

Henrique Miguel Simões Silva

FAIRNESS CENTRED FRAMEWORK FOR
THE ONOS SDN CONTROLLER

Dissertation in the context of the Master in Informatics Engineering, specialisation in
Software Engineering and Communications, Services and Infrastructure, advised by

Professor Bruno Sousa, co-advised by Researcher Noé Godinho and presented to the
Department of Informatics Engineering of the Faculty of Sciences and Technology of

the University of Coimbra

September of 2022

DEPARTMENT OF INFORMATICS ENGINEERING

Henrique Miguel Simões Silva

Fairness Centred Framework for
the ONOS SDN Controller

Dissertation in the context of the Master in Informatics Engineering,
specialisation in Software Engineering and Communications, Services and

Infrastructure, advised by Prof. Bruno Sousa, co-advised by Researcher Noé
Godinho and presented to the Department of Informatics Engineering of the

Faculty of Sciences and Technology of the University of Coimbra.

September 2022

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Henrique Miguel Simões Silva

Plataforma Focada em Fairness
para o Controlador SDN ONOS

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software e Comunicações, Serviços e Infraestruturas,

orientada pelo Professor Doutor Bruno Sousa, co-orientada pelo Investigador
Noé Godinho e apresentada ao Departamento de Engenharia Informática da

Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

setembro 2022

The work presented in this dissertation was carried out within the Laboratory of
Communications and Telematics (LCT) group of the Centre for Informatics and
Systems of the University of Coimbra (CISUC) in the context of the following
projects:

• MH-SDVANET: Multihomed Software Defined Vehicular Networks. FCT
(CMU-PT) PTDC/EEI-COM/5284/2020.

This work has been supervised by Professor Bruno Sousa, Assistant Professor at
the Department of Informatics Engineering of the Faculty of Sciences and Tech-
nology of the University of Coimbra.

vii

Acknowledgements

The presented work wouldn’t be possible without the effort and support of many
individuals. Thus, I would like to take the time to thank everyone that helped me
during the dissertation period and allowed me to conclude this project.

First and foremost, I would like to thank my advisor, Professor Bruno Sousa, for
providing me with another opportunity to work with him. For his patience when
I encountered unexpected problems or made silly mistakes, for his awareness
and comprehension of the inevitability of these situations, and for his guidance
and availability to resolve each roadblock. It is truly an understatement that this
work wouldn’t be possible without professor Bruno’s support.

Also, I would like to thank my lab colleague, Noé Godinho, that kept my motiva-
tion high and gave me valuable advice, avoiding me from becoming sidetracked.

Furthermore, I would like to thank my bachelor’s and master’s colleagues, Carlos
Santos, Francisco Guerra, João Maruesdos, Paulo Gonçalves, Pedro Almeida, and
Miguel Teixeira, for listening to my concerns and for making me realise that they
were also struggling with similar problems.

Finally, a special thanks to my family and to Rita. Although they don’t fully grasp
the subject of this work, have always supported my endeavours.

ix

Abstract

In the last years, internet activity has exploded in use. Migration of services
to the cloud and emerging new use cases increased the number of users and
brought more network traffic with heavier loads. Management and optimisa-
tion activities became imperative to assure the quality of experience of users in
such information-clogged networks. The SDN paradigm can facilitate the life
of network administrators regarding network management and optimisation by
presenting the whole network as a programmable entity.

The evolution of SDN technologies brought more options to build and orchestrate
networks but also increased the complexity of solutions, raising the knowledge
barrier for new network administrators. Furthermore, management challenges
start to build up when we consider recent network trends, e.g. mesh connections,
battery-powered devices, used to help increase the reliability or computational
efficiency of devices, but that are arduous to manage properly.

To combat this, we reviewed orchestration platforms in the literature and re-
searched common management activities to develop a management and optimi-
sation framework for the ONOS SDN controller with helpful forwarding mecha-
nisms.

Our intent is to close the gap between the complex technological stack and net-
work administrators. By maintaining a collection of forwarding algorithms in the
framework, users can simply choose the more adequate to use to steer network
behaviour in the desired way. To provide an answer for trendy network features,
that are difficult to manage, we also propose a novel service fairness mechanism
that considers service delay, energy consumption and loss probability.

We aim for our framework to be compatible with wireless scenarios so it can be
deployed in emerging 5G. The results achieved in the evaluation of the proposed
framework supporting different algorithms reveal good performance indicators
of the framework to tackle complex topologies, close to real networks. This docu-
ment serves the purpose of compiling our research, as well as the main decisions
and implementation steps that lead to the target framework.

Keywords

SDN Management, ONOS Framework, Wireless Networks, Fairness

xi

Resumo

Nos últimos anos, atividades que ocorrem na internet explodiram em uso. A mi-
gração de serviços para a nuvem e novos casos de uso emergentes aumentaram o
número de utilizadores e trouxeram mais tráfego para as redes com cargas ainda
mais pesadas. Atividades de gestão e otimização tornaram-se imprescindíveis
para garantir a qualidade da experiência dos utilizadores em redes tão conges-
tionadas. O paradigma de redes definidas por software (Software Defined Networks,
SDN) pode facilitar a vida dos administradores de rede no que diz respeito à sua
gestão e otimização, apresentando toda a rede como uma entidade programável.

A evolução das tecnologias SDN trouxe mais opções para construir e orquestrar
redes, mas também aumenta constantemente a barreira de conhecimento para os
administradores de rede. Além disso, os desafios de gerenciamento começam
a acumular-se quando consideramos tendências recentes, por exemplo conexões
mesh ou dispositivos alimentados por bateria, usados para ajudar a aumentar a
confiabilidade ou eficiência computacional dos dispositivos, mas que são difíceis
de gerir adequadamente.

Para combater isso, revemos as plataformas de orquestração na literatura e
pesquisamos atividades comuns de gerenciamento para desenvolver uma estru-
tura de gestão e otimização para o controlador SDN ONOS com mecanismos de
encaminhamento úteis.

A nossa intenção é facilitar a interação entre a complexa pilha tecnológica e os
administradores de rede. Ao manter uma coleção de algoritmos de encamin-
hamento na nossa estrutura, os utilizadores podem simplesmente escolher o mais
adequado para orientar o comportamento da rede segundo a maneira pretendida.
Para dar resposta às novas propriedades de redes modernas, que são difíceis de
gerenciar, também propomos um novo mecanismo de justiça entre serviços que
considera atraso do serviço, consumo de energia e probabilidade de perda.

O nosso objetivo é que a nossa estrutura seja compatível com cenários sem fio
para que possa ser implantada em ambientes 5G. A avaliação da framework,
com suporte para diversos algoritmos, revela que a mesma consegue suportar
de forma satisfatória topologias complexas, baseadas em redes de cenários real-
istas. Este documento serve o propósito de compilar a nossa pesquisa, bem como
as principais decisões e etapas de implementação que levam à estrutura alvo.

Palavras-Chave

Gestão de redes SDN, Plataforma para ONOS, Redes sem fios, Justiça entre Serviços

xiii

Contents

1 Introduction 1
1.1 Main Objectives . 4
1.2 Contributions . 4
1.3 Document Structure . 5

2 Background 7
2.1 Software Defined Networking . 7

2.1.1 Traditional Networking Paradigm 7
2.1.2 SDN Paradigm . 8
2.1.3 SDN controllers . 11
2.1.4 Comparison . 17

2.2 SDN Related Protocols . 19
2.2.1 Openflow . 19
2.2.2 Data plane programming and P4 21
2.2.3 Other Protocols and Languages 22

2.3 Network emulation . 23
2.3.1 Mininet . 23
2.3.2 Mininet-WiFi . 24

2.4 Traditional Monitoring Protocols . 24

3 Research Projects & Related Work 27
3.1 Ongoing projects . 27

3.1.1 SNOB-5G . 27
3.1.2 MH-SDVANET . 29

3.2 Related SDN European projects . 31
3.3 Management solutions for SDN . 31

3.3.1 Summary . 33

4 Research Objectives & Approach 35
4.1 Objectives . 35
4.2 Approach . 37

4.2.1 Research and Development Methodology 37
4.2.2 Planning . 38
4.2.3 Issues and Readjustments . 41
4.2.4 Risks . 44

5 Requirements Elicitation 47
5.1 Management Activities . 47
5.2 Functional Requirements . 49

xv

Chapter 0

5.2.1 Use Case Diagrams & User Stories 50
5.3 Non Functional Requirements . 61
5.4 Design and Technical Restrictions . 61
5.5 Requirement Listing . 62

5.5.1 Requirement Fulfilment Analysis 69

6 Project Architecture 71
6.1 C4 Model . 71
6.2 Architectural Artefacts . 73

7 Framework Development 79
7.1 Permanent Storage . 79

7.1.1 Database Schema . 79
7.1.2 Metrics collector . 81

7.2 Web Server . 82
7.3 Forwarding Mechanisms . 84

7.3.1 Custom Fairness algorithm 85
7.3.2 K-shortest ONOS algorithm 88

7.4 Potentially Interesting Features . 88

8 SDN Experimental Scenario & Algorithm Results 91
8.1 Experimental Environment . 91

8.1.1 Problems with Mininet-Wifi 96
8.1.2 Mininet Environment . 97
8.1.3 Generate Traffic . 98
8.1.4 Energy Formulas . 99

8.2 Experiences & Results . 99
8.2.1 Heuristic Validation . 102
8.2.2 Partial Inter Cluster . 102
8.2.3 Full Inter Cluster . 106
8.2.4 Intra Cluster . 112

8.3 Discussion . 115

9 Feature Testing & Validation 117
9.1 Web Server End-points . 117
9.2 CLI Commands . 122
9.3 Energy Formulas . 125
9.4 Algorithms . 126

10 Conclusion 129
10.1 Future work . 130

Appendix A Terminology 143

Appendix B Openflow Pipeline and Control Channel 147

Appendix C P4 Pipeline and Example 155

Appendix D Framework Vision in the First Semester 161

xvi

Acronyms

ABC Activity-Based Congestion management.

AC-RLNC Adaptive and Causal Random Linear Network Coding.

AP Access Point.

API Application Programming Interface.

ATCLL Aveiro Tech City Living Lab.

BGP Border Gateway Protocol.

BMV2 Behavioral model version 2 (BMV2).

CLI Command-Line interface.

DPI Deep Packet Inspection.

gNMI gRPC Network Management Interface.

gRPC Google’s Remote Procedure Calls.

GUI Graphical User Interface.

IDS Intrusion Detection System.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IPFIX Internet Protocol Flow Information Export.

ITU International Telecommunication Union.

JDBC Java Database Connectivity.

MATs match-action-tables.

MD-SAL Model-Driven Service Abstraction Layer.

MEC Multi-access Edge Computing.

mmWave Millimeter Wave.

NETCONF Network configuration.

xvii

Chapter 0

OBU On-Board Unit.

ODL OpenDaylight.

OF Openflow.

OF-Config Openflow Management and Configuration.

ON.Lab Open Networking Lab.

ONAP Open Network Automation Platform.

ONF Open Networking Foundation.

ONOS Open Network Operating System.

ORM Object-Relational Mapping.

OSGi Open Services Gateway initiative.

OVS Open vSwitch.

P4 Programming Protocol-Independent Packet Processors.

PaaS Platform as a Service.

PCEP Path Computation Element Communication Protocol.

PISA Protocol-Independent Switching Architecture.

QoE Quality of Experience.

QoS Quality of Service.

RAN Radio Access Network.

REST Representational State Transfer.

RESTCONF Representational State Transfer Configuration Protocol.

RPC Remote Procedure Call.

RSSI Received Signal Strength Indication.

RSU Road Side Unit.

RTCM Rede Temática de Comunicações Móveis.

SaaS Software as a Service.

SAL Service Abstraction Layer.

SD-CORE Software Defined Core.

SD-RAN Software Defined Radio Access Networks.

SDN Software Defined Network.

xviii

Acronyms

SDN-C Software Defined Network Controller.

SFC Service Function Chaining.

SLA Service Level Agreement.

SNMP Simple Network Management Protocol.

TL1 Transaction Language 1.

TLS Transport Layer Security.

TTL Time to Live.

UC Use Case.

URI Uniform Resource Identifier.

US User Story.

VANET Vehicular ad hoc networks.

VFC Virtual Function Chains.

VNF Virtual Network Function.

WLAN Wireless Local Area Network.

WMN wireless mesh networks.

xix

List of Figures

2.1 Traditional network architecture example 8
2.2 Roles of the control and data planes in traditional switches [Gorans-

son et al., 2016] . 8
2.3 SDN network architecture example 9
2.4 ONOS architecture [Bill Snow, 2015] 12
2.5 OpenDaylight architecture - operational view [OpenDaylight Team,

2020] . 13
2.6 Lighty.io architecture [PANTHEONtech, 2018] 15
2.7 ONAP architecture [ONAP Team, 2022a] 16
2.8 Ryu architecture [Irawati and Nuruzzamanirridha, 2015] 17

3.1 Traditional wireless communication networks encountered in 5G
[Cohen et al., 2020] . 28

3.2 Proposed architectures for seamless handover in MH-SDVANET
[Silva et al., 2021] . 30

4.1 Gantt Chart for the second semester 40
4.2 Activities performed in the second semester 42

5.1 Algorithm management diagram . 51
5.2 Asset management diagram . 53
5.3 Configuration management diagram 56
5.4 API Utilisation diagram . 58

6.1 Architectural diagram - Preliminary draft 72
6.2 C4 architectural model label . 73
6.3 C1 architectural diagram - Context 74
6.4 C2 architectural diagram - Container 75
6.5 C3 architectural diagram - Component: ONOS management appli-

cation . 77

7.1 Database conceptual diagram . 80
7.2 GET reply example . 83
7.3 GET reply example with filtering . 83

8.1 Aveiro Open Lab technologies [aveirotechcity, 2021] 92
8.2 Aveiro open lab wifi topology . 93
8.3 Virtual topology draft . 93
8.4 Cisco C9130 AXI 2.4GHz Antenna patterns [Cisco, 2021] 95
8.5 Mininet-Wifi Virtual Topology Diagram 96

xxi

Chapter 0

8.6 Mininet Virtual Topology Diagram 98
8.7 Topology Representation in the ONOS GUI 101
8.8 Partial Inter Cluster - Packets Sent Comparison 105
8.9 Full Inter Cluster - Packets Sent Comparison - Sent by swc39 111
8.10 Full Inter Cluster - Packets Sent Comparison - Sent by swc40 111
8.11 Full Inter Cluster - Packets Sent Comparison - Sent by swc41 112
8.12 Intra Cluster - Packets Sent Comparison 114

9.1 Structure of the JGraphT Test . 127
9.2 Structure of the JGraphT Modified Test 127

A.1 Network coding in a butterfly network [Bassoli et al., 2013] 145

B.1 Flowchart of packet pipeline in an Openflow switch [Open Net-
working Foundation, 2015] . 148

C.1 PISA model [Hauser et al., 2021] . 156
C.2 V1model pipeline architecture [Hauser et al., 2021] 156

D.1 Vision for the Framework in the First semester 162

xxii

List of Tables

2.1 SDN Controller Comparison . 18
2.2 Openflow evolution . 20
2.3 Openflow - flow table example . 20
2.4 P4 specification history . 22

3.1 Related work summary . 34

4.1 Risk classification caption . 45
4.2 Risks identification . 46

5.1 Management activities . 48
5.2 Metrics necessary for management activities 49
5.3 Management activities requirements list 63
5.4 Algorithm management requirements list 65
5.5 Asset management requirements list 65
5.6 Configuration management requirements list 66
5.7 API utilisation requirements list . 67
5.8 Miscellaneous non functional requirements list 68
5.9 Restrictions and constraints requirements list 69

7.1 Device example after forwarding decisions 84

8.1 Services and respective traffic models 98
8.2 Power model settings . 100
8.3 Partial Inter Cluster Flows . 103
8.4 Partial Inter Cluster Paths . 104
8.5 Partial Inter Cluster - iPerf UDP Metrics 106
8.6 Full Inter Cluster Flows . 107
8.7 Full Inter Cluster Paths . 107
8.8 Full Inter Cluster - iPerf UDP Metrics 112
8.9 Intra Cluster Flows . 113
8.10 Intra Cluster Paths . 113
8.11 Intra Cluster - iPerf UDP Metrics . 115

9.1 BlackBox Tests - Retrieving Information with End-points 118
9.2 BlackBox Tests - Retrieving Filtered Information with End-points . 119
9.3 BlackBox Tests - Insert and Update Information with End-points . . 120
9.4 BlackBox Tests - Retrieving Information with CLI 122
9.5 BlackBox Tests - CLI for Management 123
9.6 BlackBox Tests - Normalised Objective Values 126

xxiii

Chapter 0

9.7 BlackBox Tests - Reserve and Replenish Bandwidth 128

B.1 Instructions of Openflow version 1.5.1 149
B.1 Instructions of Openflow version 1.5.1 150
B.2 Actions of Openflow version 1.5.1 150
B.3 Counters of Openflow version 1.5.1 151
B.3 Counters of Openflow version 1.5.1 152

xxiv

Chapter 1

Introduction

The recent migration explosion of services to the cloud came to flood networks
with a great deal of data traffic. Recent studies estimated that, by 2023, there will
be 5.3 billion total internet users, more than 35% of what was registered in 2018
and the average fixed broadband speeds would handle 110.4 Mbps, up from 45.9
Mbps in 2018 [Cisco, 2020].

New emergent technologies and services also trend towards high-performance
applications, taking advantage of infrastructures developments and internet pro-
liferation, contributing to the increase in network traffic: Internet of Things (IoT)
sensors can enable smart irrigation systems and elderly care monitoring [Fraga-
Lamas et al., 2020; Stavropoulos et al., 2020]; smart-cities environments collect
data about traffic conditions, air quality, surveillance for fires or gas leakage [Ati-
tallah et al., 2020]; cloud computing allows Platform as a Service (PaaS) and
Software as a Service (SaaS) [Sun, 2020]; big data integration in smart environ-
ments [Hajjaji et al., 2021]; popularisation of short-video sharing and video on
demand [Zhang et al., 2022].

As these applications get more rigorous requirements, they expect more band-
width and higher speeds, which leads to heavier loads, near to real-time sam-
pling, and denser topologies. Network management becomes an unavoidable
activity to guarantee Quality of Service (QoS) and handle applications with such
stiff requirements in an efficient and economical way.

Furthermore, the challenges of management increase when we consider that many
of these services need special attention due to having wireless connections: man-
aging networks with heterogeneous wireless technologies and spectrum inter-
ference (e.g 5G, LoRA, Zigbee, IEEE 802.11); tracking of elements involved in
mobility; seamless service handover.

Thankfully, network management has become simplified due to the evolution of
the Software Defined Network (SDN) paradigm [Goransson et al., 2016]. This
technology separates the device’s behaviour algorithms from the network infras-
tructure that enforces it and moves them to a new entity, the Software Defined
Network Controller (SDN-C). The controller acts as a logically centralised agent
that network devices report to allowing the SDN-C to have a global view of the

1

Chapter 1

behaviour of the network. Network administrators can then write the desired
behaviour into SDN-C applications to configure and optimise multiple network
resources as they please. There is no need to implement logic directly into devices
anymore since the topology can be seen as a big programmable entity. This tech-
nology enables a more flexible network behaviour and management of its assets
compared with its classical counterpart.

Throughout the years, technologies to enable SDN architectures appeared and
evolved as a response to issues faced by the community. Some well-structured
technologies became industry standards. For device and controller communica-
tions the standard protocol solution is Openflow [Open Networking Foundation,
2015]. Devices maintain a collection of tables, with rules populated by the con-
troller, to manipulate network packets. However, for wireless environments with
mobility and multihoming Openflow is not a perfect fit (e.g. weak support for
forwarding with mobility, inflexible to configure statistics).

More recently, a new paradigm materialised to answer some issues of Open-
flow, the data plane programming model, that allows the customisation of packet
pipeline table headers. From the proposed protocols the one that became stan-
dard was the Programming Protocol-Independent Packet Processors (P4) lan-
guage [Hauser et al., 2021].

Also, a plethora of SDN controllers have been developed, each one with different
features, architectures, and objectives. To name some of the more popular, we
have Open Network Operating System (ONOS)1, maintained by Open Network-
ing Lab (ON.Lab), OpenDaylight (ODL)2, maintained by the Linux Foundation,
and some community supported projects like Ryu3.

The deep technological stack and different options to consider means that the
entry barrier to network managers can be high. Know-how of different evolv-
ing technologies and systems is required to guarantee essential network proper-
ties, e.g. user fairness and congestion avoidance. Furthermore, intricate network
compositions, with mesh connections, wired and wireless links, traffic of differ-
ent services and devices with heterogeneous energy consumption and computa-
tional power further stress the need to manage resource and node usage more
intelligently and with a fairness perspective [Ghaleb et al., 2021]. This is critical
to avoid unfair channel distribution and assignment so that all the nodes have
the same opportunities to send and receive information, or to prolong network
lifetime by not draining the battery of devices.

In this work, we developed a framework for the ONOS SDN-C that can expose
end-points for easier network monitoring and management and that provides
diverse forwarding solutions, including a novel multi-objective fairness mech-
anism.

Such end-points allow users and external tools to act on the topology, monitoring
devices and configuring the behaviour of forwarding algorithms. Framework

1https://opennetworking.org/onos/
2https://www.opendaylight.org/
3https://ryu-sdn.org/

2

https://opennetworking.org/onos/
https://www.opendaylight.org/
https://ryu-sdn.org/

Introduction

users can activate or deactivate available forwarding solutions without having to
worry about the underlying technologies.

These forwarding mechanisms are maintained in the framework as a collection of
possible forwarding algorithms to use. This way, users can choose the one more
appropriate to use in each individual scenario: e.g. find a path that minimises
energy cost, or the path with less delay, or even a route that minimises energy
cost while maximising resilience. Currently, the framework provides two distinct
forwarding solutions: one using the K-shortest algorithm with energy concerns;
and another modelled as a min-cost-flow greedy heuristic with three objectives.
Upon detection of a new service flow in the network, the framework handles its
by calculating the forwarding path and installing Openflow rules in the affected
devices, making this a completely automated process.

To evaluate the framework performance, we emulated a scenario of a real smart-
city environment with Mininet and generated traffic flows of services typically
found in these scenarios: video streaming, voice communications and Web re-
sources. The emulated ambient contains illustrative characteristics of a possible
topology where the framework would be deployed: wireless and mesh connec-
tion, node grouping in clusters and hardware heterogeneity. The paths obtained
by our custom service fairness solution were compared against the out-of-shelf K-
shortest mechanism that ONOS supports, to prove that these approaches do not
scale properly to be used in complex and constantly changing networks. Further-
more, we also evaluated the paths obtained by our fairness centred mechanism,
against the mathematical formulation from where our heuristic was derived: the
heuristic is implemented in the framework and gives a close to optimal path,
while the formulation always provides the optimal path, but is to slow to use in
a real-time setting.

The results obtained showed that, for a scenario of node communications within
the same cluster, the heuristic obtained the same value for the objective func-
tion as the formulation, which means that the heuristic retrieved one of the best
possible solution paths. For experiments of communications between different
clusters our method was able to distribute the load between redundant nodes,
while the approach of ONOS remained incapable of taking advantage of these
alternative paths. Additionally, we found that our mechanism was able to recog-
nise the changes in the network resources throughout the traffic simulations, and
propose, better suited, alternative paths for subsequent instances of a service.

