic interaction with the patient by the

caregivers, instead of immediate). In terms of feedback and management, the best

approach was assumed to be the automatic delivery of recommendations resultant

from algorithms, mixed with the supervision of a clinical team (when needed). At

last, the target population was concluded to be patients with suspected hypertension

or white coat hypertension, hypertensive patients (especially those at high-risk, due

to poor medication adherence, etc.), older adults, people living in deprived areas and

hypertensive patients that present multimorbidity (e.g. diabetes mellitus, obesity).

Duan et al. (2017) [54] published a systematic review about the effectiveness

of Home Blood Pressure (HBP) telemonitoring. The comparison of forty-six ran-

domised controlled studies focused on the effectiveness of HBP telemonitoring con-

versely to usual care in reaching target BP and was centered on multiple outcomes:

BP changes and normalisation, application of antihypertensive medication, and qual-

ity of life (mainly physical and mental health). The studies were analyzed based
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on duration of intervention and the existence of additional support, categorised into

”counselling”, when regular face-to-face or telecounseling communication is used for

BP evaluation or exchange of information on disease management between patients

and healthcare assistants; ”education”, which consists of providing information on

self-management and non-drug therapies, such as healthy lifestyle changes; or ”mis-

cellaneous”, an approach that involves both ”counselling” and ”education”. That

way, the authors were able to assess three main aspects of the approach: whether or

not HBP telemonitoring was more beneficial in the reduction of office and ambula-

tory BP than usual care; if there was a difference in the efficacy of HBP telemoni-

toring in BP-lowering with or without additional support; and the effect of different

intervention components (duration and additional support) on BP outcomes. For

the first comparison, results showed an improve in office SBP and DBP of 3.99

mmHg and 1.99 mmHg, respectively, and a larger number of patients achieving BP

normalisation when HBP telemonitoring is applied instead of usual care. For the

second, telemonitoring with additional support presented a reduction of 2.44 mmHg

and 1.12 mmHg more for SBP and DBP, respectively, than telemonitoring without

additional support. For the latter, a lower BP was achieved when telemonitoring

lasted between 6 to 12 months and counselling support was provided. The overall

conclusion presented was that, accordingly to previous studies, HBP telemonitoring

improves BP control and is more efficient in achieving target BP than conventional

treatment. It also noted that the approach provides a significantly enhanced control

of both ambulatory and office BP, when compared with usual care, and that the in-

clusion of the mentioned additional support in the HBP telemonitoring intervention

benefits BP decrease.

In agreement with the above, other studies of the sort [50, 51, 55–58], have also

reported similar results.

3.2 Prediction module

3.2.1 Prediction algorithms

In order to assist BP management, the prediction of BP is an increasingly im-

portant component for the early detection and prevention of cardiovascular disease.

BP prediction facilitates the detection of high-risk BP values and other risk factors,

allowing an early diagnosis of hypertension, even in healthy people, and alerting to

the need to make preventive decisions in this regard [59]. Deep learning algorithms

are the most commonly used techniques in existing researches on BP prediction.

26



3. State of the art

Li et al. (2017) [42] presented a LSTM model, which allows the processing of

sequences of inputs for an accurate BP prediction. The simultaneous use of a contex-

tual layer in addition to the model allowed consideration of both measurements and

contextual data for BP prediction. That layer was added as an extra hidden layer

after the first hidden layer in the LSTM model, and takes as input both the features

extracted from the measurement data in the first hidden layer and the contextual

data. A linear regression of the outputs of the contextual hidden layer is used for

prediction of SBP and DBP up to three months. A private dataset was used, con-

taining measurement data concerning SBP, DBP and HR, and contextual data such

as BMI, age, gender and geographic information. The output results were evaluated

using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). For

DBP and SBP, MAE ranged from around 3.23 to 4.24 mmHg and from 5.27 to 6.92

mmHg, and RMSE ranged from 4.27 to 5.54 mmHg and from 6.97 to 9.04 mmHg,

respectively, which seem satisfactory results considering the normal range of DBP

and SBP.

Koshimizu et al. (2020) [59] proposed the use of deep NNs to predict BP

variability and mean value from time series data of HBP as well as medical data

measured at a hospital, since previous studies have concluded that BP variability

is an outstanding risk factor that leads to cardiovascular disease. The PREDICT

dataset (described in 3.2.2) was used. Outputs of the prediction model consist of

weekly BP mean values and variability (up to 4 weeks), and input data comprises

patient’s context data acquired once and time series data acquired over 56 days.

Both LSTM and GRU models were developed, in which BP time series data were

used as input to the deep neural networks and contextual data were input to a fully

connected layer implemented in the models, in order to introduce a dependency

between the time series and contextual data and obtain more accurate outputs. Also,

a novel loss function was developed, to allow the simultaneous evaluation of both

BP mean values and variability prediction errors and increase prediction accuracy.

Favorable results were obtained, with variability evaluation using standard deviation

ratio (SR) ranging between 0.67 and 0.70 and mean value evaluation using RMSE

ranging between 5.04 and 6.65 mmHg.

Liu et al. (2018) [43] suggested an extension to the traditional LSTM approach,

by incorporating a RBF for contextual information processing. The model adopted

a multi-task training strategy, allowing the simultaneous prediction of BP and other

related time series, processed in the same two hidden layers. The contextual infor-

mation (age, BMI, etc.) is input to the RBF NN, that is then used as the transfer

function of the model’s hidden layer. This allows the recurrent structure to extract
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features from BP and BP related data. Both MAE and RMSE were the considered

evaluation metrics. For short-term prediction, the study’s model was compared to

the results obtained by a traditional LSTM model and a LSTM model with a con-

textual layer (proposed in [42]) with the same data, outperforming both. Long-term

prediction, in which the model was developed using 30-day continuous BP data to

predict the next 3-day’s BP, resulted in accurate sequential prediction values up to

3 days, with MAE ranging from 4.52 to 4.66 mmHg and from 9.68 to 9.97 mmHg

and RMSE ranging from 6.21 to 6.40 mmHg and from 12.76 to 13.01 mmHg, for

DBP and SBP, respectively.

Zecchin et al. (2014) [39] presented an algorithm for blood glucose concentra-

tion short-time prediction. Theoretically, a similar approach can be applied when

dealing with BP time series. The novel model, named Jump Neural Network (JNN),

consists of a deep feed-forward NN, that differs from the previously described ar-

chitecture by having the input layer connected to both the first hidden layer and

output layer. Since the considered blood glucose time series follows both linear and

non-linear dynamics and glucose signals’ inputs are able to influence future effects,

the model’s structure is suitable for data fitting and prediction, having the hidden

and output neurons dealing with the non-linear and linear relationship between in-

puts and targets, respectively. In this particular case, the model also comprised

information on ingested carbohydrates and obtained accurate predictions, similar to

those obtained by models proposed in previous studies for the effect. The results

were considered satisfactory for the study but their presentation is irrelevant in the

present context.

Rocha et. al (2011) [60] developed neural network multi-models to predict the

occurrence of acute hypotensive episodes in intensive care units. The initial phase of

this approach relied on a CBR technique to find similarities between the input MAP

signals and MAP templates that are available in the training dataset and represent

evolution trends of MAP signals. Similarity search was based on correlation analysis.

A set of neural multi-models, previously trained using the identified most similar

templates, were then selected for prediction of future evolution of the current input

MAP signal, allowing a direct determination of the hypotensive episode’s occurrence.

The described multi-model approach follows the regression representation presented

in equation 2.4. These models were implemented using a Generalized Regression

neural network (GRNN), which can be seen as a normalized RBF network, and is

here used for MAP signals prediction. Both training and test datasets consisted of

a sample of selected patient records from the MIMIC-II database. Training dataset

consisted of 60 records with all available data, while the test sets were truncated at an
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instant T0 and consisted of dataset A (10 records) and B (40 records). The forecast

window was the hour immediately after the instant T0. The proposed methodology

was able to correctly predict 47 out of the 50 acute hypotensive events, presenting

a global sensitivity (SE) of 94.74%, specificity (SP) of 93.55% and accuracy (AC) of

94.00%.

Prediction algorithms overview

To summarize, an overview of the mentioned prediction approaches, is presented

in table 3.1.

Table 3.1: Overview of the mentioned prediction algorithms.

Study Algorithm Methods Prediction horizon Best results

Li et al. (2017) [42] LSTM

An extra hidden layer after the first

hidden layer combines features extracted

from the measurement data and contex-

tual data as input. Prediction of SBP and

DBP based on linear regression of outputs

from the extra layer.

Up to 3 months

SBP/DBP

MAE: 5.27/3.23 mmHg

RMSE: 6.97/4.27 mmHg

Koshimizu et a[59]
LSTM

GRU

Combination of LSTM/GRU models for

time series data with fully connected layer

for contextual data, to predict weekly BP

mean values and variability.

Up to 4 weeks
SR for BP variability: 0.67

RMSE for mean BP values: 5.04 mmHg

Liu et al. (2018) [43]
LSTM

RBF

RBF network for contextual data process-

ing used as the transfer function of the

LSTM model’s hidden layer. Multi-task

training for prediction of BP and BP re-

lated time series.

3 days

SBP/DBP

MAE: 9.68/4.52 mmHg

RMSE: 12.76/6.21 mmHg

Zecchin et al. (2014) [39] JNN

Prediction of blood glucose time series us-

ing a novel type of feed forward neural net-

works, the JNN.

30 min -

Rocha et al. (2011) [60]
CBR

GRNN

Similarity-search to compare MAP signals

with existing MAP templates and pre-

diction of acute hypotensive events using

the correspondent trained neural network

multi-models to forecast MAP signals.

1 hour

47 out of 50 events correctly predicted

SE = 94.74%

SP = 93.55%

AC = 94.00%

3.2.2 Datasets

From the literature, several datasets are known to provide useful data for BP

prediction. Although all the ones found are described in this section, the majority

are private datasets, and only MyHeart and MIMIC-III are available to the team.