When comparing the overall quality of the services, between the paths of the
fairness heuristic and the K-shortest path of ONOS, we found that the variations
in the jitter were almost unnoticeable, and in most cases, the differences in loss
percentage were more homogeneous in the services that used the fairness mech-
anism paths. This shows the potential gains of our approach, over standard solu-
tion offered by common SDN controllers.

3

Chapter 1

1.1 Main Objectives

The main objectives of this work are twofold. Firstly, design and evaluate a frame-
work for the ONOS SDN controller, which incorporates management functional-
ities and forwarding solutions, to facilitate the activities of network administra-
tors. Secondly, deliver our proposal for service fairness through a forwarding
mechanism available in the framework and demonstrate its advantages over out-
of-shelf solutions offered by SDN controllers.

1.2 Contributions

This section serves the purpose of summarising the main contributions of this
dissertation:

1. Analysis and comparison of SDN related technologies (see Chapter 2).
Throughout this work, we were required to interact and gain knowledge
of many SDN related mechanisms: compare popular SDN-C; compare and
understand standards for southbound communications; create topologies
in network emulators.

2. Contribution to research projects and academic workshops (see Chapter
3). Some objectives of this work are aligned with research projects where
we are integrated as researchers, namely SNOB-5G and MH-SDVANET. We
were able to provide meaningful feedback to our research colleagues, ac-
celerate SDN-C integration, explain the OF and P4 pipeline, etc. We also
shared our endeavours in workshops of the department like “LCT Work-
shop 2022” and ”RTCM 2022“.

3. Implementation of a novel fairness model (see Section 7.3.1). We imple-
mented a heuristic in ONOS that gives us a close-to-optimal path solution
for service traffic. This heuristic works as a single-path min-cost-flow algo-
rithm with three objectives (energy consumption, link delay, and observable
packet loss) and is constrained by bandwidth and link usage criteria.

4. Development of a management framework for ONOS (see Chapter 7) .
Upon detecting a new flow, the framework runs the preferred forwarding
algorithm and installs the respective forwarding rules in the devices of the
topology. The framework collects topology information and statistics in a
database to expose it through Representational State Transfer (REST) end-
points to users and external tools.

5. Writing a conference paper We also compiled our work in preparation
for submitting if to the IEEE Consumer Communications & Networking
Conference4, a B ranked conference. ”SALEM: Service Fairness in Wireless
Mesh Environments“ presents our fairness model and compares it against

4https://ccnc2023.ieee-ccnc.org/workshop/sdwn23

4

https://ccnc2023.ieee-ccnc.org/workshop/sdwn23

Introduction

an out-of-the-shelf algorithm of ONOS in a real-world smart-city emulated
setting.

1.3 Document Structure

The remaining document consists of the following chapters.

Chapter 2 describes the key concepts necessary to understand this work. It com-
pares SDN vs traditional network paradigm, popular SDN controllers differences
and communication protocols. It also introduces emulation tools and monitoring
protocols.

Chapter 3 reviews related SDN management platforms and their activities. Fur-
thermore, this chapter presents research projects that this work contributes to-
wards.

Chapter 4 explains the motivation behind this dissertation and the main goals
to achieve. Later in the chapter, the research and development approach is pre-
sented, and the main issues faced are documented alongside how they were han-
dled.

Chapter 5 contains requirements artefacts produced and a requirement listing
that establishes the scope of our work.

Chapter 6 provides the technological choices made to implement our framework
in the form of architectural diagrams.

Chapter 7 displays the implementation steps and decisions made during devel-
opment. It documents information about the database schema, the web server
that exposes end-points, and how we reactively detect new flows and install the
necessary flow rules.

Chapter 8 describes the experimental setup and the experiences conducted to
evaluate our framework performance and success.

Chapter 9 compiles the procedures taken to validate the correctness of features
and routines.

Chapter 10 provides closing remarks and summarises the outcome of this work.

Appendix A contains a description of critical networking concepts required to
understand this work.

Appendix B documents the behaviour of the OF packet pipeline and control
messages exchanged between devices and controller.

Appendix C explains the P4 packet pipeline and provides an example of a rout-
ing solution using this protocol.

Appendix D illustrates the aim of this project in the first semester, so the reader
can better understand the reasoning behind the scope adjustments.

5

Chapter 2

Background

In this chapter, we cover the key concepts necessary to understand our work.
In Section 2.1, we present the reasoning behind the need for Software Defined
Network (SDN), alongside a comparison of popular SDN controllers. Section 2.2
explains the behaviour of SDN related protocols and their evolution. Popular
network emulator tools are documented in Section 2.3 and in Section 2.4 we in-
troduce relevant traditional protocols for network monitoring.

2.1 Software Defined Networking

Despite the impressive accomplishments of traditional networking paradigms,
the modern computer network has evolved into a complex system that is chal-
lenging to manage. With accelerated innovation, new business models, and emerg-
ing services enabled by new technologies, traditional devices can’t cover the size
and complexity of the requirements vital for today’s networking environment [Gorans-
son et al., 2016].

In this section, we present the main SDN architecture ingredients and their contri-
bution to a network. We also explain the benefits that SDN brings in comparison
with the more traditional networking paradigm.

2.1.1 Traditional Networking Paradigm

In a classical network architecture, see Figure 2.1, each device would have its own
data plane and control plane. The logic programmed into the device is the control
plane, while the hardware and structures that enforce it would be considered the
data plane.

Data Plane

Making an example out of the traditional switch, see Figure 2.2, the data plane
consists of the functions and processes that allow reception of data packets, infor-
mation modifications, and finally transmission, all based on control plane logic.

7

Chapter 2

Figure 2.1: Traditional net-
work architecture example Figure 2.2: Roles of the control and data planes

in traditional switches [Goransson et al., 2016]

The data plane assumes responsibility for packet buffering, packet scheduling,
header modification, and forwarding.

This plane has no embedded intelligence to take autonomous decisions, so the
switch follows the rules of a forwarding table that was populated by the control
plane. When an arriving data packet’s header information is found in the for-
warding table, it will be forward without any intervention of the control plane [Gorans-
son et al., 2016].

Control Plane

The logic and protocols that run on the switch and populate the forwarding table
constitute the control plane. The control plane intervention is needed when the
incoming packet’s information is not currently available in the forwarding table
or it belongs to a control protocol. Its primary role is to keep the information in
the forwarding table current so that the data plane can independently handle a
high percentage of traffic as possible [Goransson et al., 2016].

Management Plane

There is also a third plane, the management plane. It stands above the control
plane and allows a network administrator to monitor and configure devices by
extracting and modifying network information collected by control plane proto-
cols. Network administrators have access to a Command-Line interface (CLI) or
Graphical User Interface (GUI) to perform interactions and can write scripts or
algorithms to manage the control plane protocols [Goransson et al., 2016].

2.1.2 SDN Paradigm

The physical separation of the control and data plane is one of the major princi-
ples that SDN is known for [Jarschel et al., 2014]. The network devices maintain
their data plane but the control plane functions are handled by an external en-

8

Background

Figure 2.3: SDN network architecture example

tity, often called SDN controller, see Figure 2.3. Network devices report to the
Software Defined Network Controller (SDN-C) so the controller has a bird’s-eye
view of the topology so it can manage each device’s forwarding tables taking into
account the traffic of the whole network.

This architecture style allows the existence of network applications that can be
programmatically built and deployed onto the controller’s northbound interface,
at run-time. These applications steer the way the controller manages the network
devices, allowing changes on the fly, and making the network’s behaviour more
flexible.

These applications serve as an interface for network administrators to configure
the control plane to work as they need, thus they can be seen as a part of the
management plane.

To the “south” of the controller, there is the southbound interface. It exchanges spe-
cific protocol messages between controller and network devices to e.g. configure
devices, populate forwarding tables, and retrieve information.

The centralised control logic allows a global view of the network but poses some
new challenges in terms of scalability and performance when requests to the con-
troller increase or when the size of the network grows [Benamrane et al., 2017].

To reduce this problem, popular solutions involve having multiple SDN-C or
even SDN-C clusters in a topology to enable a logically centralised or logically
distributed control plane [Sufiev et al., 2019]. In a logically centralised control
plane, SDN-Cs balance network loads between each other and synchronise their
decisions. The synchronisation can be challenging, so the logically distributed
approach divides the network into smaller domains and assigns each one to a

9

Chapter 2

controller.

Communication between controllers is achieved through another interface, the
east-west interface. It utilises different Application Programming Interfaces (APIs)
and protocols to achieve controller-to-controller communication. There is worth
mentioning that, not like the north or south interfaces, there isn’t a industry stan-
dard protocol for this type of activity [Almadani et al., 2021].

Furthermore, multiple controllers can also be found as a way to provide other
characteristics: e.g primary and backup controllers can help increase network
resilience.

The traditional static way of managing network devices is time consuming, error
prone, and leads to inconsistencies. In comparison, the SDN paradigm brings
several beneficial characteristics:

Simpler and cheaper devices In SDN, network devices are controlled by a cen-
tralised system. This means that the same thousands of lines of complicated
control plane software don’t need to be deployed in each device. Each one
only requires a set of components to handle data plane traffic directed to it
and to communicate with the controller, instead of being loaded with gen-
eral purpose functionality. With such an approach, the cost of specialised
equipment drops, and devices with lower resources in terms of computa-
tional power can be part of the topology [Goransson et al., 2016].

Openness Another characteristic of SDN is that its interfaces are open. Hav-
ing standard, well documented, non-proprietary interfaces opens room for
more flexibility and adaptable topologies with new and innovative methods
of network operation. A closed or proprietary interface would limit inter-
operability between components and reduce innovation [Goransson et al.,
2016].

Programmability The external logically centralised controller and the open in-
terfaces provide the ability to treat the network as a single programmable
entity instead of an accumulation of devices that need to be configured in-
dividually. The network is now more than a “sum-of-its-parts”, it opens
up the customisation of the network according to a specific setup or sce-
nario [Goransson et al., 2016; Lopes et al., 2016].

Elasticity Elasticity is the ability that allows SDN elements to dynamically adapt
to the requirements of their environment by scaling up or down the avail-
able resources. Due to the software nature of the controller, when necessary,
it can scale up or down, by running in more/less powerful machines [Ben-
zekki et al., 2016].

Resilience defines the ability to maintain acceptable service experience in the
face of faults and atypical behaviour. In case of a service or node failure,
the controller can shift the faulty device responsibilities into another node
or alter the traffic path. Even SDN-C failure can be handled, e.g. by having
redundant controller instances [Benzekki et al., 2016].

10

Background

Virtualisation SDN facilitates virtualisation of components and functions by as-
suring that the data can be routed properly between services or functions
according to defined policies. The logical instances of services that form a
Virtual Network Function (VNF) can be deployed in distinct network ele-
ments, and the SDN controller will provide a flexible way to enforce policies
and manage service host resources [Bizanis and Kuipers, 2016].

2.1.3 SDN controllers

As mentioned before, in SDN architectures the control plane is moved off the
switching devices and onto a centralised controller. This controller maintains a
view of the entire network, implements policy decisions, manages the decision of
infrastructure devices, and provides a northbound interface for custom applica-
tions.

The controller of an SDN network is a logically centralised entity, that is, it can
consist of multiple physical or virtual instances but behaves like a single compo-
nent.

The global network information that is collected in the SDN-C enables it to adapt
its network policy with respect to routing and forwarding much better and faster
than a system with traditional routers could.

There are different available implementations of SDN controllers in the market,
each one was built with different objectives in mind and now are maintained
by different entities. The following subsections document differences between
popular SDN-C solutions, with regards to their background, architecture model,
provided interfaces, and supported protocols.

ONOS

Open Network Operating System (ONOS) is an open-source SDN controller re-
leased on 5 December 2014 by Open Networking Lab (ON.Lab), and it has been
actively improved.

The ONOS project gained traction in the community and many of the major ser-
vice providers and transport vendors, including Alcatel-Lucent, AT&T, China
Unicom, Ciena, Cisco, Ericsson, Fujitsu, Huawei, Intel, NEC, NTT Communi-
cations, among others, become partners and invest into ONOS development [Bill
Snow, 2015]. Also, on October 13, 2015, the Linux Foundation entered a part-
nership with the ONOS project [THE LINUX FOUNDATION, 2015]. ONOS is
written in Java and uses Apache Karaf Open Services Gateway initiative (OSGi)
containers. It is designed to be distributed, stable and scalable with a focus on
service provider networks [Open Networking Foundation, 2019].

11

Chapter 2

Figure 2.4: ONOS architecture [Bill Snow, 2015]

Architecture The controller’s architecture, as depicted in Figure 2.4, enables its
core to expose abstractions, information models, and the network state to
northbound programmable applications. This prevents the system from be-
coming tied to a specific configuration or control protocol.

ONOS is built as a physically distributed system but remains logically cen-
tralised. This means that in an SDN network with ONOS, the controller
is actually a symmetric cluster of individual instances [Thomas Vachuska,
2015]. Note that network devices need to be connected to each one of these
controller instances.

This enables a network that can easily scale up or down the resources at the
control plane, that is more resilient to failures, becomes fault-tolerant, and is
capable of balancing workloads by distributing the load between individual
controllers in the cluster.

Interfaces On the north-facing side, ONOS offers many interfaces for communi-
cation between applications and its core, namely, REST API, GUI, Google’s
Remote Procedure Calls (gRPC), Representational State Transfer Configu-
ration Protocol (RESTCONF), or CLI. Also, its northbound applications can
be connected or disconnected in run-time which adds more flexibility when
trying to manage networks dynamically.

On the southbound interface, again the abstraction of the core guarantees
that there are no dependencies on the protocols used on the south-facing
side of the controller. Still, ONOS supports multiple controller-device com-
munications protocols in its networks. Openflow (OF) is the primary south-
bound protocol the SDN controller focuses on, but it can work with other
SDN related protocols like Programming Protocol-Independent Packet Pro-
cessors (P4), Network configuration (NETCONF), and with non-SDN pro-
tocols too like Transaction Language 1 (TL1), Simple Network Management
Protocol (SNMP), Border Gateway Protocol (BGP), and Path Computation
Element Communication Protocol (PCEP) [Andrea Campanella, 2016].

ONOS also supports the dynamic creation of flows/rules in devices through
an intent-based abstraction. Intents provide an abstraction that give appli-

12

Background

cation programmers the ability to code what they want to be accomplished
in the network rather than how it should be accomplished. For instance,
application developers only need to express the need for communication
from a source node to a destination node.

OpenDayLight

OpenDaylight (ODL) is currently the major competitor of the ONOS controller.
ODL is a collaborative open-source project hosted by The Linux Foundation. It
launched on 5 February 2014 in partnership with Brocade, Cisco, Citrix, Ericsson,
IBM, Juniper Networks, Microsoft, NEC, Red Hat, and VMware [LightReading
Team, 2013].

Figure 2.5: OpenDaylight architecture - operational view [OpenDaylight Team,
2020]

Currently, ODL is being used around the globe in many ways, by telcos, enter-
prises, research, and academic institutions like Alcatel-Lucent, AT&T, China Uni-
com, Ciena, Cisco, Ericsson, Fujitsu, Huawei, Intel, NEC, and NTT Communi-
cations [The Linux Foundation, 2021a]. Just like ONOS, ODL is a Java written
controller that includes Karaf OSGi containers.

Architecture The core of the ODL platform is the Model-Driven Service Abstrac-
tion Layer (MD-SAL), see Figure 2.5.

The MD-SAL has two major items: the datastore, with is composed of the
config datastore and the operational datastore, and the message bus that pro-
vides a way for the various services and protocol drivers to notify and com-
municate with one another. The config datastore maintains a representation
of the desired network state and the operational datastore represents the ac-
tual network state.

Similar to ONOS’s core, Service Abstraction Layer (SAL) provides gener-
alised descriptions of network devices or application capabilities without
needing to know the specific implementation details or the protocols used

13

Chapter 2

between the controller and the network devices. This is possible because
these data exchanges are made using generic modelling protocols (i.e. YANG
data models) [RFC7950, 2016]

The SAL exposed models can be of two role types, “producer” or “con-
sumer”. The producer implements end-points that expose information and
the consumer utilises that information [The Linux Foundation, 2021b].

Another similarity with ONOS is that ODL is built to have a fault tolerance
mechanism. In a scenario of a master node failure, a new leader is selected
to take control.

Interfaces The Yang models that the SAL data store exposes are utilised by the
north applications and by the south protocols as a way to interface with
the controllers core. They access producer or consumer models depend-
ing on the job they perform. For example, a southbound protocol plugin
could either be a producer of information about the network or a consumer
of northbound application instructions it receives via the SAL.

ODL offers a large set of northbound interfaces with gRPC, Representa-
tional State Transfer (REST) API, RESTCONF,CLI, and GUI. Just like ONOS,
this controller takes advantage of OSGi containers for loading bundles at
run-time, allowing a very flexible approach to adding functionality. On the
southbound interface, ODL supports multiple protocols as plugins, e.g. OF
1.0,1.3,1.4, P4, NETCONF, SNMP, PCEP, LISP, and BGP with link state [Open-
Daylight Project, 2021].

Lighty.io

Lighty.io is a lightweight ODL run-time library. It is developed by PANTHEON.tech,
a privately owned company, based in Slovakia previously involved in leading
ODL projects. The main idea of Lighty.io is to concentrate on the network func-
tionalities and remove the dependencies of Apache Karaf that are present both in
ONOS and ODL.

Lighty.io can run on a plain Java SE environment [PANTHEONtech, 2021c]. The
initial Github code drop was on the 11 of May 2018 [PANTHEONtech, 2021a].
This project has the partnership of major enterprises and vendors like Arista,
AT&T, Cisco, Frinx, Huawei Kaloôm, Huahuan, and many others [PANTHEON-
tech, 2021d]. It is available in a free and in a premium paid version.

Architecture Lighty.io core contains base ODL services and components like the
MD-SAL and YANG Tools, see Figure 2.6. Without the dependence on
Karaf, this solution offers an easier deployment, reduced cost of testing,
integration, and maintenance, and a simpler tool when compared with the
complexity of OpenDaylight’s Karaf features. It also maintains the MD-SAL
clustering support from ODL [PANTHEONtech, 2021e].

14

Background

Figure 2.6: Lighty.io architecture [PANTHEONtech, 2018]

Interfaces Lighty.io allows north applications to interface with the platform’s
core using RESTCONF, and client libraries in Java, Python, and Golang.
This controller also offers enhanced NETCONF device simulator for testing
and YANG model data serialisation and deserialisation, both not present in
ODL. Users can also access the controller using a GUI [PANTHEONtech,
2021e].

On the south interface, the controller offers support for SNMP, BGP, NET-
CONF, gRPC Network Management Interface (gNMI), and OF support [PAN-
THEONtech, 2021b].

ONAP

Open Network Automation Platform (ONAP) is an open-source platform hosted
by The Linux Foundation initially released on the 20th of November, 2017. This
platform is composed of several components that together offer a complete or-
chestration and automation platform. The SDN-C element, which is one of the
many components, is essentially ODL with some extras [PANTHEONtech, 2022].

ONAP introduces other useful elements [ONAP Team, 2022a]: a network inven-
tory to view and keep a history of network resources, services, and products;
a policy framework that supports multiple policy engines; a Portal for differ-
entiating user experience based on account roles. Each of these components is
released as a docker container forming a microservices-based system. This al-
lows scalability and flexibility because users can only deploy the components
that they need. Besides automation, this platform also focuses on enabling and
supporting policy-driven physical, virtual, or cloud network functions, 5G sce-
narios, and complete lifecycle management (design, setting up, operating). It
allows service providers and developers to scale their network in an automated

15

Chapter 2

Figure 2.7: ONAP architecture [ONAP Team, 2022a]

manner by handling onboarding, orchestration, control, inventory, policy, and
more [ONAP Team, 2022b]. Contributing organisations include AT&T, Samsung,
Nokia, Ericsson, Orange, Huawei, Intel, IBM, and more.

Architecture ONAP’s architecture consists of two major frameworks, namely the
Design-time framework and the Run-time framework, see Figure 2.7. The
former provides service design while the latter handles service deployment
and operations [ONAP Team, 2022a]. The service design component allows
modelling of the resources and relationships that constitute services, and
products and how they are managed. This component also contains pol-
icy design and implementation that guide the service behaviour. It enforces
a set of rules defining control, orchestration, and management policies re-
specting some constraints. The service deployment is achieved by a policy-
driven orchestration and control framework that provides automated in-
stantiation of services when needed. Service operations are decided based
on the service’s specified design and the behaviour monitored during its
lifecycle. Collecting and evaluating event data is needed to deal with situ-
ations ranging from those that require healing to those that require scaling
of the resources.

Interfaces ONAP provides a common set of REST APIs as a northbound inter-
face. It supports the same north and south interfaces of the ODL controller,
although with some alterations necessary to bring them to this project.

Ryu

Ryu is a bit different from the previous controller options presented because it is
not a full-fledged SDN-C right out of the box, it is more like a tool kit to build
an SDN-C. Ryu is Python component-based framework maintained by an active
developing community. Their first commit goes back to the 6 of December 2011.
With this product, a developer can create a platform complete with network man-
agement and control applications that fit specific purposes and network require-

16

Background

ments. This is beneficial when high flexibility/customisation of the controller be-
haviour is needed or when certain control mechanisms of off-the-self controllers
aren’t necessary thus removing overhead [Ryu Team, 2017].

Figure 2.8: Ryu architecture [Irawati and Nuruzzamanirridha, 2015]

Architecture Ryu has a centralised architectural model. At its core, developers
can create network management and control applications according to their
own needs by using the provided components, e.g. OpenStack quantum,
firewall, and topology discovery, see Figure 2.8. Developers can also find
some ready to use applications. The SDN applications are used to perform
analytics, run algorithms and perform monitoring as a way to orchestrate
the network using the controller [Islam et al., 2020]. Ryu does not have
an inherent clustering ability like ONOS or ODL [Farzaneh Pakzad from
Aptira, 2021]. This controller offers support from integration with Snort, a
popular Intrusion Detection System (IDS), and GUI access to users [Faucet
Organisation, 2022].

Interfaces Ryu core provides north and south interfaces to communicate with
the business and logic applications and to communicate with the physical
and virtual devices of the network, respectively. It supports REST APIs, API
for Quantum, and user-defined API via REST or RPC as a northbound inter-
face. On the southbound interface, it offers multiply protocols for managing
devices, such as OF (1.0 - 1.5), NETCONF, Openflow Management and Con-
figuration (OF-Config), and P4 [Farzaneh Pakzad from Aptira, 2021; Islam
et al., 2020].

2.1.4 Comparison

This section aims to compare some characteristics of the SDN-C previously pre-
sented. Table 2.1 summarises the comparison between the SDN controllers with

17

Chapter 2

regards to type of architecture, the diverse north and south interfaces, the support
for clustering, among others. We focus on technological and commercial charac-
teristics as well as target scenarios of each controller utilisation. Some of the table
fields are empty due to a lack of information or misleading statements that made
us unsure.

Table 2.1: SDN Controller Comparison

ONOS ODL Light.io ONAP Ryu
Programming Java Java Java Java PythonLanguage

Platform Windows, Linux, Windows, Linux JVM Docker Ubunto 16.04
support Mac OS Mac OS containers or higher

Microservice Yes Yes Yes Yes YesDeployable
Architecture Distributed Distributed N/A Distributed Centralised

Northbound
REST API, REST API, RESTCONF,

REST API
REST API,

RESTCONF, RESTCONF, Client lib in Java, API for Quantum,
gRPC gRPC Python or Go User API (RPC)

Southbound

OF 1.0-1.5, P4, OF 1.0, 1.3, 1.4,

ODL Interfaces

OF 1.0-1.5
NETCONF, P4, NETCONF, OF, gNMI, with Nieira
TL1, SNMP, SNMP, LISP, SNMP, BGP, Extensions,

BGP, BGP with link , NETCONF OF-Config, P4,
PCEP state, PCEP NETCONF

GUI Web Based Web Based/DLUX N/A Yes Web Based
CLI Yes Yes Yes Yes N/A

Clustering Yes Yes Yes Yes NoSupport
Initial 05 December 5 February 11 May 20 November 9 December

Release 2014 2014 2018 2017 2011
License Apache 2.0 Eclipse Public 1.0 N/A Apache 2.0 Apache 2.0

Intent Based Yes Yes N/A Yes NoNetworking

From our analysis, ONOS and ODL are major competitors: are maintained by
industry respected companies, their partners are well-known network providers,
support useful SDN protocols, and are popular choices for management solutions
in the literature [Cohen et al., 2020; Gilani et al., 2020; Jang et al., 2017].

Light.io and ONAP were born out of the ODL project: the former focus on Apache
Karaf’s independence and the latter on an automatic and complete solution for
orchestration.

The last controller analysed, Ryu, can be interpreted as a toolbox from which
controller functionality can be built. Ryu is the less complex of the five solutions
presented but this also reflects its lack of utilisation in real-world scenarios. The
missing functionality out of the box, the single point of failure caused by its ar-
chitecture model, and the missing scalability and reliability support make this a
controller not fit for utilisation in scenarios with more exigent requirements (e.g
smart-cities, 5G drivers, mission-critical).

Expanding on the comparison of ONOS and ODL, both solutions support dis-
tributed deployments to achieve reliability and scalability in emerging network-
ing scenarios, e.g smart-cities. In terms of performance, these solutions don’t dif-
fer much. For example, ODL is faster in flow processing and ONOS has a higher
flow response rate (flows/ms) [Cohen et al., 2020].

Although ONOS and ODL support many equivalent features and advantages

18

Background

and can work with the same SDN related protocols and technologies, their origin
and the initial focus were different. ONOS was designed motivated by carrier
networks and ODL was primarily datacenter focused [Salman, Ola and Elhajj,
Imad H. and Kayssi, Ayman and Chehab, Ali, 2016]. ONOS has been employed
by network operators to enable innovation at 5G networks through the paradigm
of Software Defined Radio Access Networks (SD-RAN) [Open Networking Foun-
dation, 2022c] and Software Defined Core (SD-CORE) [Open Networking Foun-
dation, 2022b]. On the other hand, ODL has been employed for managing net-
works in the cloud with different virtual network functions [Mirantis Blog, 2022].

Another indicator of controller evolution and functionality coverage is that ONOS
didn’t have support for OpenStack and ODL didn’t have intent based program-
ming. They seem to slowly be incorporating popular functionalities of the other
SDN-C.

Another aspect to consider is that some authors argue that the ODL has a steeper
learning curve than ONOS due to the complexity of MD-SAL [Goransson et al.,
2016].

2.2 SDN Related Protocols

As mentioned before, see Section 2.1.2, the separation between data and control
planes is one of the most defining characteristics of SDN networks. Because of
this, there was a need for a common language between SDN controllers and net-
work devices. This led to the creation of many distinct southbound protocols over
the years, some more relevant than others. This section aims to present some key
protocols that became standards for southbound communications in SDN con-
trollers.

2.2.1 Openflow

Openflow (OF) is an SDN southbound protocol created and managed by the
Open Networking Foundation (ONF). This open-source project is now consid-
ered the standard for communications between controllers and devices of an SDN
architecture having a lot of major switch and router vendors announced the intent
of having OF support on their products [Open Networking Foundation, 2022a].

Since its first release in 2009, version 1.0, OF has had a lot of modifications and
improvements. The work of [Latif et al., 2020] sums up nicely the evolution of
the protocol. See Table 2.2 to see an enumeration of the main improvements over
the previous versions and the reason behind modifications.

Giving a brief explanation of the OF behaviour, compliant devices contain flow
tables that the controller can populate with table entries, see Table 2.3. By match-
ing incoming packet headers or ingress ports to flow table entries each packet
can be handled differently depending on its properties. The data plane devices
inform the controller of the state of the network, both reactively (in response to

19

Chapter 2

Table 2.2: Openflow evolution [Latif et al., 2020]

Version Year Major Features Reasons of Extension

OF 1.0 2009 Single Table -

Fixed Matching Fields -

OF 1.1 2011

Multiple Tables Avoids Flow Entry Explosion

Group Tables Action Set to a Group of Tables

VLAN and MPLS Support -

OF 1.2 2011

OF extensible Match Using
TLV Structure Increased Matching Flexibility

IPv6 Support -

Controller Role Exchange Controller Scalability

OF 1.3 2012
Meter Table Add Quality of Service

Table-miss Entry Provides Flexibility

OF 1.4 2013
Synchronised Table Enhances Table Scalability

Bundle Supports Group Modifications Enhances Switch Syn-
chronization

OF 1.5 2015
Egress Table Allows processing on output ports

Scheduled Bundle Extends Switch Synchronisation Fur-
ther

events) and proactively. This way, the control plane can add, update or delete
table entries at run-time.

Table 2.3: Openflow - flow table example

Match Field Priority Counters Instructions Timeouts Cookie Flags

Ingress
Port 99 Packets Goto

Table 2
300
sec

{controller
issued

identifier}

OFPFF_
SEND_FLOW

_REM
Ingress Port

+ Packet
Headers

4 Bytes Out
Port X

500
sec

{controller
issued

identifier}

OFPFF_
CHECK_

OVERLAP
...

Flow tables entries contain multiple fields with different purposes: match fields
are used to match incoming packets; priority gives us matching precedence, coun-
ters are updated when packets are matched to a given entry; instructions modify
the pipeline processing or action set to be applied in each packet; timeouts gives
the maximum amount of time before a flow is expired; cookies are a data value
attributed by the controller to identify a flow entries; flags are tags that customise
behaviour around the flow entry (e.g OFPFF_CHECK_OVERLAP check for overlap-
ping entries first, OFPFF_SEND_FLOW_REM send flow removed message when flow
expires or is deleted);

The evolution of the OF protocol affected the components of compliant devices.
In the latest OF release, version 1.5.1 [Open Networking Foundation, 2015], a

20

Background

switch can have one or more flow tables for pipeline packet matching, a group
table for representing additional methods of forwarding, a meter table to im-
plement Quality of Service (QoS) like rate-limiting and OF channels to maintain
communication with controllers.

In Appendix B, we explain the role of these components and do and walk-through
of the packet pipeline of OF 1.5.1. Furthermore, we explain the behaviour and
messages of the interface between OF enabled devices and SDN controller, the
OF Control Channel.

Openflow Limitations

Different issues of the OF protocol came to light throughout the years. The evo-
lution of the standard resolved some of them, introduced more quality of life
features, and offered more functionality to developers.

However, some concerns could be fixed because they were part of the way the
protocols way built to function. By having predefined fixed headers in its flow
tables, a preset number of methods to modify packets, and somewhat of a stiff
pipeline, OF ends up being a protocol with inflexible implementations.

Another limitation of OF is that with each new version there are alterations to
the pipeline and table headers. The introduction of new features leads device
manufacturers to refresh their product chips logic to comply with changes. This is
expensive for manufacturers, because they need to update to the newest version,
and slows down the refresh cycle of the protocol because device vendors might
want to remain with older devices for more extended periods [Zanna et al., 2019].

As a way to fix these issues, from the development community efforts emerged a
paradigm that allows programmable southbound protocols: data plane program-
ming. We present the notions of this paradigm in the next section.

Another OF limitation is the fact that it is not ready to comply with wireless sce-
narios. It can’t assure additional features required in networks with wireless con-
nections (e.g. wireless channel selection, interference mitigation, mobility man-
agement). Researchers end up modifying the OF to end up with a customised
version of the protocol that works in their scenarios [Jang et al., 2017].

Hopefully, in the next iteration of the protocol, we can start to see support for the
technologies.

2.2.2 Data plane programming and P4

The lack of flexibility offered by OF motivated the emergence of data plane pro-
gramming. By having predefined fixed headers in its flow tables, OF’s pipeline is
locked.

Data plane programming has the solution to OF’s inflexibility problems. By al-
lowing custom headers, implementations using data plane programming can be

21

Chapter 2

completely tailored to the application’s needs because users can program only
the required protocols. The full flexibility of packet processing enabled users to
program new protocols and design unique applications faster than having to im-
plement these solutions into silicon [Hauser et al., 2021].

One of the data plane programming languages that increased in popularity and
became a standard was Programming Protocol-Independent Packet Processors
(P4). Its latest version, P416, was standardised recently being released in early
2017, see Table 2.4.

Table 2.4: P4 specification history [Hauser et al., 2021;
Open Networking Foundation, 2020]

Date Version Feature

May 2013 - initial idea and the name “P4"

September 2014 P414 P414 v1.0 release

May 2017 P414 P414 last release with v1.0.4

April 2016 P416 first commits

May 2017 P416 specification release

P414 language was discontinued in favour of P416 because it fixed the limitations
of the previous version. The lack of means to describe various P4 targets and
architectures models, weak support for program modularity, and mislaid strict
typing, expressions, and nested data structures were some of the issues worth
mentioning [Hauser et al., 2021].

In Appendix C we provide the materials to fully understand the behaviour of
P4 programs and the pipeline that packets take. We even provide a template
program of a simple routing solution.

Data Plane Programming Advantages

Data plane programming is a paradigm with potential. It allows programmers
to think programmatically instead of thinking protocols. Programming a cus-
tom packet pipeline with custom headers and functions assures that the switch is
loaded with only the required implementations.

Switch resources are more effectively used. This paradigm also introduces some
advantages of programming languages like software reuse, data hiding, library
creation, and easy debugging.

2.2.3 Other Protocols and Languages

This section aims to shed light on the purpose of some protocols that are usually
found in SDN environments.

22

Background

A common appearance is the NETCONF protocol which is used to more easily
modify the configurations of network devices. While OF is used to manipulate
the forwarding tables of devices, NETCONF can install, manipulate, and delete
the configuration of network devices. It uses an Remote Procedure Call (RPC)
based mechanism to facilitate communication between a “client”, like a script
or application typically running as part of a network manager, and a “server”,
typically a network device [Internet Engineering Task Force (IETF), 2022a].

Another protocol emerged because of NETCONF, the RESTCONF protocol. It
exposes REST-like end-points to allow access to NETCONF functionalities (e.g.
it uses JSON instead of XML and uses HTTP methods over XML tags) [Internet
Engineering Task Force (IETF), 2022b].

Another prominent sight is the usage of the data modelling language Yang. It
is used to model configuration and operational features in the NETCONF and
RESTCONF protocols as well in the P4 language [Internet Engineering Task Force
(IETF), 2022c].

2.3 Network emulation

Network emulation is a popular way to create a realistic virtual network as a
way to test our implementations without having to buy expensive equipment or
needing to mount a real testbed.

Programmers can declare the target network specification in an emulation tool
to have the program creates an environment whereby real devices, applications,
products, and services can be connected to the emulated network. Normally, em-
ulation tools also give the option of connecting virtual elements which makes this
approach much more convenient compared with real-world implementations.

In this section, we discuss some popular network emulators that can be used with
SDN enabled topologies.

2.3.1 Mininet

Mininet is a python open-source emulation tool that can run on native Ubuntu
or in a container environment. It has great compatibility with SDN scenarios as
it supports OF and P4 protocols and also works with real SDN-C, like ONOS,
ODL, and others [Arahunashi et al., 2019]. Mininet creates a virtual network,
running a real kernel with hosts, switches, controllers, and links [Mininet Team,
2022a]. It can offer Open vSwitch (OVS) software in the devices (with support for
OF, NetFlow, sFlow, IPFIX, and others), or Behavioral model version 2 (BMV2)
(BMV2) that supports the V1Model target architecture for the P4 language;

Users can create virtual topologies using one of the presets that Mininet offers,
e.g. linear topologies, tree topologies, or opt to build a custom layout using the
python Mininet library.

23

Chapter 2

Is common to see literature work resort to emulators like Mininet as a way to test
frameworks and mechanisms [Song et al., 2017]. This is because building scenar-
ios with virtual devices is less cumbersome when compared with real hardware.
When a change in the topology layout/configuration is needed it can be done by
changing some input parameters or lines of script code. This approach is also
cheaper because researchers don’t need to buy expensive hardware to build their
topologies, that with multiple devices would get expensive very quickly [APS
Networks, 2022; Edge-core Networks, 2022].

2.3.2 Mininet-WiFi

Mininet-WiFi is a fork of the Mininet emulation tool with extensions that make
it able to emulate wireless scenarios. This version adds support for wireless sta-
tions and access points, device mobility, different 802.11 standards, mesh and ad-
hoc layouts, different propagation models, and other features to enable diverse
wireless scenarios.

Since Mininet-WiFi adds new functionality on top of the Mininet tool, everything
that functions in Mininet also works in Mininet-Wifi [Mininet Team, 2022b].

Mininet-WiFi can simulate the wireless medium using two approaches: Traffic
Control (TC) or wmediumd. TC was the first approach adopted in Mininet-WiFi
for simulating the wireless medium. It is the same program used to configure the
Linux kernel packet scheduler. TC is used to apply values for bandwidth, loss,
latency, and delay in Mininet-WiFi [Mininet Team, 2022b].

The other option, wmediumd approach, uses the kernel module mac80211_hwsim.
Node positions and ranges are simulated by assigning stations to other stations
or access points that make up the wireless links. The Mininet-Wifi documentation
depicts wmediumd as the superior mode to simulate wireless medium because it
has more advantages, e.g. it isolates the wireless interfaces from each other and
is a requirement for mesh or adhoc networks.

Mininet-Wifi is also a popular choice in the literature to emulate networks/topologies
with wireless settings, mobility patterns, among others [Fontes et al., 2015; Gilani
et al., 2020].

2.4 Traditional Monitoring Protocols

Network monitoring goes way back as an activity necessary in the first networks.
Way before the introduction of the SDN paradigm, network administrators needed
to have information on the behaviour of the network.

These traditional monitoring techniques evolved and we see today some of the
more mature ones in SDN literature as a way to aid in network monitoring. These
tools provide sampling and flow measurements, that are challenging to accom-
plish using only OF [Suárez-Varela and Barlet-Ros, 2017].

24

Background

In this section, we present some relevant protocols that, although were not de-
signed to work in SDN environments, are still used to enhance monitoring tech-
niques in this type of scenarios.

sFlow

sFlow1 is a standard for monitoring traffic in traditional networks. The sFlow
collection technique is sampling based. This allows the collecting process to be
decoupled from the routers and switches forwarding logic. Thus, this design is
ideal when we need to worry about scaling and monitoring at Gigabit speeds.

The sFlow technique requires two different entities: sFlow Agent to sample the
traffic of a device, this agent can perform two types of sampling; Flow samples by
randomly sampling packets of switches flows and Counter samples by sending the
device’s interface counters between defined polling intervals; sFlow Collector to
receive the data from the agents; The gathered sampled information is then sent
to the collector as a sFlow datagrams to the sFlow collector that analyses and reports
on network traffic.

sFlow has been adopted into the SDN paradigm solutions to support monitoring
activities:

In 2017, researchers [Jang et al., 2017] compared their monitoring framework
against the capabilities of native OF and sampling-based monitoring of sFlow
as a way to evaluate the implemented framework.

In 2018, researchers [Fawcett et al., 2018] utilised sFlow as the monitoring pref-
erence in appropriate scenarios was a way to reduce the volume of monitoring
traffic in their multi-level monitoring SDN framework.

NetFlow

NetFlow2 is a flow export protocol proprietary of Cisco. It aggregates packets
into flows and sends them to a collection point for storage and analysis.

This system is composed of three different components. Flow exporters are net-
work devices that support NetFlow and collect traffic statistics to export them
to collection points as flow records. Flow collectors are responsible for receiv-
ing flow records from flow exporters and storage and pre-processing of data.
Analysis Application evaluates the flow records to avoid flow table entry ex-
plosion [Suárez-Varela and Barlet-Ros, 2017].

The interest in NetFlow led Internet Engineering Task Force (IETF) to build an
open standard, Internet Protocol Flow Information Export (IPFIX). IPFIX3 is the
successor of NetFlow. It is based on NetFlow version 9 and follows IETF stan-
dards [Trammell and Boschi, 2011]. With some exceptions (extra fields added),
IPFIX has identical formats to the ones of NetFlow.

1https://datatracker.ietf.org/doc/html/rfc3176
2https://www.cisco.com/c/en/us/tech/quality-of-service-qos/netflow/index.html
3https://datatracker.ietf.org/doc/html/rfc7011

25

https://datatracker.ietf.org/doc/html/rfc3176
https://www.cisco.com/c/en/us/tech/quality-of-service-qos/netflow/index.html
https://datatracker.ietf.org/doc/html/rfc7011

Chapter 3

Research Projects & Related Work

In this chapter, we document external projects that affected the scope and direc-
tion of our work. Section 3.1 introduces research projects where we are involved.
Section 3.2 provides information on recent European Software Defined Network
(SDN) management projects that steered our requirements. Section 3.3 describes
relevant related work in terms of SDN network management platforms and mon-
itoring solutions.

3.1 Ongoing projects

This section presents research projects in which we integrated the research team
and where this work contributed to their development. We provide the objec-
tives of each project and relevant impact in the state-of-the-art. We also briefly
introduce the ways our work added value to each one of them.

3.1.1 SNOB-5G

SNOB-5G 1 is an international project that aims to research and develop wireless
backhaul solutions for scalable 5G heterogeneous networks. Urban 5G services
can especially benefit from this project since smart-cities have scenarios with mix-
ing technologies and heterogeneous requirements, see Figure 3.1. This project ac-
commodates the interoperability of these emerging urban services by promoting
connectivity with a high-bandwidth capacity and latency requirements.

The SNOB-5G project expects to be impactful in several ways:

Cheaper backhaul can be achieved by enabling wireless technologies in urban
infrastructures, thus avoiding the limitations related to the availability and in-
stallation costs of wired connections.

Enabling 5G emergent services is also within SNOB-5G scope. Unlocking 5G

1https://snob-5g.com/

27

https://snob-5g.com/

Chapter 3

Figure 3.1: Traditional wireless communication networks encountered in 5G [Co-
hen et al., 2020]

based services (e.g intelligent transportation systems, vehicular-to-vehicular or
vehicular-to-infrastructure communications, smart-city sensors, and industrial
automation) demands handling its requirements. According to the International
Telecommunication Union (ITU) 5G technologies can operate with peak datarates
of 20 Gbit/s, low latency of up to 1 ms, and 106 more devices per km2 than fourth
generation technologies [International Telecommunication Union, 2015].

SNOB-5G backhaul solution manages these high demand 5G services by devel-
oping self-optimised, intelligent, and fault-tolerant networks.

In the ambit of SNOB-5G, [Cohen et al., 2020] brings network coding, through
SDN, into a highly-meshed heterogeneous architecture, typical in 5G scenarios,
see Figure 3.1. An architecture for this heterogeneous multi-source multi-destination
network is proposed and a control model that uses multiple Software Defined
Network Controller (SDN-C) is suggested to handle mesh communications and
to improve fault tolerance. The authors also suggest the utilisation of Millime-
ter Wave (mmWave) as a technology capable of handling mesh connections. A
decentralised multi-modules network coding model is then implemented to en-
sure reliable network communications and service degradation robustness. Each
of the modules of the Adaptive and Causal Random Linear Network Coding
(AC-RLNC) implemented collaborates and interacts with each other and with
the SDN-C to perform data transmission This solution proved to offer reliability
benefits in communications of highly interconnected meshed networks.

Highly resilient networks is another aim of the project. Having a self adjusting
and intelligent autonomous network makes it able to work in mesh topologies,
replacing traffic paths in case of node or link failure or discovery of a better suited
path. The lack of a point of failure and a higher resilient network ensures the
availability of sensitive requirements of some 5G services.

In the ambit of SNOB-5G, Abreu et. al [Abreu et al., 2020] proposes a framework
to orchestrate Virtual Function Chains (VFC) service requests while maximising
service resilience and availability. Firstly, a grammatical model is used to ver-
ify the correctness of the defined service chains and virtual function replicas re-

28

Research Projects & Related Work

quested. Then two algorithms are presented for scattering the replicas through
the network based on a prioritisation of availability: a formal mechanism using
Integer Linear Programming model and a heuristic model based on Fluid Com-
munities ideal to utilise in larger and more complex scenarios seeing that it con-
sumes less time and resources than the last model in these environments. Finally,
the platform was evaluated in a simulated scenario which concluded that higher
values of resilience can be reached while orchestrating the VFC loads.

Security and Privacy is also a concern of the project. Intelligent backhaul nodes
might utilise third-party applications to improve Quality of Experience (QoE)
of users. These applications are leveraged using Multi-access Edge Computing
(MEC) or Application Programming Interfaces (APIs), thus we need to be sure
that only authorised application are used. Privacy-preserving techniques are also
relevant due to the fact that a lot of services generate data from user inputs and
data protection is necessary despite the need for user behaviour for network re-
configuration and optimisation.

One of our focuses is to help advance SNOB-5G so that the project reaches its
goals. Since both works share similar objectives we can contribute simultane-
ously: we helped in requirements elicitation and in delivery artifacts, gained
know-how of emulation and containerisation approaches, and implemented met-
ric collection in Open Network Operating System (ONOS). Furthermore, we are
currently working towards developing an experimental scenario with multi-link
and network coding for utility maximisation. The interfaces with the controller
(e.g., using gRPC/REST) and the control logic are our responsibility.

3.1.2 MH-SDVANET

MH-SDVANET is a research project that proposes an SDN solution to orches-
trate multihoming 5G vehicular networks. In this type of wireless network, also
called Vehicular ad hoc networks (VANET), vehicles are equipped with On-Board
Unit (OBU) to communicate with other vehicles and to communicate with road
infrastructure, Road Side Unit (RSU). This paradigm fosters vehicle-to-vehicle
and vehicle-to-infrastructure communications to enable new Use Cases (UCs),
e.g. accident notification, navigation services, pedestrian protection, and truck
platooning. The project aims to design and implement an SDN architecture for
5G multihoming VANET as a way to optimise the placement and migration of
VFC services. Effective management of network resources is necessary to sup-
port the heavy requirements of these services: latency-sensitive, high through-
put, high mobility, and technological heterogeneity are some common examples.
To cope with these requirements, the SDN platform utilises different technolo-
gies to manage topology devices and to monitor network behaviour (eg. Open-
flow, Programming Protocol-Independent Packet Processors (P4), 802.11p, 5G,
and mmWave).

The MH-SDVANET project addresses several key topics of VANET environments:

Service Handovers is essential in vehicular mobility environments. Users in
movement might need to establish multiple new connections due to the previ-

29

Chapter 3

ous one becoming out of range. Building effective handover algorithms while
guaranteeing the quality of the user’s experience is a challenging activity due to
the small time frames of each connection.