PREDICT

The PREDICT (Prediction of ICT-Home Blood Pressure Variability) dataset

was created in the context of a trial conducted by Jichi Medical University in Japan,

with the goal to assess the efficacy of the use of HBP, collected using information and

communication technology, for prediction of cardiovascular events. Participating

patients were asked to daily measure their BP at home for two or more years,
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using a device that was able to measure surrounding environment temperature, with

the intent of forming an algorithm to identify thermosensitive hypertension. The

measurements took place twice a day, in the morning and in the evening, with two

measurements per occasion, to prevent possible measurement errors. Besides time

series data, contextual data was also stored. The collected time series data consists of

measurement date and time, number of measurements per day, SBP, DBP, HR, and

contains other observations related to the measurement act, such as cuff fit, presence

of irregular heartbeat, and body movements and temperature during measurement.

For the patients context data, age, gender, height, weight, medical history (presence

or absence of certain medical histories, such as myocardial infarction, stroke, heart

failure, chronic arterial occlusion, etc.), present illness (presence or absence of certain

illnesses, such as hypertension, kidney dysfunction, diabetes, sleep apnea syndrome,

etc.), the use of certain antihypertensive prescription drugs, and drinking habits

were collected [59, 61].

TEN-HMS

The TEN-HMS (The Trans-European Network – Home-Care Management Sys-

tem) study [8] comprised 426 patients over 18 years of age who were willing to

comply with home telemonitoring. All patients included fulfilled certain conditions,

such as an admission in a hospital within the previous six weeks on account of wors-

ening heart failure lasting over 48h, chronic heart failure symptoms, left ventricular

ejection fraction (percentage of blood pumped by the left ventricle with each con-

traction) under 40%, an antihypertensive drug prescription regimen containing over

40 mg/day of furosemide (a diuretic medicine used in the treatment of hyperten-

sion, heart failure and other conditions [62]) and other similar related criteria that

increased heart failure risk. Social and demographic context data was gathered for

this dataset. A baseline characterization of each patient was formed before initi-

ating management containing their age, sex, primary cause of heart failure (e.g.,

hypertension, coronary disease, alcohol-related, etc.), existent comorbidities (e.g.,

hypertension, stroke, diabetes, etc.), a reference basis in terms of weight, BMI,

SBP, and DBP, measurement values from a blood sample (such as hemoglobin,

serum sodium and creatinine), among others. The patients were then instructed to

perform a twice daily set of measurements, before breakfast and before their evening

meal and medication, of their weight, blood pressure, and heart rate. The objective

of this study was to assess, through a follow-up of 450 days, whether home telemon-

itoring strategies could improve the outcomes of heart failure patients at high risk

of death or hospitalization, comparatively to usual care and nurse telephone sup-
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port (similar to usual care, except patients were contacted monthly by a specialist

nurse to evaluate their symptoms and medication) strategies [8]. Even though this

study is not hypertension management oriented, the collected data is relevant in

that context.

MIMIC-III

MIMIC-III (Medical Information Mart for Intensive Care) is a freely-accessible

database containing a large amount of data from 2001 to 2012, relating to patients

admitted to critical care units of a hospital of Harvard Medical School, in Boston.

The database comprises deidentified health-related data including vital signs, med-

ication, laboratory measurements, length of stay, survival data, imaging reports,

some observation and notes from healthcare providers, among other information.

The time-stamped physiological data available in the MIMIC-III consists of approx-

imately hourly measured nurse-verified vital signs (e.g., blood pressure, heart and

respiratory rate). It is a widely used internationally database, not only on academic

research but also on an industrial level, since it is the only freely-available critical

care database with a span of over a decade, that provides detailed information for

each individual patient. Other previous and updated versions of the dataset are

available, like MIMIC-II and MIMIC-IV, respectively [63, 64].

MyHeart

The MyHeart research project [65] was created with aim to establish preventive

measures for cardiac disease using wearable solutions that allow premature diagnosis

and timely intervention, in a continuous home telemonitoring setting. The project

involved the research and development of new wearable technologies (such as sen-

sors) and algorithms used in monitoring of various vital signs (e.g. blood pressure,

heart rate, respiratory rate, and weight), expecting the early detection of heart

failure decompensation symptoms. The database comprises 1 year worth of home

measured data from 148 chronic heart failure patients. Patients were instructed to

perform daily measurements of vital signs at rest, that always included a one-lead

electrocardiogram signal [66].

IDHOCO

The IDHOCO (International Database of HOme blood pressure in relation to

Cardiovascular Outcome) database [67] includes data from 6753 patients from 5 co-

hort studies on home BP monitoring. The purpose of the study was to determine

31



3. State of the art

the diagnostic of the patient outcome, based on self-measurement of HBP, research

on the predictive value of factors such as morning and evening BP, white-coat and

masked hypertension and BP and HR variability, and determine an optimal time

schedule for HBP measurements to accurately assess the risk for cardiovascular

events. Baseline characteristics of all patients at enrollment are included, namely

age, sex, BMI, height and weight, number of home and office SBP and DBP measure-

ments, home and office HR, serum total cholesterol, smoking habits, antihyperten-

sive drug treatment, and the presence of diabetes mellitus, history of cardiovascular

disease and hypertension. The registered office BP represents the average of two

consecutive readings obtained in the sitting or supine position, after the patient had

been resting for two or more minutes. HBP measurements were obtained by the

participants at their home, while in the sitting position, after a two to five minutes

rest and value of this variable on the database represents the mean of all available

measurements [67–69].

CPCSSN

The CPCSSN (Canadian Primary Care Sentinel Surveillance Network) project

[70] collected and validated data from electronic medical records across Canada,

concerning multiple conditions, such as hypertension and diabetes. The dataset

contains both provider and patient information. Patient data comprises informa-

tion on demographics, health condition, medication, risk factors, allergies, physical

examinations for SBP, DBP, height, weight, waist circumference, waist to hip ratio,

BMI, and peak expiratory flow rate, and other variables related to medical visits

and procedures and laboratory examinations [70, 71].

Datasets overview

To summarize, an overview of the mentioned datasets, containing relevant vari-

ables, number of patients, follow-up duration and accessibility is presented in table

3.2.
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Table 3.2: Overview of the mentioned datasets containing useful information for
BP prediction and hypertension management

.
Dataset Relevant variables Number of patients Follow-up duration Accessibility

PREDICT

SBP; DBP; HR; age; sex; height; weight;

medical history; present comorbidities;

antihypertensive prescription drugs use; drinking habits

Unknown

(target sample size 1100)
At least two years Private

TEN-HMS
SBP; DBP; HR; age; sex; weight;

primary cause of heart failure; existing comorbidities
426 450 days Private

MIMIC-III BP; HR; respiratory rate; age; sex Over 40 000 11 years
Public

(upon request)

MyHeart BP; HR; respiratory rate; weight 148 1 year Private

IDHOCO

SBP; DBP; HR; age; sex; height; weight;

BMI; smoking habits; serum total cholesterol;

antihypertensive prescription drugs use; existing comorbidities

6753 Unknown Private

CPCSSN

SBP; DBP; HR; age; sex; height; weight;

BMI; waist circumference; waist to hip ratio

peak expiratory flow rate

Unknown Unknown Private

3.3 Recommendation module

3.3.1 Guidelines for hypertension management

ESC/ESH 2018

The 2018 ESC/ESH guidelines [6] propose changes in lifestyle to treat and

control hypertension, as well as to reduce the risk of cardiovascular disease. Sev-

eral measures are recommended, including changes in diet, moderation of alcohol

consumption, weight reduction, regular physical exercise, and smoking cessation.

In terms of diet, sodium is considered one of the principal factors with a pres-

sor effect, being associated with the rise of SBP and risk of hypertension. Excessive

sodium intake has been associated with an increase in SBP with age, leading to the

prevalence of hypertension. Inversely, sodium restriction is proven to be efficient

in lowering SBP and DBP. It is recommended a limitation of sodium consump-

tion to 2g per day (approximately 5g salt). Reductions of around 1.75g in sodium

consumption are associated with a decrease of up to 5.4 mmHg for SBP and 2.8

mmHg for DBP, in hypertensive patients. However, mainly due to poor dietary

persistence, the BP-lowering benefits of sodium restriction tend to diminish with

time. Other dietary habits are also known to be effective in prevention or delay

of the onset of hypertension. Hypertensive patients are advised to follow a healthy

balanced diet with increased consumption of vegetables, fruit, fish, whole grains,

white meats, beans, nuts, and unsaturated fatty acids (like olive oil). Foods rich

in potassium, calcium, magnesium, fiber, and protein are recommended, as well as

low consumption of red meat, saturated fat, sugar, and fat dairy products. Dietary

Approaches to Stop Hypertension (DASH) and Mediterranean diets are examples
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of recommended diets that follow the mentioned eating habits used in hypertension

prevention and BP control.

Weight control is also recommended for maintaining a normal BP. Excessive

body weight gain is strongly related with the prevalence of hypertension, and it has

been proved that its reduction also decreases BP. An average weight loss of around

5 kg is empirically associated with a reduction of 4.4 and 3.6 mmHg on SBP and

DBP, respectively. Weight reduction is an equitable goal for the overall population

but it is an highly endorsed measure for overweight and obese hypertensive patients,

since is particularly useful in stabilizing metabolic risk factors and can also improve

the efficacy of antihypertensive drugs. Even though there is no consensus on the

optimal BMI, maintaining a healthy body weight (BMI of around 20 to 25 kg/m2,

or higher for older patients) and waist circumference (less than 94 or 80cm for men

and women, respectively) is a beneficial measure in preventing hypertension and

reducing BP. This process is associated with and highly dependant on other habits,

such as dietary changes and regular physical exercise.

Physical exercise is responsible for a severe rise in BP (mainly SBP) during

the activity and a subsequent temporary decline in BP below baseline. For general

populations, moderate and high intensity training are more efficient in lowering BP

than regular lower intensity physical activity, but the latter has been associated

with a reduction of more than 15% in mortality. Aerobic, resistance and isometric

training all have been proved to contribute to a decrease in resting SBP/DBP of

3.5/2.5, 1.8/3.2, and 10.9/6.2 mmHg, respectively. That said, hypertensive patients

are advised to practice at least 30 min of moderate intensity aerobic exercises (e.g.

walking, jogging, swimming) on at least 5 days weekly, with resistance exercise on

a minimum of 2 days also showing great benefits. The impact of isometric exercises

is less well known in this context.

Alcohol consumption is also considered to have a great pressor effect, causing

an increase in BP and the prevalence of hypertension, binge drinking being the fac-

tor with the most influence in that regard. Even though studies have only shown

a decrease of 1.2 and 0.7 mmHg in SBP and DBP, respectively, for an intervention

group in a 6 month period, epidemiological studies verified that reductions in alco-

hol consumption are beneficial. Hypertensive patients are advised to avoid binge

drinking and have alcohol-free days, while limiting alcohol consumption to 14 and

8 units weekly for men and women, respectively (1 unit corresponding to about 8g

of pure alcohol).

Smoking is highly prejudicial for cardiovascular health, with both normotensive

and hypertensive smokers presenting higher BP values than the average non-smokers.
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Although no chronic effects of smoking were assessed in office BP, smoking cessation

is appointed to be the most effective lifestyle measure for prevention of many car-

diovascular diseases, being the referral to programs and supporting care regarding

smoking cessation recommended during patient visits.

ACC/AHA 2017

The 2017 ACC/AHA [52] guidelines focus on overweight and obesity, sodium

and potassium on diet, physical fitness and alcohol consumption. Overall, the same

remarks are made on the present factors as in [6].

Relatively to weight, a notorious relationship between increased body weight

and high BP and hypertension is stated. An almost linear relationship between BMI

or waist-to-hip ratio and BP is also pointed. Existing studies on the matter even

indicated that obesity may be responsible for up to 78% and 65% of hypertension

cases in men and women, respectively.

Diet-wise, sodium and potassium intake are mentioned as having two opposite

effects on BP. The first, as referred in [6], is positively associated with BP increase,

while the latter appears to cut off the effect of sodium intake and many epidemiolog-

ical studies suggested that a lower sodium-potassium ratio is liable to be associated

with a reduced overall risk of cardiovascular disease.

Physical activity is once again noted as inversely related to BP level and hyper-

tension. A cohort of men whose ages ranged from 20 to 90 years was also mentioned,

since they were followed for a minimum of 3 and up to 28 years and the results

proved that a higher physical fitness caused hypertension onset to be delayed, due

to a minor rise in SBP over time.

Guidelines overview

Many guidelines from worldwide famous societies and hospitals specialized in

hypertension exist [6, 52, 72–74]. Although most are in agreement with the above

mentioned, some add other factors. To summarize, an overview of the cited clinical

practice guidelines is presented in table 3.3.
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Table 3.3: Overview of lifestyle modifications recommended for hypertension man-
agement by multiple clinical practice guidelines.

Healthy diet

Reduced sodium intake (less than 5g salt per day is recommended). Increased

potassium intake, keeping a low sodium-potassium ratio. Patients are also advised

to follow a balanced diet (such as DASH and Mediterranean diets) rich in calcium,

magnesium, fiber, protein, vegetables, fruits, fish, nuts, and unsaturated fatty acids

(e.g. olive oil), and low on red meats, sugar and fat dairy products.

Weight control

Maintenance of a healthy body weight (BMI between 20 and 25 kg/m2, slightly

higher for older patients), and waist circumference (<94 cm and <80 cm in men

and women, respectively). Waist-to-height ratio is also an alternative indicator

(<0.5 is advised).

Physical activity

Aerobic exercise (walking, running, jogging, swimming, etc.) of moderate intensity

for 30 min on at least 5 days a week or high intensity, involving short intervals of

intense activity followed by recovery periods of lighter activity. Resistance training

on 2 or 3 days a week is also beneficial.

Alcohol reduction

Avoid binge drinking and adopt alcohol-free days weekly. Alcohol consumption

should be limited to 20g or 15g per day, and to 112g or 64g per week, for men and

women, respectively.

Smoking cessation

It is recommended that patients cease smoking completely. Smoking causes an

acute increase in BP that lasts for 15 min or more and is associated with the onset

of hypertension. Referral to smoking cessation programs are advised.

Stress reduction
Even though chronic effects of stress in BP are not well determined, induced mind-

fulness is suggested to lower BP.

Other factors

Environmental factors like air pollution and cold temperatures have a negative in-

fluence on BP. By stimulating the activity of the sympathetic nervous system, sleep

disorders also have an impact on the onset of hypertension.

3.3.2 Knowledge-based recommendation systems

Knowledge-based recommendation systems are useful tools for chronic patients

monitoring, facilitating self-management of patients and improving adherence to

treatments and guidelines. Even though there are other types of health recommenda-

tion systems, knowledge-based support systems make use of information previously

established by experts, like the guidelines presented in 3.3.1, to give personalized

advice to users according to the available data that meet users’ preferences and

needs, being the most useful health recommendation system method in the current

context.

Vives-Boix et al. (2017) [75] presented a knowledge-based clinical decision sup-

port system for monitoring chronic patients, namely hypertensive patients. The

study focused on four risk factors, common to multiple chronic diseases: diet, phys-

ical activity, alcohol consumption and smoking. The goal of the system was to

analyse daily measurement of physiological parameters (such as blood pressure, age,

height, BMI, HR and daily physical activity), in order to give personalized recom-
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mendations for management of the disease. System’s rules involving lifestyle changes

to decrease BP follow the guidelines described in section 3.3.1, specifically reduction

of salt, alcohol and saturated fat consumption, weight reduction, increase of physical

activity and consumption of fruits and vegetables, smoking cessation, and adoption

of a Mediterranean diet. The knowledge-based system is centered on the provided

information about the topic, in the form of IF-THEN rules. Then, an inference

engine retrieves available rules and combines them with the users’ data. At last, the

results from the evaluation of users’ data are presented as recommendations.

Wang et al. (2020) [76] aimed to develop and evaluate the performance of

a knowledge-based recommendation system to provide personalized health advice

for chronic disease patients. The system’s goal was to recommended educational

materials (obtained from various sources) depending on the patients’ needs, assessed

through their health data (e.g., age, gender, comorbidities, diet and physical activity

levels, BP value, etc.), that was available in a dataset obtained from a telehealth

system. In the process, both patient data and educational materials are inputted

into an ontology system that converts them to vectors and the final recommendation

is generated based on similarity between the two vectors. Given recommendations

were subsequently evaluated manually by experts, that assigned whether they were

appropriate or not. The developed system was implemented in a mobile health

system and connected to patients’ smartphones, returning a variable number of

recommendations, depending on how many suited each input case. Evaluation of

the top 1 recommendation reached a score up to 0.970 for macro precision and 0.628

for mean average precision.

Silveira et al. (2019) [77] developed and evaluated a knowledge-based mobile

clinical decision support system for hypertension management. International clin-

ical practice guidelines, namely some of the mentioned in 3.3.1, were used as the

basis for the construction of recommendations. Users are required to manually input

multiple data fields, including sex, date of birth, height, weight, BP, waist circum-

ference, existent comorbidities and drug prescription, and other relevant laboratory

test results. The inserted data is then evaluated by the system, namely for BMI

and cardiovascular disease risk assessment, and recommendations on lifestyle inter-

ventions, such as physical activity, diet and medication dosages are presented to the

user. The patient data evaluation and rules comparison process is not described

in the article. For evaluation of the feasibility, usability and utility of the system,

participants of the study were asked to fill some questionnaires or participate in

interviews, to classify their general impression. The overall system classification

was good and, even though 70% of the clinicians involved reported data input as
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time consuming, the majority of physicians found the system useful to optimize

treatment and prevention of hypertension, as it was easily incorporated into daily

routines, making it possible to be incorporated in a primary care setting.

Other systems of the sort were developed in multiple studies. As an exam-

ple, [78] developed a knowledge-based recommendation system for diet and exercise

advise as a prevention measure for chronic diseases and other illnesses, following

similar approaches as the ones mentioned.

3.4 Summary

Based on the found studies mentioned in the state of the art, we can prove

the efficacy of telemonitoring strategies like HBP telemonitoring in lowering BP,

to the detriment of usual office care. Additionally, there is evidence that these

approaches are associated with a greater incentive for patients to adopt healthier

life habits and comply with treatments. This concludes that telehealth strategies

can be useful supplements to interventions proved to reduce and control BP in

hypertensive patients.

As for the prediction module, it is stated that multiple studies and datasets on

the subject exist, proving that BP prediction, mainly using deep learning and other

machine learning algorithms, such as LSTM, JNN and CBR models, is possible and

represents a valid and useful strategy for hypertension management and prevention

of cardiovascular diseases, that can be incorporated in a remote monitoring system.

Relatively to the recommendation module, existing international guidelines

from different societies and association specialized in hypertension provide some

basis information for the construction of rules for a knowledge-based recommenda-

tion system. The mentioned guidelines are in overall agreement with each other

and identical information is used in some of the collected recommendation systems,

which proves them useful in this context. At last, as the developed systems were

found beneficial for hypertension treatment, management and prevention, and most

of the systems are also employed in mobile health applications, the use of this type

of systems in the telemonitoring approach discussed in the present study may be a

viable approach.

38



4

Methodology

This chapter is divided in two parts. The first part covers the methodology

conducted for the development of the prediction module, from data treatment to

algorithms’ architectures, training, hyperparameters tuning and performance assess-

ment. The second part addresses the recommendation module, the establishment of

the set of rules for the knowledge-based recommendation system and its construc-

tion.

Both developed modules are intended to be implemented, jointly with the mod-

ules from other studies of the same POWER sub-project, in a remote monitoring

solution being developed by Altice Labs for Altice’s SmartAL. In the appendices of

this thesis, the API documentation of the final algorithms for the prediction module

(Appendix A) and the recommendation system (Appendix B) are provided.

4.1 Prediction module

The methodology of the prediction module involves all the procedures related

to data preparation and model training, testing and evaluation.

4.1.1 Dataset

All the algorithms are trained using data from the MyHeart dataset, currently

available to the team. Although the MIMIC-III is also available, the MyHeart is

considered more suitable for this study, since it contains home measured data rather

than data from patients admitted to intensive care units, as is the case of MIMIC-

III. The dataset contains data from 41 patients over 60 days, for multiple variables,

including BP, weight, ECG, respiratory rate and bioimpedance. Each variable was

registered once daily. The variable of interest in this study is BP, that in this dataset

contains 2460 measurements total, 829 of which are missing values. Even though

it is not specified what type of measurement the available BP variable represents,

the range of values from minimum to maximum indicates that it may refer to SBP,
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since the lowest value is of 86.0 and the highest is of 197.0 mmHg. These peak

values represent SBP categories from optimal to grade 3 hypertension, following the

information on table 2.1. The mean value of 119.7 mmHg calculated for the variable

supports this assumption, representing an optimal SBP value.