In the ambit of MH-SDVANET, [Silva et al., 2021] research and develop an SDN
architectural model to support seamless service handovers. The authors briefly
explain the lack of handover optimisation for VANET scenarios and the reasons
for its necessity. Their research presents related works of handovers in vehicu-
lar networks that adopt the SDN paradigm. Afterwards, two architectures for
handover management are proposed and implemented, see Figure 3.2, and later
evaluated against a popular SDNless IP-based solution (N-PMIPv6) using real
vehicular equipment.

The results show that the less complex SDN solution outperformed the non-
SDN solution with regards to handover time, average delays, robustness, packet
losses, and network overhead enabling seamless handovers.

Figure 3.2: Proposed architectures for seamless handover in MH-SDVANET
[Silva et al., 2021]

Our work and MH-SDVANET also share similar targets, thus there is work done
that contributes toward the common goals of the project and this thesis: research
and documentation of possible management solutions, consolidation of knowl-
edge of southbound protocols, more notably P4, and research and development
of multi-objective service fairness algorithms in ONOS are some of the more rel-
evant examples.

30

Research Projects & Related Work

3.2 Related SDN European projects

In this section, the focus relies on European research projects related to our work.
Each project proposes management solutions for SDN networks but with differ-
ent focuses depending on their objectives. This type of project is more extensive
and might lead to more developed products and research works when compared
with the average conference paper or journal. By learning the UC of each Euro-
pean project we gathered knowledge of the most pertinent functionalities to have
in more extensive and complex management solutions.

The following list compiles information on the scope of the projects as well as
their objectives:

• ENDEAVOUR2 is focuses on SDN. It takes the perspective of the network
operator and the users that connect to it. The objective was to research,
develop, and evaluate an SDN architecture in the environment of internet
service providers. The final product aimed to have monitoring platforms,
tools for internal management, and a high speed data plane so it could scale
to operate in the environment of internet service providers.

• Teraflow3 proposes a cloud native SDN-C focuses on security. It aims at
providing flow aggregation, topology management, and forensic evidence
in a micro-services architecture. This project also plans to develop a ma-
chine learning intrusion detection system to incorporate into the SDN-C.

• SDNmicro Sense4 is directed to critical scenarios, e.g. electrical power and
energy systems. This project intends to provide an SDN architecture fit for
local independent energy systems as a way to equip these environments
with global system visibility, resilient cyber-defence systems, and to protect
against data breaches.

• MAD-SDN5 is a young project that aims to use the programmable aspect
of the SDN paradigm to handle the management of tons of data efficiently.
By applying big data analysis techniques to SDN environments it is possi-
ble to troubleshoot network problems, detect anomalies, classify complex
network traffic and optimise network performance.

3.3 Management solutions for SDN

In this section, we presented the relevant work about SDN management solutions
we found in the literature. Our focus is on gathering knowledge of the more
predominant techniques and activities to build a management solution.

2https://www.h2020-endeavour.eu/
3https://www.teraflow-h2020.eu/
4https://www.sdnmicrosense.eu/
5https://cordis.europa.eu/project/id/893146

31

https://www.h2020-endeavour.eu/
https://www.teraflow-h2020.eu/
https://www.sdnmicrosense.eu/
https://cordis.europa.eu/project/id/893146

Chapter 3

In 2017, [Jang et al., 2017] proposed an SDN solution to monitor and manage
Wireless Local Area Network (WLAN) scenarios called RFlow+. To enhance scal-
ability, they implemented two different levels of network monitoring: short-term
monitoring to perform more immediate actions (e.g. flow regulation) and long-
term monitoring to perform eventual actions (e.g. limiting regular heavy loads,
blocking slow scanning attackers). The short-term monitoring is performed by
a local agent, close to network switches, that communicates with a global agent
that resides in a higher layer close to the SDN-C. The framework is evaluated
against native Openflow (OF) to compare accuracy and network overhead val-
ues. Experiments reported 5% standard error for short-term and less than 1% for
long-term while consuming less network overhead compared with OF or sFlow.

In 2018, [Fawcett et al., 2018] presented a distributed SDN security framework
that focuses on scalable detection and remediation of attacks called TENNISON.
It provides differentiated monitoring capabilities: can perform lightweight mon-
itoring across a large number of flows or Deep Packet Inspection (DPI) in smaller
groups of flows. The framework provides options to work in conjunction with
standard security tools (e.g. Snort, Bro), flow control using intents, monitoring
enhanced by sFlow and IPFIX, and a API interface to register controller applica-
tions to regulate network behaviour. Fawcett et. al also built a security packet
pipeline that prefixes new flow tables on the normal packet pipeline. However,
several alterations were performed on the SDN-C instances of ONOS as a way to
integrate it with TENNISON.

The team of [Joshi et al., 2018] developed into P4 enabled switches a system to de-
tect and identify the cause of data microburst as a way to reduce latency and jitter.
The small timescale didn’t allow typical monitoring tools (e.g. sFlow, Netflow) to
detect this burst so the authors built BurstRadar into the egress pipeline of each
switch. Packets involved in microbursts are marked, cloned, and redirected to
allow telemetry.

In 2019, [Menth et al., 2019] aimed to avoid Quality of Service (QoS) degrada-
tion in 5G mobile networks. To accomplish their goal, P4 was utilised to build a
Activity-Based Congestion management (ABC) mechanism as a way to guaran-
tee bandwidth-sharing congestion management: light users are protected against
users that generate heavier data loads. The followup experimental evaluation
proved that of the ABC mechanism was able to reduce the bandwidth utilisation
of heavy hitters to enhance the QoS of lighter users.

[Song et al., 2017] identify SDN reliability challenges in the connection of data
and control planes, the control path, and propose a management framework to
address the observed reliability issues. Their work includes a new mechanism
to elect a switch interface for controller connection (Interface Selector), an entity
to store and expose SDN-C cluster configuration (Cluster Information Manager),
reliability algorithms to detect and recover from failures (Failure Manager), and
new control message classification model focus on scalability (Control Message
Orchestration).

In 2020, et.al [Gilani et al., 2020] address routing difficulty in wireless meshed
networks. The authors reviewed works in this area and compiled the major fea-

32

Research Projects & Related Work

tures and characteristics. To respond to the common difficulties of routing traffic
in these environments an architecture is presented: in the first routing phase the
shortest path is calculated and is later optimises, with regards to delay and con-
gestion, in a second phase; They also propose new protocol messages for Open-
flow for device-controller communication and utilise them in the proposed rout-
ing solution. OpenDaylight, Open vSwitch (OVS), and Mininet-Wifi are used to
evaluate the suggested mechanism, with regards to throughput, packet drop ra-
tio, and delay, against popular wireless routing protocols (e.g. OLSR, BATMAN).
The experiments simulated representative problems of wireless networks (e.g.
link and controller failure, node mobility, gateway saturation). Their experiments
proved a success with their implementation outperforming the protocols used in
the comparison.

In 2020, [Ndiaye et al., 2020] propose a modular and generic SDN management
platform aimed at Internet of Things (IoT) scenarios. Their platform is built on
top of IT-SDN6 which is a open-source platform that provides an SDN-C and
neighbour discovery suitable for this wireless sensor networks. Their solution
provides an application plane that exposes different management tasks to users
(e.g Monitoring of network state, task configuration, policy issuance) that are
focused on IoT scenarios (e.g. sensor energy efficiency, adaptability of sensor
tasks, efficient network expansion). These generic and modular components of
the platform mean that it can be deployed in various IoT applications with hetero-
geneous environments. The authors evaluated their solution against comparable
frameworks and found improvements in packet delivery, delay, control traffic,
and energy consumption.

3.3.1 Summary

This section aims to compile the main takeaway of related works discussed through-
out this chapter. It contains a list of each research work, Table 3.1, detailing their
contributions in a summarised manner was a way to provide an overall view of
the works analysed.

6http://www.larc.usp.br/users/cbmargi/www/it-sdn/

33

http://www.larc.usp.br/users/cbmargi/www/it-sdn/

Chapter 3

Table 3.1: Related work summary

Description Keywords Year

RFlow+: An SDN-based WLAN Monitoring and Management
Framework [Jang et al., 2017] Scalable monitoring and manage-
ment framework; Performs immediate actions (short) and even-
tual actions (long);

Framework, ODL,
Wireless, Open-
flow

2017

Control Path Management Framework for Enhancing
Software-Defined Network (SDN) Reliability [Song et al.,
2017] SDN Framework with four modules:Interface Selector,
Cluster Information Manager, Failure Manager, and Control
Message Orchestration;

Framework, Flood-
light, Reliabil-
ity, Scalability,
Openflow*

2017

TENNISON: A Distributed SDN Framework for Scalable Net-
work Security [Fawcett et al., 2018] SDN topology coordinator
with focus on security; Works with modified ONOS;

Framework, Se-
curity, Intents,
ONOS*

2018

BurstRadar: Practical Real-time Microburst Monitoring for
Datacenter Networks [Joshi et al., 2018] Takes a snapshot of all
packets involved in a microburst

P4, Telemetry 2018

Implementation and Evaluation of Activity-Based Congestion
Management Using P4 (P4-ABC) [Menth et al., 2019] ABC
mechanism in P4 to enforce fairness

P4, Fairness, 5G 2018

Bringing Network Coding into SDN: A Case-study for Highly
Meshed Heterogeneous Communications [Cohen et al., 2020]
Network coding through SDN in 5G scenarios; Implantation of
AC-RLNC;

SNOB-5G, Net-
work Coding,
Openflow, P4,
NETCONF

2020

Resilient Service Chains through Smart Replication [Abreu
et al., 2020] Framework to orchestrate VFC; Algorithms to scatter
service replicas (Integer Linear Programming model and Fluid
Communities Heuristic);

SNOB-5G, Frame-
work,VFC, Relia-
bility

2020

SDNMesh: An SDN Based Routing Architecture for Wireless
Mesh Networks [Gilani et al., 2020] Two stage routing solution
to combat difficulty in wireless meshed networks

Wireless,
OpenDaylight
(ODL), Routing,
Openflow*

2020

SDNMM—A Generic SDN-Based Modular Management Sys-
tem for Wireless Sensor Networks [Ndiaye et al., 2020] Modu-
lar and Generic Framework focuses on IoT applications; built on
IT-SDN platform;

Wireless, IoT, Mod-
ular Framework 2020

Exploring software defined networks for seamless handovers
in vehicular networks [Silva et al., 2021] SDN architecture for
seamless service handovers in VANET;

MH-SDVANET,
VANET, Horizon-
tal Handovers

2021

* modified version

34

Chapter 4

Research Objectives & Approach

This chapter documents the major goals of this work and the steps taken to reach
them. Section 4.1 presents the main objectives of the dissertation, while, in Section
4.2 we discuss the plans to complete each individual goal, as well as measures
taken to handle obstacles encountered.

4.1 Objectives

Our main goal is to develop a management and optimisation framework for
the Open Network Operating System (ONOS) controller with novice forwarding
mechanisms capable of operating in wireless mesh networks (WMN).

This framework keeps a collection of forwarding algorithms/approaches from
where users can choose the preferred one to use. We provide our own approach
to forwarding as a fairness focused heuristic: a formulation was developed by
research colleagues and modelled as a multi-commodity-flow with 3 objectives;
from this formulation was obtained a heuristic that works as a single-path min-
cost-flow algorithm that is available in our framework.

Our approach introduces a fairness model taking into account three objectives:
fairness of delay, fairness of reliability and fairness of energy, as a way to address
the needs of WMN and 5G services. This is meaningful because now is very com-
mon to see mesh connections to improve reliability, devices with different energy
requirements/costs, and heavier loads in networks. For example, fairness mech-
anisms can aid by maximising the utilisation of the available topology resources,
allocating resources across different services or users, or handling concurrent ser-
vices restrictions [Shi et al., 2014].

In the developed framework, users can register services to allow service flows to
circulate the topology, so that when a packet of a registered service reaches the
Software Defined Network Controller (SDN-C) it will find the best suited path,
using the preferred forwarding mechanism at the time, and add the necessary
flow rules into the devices.

35

Chapter 4

Furthermore, the framework allows users to monitor the topology, e.g. devices,
packets, flow tables, so they can see if their chosen forwarding configuration is
having the desired effect.

Additionally, all this functionality is exposed through Representational State Trans-
fer (REST) end-points. These end-points serve as an interface to external tools
allowing them to act on the topology without having to worry about the under-
lying technologies and logic.

To reach our main objective, we defined the following goals:

1. Research standard features and activities of typical management frame-
works

Chapter 3 documents relevant research works done in this area that helped
us build knowledge of possible implementation approaches for our target
framework.

2. Implement the fairness centred framework in ONOS

To have our custom fairness mechanism in ONOS we need to first program
the heuristic logic as an application in the SDN controller. It is necessary
to keep track of the topology layout, each device’s energy consumption,
the available services in the network, and the loss and delay of each link.
With these values, we can now compute each of the link weights that are
taken into consideration when the single-path min-cost-flow algorithm is
running. The full logic of the heuristic and how we implemented it is doc-
umented in Chapter 7.

3. Implement REST end-points to allow integration with external tools

To enhance the utility of our framework integration with external manage-
ment tools is proposed. Thus, we provide a REST Application Program-
ming Interface (API) with end-points so that users can configure the frame-
work behaviour, e.g. preferred forwarding algorithm, register allowed ser-
vices to circulate in the topology, and also monitor the information of net-
work assets. In Section 7.2 we document the available end-points and the
implementation steps of this API.

4. Detect service flows and manipulate flow entries

Having a collection of forwarding approaches in ONOS, one of them be-
ing our fairness heuristic, we now need to be able to trigger the forwarding
algorithm and program the flow tables of devices accordingly with the out-
putted path. We need to devise a custom packet processor to detect each
of the packets that reach the controller and filter them to see if any of them
are of registered services. After the preferred algorithm finds a path it is
necessary to populate the Openflow (OF) flow tables of the affected devices
with the appropriate flow entries. Both these endeavours are documented
and explained in Section 7.3.

5. Evaluate the framework in a real scenario

36

Research Objectives & Approach

As a way to evaluate the frameworks and fairness algorithm performance,
we emulate a real-world topology to orchestrate with the developed plat-
form. Some adaptations to topology elements and services were required
but the emulated network still resembles a scenario of possible deployment
of our tool. This is relevant to measure the success of the project. In Chapter
8 we present the steps toward evaluation.

4.2 Approach

This section documents the methodology used and the decisions taken, according
to the development approach and issues that appeared.

4.2.1 Research and Development Methodology

This section aims to provide the vision and methods to research and develop the
management framework as well as the fairness mechanism.

Firstly, research on the state-of-the-art of network management solutions was
conducted as a means to gain knowledge on what type of feature we could/should
include in our framework, what were the more prominent functionalities and
how they were implemented. Using search engines like Web of Science, Research
Gate, and IEEExplore, we searched for conference papers and journal publica-
tions related with our proposed platform (e.g., “network management solution”,
“wireless Software Defined Network (SDN) management”) and with manage-
ment activities of our interest (e.g. fairness, reliability, load balancing).

We filtered out the less relevant and poorly-constructed works using online tools
like Scimago Journal & Country Rank1 and Core2: the majority of reviewed pa-
pers were accepted in conferences rated as CORE B or higher, and Q2 or higher
in case of journal publications.

Also, we were able to coordinate our efforts with the practical assignments of
“Emergent Systems of Internet” class and researched how to implement a Pro-
gramming Protocol-Independent Packet Processors (P4) solution to perform load
balancing during the first semester.

After documenting the state-of-the-art we proposed a ranked list of requirements
needed in our framework. The ranked list followed a MoSCoW technique to help
us prioritise the framework functionalities and divide the work into manageable
pieces. The requirements list was constructed by taking information from previ-
ously built artefacts, e.g., Use Case (UC) diagrams, European project review, and
related work.

We opted to follow a waterfall style development methodology. More agile
methodologies were considered but abandoned due to the necessity of having

1https://www.scimagojr.com/
2http://portal.core.edu.au/conf-ranks/

37

https://www.scimagojr.com/
http://portal.core.edu.au/conf-ranks/

Chapter 4

related work compiled and clear requirement documents early on. Investigation
of network management projects was essential to grasp all the possible features
to include and their priorities in terms of implementation.

An iterative waterfall model is the most indicated style to use because the efforts
of this work contribute to other projects and research activities that have shorter
deadlines and need our contributions to be able to branch toward other areas.

As a way to validate the correctness of the framework in a non-exhaustive man-
ner but without the risk of missing some major issue, we conducted black box
tests, see Chapter 9. In this type of test, a routine is called with a set of input
parameters. For each call, we observe the output and assess if it was according to
what was expected, upon non-compliance we need to readjust the routine logic.

4.2.2 Planning

This section serves the purpose of presenting the evolution of the scope of this
work and how we managed it taking into consideration the issues that we faced.

The initial objective for this work was to build a management and optimisation
framework agnostic of SDN-C and protocols, with the ability to pug-and-play
custom forwarding algorithms. See Appendix D to find detailed information on
the initial goal of this dissertation.

From the feedback of the intermediary defence we needed to reduce the initial
scope of this project: it was ambitious, had too many non functional require-
ments (that needed validation) and some of the activities from the first semester
were leaking to the second semester, e.g. incomplete information in sections of
Chapter2.

So the first thing done in the second semester was reducing the scope of the
project by removing features. Such reduction considered the requirements listing
and classification using the MoSCoW methodology done in the first semester:

• Focus on key management activities We decided to focus only on key man-
agement activities related with load balancing, fairness, Service Function
Chaining (SFC), device mobility and redundant connections. From our
research, see Section 5.1, these were common and handy activities to have
in smart-city style networks. Furthermore, these features were the ones that
fitted best in the interests of the research projects that we still integrate, see
Section 3.1.

• Reducing Non Functional Requirements To save time we cut out or re-
duced some of the original Non Functional Requirements: usability, plat-
form support and extensibility were removed completely; agnosticism was
reduced to building applications for ONOS and for OpenDaylight (ODL)
that performed metric collection (thus the framework would be controller
agnostic). For scalability we only considered a topology with settings from
a realistic network.

38

Research Objectives & Approach

• Removed User Management The framework still holds value without the
features of authentication, authorisation and user roles. The framework
passes to be operated by a single user without requiring a login or account.

• Reduced Algorithm Management since we were planning to develop our
custom fairness algorithm and test it against the provided k-shortest path
algorithms of ONOS, we decided to keep both of them in the framework
and reduced the options for managing algorithms. Now the framework
presents the available options for forwarding and users select the preferred
one to use, removing the options for creating/importing algorithms.

• Reduced Asset Management The ability to authorise and reject the partici-
pation of a device in the network is removed. We just kept the monitoring
functionalities.

• Removed Security related requirements Requirements related to access
control, authentication, or alerts of suspicious traffic were also dropped.

With this new scope, we devised the following plan to successfully complete the
project by late July, see Figure 4.1.

The list of tasks includes:

1. Document Corrections (13 days) From the feedback of the intermediary
defence, we had to readjust some sections of the document and finish others
in Chapter 2 and 5. Some of these activities required further research so we
planned accordingly.

2. Experimental Topology (20 days) When devising this plan, from the re-
search and experiments carried out in the first semester, we knew that Mininet-
Wifi had classes and routines that could help us build our desired scenario
for the experimental evaluation. However, we still needed to devote more
time to fully understand Mininet-Wifi: have stations connected to multiple
Access Point (AP), introduce mobility, choose between mesh or adhoc con-
nections, choose between TC or wmedium to simulate wireless properties,
among other aspects.

3. Fairness Heuristic Implementation (20 days) With the mathematical calcu-
lations of the formulation and heuristic taken care of, which was not our
responsibility, it is then our obligation to implement the heuristic logic into
the ONOS controller. It involved gathering information about the three ob-
jectives and calculate the current link weight to use in the heuristic. Also,
we wanted to see if there was any Java library that could help us accelerate
the implementation of the single-path min-cost-flow algorithm and how we
may integrate it with ONOS.

4. Custom ONOS Implementation (8 days) Implementation of custom weights
into the ONOS forwarding algorithm was needed so that we could compare
our fairness centred forwarding solution with the algorithms supported by
ONOS.

39

Chapter 4

(a) First months

(b) Following months

Figure 4.1: Gantt Chart for the second semester

5. Flow Detection (6 days) It is required to trigger the forwarding mechanism
that allows us to obtain the solution path. For that, we needed to figure out
how to reactivity detect the packets in the controller so that we can run the
default forwarding algorithm.

6. Inserting Table Entries (6 days) With the solution path that came out of
the forwarding algorithm, it is necessary to parse it and then install the
necessary OF rules in the affected devices.

7. Experiments & Paper (26 days) The team also wanted to submit a paper
showcasing our fairness mechanism theory, how we would implement it,
and how we planned to evaluate it to show its advantages. However, due to
health complications of the main researcher responsible for the formulation,
the mechanism wouldn’t be ready in time. So, we adjusted and planned to
submit a paper to ICNP223 at the end of May, showcasing experiments com-
paring our fairness mechanism with the algorithms that ONOS provides,
and results reporting the advantages of our approach.

3https://icnp22.cs.ucr.edu/

40

https://icnp22.cs.ucr.edu/

Research Objectives & Approach

8. REST API (13 days) To allow integration with external tools we needed to
add a way for users to configure and also monitor the topology behaviour.
To complete this task we decided to build REST end-points to expose these
functionalities. We needed to find a suitable Object-Relational Mapping
(ORM), an adequate web server, and implement the logic for the required
REST verbs.

9. Engine for Plug-and-Play Algorithms (16 days) To satisfy the non func-
tional requirements of modularity and agnosticism in the final version of the
framework the algorithms needed to run independently of the SDN-C. This
was to allow compatibility of the framework with any underlying SDN-C
technologies. This meant that between the paper delivery and the final dis-
sertation deadline we needed to migrate the algorithms to another entity,
the “Algorithm Engine”, and figure out how to communicate between the
controller and this new entity.

4.2.3 Issues and Readjustments

Following the adjustments done after the intermediary defence, we proceeded
with the planned activities. However, during the following months, we faced
several issues that compromised the deadlines of the estimated activities and that
made us adjust the scope of the project several times, see Figure 4.2.

We also colour coded each activity to facilitate analyses: green activities didn’t
overspend the estimated time and were finished on time; light green activities
didn’t overspend the estimated time but were performed earlier than estimated;
blue activities didn’t overspend the estimated time but had their milestones shifted;
yellow activities took more time to complete than initial estimated; red activities
were abandoned, and thus remain uncompleted; grey activities we didn’t esti-
mate but they appeared and we had to finish them.

At the beginning of March, we were having issues with Mininet-Wifi, more specif-
ically, trying to connect a single station to multiple AP, which was necessary to
conduct the planned experimental activities. Unable to find a solution, we read-
justed the experimental setup to use only one connection between station and
AP.

We proceeded with the task “Topology Setup”, and at the end of March detected
another issue while trying to test how the topology would react to the addition
of custom flow rules: after removing the ONOS provided application “Reactive
Forwarding”, that automatically install rules in the devices, and populating the
devices with custom flow rules that followed similar syntax, the packets weren’t
being forwarded between switches. After some research, we found that the “Re-
active Forwarding” application also manages ARP requests and replies and that
we needed to develop an application with similar logic, the “Custom Arp Han-
dler”.