4.1.2 Pre-processing

Data pre-processing is a crucial step when dealing with datasets, since it involves

data cleaning, transformation, and reduction for elimination of inconsistencies in the

data. The development of a proper method for data pre-processing to be applied

on this dataset is part of another study developed on the present POWER sub-

project. However, since both studies were being developed simultaneously, basic

data pre-processing was done to induce the necessary autonomy in this study until

the implementation of the mentioned method. For that matter, and to maintain the

complexity involving data treatment as reduced as possible, mean values were used

as missing data replacements.

For each patient, the arithmetic mean (x̄) of the available BP variable values

(xi) was computed ignoring present missing values:

x̄ =
N∑
i=1

xi

N
, (4.1)

where N represents the number of non-null values for each patient. Thereafter,

missing values were located and replaced by the respective mean value.

4.1.3 Prediction models

In this phase, multiple models for BP prediction were developed using Python.

Two libraries were used for the construction of the models’ architectures: Keras with

TensorFlow and scikit-learn. All the models considered the BP variable, available

in the described dataset, as input.

Linear Regression

The first model to be considered was a simple least squares Linear Regression

(LR) model that follows the premise stated in 2.6. This algorithm was the first choice

because it allowed the assessment on whether BP evolution could be considered a

linear problem. That way, if the LR model had a satisfactory performance, and there

was no significant discrepancy between its results and the results of other models of
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higher complexity, the use of the latter would not be justifiable, and the prediction

problem could be addressed through simpler linear algorithms.

Long Short-Term Memory

A LSTM model was also developed. The model’s layer stack consisted of two

LSTM layers, followed by one output layer. The first LSTM layer contains 50 units,

while the remaining layers contain only 1 each. The stacking of two LSTM layers in

this case, and the increased number of units in the first one, had the purpose of help-

ing the model capture more complex patterns, which may be useful when dealing

with time series with sophisticated dynamics, such as BP. Both LSTM layers make

use of the ReLu activation function and the output layer has a linear activation

function applied. The choice of the ReLu activation function was because it is one

of the most computationally efficient functions, since it does not rely on complex

calculations, and does not cause the vanishing gradient effect. Model compilation

relied on the Adam optimizer function, generally recommended as the default op-

timizer for its fast computation time and few parameters, and mean squared error

loss function, useful in preventing large errors for outlier prediction.

Since LSTMs are vastly used in state of the art studies, this network was de-

veloped as the simple nonlinear model for comparison with the other models.

Jump Neural Network

A JNN model similar to the one proposed in [39] for glucose prediction was

considered. As described in 2.4.2, this network includes both a linear and nonlinear

component in the model. For that, using layers from the mentioned libraries, the

architecture was established through a dense hidden layer with a sigmoid activation

function (nonlinear component), chosen for comparison with the ReLu in LSTM,

that was then concatenated with the input layer. This allows for the input data to be

connected directly to the dense output layer with a linear activation function (jump

connection). The hidden layer was composed of 4 neurons and the output layer of

only 1. The reduction in the number of neurons in the hidden layer, comparatively to

LSTM, was to evaluate how well the complex dynamics of the signal were captured

by the junction of both linear and nonlinear components and if the increased number

of units in the previous model was justifiable. Model compilation relied on Adam

optimizer function and mean squared error loss function, for the reasons previously

described. A detailed description of this network can be found in the Appendix in

[40].

This model is found useful in the present context because, as referred in [39], its
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structure deals with both the linear and nonlinear dynamics of time series signals,

as is the case of BP signals. It will also serve as an alternative nonlinear model that

can be compared to the usual LSTM approach.

Case-Based Reasoning

The developed CBR model is an adaptation of one that has been recently

developed by the research team for predicting the evolution of glucose signals [47].

Given the reliable results achieved with its application to glucose prediction, the

team proposed its further adaptation to BP prediction. As mentioned, this algorithm

can retrieve known cases and propose a solution based on the similarity between

known cases and the new case. Similarity assessment was performed using distance

functions (e.g., euclidean, mahalanobis, cityblock, etc.), and a chosen number of the

most similar cases were retrieved. The prediction results, here referred as solutions,

were proposed through averaging or weighted averaging of the previously existing

solutions of known similar cases.

4.1.4 Model development

Training process was done the same for LR, LSTM and JNN models. A leave-

one-out cross-validation approach was considered by iterating the whole dataset and

selecting one test patient at a time. In each iteration, the rest of the dataset was

used for model training. Data from the various patients in the training dataset was

separated into multiple N -length arrays, being N the number of days used as input,

using a sliding window of size N and step 1. With a defined prediction horizon,

P , two types of prediction were considered: single day prediction, P days after the

input data, and multiple days prediction, in which all values up to P days after

the input were predicted, that is, a P -length array. Regardless of the prediction

type, each N -length input array was associated with a single value output. In the

first case, the correspondent output was the P -th day after the input sequence. For

the second case, the correspondent output was the value measured in the day that

followed the input sequence. Input-output pairs were then used to fit the models.

This data preparation process for a single day prediction, with N = 4 and P = 3 is

pictured in figure 4.1.
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Figure 4.1: Example of the data preparation process for a single day prediction
with N = 4 and P = 3.

A similar data preparation process was used for test patients’ data. That way,

the fitted model used each N -length array available as input for prediction. While

for single day prediction the model only predicted the P -th day measurement value,

for multiple day prediction, the measurement immediately after the input sequence

was predicted and added to the input array to predict the next value, repeating this

process until an array of all P days’ values was obtained. For multiple day prediction,

separate models could have been trained for each day of the prediction horizon to

avoid using predicted values in the prediction of subsequent days. However, the use

of the model that predicts the next day was carried out so that the complexity of

the approach would not increase exponentially, with the creation of up to 9 models

for each test patient. Even if this approach is prone to error accumulation, the

creation of a model for next day prediction will theoretically have greater accuracy

than models created for greater horizons and allow a comparison to be established

with single day prediction. Each predicted value or array was then compared to

the real test data values and multiple evaluation metrics, that will be addressed

later in 4.1.6, were assessed. This process was repeated for all test patients and a

mean value of each evaluation metric was calculated for each (N,P ) pair model, by

averaging of the results obtained from all test patients for the respective metrics.

As for the CBR model, a similar leave-one-out cross-validation approach was

used. In each iteration, test patient’s data was compared to the remaining patients’

data, being the data from the training patients used as the case base knowledge.

This data was divided into (problem, solution) pairs, in which the problem was

constituted by all the data up to a time and its solution by the remaining data,

being the solution length equivalent to the prediction horizon P . The problems

from the test patients were used for comparison with the training problems, and a

solution was proposed for each. As in the previous cases, up to P blood pressure
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values were predicted for each test problem and, by comparison with the real solution

of the respective test patient, the same evaluation metrics mentioned in 4.1.6 were

computed. This process was once again considered for every test patient and the

results represent the mean of each metric.

4.1.5 Hyperparameters tuning

To find the optimal hyperparameter values for the given algorithms, a grid

search technique was applied. The hyperparameters in focus for LR, LSTM and

JNN were both the input size N , and the prediction horizon P . In agreement

with the project partners, given the telemonitoring context of this study, it was

recommended that the input should try to rely on a small amount of data, since

it will depend on manual data entry by the patient, which can lead to inconsistent

measurement frequencies. Also, for the prediction horizon, the goal would be the

prediction of a few days, around a week, after the input since this is a clinically

reasonable horizon for predicting this type of physiological signals. Theoretically,

the model will perform better the larger the amount of input data and the shorter

the prediction horizon. However, under these conditions, there may also be cases

of overfitting. That said, the models were trained for input sizes of N = [4, 6, 8, 10]

days and prediction horizon of P = [3, 5, 7, 9] days, and subsequently evaluated.

In the case of the CBR model, the input size was constant for each predic-

tion horizon, since all the training patients’ data were used as the knowledge base

problems, except for the last P values of each patient, that were the corresponding

solutions in each case. That said, the hyperparameters that were submitted for

tuning were the prediction horizon (in which the same values as before were consid-

ered, P = [3, 5, 7, 9], in a similar approach), the distance metric used for similarity

assessment, the number of similar cases retrieved to propose a solution for a new

problem, and the type of case adaptation by which known solutions are adapted to

propose a solution for a new problem.

4.1.6 Performance evaluation

To assess the models’ performance, the predicted values (x̂) were compared to

the real measurements (x) through four evaluation metrics: Mean Absolute Percent-

age Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error

(RMSE). The choice of these metrics was based on an assessment of the most widely

used in the state of the art for regression problems of the sort.

MAPE is the measure of the average absolute percentage errors, showing the
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accuracy of the prediction in comparison to the actual measurement:

MAPE =
1

p

p∑
j=1

|xj − x̂j|
|xj|

× 100. (4.2)

MAE represents the average of the absolute error and measures the average of

the residuals (difference between the observed and predicted values):

MAE =
1

p

p∑
j=1

|xj − x̂j|. (4.3)

RMSE is the square root of the average of the squared errors between predicted

and real values and computes the standard deviation of residuals:

RMSE =

√∑p
j=1(xj − x̂j)2

p
. (4.4)

In every equation, p represents the number of predicted and, consequently,

real values to be compared. Besides MAPE that is expressed in percentage, the

remaining metrics are expressed in the units of the compared values, i.e., mmHg in

this case. The results of the evaluations are later presented in chapter 5.

4.1.7 Final model

Based on the evaluation of all the developed models, the model with overall

best performance was selected and implemented as the prediction model. The se-

lected model was JNN. The goal was to extend the selected model to a multivariate

setting by incorporating discrete information that may be useful in BP prediction

and implement it in parallel with the recommendation system. For example, as

seen in section 3.3.1, data related to meals and exercise could be associated with

BP variation to improve prediction accuracy. New data variables were supposed to

be extracted from the data collection study performed with the partners at CHUC.