Because of these setbacks we decided that it would be best to deliver the disserta-
tion in September, to compensate for the lost time resolving these issues, and just

41

Chapter 4

(a) First months

(b) Following months

(c) Last months

Figure 4.2: Activities performed in the second semester

shift the remaining activities.

At the beginning of April, before starting the “Fairness Heuristic Implementa-
tion” activity, we were tasked to provide the formulation author, researcher Noé
Godinho, with information of the topology so that he could validate the formula-
tion/heuristic: devices, links, delay, energy consumption, observable loss, band-
width, service flows and output path of the heuristic. This data was necessary
so that Noé could run a solver to know-how efficient the solution of the heuristic
was (that gives a close to optimal path in near to real-time), in comparison to the
solution of the formulation (that gives the optimal path but is not useful in a live
setting).

Due to the amount of data that was necessary to parse and deliver, we made
the decision of anticipating the “REST API” task as a way to provide this data
through conventional REST end-points and postpone the implementation of the
heuristic in ONOS.

In the middle of April we initiated the task “Fairness Heuristic Implementation”.
We found the Java library JgraphT4 that had the class CapacityScalingMinimum-
CostFlow() which helped us to accelerate the heuristic implementation. While val-
idating the JgraphT behaviour, we found that it was dividing flows between mul-

4https://jgrapht.org/

42

https://jgrapht.org/

Research Objectives & Approach

tiple paths as a way to use multiple cheaper paths. With the desired behaviour,
the algorithm , would use the cheaper path that could handle the whole flow at
once. To avoid this we needed to perform some mathematical adjustments, see
Section 7.3.1;

Moreover, due to the lack of clear instructions in the ONOS documentation we
struggled to figure out how to import Java libraries into controller applications,
and ended up performing some blind tests until we figured it out.

After concluding the “Fairness Heuristic Implementation”, and thus having the
fairness algorithm implemented in ONOS, the next step was related with the
“Custom ONOS Algorithm”. After discovering how to overwrite the default
classes, we built a custom link weight for the k-shortest path algorithm of ONOS.

While still struggling with the implementation of the heuristic, at the beginning
of May, we started to write the conference paper. We documented the objectives
and motivations of the work and described the formulation/heuristic, as well as
the experimental setup. The only thing missing was to conduct the experiences
and discuss the results.

During this time, we also found a GitHub project, mineevents5, that provided
a tool to define iPerf events in mininet networks. This is useful to generate the
traffic of the services that exist in the network We modified this tool and added
some features: introduced our custom topology, support for Mininet-Wifi, pause
feature, and ability to work with multiple event files. With these adjustments, we
were ready to perform experiments in a flexible fashion.

However, due to the issues faced earlier we only finished implementing the for-
warding algorithm in the middle of May, which was close to the paper deadline.
Furthermore, we were not in the position of furnishing the “Flow Detection” and
“Inserting Table Entries” tasks before the submission date. Nevertheless, we de-
cided to try to experiment with a simple scenario and run the algorithm and in-
stall rules in the devices manually. If the results were promising we could still
have time to submit the paper.

While trying to conduct the experiments we detected some problems with the
emulated topology, e.g., undesired losses in traffic simulations between stations
and AP, or mesh connections not reporting any packet loss.

Ultimately, the team decided to not rush the experiments and submit a paper that
would probably be rejected. Instead, I was tasked to resolve the issues faced and
resume the experiences afterwards.

Following the issues faced in May, at the begging of June, we explore ways to
overcome them, see Section 8.1.1 for a clean explanation of the problems and
the ways we approach them. We tried a plethora of procedures to solve these
concerns in Mininet-Wifi but in the end we were unsuccessful.

Near the end of June, we realised that the better option was to steer away from
Mininet-Wifi to avoid further problems and to resume the experiments with the

5https://github.com/cgiraldo/minievents

43

https://github.com/cgiraldo/minievents

Chapter 4

baseline emulator Mininet. Although this emulator does not support wireless
capabilities, it provides the characteristics to create an adequate and stable envi-
ronment to test the performance of the fairness mechanism: OF enabled devices
and hosts, adjustable link loss rates, bandwidth and delay (thanks to the Traffic
Control classes), and flexible workload of traffic for different services.

Following this decision, came more scope adjustments. We steered away from
the idea of a framework agnostic of SDN-C to a framework built on ONOS that
provides a custom fairness mechanism:

• Reduce management activities Due to the issues with Mininet-Wifi, we re-
moved the features related with device mobility and redundant connec-
tions. The framework supports management activities related with fair-
ness, load balancing, and SFC.

• Removing the Engine from Algorithms This functionality would require
us to implement the algorithm’s logic in a new entity and to research effec-
tive ways to communicate between this new server and the infrastructure
already deployed.

• Reducing Non Functional Requirements Extinguishing the “Engine for al-
gorithms” support lead to the suppression of agnosticism and modularity
characteristics of our framework.

Looking back, this project involved multiple technologies and communication
interfaces. With each one, we faced their learning curves and “novice traps”. The
unfortunately common lack of documentation of this type of tools made us resort
to perform blind tests as a way to figure out what configurations were causing
the problematic and undesired behaviours.

4.2.4 Risks

In the first semester, we documented and classified risks that could arm the suc-
cess of the project. For the ones that were deemed more problematic, we identi-
fied mitigation approaches. In this section we go through the risks that occurred
and whether the mitigation plans were really effective.

Table 4.2 describes each entry and grades them by project’s impact, occurrence
probability and the time frame where they influence our advancements. Table 4.1
presents the description of the options considered for risk classification.

From the risks identified, #1, #2 and #3 occurred but we only had mitigation plans
for the #1.

Mitigation for #1 consists of dropping requirements that ranked low on the MoSCoW
classification and/or reducing the quality of more important features. This ap-
proach was very effective: we were able to identify what functionalities were
essential and the ones that could be dropped. Besides that, opting to deliver the

44

Research Objectives & Approach

Table 4.1: Risk classification caption

Attributes Options Description

Impact

Low
Adjustments are made inside the budget, like the use of
spare hours, or some optional low-priority requirements
need to be dropped, without affecting the final product

Medium

Adjustments are made inside the budget, like the use of
spare hours, a meeting has to be scheduled and some
optional requirements might have their quality compro-
mised. Although we are still able to achieve the main func-
tionalities

High
Requirements need to be addressed. Meeting has to be
scheduled and some of the functionality of the framework
might be compromised

Probability

Low <40% of chance of happening at least one time during the
project

Medium <70% & >40% of chance of happening at least one time
during the project

High >70% of chance of happening at least one time during the
project

Certain Will happen at least one time during the project

Time Frame

Short <2 week

Medium 2-7 weeks

Long >7 weeks

dissertation in September gave us more time for an effective implementation. The
weekly meetings also contributed to identifying problems, as soon as possible.

For risk #2, due to unexpected issues that slowed down progress and made us
fail deadlines, we felt less motivated than usual: the fear of encountering more
issues and having to blindly perform tests to figure out what was causing them
made us more anxious. When we missed the paper deadline for ICNP22 we
took some days off to relax and unwind because previously we were trying to
rush experiments. On another occasion, reverting back to Mininet and abandon-
ing Mininet-Wifi was a drastic change that made us uncomfortable. To gather
feedback we participated in the seminar Rede Temática de Comunicações Móveis
(RTCM) where we presented why we shifted to Mininet. The advice of the par-
ticipants help us feel more confident in this change and provided useful feedback
to better configure the emulated topology. Additionally, just talking and sharing
my concerns with colleagues and research partners help us vent and understand
that these issues are part of the process.

Risk #3 occurred in February, when Noé Godinho was unavailable due to health
concerns and the formulation/heuristic wasn’t ready. A publication regarding
our proposed method for service fairness was to be published in February, but to
mitigate this we simply postponed the paper submission to May, were we would
have the mechanism implemented and results to discuss.

45

Chapter 4

Table 4.2: Risks identification

ID Description Impact Probability Time frame

#1
Development is taking more than expected,
which may affect the quality or content of the
final delivery

High Medium Long

#2 Elements of the team become demotivated or
burnout, so they become less productive Medium Low Medium

#3 Elements of the team become sick so develop-
ment might slow down or stop Medium Low Short

#4
The main author isn’t a good front end devel-
oper so it can be troublesome to do an elegant
framework Graphical User Interface (GUI)

Low Medium Short

#5
The main author doesn’t have a background in
networking so some concepts might be misun-
derstood

Medium Medium Medium

#6
Poor architectural choices were made so frame-
work development may not be compliant with
requisites

High Medium Long

#7
Problems caused by bad design of the engine
for algorithms might lead to progress stagna-
tion

High Medium Medium

#8 The engine for algorithm interface is too com-
plex so users might have a hard time using it High Medium Long

#9
A new version of a protocol or SDN-C changes
internal objects representation which led to our
work being outdated

High Low Long

46

Chapter 5

Requirements Elicitation

The following chapter contains the requirements elicitation steps and resulting
specifications. We extracted the management activities from relevant projects, re-
call Chapter 3, and then documented the functional and non functional require-
ments and also the implementation restrictions that affect our project. In the last
section, we list and rank each individual requirement extracted from the artefacts
produced.

5.1 Management Activities

As a way to make our management framework relevant and not just a niche case,
it needs to be able to perform common and relevant network management ac-
tivities. As a way to gather knowledge of the most pertinent functionalities to
incorporate, we analysed the requirements of the Use Case (UC) in recent Euro-
pean projects and objectives of literature work, as per Chapter 3.

This analysis made us aware of the spectrum of management activities that could
be integrated into our framework. In Table 5.1 we compiled the features of these
projects as a way to extract requirements to our management framework.

To help visualise the areas of focus of these activities, we decided to categorise
them into four classes:

• A-Security: This class groups activities that try to enforce data confiden-
tiality, service availability, and data integrity. Protects the network against
unwanted behaviour and undesired threats.

• B-Service Degradation Avoidance: The category represents activities of op-
timisation. Actions taken to assure Quality of Service (QoS) and Service
Level Agreement (SLA).

• C-Telemetry: Reflects the process of recording and collecting the readings
of an asset. Represents the overall monitoring actions.

47

Chapter 5

• D-Access Control: Symbolises the regulation of elements that can partici-
pate in the network: authenticated users, authorised assets and valid traffic.

Some activities we classified with multiple classes because we found that their
efforts were multi-disciplinary. Others we didn’t attribute a class at all as a result
of being an endeavour for which we previously didn’t define a class for. Ap-
pendix A documents the terminology that was considered to classify the diverse
activities and also to assess their relevance.

Table 5.1: Management activities

load balancing B service fairness B broadcast prevention A,D inbound/outbound
traffic engineering B

centralised management
of network assets B,C traffic steering B support for

service chaining
support for virtual

networks
support for

management algorithms B
support for

self-healing methods B high data volumes B support isolation
of resources

advanced blackholing A traffic anomaly detection A monitoring traffic flows C monitoring control
plane traffic C

support for
centralised routing

support for
redundant connections traffic classification A,B device flow

manipulation

user access control D support for mobility risk assessment A support for
IPv4 and IPv6

support for
network slicing A,D assets access control D

From the plethora of management activities identified we add to prioritise and
select the ones that would be integrated into the framework. This selection was
weighted by the usefulness of each activity and prevalence in the state-of-the-art,
but also by the interests of research projects that we integrate, see Section 3.1.

With this criteria, the focus was on tasks related with fairness and custom traffic
flows: service fairness and load balancing, support for management algorithms,
traffic steering and flow manipulation. Initially, other activities were also con-
sidered, but due to issues that lead to scope reduction, they were removed.

These activities are reflected in the final features of our framework: providing
forwarding algorithms, with fairness concerns, that install custom Openflow (OF)
flow rules in the forwarding devices of a topology, see Section 7.3

To support these forwarding mechanisms in our framework we needed to re-
search and understand how their behaviour can be accomplished and what kind
of network metrics are necessary to collect to enable them.

For this purpose, we compiled Table 5.2 with related approaches regarding load
balancing and service fairness, where we enumerate the type of statistics we need
to collect for orchestration operations.

48

Requirements Elicitation

Table 5.2: Metrics necessary for management activities

Description Metrics Activity

Fair Task Offloading among Fog Nodes in Fog
Computing Networks [Zhang et al., 2018] Fog task
offloading while minimising task delay with battery
and circuit powered devices; Evaluates mechanism
success with regards to fairness, delay and energy
consumption;

Energy consumption, Bat-
tery life, Node tasks, Task de-
lay, Computational power

Fairness

Fairness in Wireless Networks: Issues, Measures
and Challenges [Shi et al., 2014] Defines and com-
pares fairness models; Documents major fairness
domains in wireless networks;

Energy consumption, Max-
imum energy consumption,
Battery life, Node Tasks,
Task delay, Computational
power, Packets Dropped,
Flow Rules, Bandwidth,
Network throughput

Fairness

Computation Offloading and Resource Allocation
in Mixed Fog/Cloud Computing Systems with
Min-Max Fairness Guarantee [Du et al., 2018] Cre-
ates a low complexity algorithm that aims to min-
imise the maximum cost of delay and energy con-
sumption; Evaluates the convergence performance
of the proposed algorithm and the gains in terms of
delay, energy consumption and number of energy
improved nodes;

Energy consumption, Node
Tasks, Task delay, Max-
imum task delay, Task
computational complexity,
Bandwidth, Computational
power

Fairness

Max-Min Fairness and Its Applications to Rout-
ing and Load-Balancing in Communication Net-
works: A Tutorial [Nace and Pioro, 2008] Theoreti-
cal description with example algorithms to solve the
problem plus discussion of possible applications;

Node tasks, Bandwidth Fairness

Cloudlet Load Balancing in Wireless Metropoli-
tan Area Networks [Jia et al., 2016] System to of-
fload tasks while trying to minimise the maximum
response time;

Node tasks, Task size, Task
delay, Task migration time,
Computational power

Load Bal-
ancing

Load-balancing algorithms in cloud computing: A
survey [Jafarnejad Ghomi et al., 2017] Literature
classification of load balancing algorithms;

Energy consumption, Bat-
tery life, Throughput, Task
delay, Task migration time,
Carbon emissions

Load Bal-
ancing

Energy-Efficient Load Balancing Ant Based Rout-
ing Algorithm for Wireless Sensor Networks [Li
et al., 2019] Propose a routing discovery algorithm
for wireless sensor networks that combines three
novel components: an improved pheromone trail
update, a heuristic for low energy route discovery
and a new broadcast scheme for control packets;

Energy consumption, Bat-
tery life, Received Signal
Strength Indication (RSSI),
Link quality, Computational
power

Load Bal-
ancing

5.2 Functional Requirements

This section address the functionalities that fall under the scope of our frame-
work. We produce requirements artefacts to address the functional requirements
of the target platform.

49

Chapter 5

5.2.1 Use Case Diagrams & User Stories

We created UC diagrams, and describe them, to represent the flow of the main
activities that different framework users can perform. User stories complement
the diagrams as a way to give more detail on each of the diagram’s activities.

A User Story1 is a lightweight technique used to represent the features of a prod-
uct. It is structured in a way as if a system user would create it. This is a common
technique in agile development methodologies, where the entity that requested
the product documents the desired features in an effort to facilitate the planning
and discussion later with the development team.

We opted to use User Stories to document our framework features because in
early meetings the main author of the framework and the advisor had difficulties
expressing the features that were in the project scope and what functionalities
they should have. The lightweight and less formal properties of User Stories help
us to promote discussions and converge on the properties to implement in the
framework.

The User Stories are structured as follows:

• Description: As a type of user I want goal so that result;

• Acceptance Criteria: Given that user situation when action performed then
expected outcome.

The description helps define the features and the acceptance criteria characterises
a successful scenario.

In the current version of the framework, there is no mechanism to perform au-
thentication or access control, so any individual with access to the framework
interface can perform all the available operations. Thus, there is only one UC
actor:

• Generic user Performs all actions. User that can monitor and act on the
network behaviour and configuration.

Algorithm Management

Users trying to orchestrate their network(s) have multiple forwarding algorithms
available. By selecting one of them, the incoming traffic is forwarded following
the rules of the selected algorithm. Figure 5.1 depicts the flow of the functionality
related to algorithm management.

The Generic User can see the information about the algorithms in the system and
select the one responsible for forwarding.

The following list of US helps to detail the functionalities presented in Figure 5.1.

1https://www.mountaingoatsoftware.com/agile/user-stories

50

https://www.mountaingoatsoftware.com/agile/user-stories

Requirements Elicitation

List Algorithms List Algorithm

Information

Filter

<<extend>>

<<extend>>

«Sub System»

Algorithm Management

Select as Default
Algorithm

Generic

User

<<extend>>

List API

end-points

Figure 5.1: Algorithm management diagram

• US-1: List end-points related with algorithm management

– Description: As a generic user I want to list all the REST end-points
that allow me to perform framework algorithm management activities
so that I know the end-points available and their structure

– Acceptance Criteria: Given that I have access to the framework when
I request the unfiltered algorithm management end-point list then the
system returns me all the algorithm management end-points.

– End-point information in the list:

* Description

* REST Verb

* Uniform Resource Identifier (URI)

* Query parameters

* Response samples

* Response codes

• US-2: List Algorithms

– Description: As a generic user I want to list all the algorithms in the
system so that I can see the available algorithms.

– Acceptance Criteria: Given that I have access to the framework when
I request the unfiltered algorithm list then the system returns me all
the algorithms.

– Algorithm information in the list:

* Algorithm Identifier

51

Chapter 5

* Name

• US-3: Filter Algorithms

– Description: As a generic user I want to apply filters in my algorithm
search so that I can find the algorithm(s) I am looking for faster.

– Acceptance Criteria:Given that I type the filter values when I submit
my request then the system returns the algorithms that match the in-
tersection of the filter values (INNER JOIN).

– Filter by:

* Algorithm Identifier

* Sub-string of Algorithm Name

• US-4: Access Algorithm Information

– Description: As a generic user I want to see all the information asso-
ciated with a algorithm so that I know its characteristics.

– Acceptance Criteria: Given that I have access to the framework when
I request all the algorithm data then the system returns all the infor-
mation.

– Algorithm information:

* Algorithm Identifier

* Name

* Description

• US-5: Select as Default Algorithm

– Description: As a generic user I want to select an algorithm so that the
algorithm performs the forwarding decisions for incoming traffic.

– Acceptance Criteria: Given that I have access to the framework and
selected an algorithm when i submit the request then the system changes
the default forwarding algorithm to the one selected.

Asset Management

Assets represent topology elements, e.g., devices and connections. To manage
the network behaviour we need the information of asset and asset statistics, like
packet statistics. Thus, this framework subsystem focus on collecting information
and providing it to users. Figure 5.2 depicts the flow of the functionality related
to asset management.

The Generic User can see the information of the assets and their statistics in the
system. The framework keeps and history of how this information changed until
that point in time.

The following list of US helps to detail the functionalities presented in Figure 5.2.

• US-6: List end-points related with asset management

52

Requirements Elicitation

List Assets List Asset

Information

Filter

Assets

<<extend>>

<<extend>>

«Sub System»

Asset Management

Generic

User

List API

end-points

Record

Snapshot

in Database
Loop Snapshot

Stop Loop

<<extend>>

Figure 5.2: Asset management diagram

– Description: As a generic user I want to list all the REST end-points
that allow me to perform framework asset management activities so
that I know the end-points available and their structure.

– Acceptance Criteria: Given that I have access to the framework when I
request the unfiltered asset management end-point list then the system
returns me all the asset management end-point.

– End-point information in the list:

* Description

* Rest Verb

* URI

* Query parameters

* Response samples

* Response codes

• US-7: List Assets

– Description: As a generic user I want to list all the assets in the system
so that I can see the available assets.

– Acceptance Criteria: Given that I have access to the framework when
I request the unfiltered asset list then the system returns me all the
assets.

53

Chapter 5

– Assets information in the list:

* Asset Table Identifier

* Name

* Asset Type {Device, Host, or Link}

• US-8: Filter Assets

– Description: As a generic user I want to apply filters in my asset search
so that I can find the asset(s) I am looking for faster.

– Acceptance Criteria:Given that I type the filter values when I submit
my request then the system returns the assets that match the intersec-
tion of the filter values (INNER JOIN).

– Filter by:

* Asset Table Identifier

* Sub-string of Asset Name

• US-9: Access Asset Information

– Description: As a generic user I want to see all the information asso-
ciated with an asset so that I know its characteristics.

– Acceptance Criteria: Given that I have access to the framework when
I request all the asset data then the system returns all the information.

– Asset information:

* Asset Table Identifier

* Name

* Asset Type {Device, Host, or Link}

* Static Information {identifiers, protocol and drivers versions, inter-
face information, port information}

* Statistical Information {flow tables, bytes and packet statistics, loss
packets}

• US-10: Record Snapshot

– Description: As a generic user I want to save the current state of the
topology assets in the Database so that the information is recorded in
permanent storage.

– Acceptance Criteria: Given that I have access to the framework and
the Database is running when I request to save a snapshot of the topol-
ogy then the system places information in the tables of the Database.

– Tables affected:

* Device

* Host

* Link

* Location

* Port

54

Requirements Elicitation

* Port Statistics

* Flow Rules

• US-11: Loop Snapshot

– Description: As a generic user I want save snapshots of the topology
periodically so that I can monitor possible information changes in the
Database.

– Acceptance Criteria: Given that I have access to the framework and
the Database is running when I request to start a looping action and
provide the frequency for recording snapshots then the system takes a
snapshot of the topology after respecting the frequency indicated.

• US-12: Stop Loop

– Description: As a generic user I want stop the looping action so that
the system stops recording topology information in the Database.

– Acceptance Criteria: Given that I have access to the framework and
the system is taking snapshots periodically when I request to stop the
looping action then the system stop taking snapshots.

Configuration Management

There are several configuration parameters that users can adjust to manipulate
the way the forwarding algorithms affect the topology flows: energy consump-
tion, service flows, link speeds, device models, and others. Figure 5.3 depicts the
flow of the functionality related to configuration management.

The Generic User can see the information about the configurations and change its
contents. The following list of US helps to detail the functionalities presented in
Figure 5.3.

• US-13: List end-points related with configuration management

– Description: As a generic user I want to list all the REST end-points
that allow me to perform framework configuration management activ-
ities so that I know the end-points available and their structure

– Acceptance Criteria: Given that I have access to the framework when
I request the unfiltered configuration management end-point list then
the system returns me all the configuration management end-point.

– End-point information in the list:

* Description

* Rest Verb

* URI

* Query parameters

* Response samples

* Response codes

55

Chapter 5

List
Configurations

List

Configuration

Information

Filter

<<extend>>

<<extend>>

«Sub System»

Configuration Management

Update
Configuration

Information
<<extend>>

Generic

User

List API

end-points

Figure 5.3: Configuration management diagram

• US-14: List Configurations

– Description: As a generic user I want to list all the configuration pa-
rameters in the system so that I can see the available parameters.

– Acceptance Criteria: Given that I have access to the framework when
I request the unfiltered configuration list then the system returns me
all the configuration parameters.

– Configuration information in the list:

* Configuration Parameter Table Identifier

* Configuration Parameter Name

* Description

• US-15: Filter Configurations

– Description: As a generic user I want to apply filters in my config-
uration search so that I can find the configuration parameter(s) I am
looking.

– Acceptance Criteria:Given that I type the filter values when I submit
my request then the system returns the assets that match the intersec-
tion of the filter values (INNER JOIN).

– Filter by:

* Configuration Parameter Table Identifier

* Sub-string of Configuration Parameter Name

56

Requirements Elicitation

• US-16: Access Configuration Information

– Description: As a generic user I want to see all the values associated
with a configuration parameter so that I know the values it.

– Acceptance Criteria: Given that I have access to the framework when
I request to see the parameter values then the system returns all the
information.

– Information affected:

* Parameter Value

• US-17: Update Configuration Information

– Description: As a generic user I want to edit configuration parameter
values so that the information associated with configuration parame-
ters is up to date.

– Acceptance Criteria: Given that I want to update the information of a
parameter when I request to edit it then the system changes the value
stored to the value the user requested.

– Editable Information:

* Parameter value

• US-18: Initialise Configuration Information

– Description: As a generic user I want to initialise the configuration
parameter values so that the information associated with configuration
parameters is not null.

– Acceptance Criteria: Given that the tables are empty and I want to
initialise a parameter when I request to initialise it then the system
changes the stored value to the one that the user requested.

– Editable Information:

* Parameter value

API Utilisation

There are several Representational State Transfer (REST) end-points that allow
integration of our framework with external tools. They allow external users to
monitor the topology behaviour, but also manipulate it. Figure 5.4 depicts the
flow of the functionality related to Application Programming Interface (API) util-
isation.

The Generic User can access end-points to see or change the topology informa-
tion Monitoring activities are provided through GET verbs and modifications are
possible using PUT and POST verbs.

The following list of US helps to detail the functionalities presented in Figure 5.4.

• US-19: List Assets End-Point

57

Chapter 5

List Assets List Asset

Information

Filter

Assets

<<extend>>

<<extend>>

«Sub System»

API Utilisation

Generic

User

Record

Snapshot

in Database
Loop Snapshot

Stop Loop

<<extend>>

List Information

<<extend>>

List
Configurations

List

Configuration

Information

<<extend>>

<<extend>>

Update
Configuration

Information

<<extend>>

Filter

Configurations

<<extend>>

Figure 5.4: API Utilisation diagram

– Description: As a generic user I want to list all the assets in the system
so that I can see the available assets.

– Acceptance Criteria: Given that the web server is running when I
make the API call for the unfiltered asset list then the system returns
me all the assets (code 200).

– Asset information in the list:

* Asset Table Identifier

* Name

* Asset Type {Device, Host or Link}

• US-20: Filter Assets End-Point

– Description: As a generic user I want to apply filters in my asset URI
so that I can find the asset(s) I am looking for faster.

– Acceptance Criteria:Given that the web server is running and I type
the filter values in the URI when I make the API call then the system
returns the assets that match the intersection of the filter values (code
200).

– Filter by:

* Asset Table Identifier

* Sub-string of Asset Name

• US-21: Access Asset Information End-Point

58

Requirements Elicitation

– Description: As a generic user I want to see all the information asso-
ciated with an asset so that I know its characteristics.

– Acceptance Criteria: Given that the web server is running when I
make the API call to see all of the asset data then the system returns
me all the information (code 200).

– Asset information:

* Asset Table Identifier

* Name

* Asset Type {Device, Host or Link}

* Static Information {identifiers, protocol and drivers versions, inter-
face information, port information}

* Statistical Information {flow tables, bytes and packet statistics, loss
packets}

• US-22: List Configurations End-Point

– Description: As a generic user I want to list all the configuration pa-
rameters in the system so that I can see the available configuration
parameters.

– Acceptance Criteria: Given that the web server is running when I
make the API call for the unfiltered configuration parameters list then
the system returns me all the configuration parameters (code 200).

– Configuration information in the list:

* Configuration Parameter Table Identifier

* Configuration Parameter Name

* Description

• US-23: Filter Configurations End-Point

– Description: As a generic user I want to apply filters in my configura-
tion parameters URI so that I can find the configuration parameter(s) I
am looking for faster.

– Acceptance Criteria:Given that the web server is running and I type
the filter values correctly in the URI when I make the API call then the
system returns the configuration parameters that match the intersec-
tion of the filter values (code 200).

– Filter by:

* Configuration Parameter Table Identifier

• US-24: Access Configuration Information End-Point

– Description: As a generic user I want to see all the information asso-
ciated with an configuration parameter so that I know the information
that characterises it.

– Acceptance Criteria: Given that the web server is running when I
make the API call to see all of the configuration parameters data then
the system returns me all the information (code 200).

59

Chapter 5

– Configuration information:

* Parameter Value

• US-25: Update Configuration Information End-Point

– Description: As a generic user I want to edit configuration parameter
values so that the information associated with configuration parame-
ters is up to date.

– Acceptance Criteria: Given that the web server is running and I want
to update the information of a parameter when I make the API call,
using PUT, to edit it then the system changes the value stored to the
value the user requested (code 201).

– Editable Information:

* Parameter value

• US-26: Initialise Configuration Information End-Point

– Description: As a generic user I want to initialise the configuration
parameter values so that the information associated with configuration
parameters is not null.

– Acceptance Criteria: Given that the web server is running, the tables
are empty and I want to initialise the information of a parameter when
I make the API call, using POST, to initialise it then the system changes
the value stored to the value the user requested (code 200).

– Editable Information:

* Parameter value

• US-27: Record Snapshot End-Point

– Description: As a generic user I want to save the current state of the
topology assets in the Database so that the information is recorded in
permanent storage.

– Acceptance Criteria: Given that the web server is running and the
Database is running when I make the API call to save a snapshot of
the topology then the system inserts information in the Database in
the respective tables.

– Tables affected:

* Device

* Host

* Link

* Location

* Port

* Port Statistics

* Flow Rules

• US-28: Loop Snapshot End-Point

60

Requirements Elicitation

– Description: As a generic user I want save snapshots of the topology
periodically so that I can monitor information changes in the Database.

– Acceptance Criteria: Given that the web server is running and the
Database is running when I make the API call to start a looping action
and provide the frequency for recording snapshots in the URI then the
system takes a snapshot of the topology after respecting the frequency
indicated (code 200).

• US-29: Stop Loop End-Point

– Description: As a generic user I want stop the looping action so that
the system stops recording topology information in the Database.

– Acceptance Criteria: Given that the web server is running and the
system is taking snapshots periodically whenI make the API call to
stop the looping action then the system stop taking snapshots.

5.3 Non Functional Requirements

This section discloses the scope of the quality attributes of our target framework.

Pure SDN networks There can be networks that contain legacy switches along-
side Software Defined Network (SDN) enabled devices, this type of net-
work, which mixes paradigms, makes part of the hybrid paradigm of SDN.
These hybrid SDN enabled networks are out of the scope of our framework.

The framework is built to work in pure SDN environments.

Scalability Our framework research and development process is closely inte-
grated with SNOB-5G and MH-SDVANET projects, recall Section 3.1 These
projects deal with emerging services in demanding use cases, like 5G drivers,
smart-cities, and other more.

The framework performs its normal functions in a smart-city environment,
just like the one of Aveiro Tech City Living Lab (ATCLL)2 project. ATCLL
testbed can be used to validate the framework.

Interoperability Frameworks must be able to expose functionalities of their mon-
itoring and management modules with external tools through REST end-
points.

5.4 Design and Technical Restrictions

This section contains restrictions that affected the decision making process, namely
the requirements elicitation process and implementation choices.

2https://www.aveirotechcity.pt/pt/atividades/aveiro-tech-city-living-lab

61

https://www.aveirotechcity.pt/pt/atividades/aveiro-tech-city-living-lab

Chapter 5

SNOB-5G Our framework research and development process is closely inte-
grated with the SNOB-5G project, see Section 3.1.1. SNOB-5G activities
use diverse technologies and tools, like the Open Network Operating Sys-
tem (ONOS) controller and the OF protocol. Thus, implementation for the
ONOS controller was preferable. In the scope of the SNOB-5G project is
also the research of traffic forwarding solutions, with fairness concerns, in
multi path wireless environments. Again, this also weighed our decision to
provide a fairness forwarding mechanism in the framework.

MH-SDVANET The research and development efforts to reach our target frame-
work are also closely integrated with the MH-SDVANET project, see Sec-
tion 3.1.2. This project focuses on the management of Vehicular ad hoc net-
workss (VANETs) and uses the ATCLL as its testbed. These smart-city envi-
ronments contain devices with distinct energy consummations and through-
put, wireless and mesh connections and diverse service flows in the net-
work. Thus, our target framework was developed with the intent of being
able to work in these types of scenarios.

5.5 Requirement Listing

This section aims to compile a complete list of requirements, that were extracted
from the previous sections, and rank them by priority.

To perform the prioritisation we utilised the MoSCoW3 method, where each re-
quirement is given a tag to arrange them hierarchically with regards to the im-
portance to the project success.

• Must Have The requirement is non negotiable. It must be present in the
final product to not compromise the success of the product.

• Should Have The requirement is non vital but dramatically increases the
product value.

• Could Have Would be “nice-to-have” the requirement but they are not nec-
essary to the core functionalities of the product. Leaving it out only has a
small impact on the product’s success.

• Won’t Have Indicates requirements that are out of the scope of the project.
If included, this type of requirements contributes to the complexity by in-
creasing the project scope.

This ranking step is important because it helps to know the critical aspects of
the product and can give some margin for manoeuvre in case of scope manage-
ment or risk mitigation. To reach each rank, the main framework author and the
advisor professor discussed each entry until a consensus was made.

3https://www.productplan.com/glossary/moscow-prioritization/

62

https://www.productplan.com/glossary/moscow-prioritization/

Requirements Elicitation

At the end of the project, we revised this section, to document if a specific require-
ment was completed (Y) or not (N). This is done to help evaluate the success of
the project.

Table 5.3 contains all functional requirements related to management activities
that were extracted from the documents of Section 5.1.

Table 5.3: Management activities requirements list

ID Name Description MoSCoW
Scale

MF1 Load Bal-
ancing

Support load balancing be-
tween different links from a
source to a destination

Must have Y

MF2
Broadcast
Preven-
tion

Prevent broadcast message
propagation in networks, or
network segments

Must have Y

MF3

Support
for Traffic
Engineer-
ing

Allow definition of traffic flow
paths to enforce TE in a effort
to achieve QoS

Must have Y

MF4 Congestion
control

Manage the traffic load in cer-
tain ports by queuing or drop-
ping packets

Must have Y

MF5

Monitoring
traffic
flows at
data plane

Obtain metrics regarding traf-
fic flows (OF flow table statis-
tics and counters)

Must have Y

MF6

Monitoring
traffic at
control
plane

Obtain statistics of OF control
messages Must have Y

MF7

Set mon-
itoring
polling
interval

Changes the rate at which in-
formation of the network is
stored

Must have Y

MF8 Reacts on
events

Software Defined Network
Controller (SDN-C) detects a
ne flow and acts on it

Should
have Y

MF9
Identify
network
assets

Identify topologies and re-
spective inventory of assets re-
sources

Must have Y

MF10
Support
Traffic
Steering

Support policies for traffic
steering by detecting the func-
tions in each route point (e.g.
Deep Packet Inspection)

Could
have Y

63

Chapter 5

Continuation of Table 5.3

ID Name Description MoSCoW
Scale

MF11
Service
Function
Chaining

Framework guarantees that a
selected traffic path passes
through the necessary service
functions

Should
have N

MF12

Support
isolation
of SDN-C
resources

If deployed in an environment
with multiple tenants and/or
network slices, instead of hav-
ing an SDN controller per ten-
ant/slice there is one ’shared’
but with resource isolation

Could
have N

MF13
Support
virtual
networks

If deployed in an environment
with virtual components the
framework must be able to op-
erate them just like it would a
physical element

Must have Y

MF14

Enable
support
for re-
source
usage
fairness

Support Fairness regarding
the usage of links or other
devices

Must have Y

MF15

Support
diverse
NBI proto-
cols

Support REST Should
have Y

MF16

Support
diverse
NBI proto-
cols

Support gRPC Could
have N

MF17
Support
JSON data
models

Support the exchange of in-
formation between framework
and external tools through di-
verse data models (JSON)

Should
have Y

MF18

Support
YANG
data mod-
els

Support the exchange of in-
formation between framework
and external tools through di-
verse data models (YANG)

Could
have N

MF19

Support
multi-
homed
connec-
tions

Devices can have multiple
connections, through different
technologies

Should
have Y

MF20 Support
IPv6

Interfaces can be single or dual
stack

Could
have N

64

Requirements Elicitation

Continuation of Table 5.3

ID Name Description MoSCoW
Scale

MF21
Support
flow iden-
tification

Recognises flows of different
services

Should
have Y

MF22

Support
traffic
classifica-
tion

Allow the injection of custom
header fields to tag traffic (e.g.,
for anomalous traffic)

Could
have N

Table 5.4 contains the requirements list extracted from the algorithm management
artefacts of Section 5.2

Table 5.4: Algorithm management requirements list

ID Name Description MoSCoW
Scale

FAR1 List Algo-
rithms List algorithms in the system Should

have Y

FAR2
Filter
Listed Al-
gorithms

Filter the list of algorithms be-
fore presenting it to the user

Could
have N

FAR3

Access Al-
gorithms
Informa-
tion

See all the information stored
related with a algorithm

Should
have Y

FAR4 Select as
Default

An algorithm can be selected
as the default forwarding op-
tion as a way to steer network
behaviour

Must have Y

FAR5
List REST
end-
points

Present all the end-points re-
sponsible for algorithm man-
agement activities and their
syntax

Could
have N

Table 5.5 contains the requirements list extracted from the asset management arte-
facts of Section 5.2

Table 5.5: Asset management requirements list

ID Name Description MoSCoW
Scale

FER1 List all the
Assets List assets in the system Should

have Y

FER2
Filter
Listed
Assets

Filter the list of assets before
presenting it to the user

Could
have N

65

Chapter 5

Continuation of Table 5.5

ID Name Description MoSCoW
Scale

FER3
Get Asset
Informa-
tion

Get a list of all the collected
information about an asset.
The information collected and
stored in each sampling rate is
listed

Should
have Y

FER4 Take
Snapshot

Save the current topology in-
formation in Database Must have Y

FER5

Take
Snapshot
Periodi-
cally

Takes a snapshot of the topol-
ogy with X seconds of interval Must have Y

FER6
Stop Peri-
odic Snap-
shot

Stops the looping action of tak-
ing snapshots Must have Y

FER7
List REST
end-
points

Present all the end-points re-
sponsible for asset manage-
ment activities and their syn-
tax

Could
have N

Table 5.6 contains the requirements list extracted from the configuration manage-
ment artefacts of Section 5.2

Table 5.6: Configuration management requirements list

ID Name Description MoSCoW
Scale

FCR1 List Configu-
rations

List configurations in the sys-
tem

Should
have Y

FCR2
Filter Listed
Configura-
tions

Filter the list of configurations
before presenting it to the user

Could
have N

FCR3
Get Configu-
rations Infor-
mation

Get a list of all the values of
that configuration parameter

Should
have Y

FCR4
Update Con-
figuration In-
formation

Change the value(s) of config-
uration parameter Must have Y

FCR5
Add Con-
figuration
Information

Add configuration values in
the configuration parameters
that support multiple entries

Must have Y

FCR6 List REST
end-points

Present all the end-points
responsible for configuration
management activities and
their syntax

Could
have N

66

Requirements Elicitation

Table 5.7 contains the requirements list extracted from the API utilisation artefacts
of Section 5.2

Table 5.7: API utilisation requirements list

ID Name Description MoSCoW
Scale

FIR1 Expose
End-point

Have end-points that external
tools and users can call to
perform framework activities,
without access to the frame-
work interface

Should
have Y

FIR2

List Con-
figura-
tions
End-point

List configurations in the sys-
tem using an API call (GET
verb)

Should
have N

FIR3

Filter
Listed
Config-
urations
End-point

Filter the list of configurations
before presenting it to the user
using an API call (GET verb)

Could
have N

FIR4

Get Con-
figura-
tions Info
End-point

Get a list of all the values of
that configuration parameter
using an API call (GET verb)

Should
have Y

FIR5

Update
Configu-
ration Info
End-point

Change the value(s) of config-
uration parameters using an
API call (PUT verb)

Must have Y

FIR6

Add
Configu-
ration Info
End-point

Add configuration values in
the configuration parameters
that support multiple entries
using an API call (POST verb)

Must have Y

FIR7 List Assets
End-point

List assets in the system using
an API call (GET verb)

Should
have Y

FIR8

Filter
Listed
Assets
End-point

Filter the list of assets before
presenting it to the user using
an API call (GET verb)

Could
have N

FIR9

Get Asset
Infor-
mation
End-point

Get a list of all the collected in-
formation about an asset using
an API call (GET verb)

Should
have Y

FIR10
Take
Snapshot
End-point

Save the current topology in-
formation in Database using
an API call (GET verb)

Should
have N

67

Chapter 5

Continuation of Table 5.7

ID Name Description MoSCoW
Scale

FIR11

Take
Snapshot
Period-
ically
End-point

Takes a snapshot of the topol-
ogy with X seconds of interval
using an API call (GET verb)

Should
have N

FIR12

Stop Peri-
odic Snap-
shot End-
point

Stops the looping action of tak-
ing snapshots using an API
call (GET verb)

Should
have N

Table 5.8 groups quality attributes of several miscellaneous categories. The re-
quirements were extracted from the documents of Section 5.3.

Table 5.8: Miscellaneous non functional requirements list

ID Name Description MoSCoW
Scale

NF1 User Scal-
ability

The SDN management plat-
form works in scenarios with
smart-cities characteristics,
like ATCLL, namely number
of users

Must have Y

NF2 Device
Scalability

The SDN management plat-
form works in scenarios with
smart-cities characteristics,
like ATCLL namely number
of devices and connections

Must have Y

NF3 Service
Scalability

The SDN management plat-
form works in scenarios with
smart-cities characteristics,
like ATCLL namely types of
services

Must have Y

NF4 Share In-
formation

The SDN management plat-
form must be able to share
the collected information of
network behaviour/state with
other external tools

Should
have Y

NF5
Share
Com-
mands

The SDN management plat-
form must be able to share
framework commands with
external tools so that they can
act on the network.

Should
have Y

68

Requirements Elicitation

Continuation of Table 5.8
ID Name Description MoSCoW

NF6 Pure SDN
The platform is only re-
quired to work in pure SDN
paradigms

Must have Y

NF7 Original
OF

The framework doesn’t mod-
ify the OF protocol Must have Y

NF8 Original
ONOS

The framework doesn’t mod-
ify the ONOS controller inter-
nal logic

Must have Y

In Table 5.9 we present the ranked list of requirements related to our project re-
strictions extracted from Section 5.4.

Table 5.9: Restrictions and constraints requirements list

ID Name Description MoSCoW
Scale

RC1
SNOB-5G
Priority-
SDN-C

Development modules that in-
terface with ONOS controller Must have Y

RC2
SNOB-5G
Priority-
Protocol

Development modules that in-
terface with OF protocol Must have Y

RC3
SNOB-5G
Optional-
SDN-C

Development modules that
interface with OpenDaylight
(ODL) controller

Could
have N

RC4
SNOB-5G
Optional-
Protocol

Development modules that
interface with Programming
Protocol-Independent Packet
Processors (P4) protocol

Could
have N

RC5
Fairness
Algorithm
Priority

Develop service fairness man-
agement algorithm in the
framework

Must have Y

RC6

MH-
SDVANET
Priority-
Interfaces

The SDN management plat-
form works with devices that
have wireless interfaces

Must have Y

RC7

MH-
SDVANET
Priority-
Mesh

The SDN management plat-
form works in scenarios that
have mesh connections

Must have Y

5.5.1 Requirement Fulfilment Analysis

This section aims to clarify the reasoning behind the ranking attributed to require-
ments of the previous tables and explain why some of them weren’t completed.

69

Chapter 5

In the current version of the framework, there is no user authentication and user
management. The Use Cases only identified one actor, Generic User, which is au-
thorised to use all the features of the framework and collected data. This means
that the Generic User, when more advanced data analyses are required, could
query the information in the database to retrieve the data formatted as intended.
This was reflected in the previous tables, and section because requirements re-
lated to retrieve filtered information, or features to enumerate commands or ta-
bles had lower priority.

Additionally, due to the issues and delays documented in Section 4.2.3, there
wasn’t enough time budget to complete these requirements.

On the other hand, there are some requirements that were also marked as not
present in the framework but are only incomplete. The requirements FIR2 FIR3
and FIR8 are related to filtering using the end-points URI. Using the conventional
URI syntax we were able to filter, e.g. the byte and packet statistics of a given
port’s device.

The requirements that need more attention are FIR10-FIR12. They are related
to the functionality of starting and stopping snapshots loops using end-points.
They were ranked with high priority since they represent key features of the
framework and are the only way for tools that access the framework using the
end-points to record more information into the database.

Because the web server only reads and writes to the database, for an end-point
request to trigger a command directly in the application that runs on the ONOS
controller further research of a feasible way to achieve this behaviour is necessary.
We speculated possible solutions, e.g. using Remote Procedure Call (RPC), but
the actual implementation would require time investment to research, develop
and test a proper solution.

Since these features aren’t available to external tools, the non functional require-
ment of “interoperability” is not fully met. The framework is complete for Command-
Line interface (CLI) users and provides a range of activities using the end-points,
but full interoperability isn’t present in the current version of the framework.

70

Chapter 6

Project Architecture

In this Chapter, we present the schema for the framework architecture. We ex-
plain the decisions taken, describe the architectural model utilised, the C4 model,
and document the artefacts constructed.

These diagrams helped us gain a perception of how the framework could func-
tion and aid us in identifying possible missing components or interfaces that we
hadn’t previously considered. These steps also made us identify available tech-
nologies that could fit our needs and consequently choose the more adequately
to use in each activity.

Before the documentation of the architectural artefacts, a preliminary draft of the
layout of the framework is available, in Figure 6.1, as a way to introduce readers
to the interactions and functions that need to be achieved.

The framework is deployed on top of the Open Network Operating System (ONOS)
controller and maintains a communication interface to monitor and manage the
topology behaviour. A collection of forwarding algorithms is kept in the frame-
work so that when a service flow is detected a path is calculated and enforced in
the topology. To access framework functionalities users can utilise a Command-
Line interface (CLI) or opt for the option of calling Representational State Transfer
(REST) end-points, which are also available to provide an interface to external en-
tries that want to use the framework.

6.1 C4 Model

To build architectural diagrams we opted to use the C4 Model1. This model helps
to communicate the framework architecture at different detail levels. Software
development teams, when communicating with stakeholders with different tech-
nological know-how levels, can utilise the more adequate model for each situ-
ation. These different levels of detail also help to progressively document the
architecture of a product, instead of trying to do it all at once.

1https://c4model.com/

71

https://c4model.com/

Chapter 6

REST
Endpoints

ONOS Controller

Network devices

CLI

Forwarding Algorithm

Collection

Fairness Algorithm
ONOS k-short Algorithm

...

Controller Interface

User

Fr
am

ew
or

k

External

Tool

Figure 6.1: Architectural diagram - Preliminary draft

The different levels of detail that the model offers and the previous experience
with it, that the authors had, made us choose this model.

There are four diagrams, C1-C4 that increase the detail while zooming in on soft-
ware components:

• C1-System Context: This diagram provides a birds-eye-view of the com-
ponents. It shows the human and software elements that interact with our
product.

• C2-Container The diagram zooms into the software system to show the
high-level technical building blocks that compose it. It provides also in-
sights into the technologies utilised to interface with different elements of
the diagram.