This approach, as well as performance evaluation results and model selection, will

be discussed in the next chapter.

As for the final implementation, previously trained JNN models were saved

to be easily accessible for prediction. Even though some pairs of input size and

prediction horizon displayed better performances, it was accorded that the model

should support various data input sizes and prediction horizons to improve the

flexibility of the application. It was also agreed with the project partners that
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the output of the model should be the prediction of BP for the first, third and

seventh day after input. That said, multiple JNN models were trained for single

day prediction, one per input size and prediction horizon pair, making a total of

24 models, with 8 models trained for each prediction horizon (1, 3 or 7 days),

all supporting input sizes from 3 to 10 days. All the models were saved to be

subsequently loaded into the prediction algorithm, so that it is prepared to receive

the patient’s input data and is able to adjust to its length. The input data and

the remaining parameters all go through a validation process. The aforementioned

methods of the final algorithms for data validation and BP prediction are described

in the API included in the Appendix A of this document.

4.2 Recommendation module

A knowledge-based recommendation system was also developed. The goal of

this system is to evaluate user contextual data and give advice on lifestyle habits

changes that will help control or prevent hypertension, acting in parallel with the

prediction model.

The knowledge basis of the model is founded on a set of rules established through

conditions imposed on patients’ contextual data. These conditions result from an

adaptation of the various guidelines presented in 3.3.1. At this stage, multiple vari-

ables besides BP are needed for background information, such as sex, age, BMI,

waist circumference, SBP and DBP values, HR, daily sodium intake, existing co-

morbidities, and also, for the past 7 days, the daily duration and intensity of aerobic

exercise, the days in which resistance exercise was performed, and daily alcohol con-

sumption. The set of rules established are based on the following guidelines:

• BMI should be maintained between 18.5 and 24.9 kg/m2.

• Waist circumference no higher than 94 cm for men and 80 cm for women.

• Limiting sodium intake to no more than 2g per day.

• Daily practice of no less than 30 min of moderate intensity or 15 min of high

intensity aerobic exercise on at least 5 days a week.

• Resistance training on 2 or more days a week.

• Alcohol consumption should be limited to 2 units daily and 14 weekly for men

or 1.5 daily and 8 weekly for women, with 1 unit representing around 8g of

pure alcohol.

The patient’s input variables will be analyzed according to the conditions de-

scribed above and the system will be able to suggest changes that need to be made

on them. For this purpose, an algorithm that implemented the rules in an if-then for-
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mat was developed and its operation, as well as input data validation, are described

in the API provided in the Appendix B.
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Results and Discussion

In this chapter, the results of the performance evaluation of the models de-

scribed in the previous chapter are presented and discussed. As mentioned, four

models were developed for BP prediction: LR, LSTM, JNN and CBR. Of the four,

the one considered most suitable for use in the present scenario was selected and

implemented in parallel with the recommendation system.

Prediction module

In theory, considering the known properties of the models and the time series

problem at hand, one could assume some aspects of the performances before analyz-

ing the results. Daily BP levels, even when measured at the same time and at the

same conditions every day, are not expected to follow a clear pattern, since BP is

continuously changing and depends on many factors. That said, values may present

abrupt changes as quickly as in a single time step, causing great volatility in evolu-

tion trends, which can be difficult to follow with a linear model. On the contrary,

nonlinear models such as LSTM can capture patterns in the input sequential data

and consider them in the prediction of future values, discarding the need to find

a linear relation between the input and the targets, which is likely to be a more

suitable approach in this case, compared to LR. Furthermore, in this sense, with

the JNN characteristics covered in 2.4.2, there is also the possibility for this model

to further enhance the benefits of LSTM, as it allows a direct and simultaneous

evaluation of both linear and nonlinear dynamics of BP signals.

In general, it is also possible to deduce that single day prediction may produce

lower errors than multiple days prediction, since in the latter case, the prediction of

future values is dependent on the use of previously predicted values, which results in

the accumulation of error as the prediction advances from the first day to the P − th

day. It is also likely that models trained with higher input sizes (N) and lower

prediction horizons (P ) will have better results than pairs with opposite configura-

tions, not only because the increased amount of input data gives more information
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on signal variability, but also because the inconstancy of BP, caused by the multiple

factors that have an influence on it, hinders long term prediction of the variable.

LR, LSTM, and JNN

The results of the performance of the LR, LSTM and JNN for both single and

multiple days prediction are summarized in tables 5.1 and 5.2, respectively.

Table 5.1: Results for single day prediction for the LSTM, JNN and LR models.
N = input size, P = prediction horizon.

MAPE RMSE & MAE

N

P
3 5 7 9 3 5 7 9

LR

4 17.11 13.22 15.45 18.36 19.57 15.14 17.65 20.96

6 12.21 16.85 14.61 21.43 14.00 19.24 16.69 24.47

8 16.37 16.08 16.60 24.64 18.70 18.36 18.97 28.11

10 14.32 19.24 18.82 31.48 16.36 21.98 21.48 35.91

LSTM

4 12.63 9.12 11.97 13.24 14.73 10.29 13.74 14.94

6 6.64 29.53 7.56 11.32 7.75 33.33 8.99 12.64

8 25.06 7.79 12.10 9.46 27.89 9.00 13.35 10.72

10 5.80 7.07 7.40 6.83 6.64 8.28 8.64 7.84

JNN

4 3.87 3.94 4.00 4.14 4.67 4.76 4.82 4.98

6 3.68 3.76 3.93 4.03 4.45 4.55 4.76 4.86

8 3.66 3.74 3.90 4.02 4.42 4.55 4.73 4.88

10 3.64 3.75 3.91 3.98 4.41 4.57 4.75 4.83
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Table 5.2: Results for multiple days prediction for the LSTM, JNN and LR models.
N = input size, P = prediction horizon.

MAPE RMSE MAE

N

P
3 5 7 9 3 5 7 9 3 5 7 9

4 15.89 16.72 16.70 16.65 18.86 19.89 19.90 19.87 18.21 19.15 19.13 19.07

6 16.52 16.94 16.90 16.85 19.54 20.09 20.09 20.06 18.90 19.37 19.32 19.27

8 11.70 12.39 12.69 13.29 14.13 15.02 15.42 16.17 13.42 14.20 14.55 15.23
LR

10 15.00 16.12 16.26 16.63 17.86 19.25 19.44 19.89 17.15 18.41 18.57 19.00

4 11.67 18.94 14.64 14.06 14.26 22.34 17.53 17.47 13.44 20.79 16.44 16.28

6 8.94 11.28 29.19 15.41 10.79 14.21 40.78 19.34 9.98 12.83 29.67 17.37

8 5.84 5.60 5.90 6.54 7.61 7.59 8.06 10.02 6.85 6.59 6.95 8.04
LSTM

10 5.80 164.85 193.7 6.61 7.69 160.85 275.75 9.04 6.96 159.24 196.69 7.80

JNN

4 3.93 4.20 4.19 4.38 5.43 5.97 6.09 6.35 4.72 5.02 5.01 5.20

6 3.64 3.88 4.00 4.09 5.14 5.62 5.87 6.06 4.40 4.66 4.79 4.89

8 3.59 3.68 3.77 3.78 5.08 5.43 5.67 5.78 4.35 4.45 4.56 4.57

10 3.64 3.72 3.71 3.96 5.15 5.50 5.61 5.96 4.40 4.51 4.49 4.76

From the results shown in both tables we can confirm some of the assumptions.

For an instance, in both cases LR is the model with the poorest performance, and

JNN performed best overall. It is also possible to see in some cases that the perfor-

mance improved as the input size increased and worsened as the prediction horizon

increased.

For single day prediction, RMSE presented the same results as MAE, since

in this approach the prediction results consist of only one value, and by analyzing

the equations 4.3 and 4.4, it is easy to see that these are equivalent for single

value comparison. From table 5.1, we see that LR obtained MAPEs between 12.21

and 31.48% and RMSEs or MAEs from 14.00 to 35.91 mmHg, LSTM had values

of MAPE from 5.80 to 29.53% and RMSE or MAE from 6.64 to 33.33 mmHg, and

finally JNN presents MAPEs between 3.64 and 4.14% and RMSEs or MAEs between

4.41 and 4.98 mmHg, being considered the best model for single day prediction.

As for multiple days prediction, LR once again presented the overall worst

performance of the three models, with MAPE ranging from 11.70 to 16.94 %, RMSE

ranging from 14.13 to 20.09 mmHg and MAE ranging from 13.42 to 19.37%. LSTM

performance evaluation resulted in values of MAPE from 5.60 to 193.7 %, RMSE

from 7.59 to 275.75 mmHg and MAE from 6.59 to 196.69 mmHg. At last, JNN

exhibits once more the lowest errors for all evaluation metrics, with MAPE varying

from 3.59 to 4.38%, RMSE from 5.08 to 6.35 mmHg and MAE from 4.35 to 5.20

mmHg.

Especially in the case of LSTM for multiple days prediction, some remarkably

high error values are noticeable, being discrepant with the remaining results. This
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may be due to the LSTM’s propensity for data overfitting. Since LSTM networks

are overly complex and involve multiple parameters, the development of an opti-

mized model requires a cautious hyperparameter tuning. For example, the number

of LSTM neurons is an important parameter that highly influences the predictive

capability of the algorithm. With few units, the model is unlikely to correctly com-

prehend the structure of the data, while with too many units it is prone to overfit-

ting. Also, the use of ReLu activation functions in both LSTM layers in conjunction

with the Adam optimizer function could have been prejudicial to the neural network

performance. The Adam function may suffer from a weight decay problem, since at

each epoch, the function slightly reduces the value of the weights. When considering

a high number of epochs, this decay can be accentuated, leading to the incidence of

negative weights that can introduce negative inputs into the ReLu function, causing

the problem of the dying ReLu, in which the neurons will only output values of 0.

Given the results, we can assume that the chosen parameters for the construction of

the LSTM model is not ideal for some N,P pairs, even though it performed well for

others, and the fragility of the algorithm would probably require an optimization of

its parameters for each case.

CBR

The results obtained by the CBR model are summarized in table 5.3.