• C3-Component This diagram zooms into an individual container that was
presented in the C2 view and shows the components inside it.

• C4-Code In this level of detail we find a possible implementation for the
components that were presented in the C3 view. Normally a UML class is
used to achieve this.

There are several elements that make up each diagram, as summarised in Figure
6.2.

Person represents human users that interact with the software system (e.g., ac-
tors, roles, personas, etc).

72

Project Architecture

Software System External System

Container

Component

Code

ContainerContainer

ComponentComponent

CodeCode

[Person]

Figure 6.2: C4 architectural model label

Software System is the highest level of abstraction in the model and represents
our product/service that is to be implemented.

External System is in the same detail level of the Software System element and
represents external tools that our software system depends on or vice versa (e.g.,
mailing service, banking service).

Container represents an application or a data store. It is something that needs to
be operational in order for the rest of the software system to work.

Component are the functionalities that make up the Containers. They are a group
of related functions encapsulated behind a well-defined interface.

Code is the pseudo-code that runs to archive Component functionality.

6.2 Architectural Artefacts

This section contains the C4 diagrams developed to detail our proposed frame-
work architecture.

Figure 6.3 displays the diagram with the lowest level of detail. We see that our
software system runs on top of the Software Defined Network Controller (SDN-
C) and the underlying topology. Users and external tools can interact with our

73

Chapter 6

Framework User
[Person]

Management Framework
[Software System]

Management and monitoring
framework for SDN

SDN Controller
[Software System]

Logically centralised entity that
interfaces the network and the

framework

SDN Topology Elements
[Software System]

Physical and virtual network assets

Views information and statistics of topology elements;

Enforces management activities on the network

Sends instructions so that

the topology is compliant

with management algorithms logic

Sends information of

the current state of

the topology

Updates the

behaviour of elements

External Networking Framework
[Software System]

External management framework tool

Submits requests to

performs framework activities

Feeds topology

information to

external frameworks

Elements report

their statistics

Figure 6.3: C1 architectural diagram - Context

framework to perform the available management and monitor actions.

Figure 6.4 features the container level diagram. We see that the framework com-
municates with the controller using Northbound SDN-C interfaces and that the
business logic is programmed as an ONOS application.

We also have a database container that stores all the framework data, e.g. al-
gorithms, assets, configurations, and a web server container that exposes REST
end-points to perform management tasks. The database uses PostgreSQL. We
considered also MariaDB but the prior experience of the framework authors and
the open-source factor made us choose PostgreSQL. Communications with the
database rely on Java Database Connectivity (JDBC), since the controller lan-
guage is Java.

The Web Server uses Glassfish to run and the Jersey framework to create and
maintain the REST end-points. We considered also other popular choices, like
Tomcat and Jetty, but steered towards Glassfish since it is open-source. Further-

74

Project Architecture

more, we had experience and were comfortable using Glassfish and the remain-
ing integration of the Jersey framework would be effortless since we found so
many helpful materials online.

Framework User
[Person]

Management Framework
[Software System]

ONOS Management
Application

[Container: ONOS Application]

Controller application that collects topology
metrics and manipulates assets.

Runs algorithm logic.

Read/writes to Database.

Network Database
[Container : PostgreSQL]

Stores network runtime statistics,

asset characteristics and configuration

External Networking
Framework

[Software System]

External management framework tool

Sends information of

the current state of

the topology

Sends instructions so that the

topology is compliant with

management decisions

Read/writes

topology information

[JDBC]

Makes API calls
[JSON/HTTPS]

Web Server
[Container: Glassfish+Jersey]

Exposes the endpoints for management
activities

Writes configurations
[JDBC]

SDN Controller
[Software System]

Logically centralised entity that
interfaces the network and the

framework

SDN Topology Elements
[Software System]

Physical and virtual network assetsUpdates the

behaviour of elements

Elements report

their statistics

Reads topology information
[JDBC]

Activate/Deactivate Snapshot
[RPC]

Makes API calls
[JSON/HTTPS]

Executes Commands
[CLI]

Figure 6.4: C2 architectural diagram - Container

The reaming element of the framework is the ONOS application that contains
the business logic of the forwarding elements and the monitoring routines. To
execute the framework functionality, users can run CLI commands or make REST
Application Programming Interface (API) requests.

The only activities that require direct communication between the web server and

75

Chapter 6

the controller application are the activation or deactivation of the routines that
store the topology information in the database. This is due to the synchronous
characteristics of this activity. This could be achieved using Remote Procedure
Call (RPC), but still needs further research to confirm this hypothesis.

Figure 6.5 contains the inner elements that make up the ONOS Management Ap-
plication. This container is composed of 4 components. One that handles the
commands requested by users, one for metric collection from the framework and
storage in a database, a third for processing incoming packets and the final one
to run the forwarding algorithms and enforce the changes in the topology.

When a packet reaches the controller, the “Packet Processor” handles it. If the
packet is from a registered service it requests the “Algorithm Logic” component
to find a suitable path and apply the necessary Openflow (OF) flow rules in the
devices. Using the CLI, the framework offers the opportunity to change the con-
figurations of the framework, e.g. change the default forwarding algorithm, reg-
ister valid service flows, and change the energy consumption of devices.

76

Project Architecture

ONOS Management

Application
[Container]

Metrics Collector
[Component: Java]

Controller application that collects
topology metrics

SDN Controller
[Software System]

Logically centralised entity that interfaces the
network and the framework

Network Database
[Container : PostgreSQL]

Stores network runtime statistics,

asset characteristics and configuration

Web Server
[Container: Java]

Exposes the endpoints for management
activities

Algorithm Logic
[Component: Java]

Runs algorithm logic.

Manipulates Flow Tables

Packet Processor
[Component: Java]

Catches and processes packets that
reach the controller

Calls FW

Algoritthm Populates

Table Entries

Call routines to get

topology information

Writes topology

information

[JDBC]

Reads configuraion

values
[JDBC]

Activate/Deactivate

Snapshot

[RPC]

Parses packets that

reach the controller

Framework User
[Person]

CLI
[Component: Karaf]

Command line interface for
accessing the framework

functions

Execute

Commands

Changes configurations

Reads topology information

[JDBC]

Calls

functions

Reads configuraion

values
[JDBC]

Figure 6.5: C3 architectural diagram - Component: ONOS management applica-
tion

77

Chapter 7

Framework Development

This Chapter’s purpose is to document the development of the framework func-
tionalities. We present the implementation of the diverse framework components
documented in the previous chapters and explain how to use these services.

7.1 Permanent Storage

In the following subsections, we present how we collect network information, the
reasoning behind the schema built to store data, and how users can access these
storage features.

7.1.1 Database Schema

The framework provides permanent storage using a PostgresSQL database that
runs inside a docker container. The database conceptual schema can be consulted
in Figure 7.1. It was designed to be able to store the history of the network infor-
mation in a way that allows users to keep track of the evolution of the network,
previously mentioned as “Snapshots”. Furthermore, the schema also provides
storage for configuration parameters that influence the behaviour of the forward-
ing algorithms, e.g. preferred forwarding solution, default timeout and priority
of flow rules.

Network Information

When the framework takes a snapshot of the topology the controller is queried
and replies with information related to network assets so that it can be stored.

The device table has information that characterises each switch detected by the
controller. The entries of the Openflow (OF) flow tables are stored in the flowrule
table. It contains the packet matching criteria, the treatment for matching packets
and the statistics of each entry. The information of device interfaces can be con-
sulted in the port table. Each port has statistics associated with it, which can be
consulted using table byte_statistics and packet_statistics. Link assets information

79

Chapter 7

Figure 7.1: Database conceptual diagram

is stored in the link table. Note that each link is associated with a source and a
destination port. The host table contains the information that characterises end
machines - nodes participating in a network topology. Table interface has the IP
address of each machine. In table location, we store the historical connections of

80

Framework Development

each host in the topology (store the timestamp when a host was connected with
a certain device’s port).

To keep logged the evolution of the network topology and behaviour, the data
of each host and device is stored with the time of the collection. This allows us
to know if there were elements introduced/removed from the network and also
enables us to analyse the statistics collected at run-time.

Configurations

In the schema, the configuration tables are independent of the network informa-
tion tables, despite referencing some of their identifiers, e.g. device_uri. This is
to allow the configuration of the framework even before the network is running,
e.g. users can account for services that might show up in the future, or devices
that are installed after the initial start of the topology.

The general_conf table stores configurations of general use: the default forward-
ing algorithm to use, and default properties of flow entries (e.g. priority timeout).
Keep in mind that this table is constrained to have only one entry at a time (this is
intended behaviour). Also, the wired and wireless bandwidth fields were neces-
sary to work around the limitations of OF: this protocol is not ready to recognise
wireless connections and so it was reporting incorrect port speeds to the con-
troller. The service_conf and service_host_relation tables allow users to register ser-
vice flows that are allowed to be forward by the framework, recall requirements
MF8 and MF21 from Section 5.5. A service can be registered by defining a name
and bandwidth necessary to reserve alongside the source and destination hosts
of each flow. The traffic of unregistered services will simply be dropped by the
controller when packets of their flow reach the SDN-C.

Finally, the framework allows for the distinction of network switch machines.
This feature allows for users to define the energy consumption of different de-
vices on the topology. The energy table is the one that provided these consumption
values by taking advantage of the feature of Generated Columns of PostgreSQL
121. The table was created in a way that by updating the value of the datarate in a
table entry, the value of the energy_value parameter is updated using the polyno-
mial formula:

(con f _deegre_2 ∗ datarate2) + (con f _deegre_1 ∗ datarate) + con f _deegre_0

where conf_deegre_2, conf_deegre_1 and conf_deegre_0 are the polynomial co-
efficients and datarate is the datarate of the service flow. This allows users to
build flexible energy consumption models.

7.1.2 Metrics collector

Another element that is part of the framework is the Open Network Operat-
ing System (ONOS) application responsible for the collection of data. Using the

1https://pgdash.io/blog/postgres-12-generated-columns.html

81

https://pgdash.io/blog/postgres-12-generated-columns.html

Chapter 7

ONOS Java API2 the application communicates with the controller to request in-
formation of topology devices. This application contains the logic that allows
users to periodically take snapshots of the network state. Furthermore, the appli-
cation also defines Command-Line interface (CLI) commands so that users can
manipulate the database schema and access its contents:

• $onos database –read X : Queries the database and prints the information
of table X;

• $onos database –insert X [arg1, arg2, ..]: Queries the database and
inserts in table X a new entry with the information of the list;

• $onos database –update X [arg1, arg2, ..]: Queries the database and
updates in table X a the entry with the information of the list;

• $onos database –reset: Deletes all tables and then creates them afterwards;

• $onos database –init: Initialises the configuration tables;

• $onos database –create: Run the script to creates all the database tables;

• $onos database –loop X: Takes a snapshot of the topology each X seconds.
The terminal blocks but the user can close the terminal and the looping
action continues;

• $onos database –stoploop: Stops any looping actions of taking topology
snapshots that might be running;

• $onos database –snap: Takes a snapshot of the topology;

• $onos database –pullDB: Pulls the current values from the configuration
tables in the database to the framework;

7.2 Web Server

The framework contains another docker container where the web server runs.
From a clean Ubuntu image, we installed the open-source Glassfish web server
and the open-source Jersey RESTful Web Services framework. We also used the
jOOQ Object-Relational Mapping (ORM) to help advance the implementation
task by automatically generating classes to interface with database tables. The
Application Programming Interface (API) follows Representational State Transfer
(REST) conventions, like idempotent verbs (excluding POST), Uniform Resource
Identifier (URI) naming conventions and reply codes.

There is an end-point for each database table: IPAddress/api/{tableName} . With
all of them, we can use GET to retrieve the information stored and with the ta-
bles of configurations, e.g general_conf, service_conf, energy, users can also execute

2https://api.onosproject.org/2.7.0/apidocs/

82

https://api.onosproject.org/2.7.0/apidocs/

Framework Development

Figure 7.2: GET reply example

POST and PUT requests, to add configuration entries or update them, respec-
tively. The GET actions always return information in JSON format and the PUT
and POST actions always need a JSON in the request body.

Besides being able to retrieve all entries of a table with a GET request, see Fig-
ure 7.2, it is also possible to retrieve specific entries of a table, see Figure 7.3.

Figure 7.3: GET reply example with filtering

The following list contains end-points exposed by the framework that allow users
to filter for specific resources, recall Section 5.5.1:

List of end-points useful for filtering
api/devices/{uri}
api/devices/{uri}/ports
api/devices/{uri}/ports/{port}
api/devices/{uri}/ports/{port}/bytestatistics
api/devices/{uri}/ports/{port}/packetstatistics

where the {uri} is the device identifier, e.g. ’of:0000000000000001’, and the {port}
is the interface identifier, e.g ’2’.

83

Chapter 7

7.3 Forwarding Mechanisms

This section explains how the controller recognises a packet flow, finds a path to
the target destination and enforces the path in the topology. The logic of these fea-
tures is also programmed as an ONOS application. All the devices are configured
to handle incoming IPv4 packets by redirecting them to the ONOS application.
If these are valid packets, the application install rules with higher priority in the
devices to accomplish the desired traffic forwarding.

Packet Processor

The framework implements a custom packet processor that parses through in-
coming packets3. From the packets, the application extracts the source and des-
tination MAC host addresses and then queries the database service_host_relation
table to figure out if this traffic flow corresponds to any registered service. If the
packets don’t match the information of any registered service, the controller will
drop them.

Flow Rules

When a packet is identified as being from a registered service, the default for-
warding algorithm is called and returns a path to reach the target host destina-
tion. From the output of the forwarding algorithm, we parse the solution path
and install flow rules on the involved devices, to enforce the determined path.

Table 7.1 illustrates the possible rules of a flow table in a device after this process.
Future packets of the service that reach the switch are forwarded out to the cor-
rect port because they match the rule with the highest priority (biggest number).
Packets of other services are still redirected to the controller.

Table 7.1: Device example after forwarding decisions

State Priority Timeout Table Selector Treatment

ADDED 20 20 sec 0 IN_PORT:2, ETH_DST:MAC2,
ETH_SRC:MAC1, ETH_TYPE:ipv4 OUTPUT:3

ADDED 15 - 0 ETH_TYPE:ipv4 OUTPUT:
CONTROLLER

Through the CLI users have access to forwarding related commands to manipu-
late the algorithm used:

• $onos algo –getAlgos: Returns and prints the options for default forward-
ing algorithms;

• $onos algo –currentAlgo: Returns and prints the current default forward-
ing algorithm;

3https://api.onosproject.org/2.7.0/apidocs/org/onosproject/net/packet/
PacketProcessor.html

84

https://api.onosproject.org/2.7.0/apidocs/org/onosproject/net/packet/PacketProcessor.html
https://api.onosproject.org/2.7.0/apidocs/org/onosproject/net/packet/PacketProcessor.html

Framework Development

7.3.1 Custom Fairness algorithm

Fairness mechanisms are of immense importance in network management: they
help maximise the utilisation of the available topology resources, can help allo-
cate resources across different services or users and can be considered as per-
flow fairness, per-link fairness, per node fairness and system-wide fairness [Shi
et al., 2014]. It is necessary to go beyond the typical equal distribution of re-
sources [Ghaleb et al., 2021] since when translated to a real scenario it performs
poorly.

Our approach sees service fairness as a method to ensure that the resource are dis-
tributed throughout the network according to a set of metrics. Three objectives
are considered: maximisation of reliability (through packet loss), minimisation
of delay, and minimisation of energy consumption. This problem is modelled
as a tri-objective multi-commodity problem, where each service corresponds to
a commodity and each link has a capacity (bandwidth) constraint. Since the for-
mulation was created by a research colleague and isn’t present in the framework
we won’t go into more detail.

From this formulation was derived a heuristic that works as a single-path min-
cost-flow algorithm that is available in our framework.

The formulation gives the optimal path for a service to take, but since finding a
solution can take more than 30 minutes, it is not useful to use in a live setting. On
the other hand, the heuristic gives a close to optimal path in near to real-time.

By comparing the solution paths of both approaches we can know-how close to
optimal the heuristic is performing.

This is an innovative approach since it is more common for works in the literature
to transform multiple objectives into a single version with weights (instead of
min-max and normalisation) and to not compare the results with the optimal
provided by the formulation [Godinho et al., 2022].

To help accelerate the implementation of the heuristic, we resorted to the method
CapacityScalingMinimumCostFlow() from the Java library JgraphT. To use this method,
we had to pass in some input parameters: a graph object of the network (with
nodes, links and edge costs), a supply/demand function (source node is the sup-
ply, and the target node is the demand), a maximum capacity function (total avail-
able bandwidth of link) and a minimum capacity function (0 bandwidth).

Keep in mind that some adjustments were performed in the logic of the sup-
ply/demand function and a maximum capacity function to make the JgraphT
method behave as we intended, see Section 9.4.

After these alterations:

1. Minimum capacity function always returns 0 capacity;

2. Maximum capacity function returns 1 capacity if the link has enough band-
width to transport the service, and 0 capacity if it hasn’t;

85

Chapter 7

3. Supply/demand function returns 1 if the node is a source of the service
that is being forwarded, -1 if the node is a target of the service that is being
forwarded, and 0 if it is a different node;

4. Graph represents the current topology state with nodes, node connections
and links weights that represent the cost of utilising the link;

The objective of the JgraphT method is to find a path that minimises the sum cost
of the link weights while being constrained by bandwidth.

The logic of the cost function that sets the link’s weight is represented in Algo-
rithm 1.

Algorithm 1 Cost Function

Require: set L of links from topology, set S of registered services, service flow to
transport CS

Ensure: Sets the weights of all the links in L
1: minimum Loss minL, Delay minD, Energy minE;
2: maximum Loss maxL, Delay maxD, Energy maxE;
3: CS Loss xL, Delay xD, Energy xE;
4: r = datarate(CS);
5:
6: for l = 1, . . . , L do
7: src = source(l), dst = destination(l)
8:
9: minL = 0.0;

10: maxL = size(S) * lossProb(l);
11: xL = lossProb(l);
12:
13: minD = 0.0;
14: maxD = 0.0;
15: for s = 1, . . . , S do
16: maxD+= datarate(s) / availableBW(l);
17: xD = r / availableBW(l);
18:
19: minE = idleIntfEnergy(src) + idleIntfEnergy(dst);
20: maxE = minE;
21: for s = 1, . . . , S do
22: maxE+= UpEnergy(src, datarate(s)) + DownEnergy(dst, datarate(s)) +

cpuLoad(src) + cpuLoad(dst);
23: xE = minE + UpEnergy(src, r) + DownEnergy(dst, r) + cpuLoad(src) +

cpuLoad(dst);
24:
25: Loss Weight rW, Delay Weight dW, Energy Weight eW;
26: rW = (xL - minL) / (maxL - minL);
27: dW = (xD - minD) / (maxD - minD);
28: eW = (xE - minE) / (maxE - minE);
29: setCost(max(rW, dW, eW))

86

Framework Development

Depending on what service needs to be forwarded, CS, the cost function sets a
different weight for the link. This is because different services require different
amounts of bandwidth to be forwarded (line 4).

For each link, the function calculates the normalised objective value for loss prob-
ability, delay and energy consumption, and then sets the link weight as the max-
imum of these three amounts: the weight is the worst objective amount. To nor-
malise the values we resort to the equations of lines 25-28.

For the loss probability values: the theoretical minimum loss probability for any
link is 0% (no loss); The upper value of the loss in a link l is achieved when all the
services use the same link l; the loss probability of service CS being transported
in link l is given by the current observable loss probability of link l, see line 11.

Initially, the observable loss probability of a link was planned to be calculated as
the difference between the total number of packets that the source interface sends
and the total number of packets that reach the destination interface. However, we
discovered that the emulator that we used in our experimental scenario, Mininet,
simulates traffic losses in the nodes and not in the links: giving an example of the
initially expected behaviour, device A needs to send X packets to destination B
and only X −Y packets reach the destination, where Y the the number of packets
lost; the actual behaviour is that device A sends X-Y packets and X-Y packets
reach B.

This means that we needed to change how we calculated the observable loss. At
present, the loss probability is given by the mean of the source device losing a
packet in any of its interfaces and the destination device losing a packet in any of
its interfaces:

Sw_Src_Loss = (Sw_Src_sumReceived−Sw_Src_sumSent)/Sw_Src_sumReceived)

Sw_Dst_Loss = (Sw_Dst_sumReceived−Sw_Dst_sumSent)/Sw_Dst_sumReceived)

LossProbability = (Sw_Src_Loss + Sw_Dst_Loss)/2 ∗ 100

For the delay probability values: the theoretical minimum delay for any link is 0
seconds (no delay); the upper value of delay is given by the sum of the time that
takes link l to transport data from all the services; the delay of transporting the
current service in link l is given by the time that takes link l to transport service
CS (division of the service datarate, r, by the available bandwidth of link l), see
line 17 of Algorithm 1.

For the energy consumption values: the minimum energy consumption is given
by the sum of the idle power values of maintaining the source and destination
interfaces; the upper value of energy consumption is given by the addition of the
minimum energy value with the sum of the energy of the source device sending
traffic of all services, the energy of the destination device receiving traffic of all
services, and the energy of the source and destination CPUs processing the data
of all services, see lines 20-22; the energy consumption of service CS being trans-
ported in link l is given by the sum of the minimum energy value, the energy

87

Chapter 7

of the source device sending traffic of CS, the energy of the destination device
receiving traffic of CS, and the energy of the source and destination CPUs pro-
cessing the data, see line 23.

7.3.2 K-shortest ONOS algorithm

ONOS provides off-the-shelf mechanisms for forwarding. Namely, the PathSer-
vice class provides methods to find the K-shortest paths with regards to hop count
or location distance using the EdgeWeigher interface class. Furthermore, develop-
ers can build custom EdgeWeigher interfaces to manipulate the weights of links
utilised in the K-shortest method.

The framework is equipped with a custom K-shortest path algorithm that con-
siders energy cost for the link weight. This calculation is the sum of the energy
of the source device sending traffic (uplink), the destination device receiving traf-
fic (downlink), idle power of keeping source and destination interfaces and CPU
utilisation of source and destination machines:

Weight = src, up + dst, down + src, idle + dst, idle + src, cpu + dst, cpu

The algorithm will return one of the possible paths that minimise the energy con-
sumption of devices. Using this metric instead of hop count is more appropriate
since in a real scenario there are few to no reasons to calculate the cost using hop
count. Opting to consider link distance, service delay, link congestion or even
energy cost is more realistic.

7.4 Potentially Interesting Features

This section serves the purpose of documenting interesting features that could be
added to a future version of the framework.

• The framework already saves the evolution of network asset statistics in
the database. Users can see how information changes during the topology
lifetime. One interesting feature could be to also track the changes in the
configuration parameters;

• The current version of the forwarding algorithms in the framework don’t
support multiple links between the same node pair properly. In the next
version this could be fixed to allow the algorithms to work with even more
interesting scenarios;

• To identify service flows the framework uses the source and target nodes of
the packet. This means that for each host pair there can only be communica-
tions of one service at a time. Maybe future versions of the framework could
work around this limitation to work with more complex traffic events;

88

Framework Development

• When forwarding is necessary, the current default forwarding algorithm of
the framework will find a suitable path. A more interesting approach would
be to have a default forwarding solution for each service, or even for each
host pair.