Table 5.3: Best results for each prediction horizon for the CBR model. P =
prediction horizon.

P No. retrieved cases Distance Adaptation MAPE RMSE MAE

CBR

3 10 jaccard average 4.15 4.94 6.03

5 10 jaccard average 4.21 4.99 6.24

7 9 cosine average 4.10 4.89 6.13

9 10 cosine weighted average 4.41 5.29 6.80

Presented results are the best ones obtained for each prediction horizon, because

the variation of the multiple hyperparameters resulted in many combinations (the

performance of a total of 264 combinations was evaluated), so it made no sense to

display them all. The complete set of results obtained present MAPEs ranging from

4.10 to 5.82%, RMSEs ranging from 4.89 to 6.91 mmHg and MAE ranging from

5.75 to 8.49 mmHg. Overall, cosine and jaccard distance functions were associated

with the best performances, followed by chebyshev. No relevant difference in results

was noticed for different numbers of retrieved cases or adaptation functions. One

would expect the model to perform better with less retrieved cases and with the
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use of weighted averaging to the detriment of simple averaging. Since cases are

retrieved based on similarity to the case under review and the most similar cases

are retrieved first, an increase in the number of retrieved cases implies the retrieval

of less similar cases. All the retrieved cases are used to propose a solution to the

new case, and using simple averaging causes the less similar cases to have the same

influence as the most similar cases, since all the cases will weigh the same in the

process. This may be pointed as a drawback for the use of the proposed CBR model.

Another drawback of this approach is that it is based primarily on the comparison

of values, which implies that information about the dynamics of the time series is

not considered and outlier predictions are hindered. In addition, it requires the

establishment of a reliable library of known cases before it can be used, making it

very dependent on the existence of data at an early stage of development.

Final remarks and model selection

Focusing on the results for RMSE, a useful metric for evaluation of accuracy

of the models, it can be stated that the overall best performing models have errors

around 5 mmHg or less. Based on what was presented in table 2.1 and state of

the art literature [42, 43, 59], and taking into account the classification intervals of

the categories of SBP and the extent of its values, these results can be considered

satisfactory, allowing the discrimination of different BP states. In terms of MAPE,

a similar opinion can be drawn, since the lower its value, the better the predictive

ability of the model. Given that scores below 4% were obtained, and assuming

that the values of SBP normally range between 100 and 200 mmHg (considering

the scope of normo- and hypertension), these can represent an average difference of

about 4 to 8 mmHg between real and predicted values, being considered satisfactory

for the purpose of this application. On the same note, the MAEs of around 5 mmHg

represent good results, indicating a reduced average error of the residuals.

In agreement with what has been said, the JNN was selected as the best per-

forming model. Even though there may be room for improvement in all the proposed

models, no further parameters were assessed in the models. The goal for this mod-

ule was to build an algorithm capable of predicting the future dynamics of BP, so

it would not be justifiable to implement other models for the same purpose when

the developed JNN proved to be a competent method for all configurations, show-

ing satisfactory results in both single and multiple days prediction for the various

prediction horizons, regardless of the input size.

Visual representation examples of single day prediction using the selected model,

are depicted in figures 5.1 to 5.4. One example is shown for each prediction horizon
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considered, using the JNN models with the best performing input size. The pre-

dicted signals always start at day N + P , since the first N days are used as input

and the first prediction value corresponds to the value of the P − th day after the

input.

Figure 5.1: Visual representation of single day prediction results for patient 26
using JNN model with N = 10 and P = 3.

Figure 5.2: Visual representation of single day prediction results for patient 15
using JNN model with N = 8 and P = 5.
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Figure 5.3: Visual representation of single day prediction results for patient 2 using
JNN model with N = 8 and P = 7.

Figure 5.4: Visual representation of single day prediction results for patient 19
using JNN model with N = 10 and P = 9.

For multiple days prediction, graphs of the results are not presented in the same

way, since each prediction step results in P values, which would lead to an overlap of

values for the same days in the plot. However, example predictions of the P values,

using the best performing multiple days JNN models for each prediction horizon are
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presented in figures 5.5 to 5.8.

Figure 5.5: Visual representation of multiple days prediction results for patient 4
using JNN model with N = 8 and P = 3.

Figure 5.6: Visual representation of multiple days prediction results for patient 23
using JNN model with N = 8 and P = 5.
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Figure 5.7: Visual representation of multiple days prediction results for patient 24
using JNN model with N = 10 and P = 7.

Figure 5.8: Visual representation of multiple days prediction results for patient 16
using JNN model with N = 8 and P = 9.

As seen in the figures, even if the predictions are not completely accurate, it

is possible to verify that the predicted signal is able to approximately follow the

evolution trends of the original signal.

Despite also achieving a satisfactory performance in multi-day prediction, with
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errors only slightly larger than the alternative, the single day prediction was chosen

to meet the agreed output values for the first, third and seventh day after input.

This could also have be achieved by a continuous multiple days prediction for the

span of a week but since these are three individual single day approaches, it is not

justified to follow that course of actions, knowing that it implies the prediction

of values that are not necessary and may introduce accumulation of error in the

process, decreasing the predictive accuracy.

The presented results can be considered reliable outcomes for the purpose study,

given that the models only consider BP values. When it comes to the real application

of the model, due to the complexity of the problem, further analysis is required. It

is believed that the inclusion of other variables (e.g., related to meals and exercise)

that are known to influence this physiological signal could benefit BP prediction

and improve the overall accuracy of the model. For this, approaches similar to

those described in some of the state of the art studies for treatment and inclusion

of contextual data in the models could be considered.
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Recommendation module

As for the recommendation model, the rules formed from the guidelines sum-

marized in section 4.2 are schematized in table 5.4.

Table 5.4: Set of rules established using the available clinical guidelines. M =
Male; F = Female

Rule ID Input variables Condition Recommendation

R01 BMI BMI < 18.5 kg/m2 INCREASE BMI

R02 BMI BMI ≥ 25 kg/m2 DECREASE BMI

R03
Sex;

Waist circumference

Sex = M and

waist circumference ≥ 94 cm

DECREASE

waist circumference

R04
Sex;

Waist circumference

Sex = F and

waist circumference ≥ 80 cm

DECREASE

waist circumference

R05
Daily duration of aerobic

exercise over the past week

Total weekly aerobic exercise

duration ≤ 150 min

INCREASE daily aerobic

exercise duration

R06
Daily duration of aerobic

exercise over the past week

Daily aerobic duration = 0 min

on 2 or more days

INCREASE daily aerobic

exercise frequency

R07
Frequency of resistance

exercise over the past week

Weekly frequency of resistance

exercise < 2 days

INCREASE weekly resistance

exercise frequency

R08 Daily sodium intake Daily sodium intake > 2g
DESCREASE daily

sodium intake

R09
Sex; Alcohol consumption

over the past week

Sex = M and weekly alcohol

consumption > 14 units

DECREASE weekly

alcohol consumption

R10
Sex; Alcohol consumption

over the past week

Sex = F and weekly alcohol

consumption > 8 units

DECREASE weekly

alcohol consumption

R11
Sex; Alcohol consumption

over the past week

Sex = M and daily alcohol

consumption > 2 units

DECREASE daily

alcohol consumption

R12
Sex; Alcohol consumption

over the past week

Sex = F and daily alcohol

consumption > 1.5 units

DECREASE daily

alcohol consumption

Rules from R01 to R04 recommend changes in BMI and waist circumference.

Although the considered guidelines do not mention effective methods to directly

reduce/increase these factors, they are both known to be related to body weight.

Therefore, changes that influence body weight, such as physical exercise and diet, are

expected to alter BMI and waist circumference. This way, the patient can be guided

to follow the mentioned dietary and exercise recommendations for that purpose.

For better understanding of rules R05 to R07, some remarks need to be made.

In rule R05, given the indication from the guidelines that patients should incur

in 30 min of moderate intensity or 15 min of high intensity aerobic exercise daily,

having information about daily exercise duration and intensity, the model assumes

that the duration of high intensity training will weigh twice as much as moderate

intensity training. Thus, a total of at least 150 min per week should be performed.
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In rule R06, the same inputs as in the previous rule will be analyzed to see if the

patient practiced the recommended duration of aerobic exercise on at least 5 days a

week. Rule R07 only considers the recommendation that resistance exercise should

be practiced at least 2 days a week, with no information about its duration or

intensity.

There are other variables that are known to be related to variations in BP but

have not been included in the rules due to lack of information regarding their direct

influence on BP in the guidelines, that would allow conditions based on them to

be established. For example, the user’s existing comorbidities are a crucial factor

to take into consideration, since recommendations that are beneficial in controlling

hypertension may be detrimental for patients suffering simultaneously from other

complications. That said, this set of rules was just a prototype built using only

the available guidelines, with the intention of being presented to project partners at

CHUC to be improved. Knowledge-based recommendation systems to be applied in

clinical domain require high quality knowledge bases and, in this context, the support

of health professionals with solid knowledge about chronic disease management and

patient monitoring is helpful. Nevertheless, an initial version of a recommendation

system was developed, as mentioned before. An example of the generation of a

personalized recommendation according to one of the rules is shown below:

Example: if (sex == ’F’ and weeklyAlcoholConsumption > 14) or (sex ==

’M’ and weeklyAlcoholConsumption > 8) then Recommendation (Decrease weekly

alcohol consumption: total weekly alcohol consumption should be limited to 14 and

8 units for men and women, respectively, with one unit corresponding to around 8g

alcohol.)

For the reasons described above, there are no further results to present for this

module. A possible approach for the evaluation of such system would be to compare

recommendations generated by the algorithm with recommendations suggested by

a qualified health professional, to verify the relevance of the produced recommenda-

tions for a given set of input data.
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Conclusion and Future work

The present study introduces the development of a blood pressure prediction

model and a lifestyle recommendation system to be included in a remote monitoring

solution for the management of patients with hypertension.

For the prediction of blood pressure, four models, both linear and nonlinear,

were developed and evaluated for different settings of input data and prediction

horizons. Despite the dynamic characteristics of the time variable in question, the

achievement of models with satisfactory performances proved the feasibility of this

approach and the potential of its application in clinical settings. A JNN model was

selected as the best performing algorithm, with the results suggesting a reasonable

prediction of blood pressure evolution trends and an overall outperformance over

models presented in the literature.

Regarding the recommendation system, an initial set of rules has been devel-

oped based on clinical practice guidelines from globally recognized institutions and

societies specialized in hypertension. An initial version of a knowledge-based rec-

ommendation system was implemented using an if-then conditions set. The system

ultimately outputs a series of recommendations that encourage changes in lifestyle

habits according to the comparison of the patient’s contextual data with the previ-

ously established rules.

The main limitation in this study was the lack of easily accessible and reliable

databases, with a vast amount of not only temporal data related to the necessary

physiological factors but also of discrete contextual data that would allow the for-

mation of a background on the patient’s condition, for a better understanding of

the evolution tendencies of the time series signal under evaluation.

For the prediction algorithm, the provision of contextual data will enable the use

of collected data regarding factors that influence BP variation to form new features

to be considered in the process (e.g., weight and discrete information related to ex-

ercise and meals), and permit the extension of the selected model to a multivariable

setting. This could be a valuable addition to the prediction model, allowing a better
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capture of blood pressure dynamics and consequently a more accurate prediction

and improved model performance.

In the case of the recommendation system, collaboration with healthcare pro-

fessionals at CHUC will provide qualified insight into the influence of various phys-

iological and lifestyle factors on blood pressure variations, thus permitting the im-

provement of the proposed rules and obtaining new rules to further extend the

knowledge-based recommendation system.

In the future, a clinical data collection study will be initiated in collaboration

with the partners at CHUC and Altice Labs, to complement data currently available

to the team on private databases, which will allow the validation and improvement of

the already developed modules and its posterior implementation in Altice’s SmartAL

telemonitoring platform for hypertension management.
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predict_bp 

predict_bp(patient_input, pred_horizon) 
Retorna um um array de tamanho 3. Quando os parâmetros são inválidos o 
array atribui todos os valores -1. Quando os parâmetros se encontram válidos 
o array é representado na primeira posição pelo valor da previsão 
correspondente a 1 dia após o último valor de input, na segunda posição o 
valor da previsão correspondente a 3 dias após o último valor de input e na 
última posição o valor da previsão correspondente a 7 dias após o último 
valor de input. 

 
Parameters 
 

patient_input : array_like 
Array com dados de input. 1 valor de pressão arterial sistólica 
por dia. 3 a 10 valores, que devem ser inteiros ou float. 

 
pred_horizon: None or int 

O argumento do horizonte de previsão pode estar vazio (None) 
ou pode ser um número inteiro: 1, 3 ou 7 (correspondente a 1 
dia, 3 dias ou 7 dias). 

 

Returns 
 

predictions: array_like  
Array de tamanho 3, contendo as previsões de 1, 3 e 7 dias, 
respetivamente. Os valores vêm preenchidos a -1 sempre que 
não for pedido esse horizonte ou em caso de pedido inválido. 

 
error_code : int 

Inteiro indicador da validade dos inputs (ver tabela da função 
validate_bp_prediction_data). 

Notes: 

 Dados introduzidos inválidos (verificado através da função 
validate_bp_prediction_data): predictions = [-1, -1, -1]. 

Dados introduzidos válidos: modelo de JNN previamente 
treinado efetua a previsão: independentemente do tamanho do 
array de entrada, predictions é um array de tamanho 3, sendo 
o primeiro valor a previsão correspondente ao primeiro dia após 
o input, o segundo valor a previsão correspondente ao terceiro 
dia após o input e o último valor a previsão correspondente ao 
sétimo dia após o input. 
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Examples: 

>>> predictions, error_code = predict_bp([151, 

98, '40'], None) 

[-1, -1, -1], 202 

>>> predictions, error_code = predict_bp([151, 

98, 40], 3) 

[0, 100.02143, 0], 0 
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validate_bp_prediction_data 

validate_bp_prediction_data(patient_input, pred_horizon)  
Avalia a validade dos inputs da função predict_bp, tanto o array de dados 
como a indicação do horizonte de previsão são avaliados. Valores fora da 
gama admissível são balizados e missing values são resolvidos, quando 
possível. Em casos de demasiados missing values, horizontes de predição 
inválidos, ou outros erros descritos na tabela, a função retorna o valor de 
error_code consoante o código de erro que discrimina a situação. 

Parameters 
 

patient_input: array_like 
Array com dados de input. 1 valor de pressão arterial sistólica 
por dia. 3 a 10 valores, que devem ser inteiros ou float. 

   
 pred_horizon : int or None 

O argumento do horizonte de previsão pode estar vazio (None) 
ou pode ser um número inteiro: 1, 3 ou 7 (correspondente a 1 
dia, 3 dias ou 7 dias). 

    

Returns 
 

error_code : int 
Inteiro indicador da validade dos inputs (ver Tabela 3). 
 

patient_input: array_like 
Array de entrada com as alterações efetuadas (caso aplicável). 

Notes 

O input é válido se cumprir todas as seguintes condições presentes 
na Tabela 3. 

Parâmetro error_code Significado 

- 0 Todos os dados introduzidos estão válidos. 

pred_horizon 101 
pred_horizon não corresponde a uma das 

opções válidas (None, 1, 3 ou 7). 

patient_input 

201 Os dados de entrada contêm NaN. 

202 
Tipos de valor inválidos nos dados de entrada 

(válidos: int e float). 

203 Tamanho do input inferior a 3 ou superior a 10 

 
Tabela 3 – Códigos de erro e respetivas descrições. 

78



 

 

Examples 

>>> error_code, patient_data = 

validate_bp_prediction_data([151, 512, '40'], 

None) 

202, [151, 512, '40'] 

>>> error_code, patient_data = 

validate_bp_prediction_data([151, 512, 40], 

None) 

0, [151, 200, 50] 
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recommendations_bp 

recommendations_bp (sex, age, BMI, waistCircumference, dateTime, 
SBP_DBP, heartRate, aerobicExerciseWeeklyDuration, 
aerobicExerciseWeeklyIntensity, resistanceExerciseWeekly, 
sodiumDaily, alcoholWeekly, comorbidities) 

Retorna um array de tamanho 8. Quando os parâmetros são inválidos, o 
array atribui todos os valores -1. Quando os parâmetros se encontram 
válidos, o array é representado pelos valores 1, 2 e 3 (correspondentes a 
diminuir, manter e aumentar, respetivamente) em todas as posições, sendo 
as posições, por ordem, correspondentes às recomendações relativas a: 
índice de massa corporal (IMC), circunferência da cintura, duração semanal 
de exercício aeróbico, frequência semanal de exercício aeróbico, exercício 
de resistência semanal, ingestão diária de sódio, consumo semanal de álcool 
e consumo diário de álcool. 

 
Parameters 
 

sex: string 
 String referente ao sexo do utilizador. Deve ser inserido ‘M’ 
para masculino e ‘F’ para feminino. 

 
age: int 

Inteiro positivo maior que zero referente à idade do utilizador. 
 
BMI: float 

Float referente ao índice de massa corporal do utilizador, 
expresso em kg/m2. 

 
waistCircumference: int 

Inteiro referente à medição da circunferência de cintura do 
utilizador. 

 
dateTime: string 

String com informação acerca da data e hora da introdução das 
medições. Deve estar no formato "dd-mm-YYYY HH:MM". 

 
SBP_DBP: string 

String referente à medição da pressão arterial sistólica e 
diastólica do utilizador. Deve conter 2 inteiros, separados por 
‘/’, o primeiro referente à pressão sistólica e o segundo à 
pressão diastólica. 

 
heartRate: int 

Inteiro referente à medição da frequência cardíaca do paciente, 
em bpm (batimentos por minuto). 
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aerobicExerciseWeeklyDuration: array_like 
Array composto por 7 inteiros maiores ou iguais que zero, em 
que cada posição corresponde à duração (min) de exercício 
físico aeróbico realizado em cada dia, para os últimos 7 dias. 

 
aerobicExerciseWeeklyIntensity: array_like 

Array composto por 7 inteiros, em que cada posição 
corresponde à intensidade do exercício físico aeróbico 
realizado em cada dia, para os últimos 7 dias. Os inteiros que 
constituem o array podem tomar três valores: 1 – moderada 
intensidade; 2 – alta intensidade; ou 0 – não foi efetuado 
exercício aeróbico. 

 
resistanceExerciseWeekly: array_like 

Array composto por 7 inteiros, em que cada posição 
corresponde à realização de exercício físico de resistência em 
cada dia, para os últimos 7 dias. Os inteiros que constituem o 
array podem tomar dois valores: 1 – realizou exercício físico de 
resistência; ou 0 – não foi efetuado exercício de resistência. 
 

sodiumDaily: float 
Float indicativo da quantidade de sódio ingerida no presente 
dia, em gramas. 

 
alcoholWeekly: array_like 

Array composto por 7 inteiros, em que cada posição 
corresponde ao consumo diário de álcool, para os últimos 7 
dias. Cada elemento deve corresponder ao número de bebidas 
ingeridas (1 bebida = 125mL de vinho ou 250mL de cerveja). 

 
comorbidities: string ou None 

String referente às comorbidades do paciente. Caso não se 
aplique, pode estar vazio (None). 

 

 

Returns 
 

recommendations: array_like  
Array composto por 8 inteiros, em que cada posição 
corresponde à recomendação resultante da avaliação dos 
parâmetros de input. As recomendações correspondem a, por 
ordem: IMC, circunferência da cintura, duração semanal de 
exercício aeróbico, frequência semanal de exercício aeróbico, 
exercício de resistência semanal, ingestão diária de sódio, 
consumo semanal de álcool e consumo diário de álcool.  
 
 

error_code : int 
Inteiro indicador da validade dos inputs (ver tabela da função 
validate_bp_recommendation_data). 
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Notes: 

Condições dos parâmetros de input para cada regra (R01 – R12) são 
apresentados na Tabela 5. Alguns parâmetros de input não são 
apresentados nas tabelas porque não condicionam nenhuma regra. O 
parâmetro dailyAerobicDuration presente nas regras R05 a R06 resulta da 
multiplicação dos elementos em cada posição de 
aerobicExerciseWeeklyDuration com os respetivos elementos de 
aerobicExerciseWeeklyIntensity. 

A Tabela 6 apresenta os resultados das recomendações de cada parâmetro 
de saída conforme as condições dos parâmetros dos parâmetros de input 
para cada regra (R01 – R12), apresentados na tabela anterior. 

Examples: 

Dados introduzidos inválidos (verificado através da função 
validate_bp_recommendation_data): recommendations = [-1, -1, -1, -
1, -1, -1, -1, -1]. 

Dados introduzidos válidos: independentemente dos dados de 
entrada, recommendations é um array de tamanho 8. Quando os 
parâmetros se encontram válidos, o array é representado pelos 
valores 1, 2 e 3 (correspondentes a diminuir, manter e aumentar 
determinada ação, respetivamente). 

>>> recommendations, error_code = 

recommendations_bp(‘F’, 25, 18, 70, ‘16-08-

2022 17:42’, ‘138/70’, 60, [0, 0, 5, 15, 10, 

25, 30], [0, 0, 2, 2, 2, 2, 1], [1, 1, 0, 0, 

0, 0, 0], 1.5, [1, 2, 1, 1, 0, 0, 1], None) 

[3, 2, 3, 2, 2, 2, 2, 1], 0 
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Rule 
ID 

sex BMI waistCircumference dailyAerobicDuration resistanceExerciseWeekly sodiumDaily alcoholWeekly 

R01   < 18.5           

R02   >= 25           

R03 M   >= 94         

R04 F   >= 80         

R05       
sum(dailyAerobicDuration)  

< 150 
      

R06       
dailyAerobicDuration 

.count(0) > 2 
      

R07         
sum(resistanceExerciseWeekly) 

< 2  
    

R08           >= 2   

R09 M           
sum(alcoholWeekly)[0]  

> 14 

R10 F           
sum(alcoholWeekly)[0]  

> 8 

R11 M           
any(x[0] > 2 for x in 

alcoholWeekly) 

R12 F           
any(x[0] > 1.5 for x in 

alcoholWeekly) 

Tabela 5 - Condições dos parâmetros de input para cada regra (R01 – R12). 
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Rule ID BMI waistCircumference aerobicExerciseWeeklyDuration aerobicExerciseWeeklyFreq resistanceExerciseWeekly sodiumDaily alcoholWeekly alcoholDaily 

R01 3        

R02 1        

R03  1       

R04  1       

R05   3      

R06    3     

R07     3    

R08      1   

R09       1  

R10       1  

R11        1 

R12        1 

Tabela 6 - Resultados das recomendações de cada parâmetro de saída conforme as condições dos parâmetros dos parâmetros de input para cada regra (R01 – R12). 
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validate_bp_recommendation_data 

validate_bp_recommendation_data (sex, age, BMI, waistCircumference, 
dateTime, SBP_DBP, heartRate, aerobicExerciseWeeklyDuration, 
aerobicExerciseWeeklyIntensity, resistanceExerciseWeekly, 
sodiumDaily, alcoholWeekly, comorbidities) 

 
Avalia a validade dos inputs da função recommendations_bp. Em casos de 
inputs inválidos, dependendo das condições de cada parâmetro, ou outros 
erros descritos na tabela, a função retorna o valor de error_code consoante 
o código de erro que discrimina a situação. 

Parameters 
 

sex: string 
 String referente ao sexo do utilizador. Deve ser inserido ‘M’ 
para masculino e ‘F’ para feminino. 

 
age: int 

Inteiro positivo maior que zero referente à idade do utilizador. 
 
BMI: float 

Float referente ao índice de massa corporal do utilizador, 
expresso em kg/m2. 

 
waistCircumference: int 

Inteiro referente à medição da circunferência de cintura do 
utilizador. 

 
dateTime: string 

String com informação acerca da data e hora da introdução das 
medições. Deve estar no formato "dd-mm-YYYY HH:MM". 

 
SBP_DBP: string 

String referente à medição da pressão arterial sistólica e 
diastólica do utilizador. Deve conter 2 inteiros, separados por 
‘/’, o primeiro referente à pressão sistólica e o segundo à 
pressão diastólica. 

 
heartRate: int 

Inteiro referente à medição da frequência cardíaca do paciente, 
em bpm (batimentos por minuto). 

 
aerobicExerciseWeeklyDuration: array_like 

Array composto por 7 inteiros maiores ou iguais que zero, em 
que cada posição corresponde à duração (min) de exercício 
físico aeróbico realizado em cada dia, para os últimos 7 dias. 

 
aerobicExerciseWeeklyIntensity: array_like 
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Array composto por 7 inteiros, em que cada posição 
corresponde à intensidade do exercício físico aeróbico 
realizado em cada dia, para os últimos 7 dias. Os inteiros que 
constituem o array podem tomar três valores: 1 – moderada 
intensidade; 2 – alta intensidade; ou 0 – não foi efetuado 
exercício aeróbico. 

 
resistanceExerciseWeekly: array_like 

Array composto por 7 inteiros, em que cada posição 
corresponde à realização de exercício físico de resistência em 
cada dia, para os últimos 7 dias. Os inteiros que constituem o 
array podem tomar dois valores: 1 – realizou exercício físico de 
resistência; ou 0 – não foi efetuado exercício de resistência. 
 

sodiumDaily: float 
Float indicativo da quantidade de sódio ingerida no presente 
dia, em gramas. 

 
alcoholWeekly: array_like 

Array composto por 7 inteiros, em que cada posição 
corresponde ao consumo diário de álcool, para os últimos 7 
dias. Cada elemento deve corresponder ao número de bebidas 
ingeridas (1 bebida = 125mL de vinho ou 250mL de cerveja). 

 
comorbidities: string ou None 

String referente às comorbidades do paciente. Caso não se 
aplique, pode estar vazio (None). 

    

Returns 
 

error_code : int 
Inteiro indicador da validade dos inputs (ver Tabela 9). 
 

bp_category: string 
String referente à categoria de pressão arterial atribuída 
consoante os níveis de pressão arterial do utilizador, segundo 
a classificação presente em [1]. Pode ser: ‘OPTIMAL', 
'NORMAL', 'HIGH NORMAL', 'GRADE 1 HYPERTENSION', 
'GRADE 2 HYPERTENSION', 'GRADE 3 HYPERTENSION'. 
Caso exista algum erro nos inputs, devolve -1. 
 

sbp: int 
Inteiro referente à pressão arterial sistólica do utilizador, aferido 
a partir do parâmetro de input sbp_dbp. Caso exista algum erro 
no input, devolve -1. 

 
dbp: int 

Inteiro referente à pressão arterial diastólica do utilizador, 
aferido a partir do parâmetro de input sbp_dbp. 

 
dateTime: timestamp 
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Timestamp referente à data e hora da introdução das 
informações do utilizador, aferido a partir da string de input 
dateTime. 

Notes 

O input é válido se cumprir todas as seguintes condições presentes 
na tabela 9. 

Parâmetro error_code Significado 

- 0 
Todos os dados introduzidos estão 

válidos. 

sex  10 
sex deve ser uma string: ‘M’ – 
Masculino ou ‘F’ - Feminino 

age 20 age deve ser um inteiro maior que 0 

BMI 31 BMI deve ser um float maior que 12.0 

waistCircumference 32 waistCircumference deve ser um float  

dateTime  40 
dateTime deve ser uma string que 

indica a data e hora no formato 
'dd/mm/yyyy HH:MM'  

SBP_DBP 50 

SBP_DBP deve ser uma string 
composta por 2 inteiros separados 

por ‘/’, que indicam o valor da 
medição de pressão sistólica e 

diastólica, respetivamente ('SBP/DBP' 
em mmHg) 

heartRate 60 
heartRate deve ser um inteiro 
positive, relative à medição da 

frequência cardíaca (bpm) 

aerobicExerciseWeeklyDuration 70 

aerobicExerciseWeeklyDuration deve 
ser list ou array composta por 7 

inteiros maior ou iguais a 0, com a 
duração diária (min) de exercício 

aeróbico ao longo da última semana 

aerobicExerciseWeeklyIntensity 71 

aerobicExerciseWeeklyIntensity deve 
ser list ou array composta por 7 

inteiros, com a intensidade diária (1 - 
moderada, 2 - alta ou 0 – não 

realizado) de exercício aeróbico ao 
longo da última semana  

resistanceExerciseWeekly 72 

resistanceExerciseWeekly deve ser 
list ou array composta por 7 inteiros, 

com a realização diária (1 - realizado, 
0 - não realizado) de exercício de 

resistência ao longo da última 
semana   

sodiumDaily 80 
sodiumDaily deve ser um float maior 
ou igual que 0, indicative do consumo 

de sódio nesse dia (g) 

alcoholWeekly 90 

alcoholWeekly deve ser list ou array 
composta por 7 inteiros, com o 

consumo diário de álcool ao longo da 
última semana, em unidades de 
bebidas (1 unidade = 125 mL de 
cerveja ou 250 mL de vinho, que 

corresponde a cerca de 8g de álcool) 
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comorbidities 100 

comorbidities string com as doenças 
existentes do paciente, separadas por 

virgula, ou None, se não se aplicar 
(‘hipertensão, diabetes, obesidade, 

dislipidemia’) 

 

Examples 

>>> validate_bp_recommendation_data (‘F’, 25, 

18, 70, ‘16-08-2022 17:42’, ‘138/70’, 60, [0, 

0, 5, 15, 10, 25, 30], [0, 0, 2, 2, 2, 2, 1], 

[1, 1, 0, 0, 0, 0, 0], 1.5, [1, 2, 1, 1, 0, 0, 

1], None) 

0, ‘HIGH NORMAL’, 138, 70, 

datetime.datetime(2022, 8, 16, 17, 42) 

 

[1] Williams, B., Mancia, G., Spiering, W., Agabiti Rosei, E., Azizi, M., Burnier, M., … 
Dominiczak, A. (2018). 2018 ESC/ESH Guidelines for the management of arterial 
hypertension. European Heart Journal. doi:10.1093/eurheartj/ehy33 

 

 

 

 

 

 

 

 

 

Tabela 9 – Códigos de erro e respetivas descrições. 
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