89

Chapter 8

SDN Experimental Scenario &
Algorithm Results

In this Chapter, we present the scenario we developed to evaluate the perfor-
mance of our framework and the effectiveness of our fairness mechanism. It
showcases the emulation environment, the services considered and how to gen-
erate traffic.

8.1 Experimental Environment

The involvement of this work in research projects allows us to have information
on the deployment layout of Internet of Things (IoT) devices in smart-city scenar-
ios. More specifically, we have access to the topological information of the WiFi
Access Points and other types of nodes (e.g. 5G capable) in the Aveiro Tech City
Living Lab (ATCLL) Lab1.

ATCLL is an advanced communications infrastructure and urban management
platform deployed in the city of Aveiro, Portugal. ATCLL acts like a big scale
open laboratory at the disposal of researchers and enterprises interested in devel-
oping or testing products or services.

To accomplish this, ATCLL has equipment around the city’s urban area which
are able to perform monitoring or interactive functions with users: smart lamps
equipped with traffic sensors, like GPS; Lidars and Radars (e.g., for vehicles com-
munications); public transport installed with sensors for location, velocity, tem-
perature and noise levels, 4G/5G nodes, WiFi Access Point (AP), and many other
sensors, interfaces and technologies that are out of the scope of this work, see
Figure 8.1.

The ATCLL project is relevant to our work because of the layout of the WFi in-
frastructure2.

1https://www.aveirotechcity.pt/pt/atividades/aveiro-tech-city-living-lab
2https://www.google.com/maps/d/viewer?mid=1p7QSVjJkl5n6IiXf8c5DY6Lr9w6aaZb5

91

https://www.aveirotechcity.pt/pt/atividades/aveiro-tech-city-living-lab
https://www.google.com/maps/d/viewer?mid=1p7QSVjJkl5n6IiXf8c5DY6Lr9w6aaZb5

Chapter 8

Figure 8.1: Aveiro Open Lab technologies [aveirotechcity, 2021]

It has around 32 AP in the urban area that we can use to validate our framework
and test its performance, see Figure 8.2. Although we don’t have physical access
to the ATCLL infrastructure we compiled the required information to emulate its
behaviour. By analysing the ATCLL documentation and requesting some addi-
tional artefacts we planned the features of the virtual topology to be faithful to its
real-world counterpart:

• Two centralised backbone SDN switches, OF and P4 capable;

• SDN cluster switch to connect to a group of APs;

• 10Gbps Fiber optics physical connections;

• 2.4GHz wireless connections;

• APs have a physical connection to their cluster switch;

• APs have mesh wireless connections with other AP in a cluster;

92

SDN Experimental Scenario & Algorithm Results

Figure 8.2: Aveiro open lab wifi topology

Keep in mind that the devices in the ATCLL also support connection frequencies
of 5GHz. The initial plan was to experiment with both values but due to time
constraints, see Section 4.2.3, we only utilised the frequency of 2.4GHz.

With the information gathered so far, we can build a draft of the experimental
scenario in Mininet-WiFi, see Figure 8.3.

Cluster
Switch

Cluster
Switch

Centralised
Switch 1

Fiber Optics

Connections

2.4GHz Mesh

Connections

Cluster A Cluster B

Centralised
Switch 2

Figure 8.3: Virtual topology draft

Because the range of the APs is still missing, we are unable to distribute the de-
vices through clusters: we don’t know the neighbours that are in communication

93

Chapter 8

range with a given AP. To obtain this knowledge we adopted a theoretical ap-
proach and calculated it utilising link budget equations, as follows.

Link budget equations are formulas used in telecommunication systems to aid in
design choices. It involved properties of the transmitter, receiver and communi-
cation medium [Rikkinen et al., 2020].

We started with the following link budget equation [Travis Fagerness, 2015]:

PRX = PTX + GTX + GRX − LM − LFS

where:

• PRX is received power strength (dBm);

• PTX is transmitted output power (dBm);

• GTX is transmitted antenna gain (dBi);

• GRX is received antenna gain (dBi);

• LM is miscellaneous losses (weather conditions, obstacles, antenna polari-
sation mismatch, multi path propagation and other losses) (dB);

• LFS is path loss, the loss due to propagation between the transmitting and
receiving antennas (dB).

Knowing that the ATCLL deploys devices similar to Cisco Catalyst 9130AX [Cisco,
2021], the specification values of this machine can help to resolve the link budget
equation. For instance, for IEEE 802.11n it uses the HT20 (High Throughput with
the channel of 20Mhz of bandwidth) and MCS31 as a Modulation Coding Scheme
at a base frequency of 2.4GHz. Thus replacing the equation values:

• The PRX will be replaced by the AP’s Receiver Sensibility, the minimum
amount of power needed to receive a message (-75dBm);

• PTX for 2.4 GHz is 20dBm;

• The peak antenna gain for 2.4 GHz is documented as 4 dBi. The average
GTX and GRX were needed for the formula, so we considered it to be ap-
proximately 0 dBi, using Figure 8.4 as a reference;

• LM is assumed to be around 10dB due to the ATCLL scenario being out-
doors with many buildings blocking line-of-sight, [Aerohive Networks, 2014;
Travis Fagerness, 2015];

• LFS can be replaced by a formula for path loss:

LFS = (
λ

4πR
)2

where: λ is the base frequency (2.4 GHz) and R is the distance between
sender and receiver;

94

SDN Experimental Scenario & Algorithm Results

Figure 8.4: Cisco C9130 AXI 2.4GHz Antenna patterns [Cisco, 2021]

This radius variable, R, is going to give us each AP range. This way we can know
the neighbouring AP that can communicate with each other.

Changing the LFS formula to accept frequency in MHz and R in meters, and re-
placing the other variable values, we get the final equation:

PRX = PTX + GTX + GRX − LM − (−27.55 + 20 log10(2400) + 20 log10(Rmeters))

R ≈ antilog
(PTX + GTX + GRX − LM − PRX − (−27.55 + 20 log10(2400))

20

)
meters

R = antilog
(20dBm + 0dBi − 10dB + 0dBi − (−75)dBm − 40.05

20

)
meters

R ≈ 176.72meters

We conclude that the range of each cisco Wifi Access Point, with outdoor obsta-
cles and using 2.4 GHz should be around 177 meters. With this information, we
can divide the devices between clusters, putting APs that are in range of a mesh
connection in the same cluster.

Finally, with the longitude and latitude values of each AP collected using ATCLL
resources [Aveiro Tech City Living Lab Team, 2021], a scenario for the virtual
topology can be built.

95

Chapter 8

The final layout, see Figure 8.5, is a balance between accuracy of the topology of
Aveiro and the ideal conditions to evaluate the framework and fairness mecha-
nism. This was done to avoid isolating APs from the rest of the topology, which
is counter-intuitive in the scenario we are trying to achieve and to allow easier
scaling up or down of the virtual topology if/when necessary.

There are 6 clusters, each cluster has 6 access points (total of 36 APs), wireless
interfaces use IEEE 802.11n 2.4GHz, wired connections use 10Gbps fibre optics,
APs are deployed in intervals of 20 meters, and clusters are spaced out 60 meters
from each other.

Cluster
Switch (SWC)

Centralised
Switch (SWCC)

C
luster A

Mesh Connections

4020 60 80 100
0

meters

Cluster C
SWC

Cluster E
SWC

Cluster D
SWC

m
et

er
s

50

50

200 340 400 540 600 740 800 940

1200 140

Cluster F
SWC

1000 1140

Centralised
Switch (SWCC)

Cluster B
SWC

Figure 8.5: Mininet-Wifi Virtual Topology Diagram

8.1.1 Problems with Mininet-Wifi

While using iPerf to do some traffic simulations, see Section 8.1.3, some problems
were revealed:

• ARP Parsing Problems When a source node needs to send traffic to a des-
tination node, it first sends an ARP request to the network. The intended
behaviour is for the ARP request to reach the controller, then the HostLoca-
tionProvider class parses the information, and finally, the packet is sent back
to the network. This allows the controller to associate MAC addresses to IP
addresses. Unfortunately, the HostLocationProvider was unable to resend the
packet due to conflicts with mesh connections. We had to manually forward

96

SDN Experimental Scenario & Algorithm Results

the ARP requests and replies, leaving the controller incapable of associating
MAC addresses to IP addresses.

• Losses between station and AP Sending service data using iPerf was re-
porting losses of up to 90% of the traffic between the wireless connection of
station and AP, even though there were near 0% losses in the mesh links;

• Using Hosts To avoid the losses between station and AP we opted to use
hosts instead of stations. These modifications weren’t well handled by Mininet-
Wifi, since the mesh connections would disconnect at the start of the simu-
lation.

• Using Wired connections Using the TClink class to have wired connections
in an effort to avoid the station from AP losses was also ineffective. The
target node of the traffic when prompted with an ARP request, didn’t send
back an ARP reply, so there was no traffic flow.

Trying to resolve these issues or work around them was deemed ineffective. The
environment of the experimental setup was regarded as non deterministic and
thus was abandoned.

As a result, the team shifted to the Mininet emulator. Although it does not have
wireless capabilities, it gathers the necessary conditions to evaluate the fairness
mechanism: Openflow (OF) enabled devices and hosts, adjustable link loss rates,
bandwidth and delays, and flexible workload of traffic for different services. As
way to gather feedback on this emulator change, we participated in the seminar
Rede Temática de Comunicações Móveis (RTCM) 2022. The advice of the partici-
pants helped us to build a more adequate scenario of the emulated topology.

8.1.2 Mininet Environment

The environment built in Mininet keeps the same cluster layout, the same number
of clusters and devices, and the same number of connections, see Figure 8.6. The
differences are that we use hosts instead of stations, switches instead of APs,
links now use the TCLink class, switch to switch connections have 54Mbps of
bandwidth and 1.2% loss probability, switch to host connections have 54Mbps of
bandwidth and are lossless, and the remaining links have 1Gbps of bandwidth
and are also lossless.

The “loss probability” is a parameter of the TCLink class that informs Mininet
on the average packet loss of a link when a single flow is transported through
that connection, assuming the link has enough available bandwidth. The actual
observable loss of a link will depend on the “loss probability” value, the link
congestion, and the size of the service flow. The loss probability values came
from [Miguel, 2020].

The 1Gbps of bandwidth is the maximum of the TCLink class and is used to rep-
resent Fiber optics wired connections, the 54Mbps is used to simulate the wireless
connections (theoretical maximum for IEEE 802.11g [Intel, 2022]).

97

Chapter 8

Cluster
Switch (SWC)

Centralised
Switch (SWCC)

C
luster A

Cluster C
SWC

Cluster E
SWC

Cluster D
SWC

Cluster F
SWC

SW1 SW2 SW3 SW4 SW5 SW6

Centralised
Switch (SWCC)

Cluster B
SWC

Figure 8.6: Mininet Virtual Topology Diagram

8.1.3 Generate Traffic

There are three types of services considered: real-time video (RT-VT), voice traffic
and burst-user-driven traffic (BUD), which is mainly associated with patterns of
web traffic. To model these services we consider the traffic models proposed
in [Navarro-Ortiz et al., 2020]. The settings considered per service are sum-
marised in Table 8.1.

Table 8.1: Services and traffic models [Navarro-Ortiz et al., 2020]

Service Duration Protocol Required bandwidth

RT-VT 202 s UDP CBR ≈ 1.5Mbps
Voice 202 s UDP EVS-WB codec with 24.4 Kbps
BUD n/a TCP With a maximum of 12 Mbps

The RT-VT and voice services are modelled using the UDP transport protocol,
while the BUD uses the TCP protocol.

To generate the traffic of each service we resorted to iPerf. Furthermore, we
adapted the GitHub project MineEvents3, which provides a tool to define iPerf
events in Mininet networks. With this tool it is possible to simulate traffic for
each of the services, assuming we provide it with a JSON file of the events in the
simulation:

3https://github.com/cgiraldo/minievents

98

https://github.com/cgiraldo/minievents

SDN Experimental Scenario & Algorithm Results

[{ "time": 0, "type": "iperf", "params": { "src": "host1",
"dst": "host4", "protocol": "UDP", "bw": 1500000, "duration": 202
} },

{ "time": 1, "type": "iperf", "params": { "src": "host2",
"dst": "host5", "protocol": "UDP", "bw": 24400, "duration": 202
} },

{ "time": 2, "type": "iperf", "params": { "src": "host3",
"dst": "host6", "protocol": "TCP", "num": 10, "buff": 1536000
} },

{ "time": 250, "type": "wait", "params": {} }]

Each event contains a simulation time to start sending packets, host and source
nodes, and protocol type. With UDP the JSON also contains bandwidth value
in bits of the flow and the duration of the traffic flow in seconds. With TCP it
contains the information buffer size in bytes (simulating Web Traffic files), and
the number of times the buffer will be sent (simulating different Web Traffic re-
sources).

8.1.4 Energy Formulas

To populate the energy table of the database, the energy models of [Kaup et al.,
2018] were applied. Two types of devices are considered for the switches, as they
led to different costs in the wired and wireless links: a Raspberry Pi 3B model
and a Cubiboard 3. Table 8.2 presents the power consumption in Watts of the
ethernet and wlan interfaces, in downlink (dn) and uplink (up) traffic, according
to datarate (r) in Mbps. Furthermore, it also documents the energy consumption
of CPU loads and the idle cost of interfaces.

The switches on the edge of each cluster can by Raspberry Pi or Cubiboard ma-
chines: we considered that switches with odd identifiers were Raspberry Pi ma-
chines, e.g. sw1, sw3, sw9, and switches with even identifiers were Cubiboard
machines, e.g. sw2, sw14, sw20. The remaining devices (cluster switches and cen-
tralised switches) were assumed to be Raspberry Pi machines since they are the
machines with more computational power and are more easily found for pur-
chase.

8.2 Experiences & Results

This section documents each of the experiments conducted to evaluate the perfor-
mance of the framework and the fairness mechanism. It details the characteristics
of the environment and provides analyses of the achieved results.

We aim to present experiments with different service flows, a diverse number of

99

Chapter 8

Table 8.2: Power model (Watts), with r - datarate in
Mbps [Kaup et al., 2018]

Raspberry Pi

Peth,up(r) = 26.2e−06r2 + 0.357e−03r + 0.007
Peth,dn(r) = −4.33e−06r2 + 0.485−03r − 0.007

Pwlan,up(r) = −0.25e−06r2 + 1.99e−03r − 0.072
Pwlan,dn(r) = 1.85e−03r2 + 13.5e−03r + 0.072

Pcpu = 0.6191 Pwlan,idle = 0.7645 Peth,idle = −0.1176

Cubiboard 3

Peth,up(r) = −17.6e−06r2 + 6.13e−03r − 0.056
Peth,dn(r) = −20.9e−06r2 + 2.50e−03r + 0.056

Pwlan,up(r) = −0.307e−03r2 + 22.8e−03r + 0.011
Pwlan,dn(r) = 0.137e−03r2 + 6.33e−03r − 0.011

Pcpu = 1.037 Pwlan,idle = 0.3060 Peth,idle = 0.2240

active host machines and scenarios with inter cluster service flows (flows between
different clusters) and scenarios with intra cluster service flows (flows with source
and target host within the same cluster). The inter cluster scenarios also included
a partial - with a reduced set of nodes and a full validation - with all the nodes and
clusters.

In the majority of experiences, the focus is to compare the performance of our
custom fairness heuristic, see Section 7.3.1, against the K-shortest path that Open
Network Operating System (ONOS) provides, see Section 7.3.2, with regards to
performance metrics like link utilisation, jitter and packet loss.

Link utilisation can be considered by looking at the distribution of the number of
packets that a switch transports in all the appropriate interfaces, for a given flow.
Flows with different host targets, when reaching the same switch, might have a
different number of appropriate ports to use to forward packets: a traffic flow
that reaches a cluster switch (swc#) has 5 potential ports to forward packets to if
the target flow is in the same cluster and only 2 ports if the flow needs to reach
a different cluster. A just/fair algorithm should try to approximate the values of
these ports.

The simulation results of iPerf report useful information regarding the flow of
a UDP service. This is another way to compare the two forwarding solutions
since we can collect data from the perspective of the video and voice services:
total information sent in KBytes, average transfer speed in Kbps, average jitter in
milliseconds, percentage of lost datagrams and total datagrams generated.

In each one of these experiments, the preferred forwarding algorithm is selected
in the platform, then the Mininet topology is initiated, and finally, the traffic sim-
ulations of iPerf start. This means that the forwarding algorithms are compared
in the most similar conditions possible.

Regarding the iPerf generated traffic, consecutive service flows are spaced out

100

SDN Experimental Scenario & Algorithm Results

5 seconds between each other to circumvent ONOS limitations. When trying
to generate traffic events each second, the controller would end up being bom-
barded with packets, and eventually would stop installing new forwarding rules.
This is because the first packet would reach the controller, the forwarding algo-
rithm would find a path and the necessary flow rules would be installed in the
required devices. The issue is on the fact that these rules become installed but
are not yet active, they are on a PENDING_ADD state. An ONOS structure, the Flow
Rule Subsystem4, is responsible for observing the rules of the device’s tables and
assessing their adequate state. The rule will only be active when this subsystem,
which acts independently from the structure that installs the rules, changes the
state of the rule to ADDED. This can take some time, and in that time the devices
still send incoming packets to the controller. With more incoming packets, the
flow rule subsystem becomes slower, until ONOS stops operating properly.

Trying to see if our algorithm was the root problem of the ONOS slowdown, we
conducted the same experiences with the ONOS default settings and the default
forwarding algorithm that uses hop count (which is of low algorithm complex-
ity), but the same problem persisted.

Furthermore, we also tried to work around this issue by generating “pre-traffic”
before each iPerf event: for each service event in the JSON, we also generate a
few packets with the same source and destination hosts. This was done with the
intent of giving more time between the first packets of a service that reach the
controller, and the time the flow entries become active.

Generating iPerf events with 5 seconds intervals and adding the “pre-traffic”

4https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem

Figure 8.7: Topology Representation in the ONOS GUI

101

https://wiki.onosproject.org/display/ONOS/Flow+Rule+Subsystem

Chapter 8

events seem to solve the previous issues.

If the description of an experiment doesn’t say otherwise, the reader should as-
sume that there are 6 clusters (cluster identifier 1 through 6), and each cluster has
6 edge switches (e.g. sw1 through sw6 in cluster1, sw7 through sw12 in cluster2).
Each edge switch has 3 hosts connected to it for video, voice and BUD services.

There is 1 “cluster switch” in each cluster (e.g. swc39 in cluster 1, swc40 in cluster
2, swc44 in cluster 6) and different clusters are connected with 2 “central switches”
(swcc37 and swcc38). Figure 8.7 contains an image of the topology provided by
the ONOS Graphical User Interface (GUI), with the respective colour scheme.

Additionally, keep in mind that each target host of the BUD traffic also responds
to the source host, generating an additional flow that needs to be forwarded. In
the experiments, we identify this flow by BUDr.

8.2.1 Heuristic Validation

This experiment aims to theoretically validate how good the solutions that the
fairness heuristic gives are compared to the optimal solutions of the formulation.

Due to the fact that the formulation’s execution time scales with the complexity
of the scenario (more nodes and service flows), we opted to be conservative and
pragmatic and devised the following scenario to avoid unreasonable execution
durations.

The experiment considers three service flows, one for video, one for voice, and
one for BUD: the video service is generated by a machine connected to sw1 and
targets a machine connected with sw3; the voice service is generated by a machine
connected to sw2 and targets a machine connected with sw5; the BUD service is
generated by a machine connected to sw3 and targets a machine connected to sw6;

After running the formulation solver and the implemented heuristic, the results
show that the heuristic obtained the same value for the objective function as the
formulation, which is the best possible result. These values are documents in
the conference paper to submit, see Section 1.2. The value of the objective func-
tion is given by the sum of link weights, while the link weight is the maximum
normalised value of the three objectives.

This experiment confirms that the heuristic produces very good results and that it
can be useful in realistic scenarios. Increasing the number of service flows might
cause some discrepancies between the values of the objective function, which is
expected.

8.2.2 Partial Inter Cluster

In this experiment, we reproduce the environment where service traffic needs to
be forwarded to another cluster, so only two clusters are involved in this scenario.

102

SDN Experimental Scenario & Algorithm Results

Host machines connected to the edge switches of cluster 1 produce traffic that
needs to reach the hosts of cluster 3. For example, sw1 has host1, host2 and
host3 producing traffic of video, voice and BUD, respectively. This traffic needs
to reach the hosts connected to sw13 (host37, host38 and host39) in cluster 3. In
total, there are 18 hosts producing traffic in cluster 1 (6 video services, 6 voice
services and 6 BUD services), plus 6 hosts in cluster 3 that respond to BUD traffic,
BUDr.

Table 8.3 provides useful information detailing the iPerf traffic events of the sim-
ulation.

Table 8.3: Partial Inter Cluster Flows

ID Start Time Source
Target Service

1 0
sw1 : sw13

video
2 5 voice
3 10 BUD
4 - sw13 : sw1 BUDr
5 15 video
6 20 voice
7 25

sw2 : sw14
BUD

8 - sw14 : sw2 BUDr
9 30

sw3 : sw15
video

10 35 voice
11 40 BUD
12 - sw15 : sw3 BUDr
13 45 video
14 50 voice
15 55

sw4 : sw16
BUD

16 - sw16 : sw4 BUDr
17 60

sw5 : sw17
video

18 65 voice
19 70 BUD
20 - sw17 : sw5 BUDr
21 75 video
22 80 voice
23 85

sw6 : sw18
BUD

24 - sw18 : sw6 BUDr

The resulting paths that the fairness algorithm and the K-shortest path found for
each flow are illustrated in Table 8.4.

Looking at the paths obtained by the fairness heuristic we can see that 5 out of
the 18 flows in the iPerf JSON used swcc38 (flows 2, 5, 17, 18 and 19) while the re-
maining used swcc37. Since both switches use the Raspberry Pi energy formulas,
this separation is caused by the loss and delay objectives that variate throughout
the iPerf simulation. When the links that pass through swcc37 are too congested,
the heuristic opts to use swcc38 in the service paths instead.

103

Chapter 8

Table 8.4: Partial Inter Cluster Paths

ID Path
Fairness

Path
K-shortest

1 {sw1, swc39, swcc37, swc41, sw13} {sw1, swc39, swcc38,
swc41, sw14, sw13}

2 {sw1, swc39, swcc38, swc41, sw13} {sw1, swc39, swcc38, swc41, sw13}

3 {sw1, swc39, swcc37, swc41, sw13} {sw1, sw4, swc39, swcc38,
swc41, sw14, sw13}

4 {sw13, swc41, swcc37, swc39, sw1} {sw13, sw14, swc41, swcc38,
swc39, sw4, sw1}

5 {sw2, swc39, swcc38, swc41, sw14} {sw2, swc39, swcc38, swc41, sw14}
6 {sw2, swc39, swcc37, swc41, sw14} {sw2, swc39, swcc38, swc41, sw14}
7 {sw2, swc39, swcc37, swc41, sw14} {sw2, swc39, swcc38, swc41, sw14}
8 {sw14, swc41, swcc37, swc39, sw2} {sw14, swc41, swcc38, swc39, sw2}

9 {sw3, swc39, swcc37, swc41, sw15} {sw3, swc39, swcc38,
swc41, sw14, sw15}

10 {sw3, swc39, swcc37, swc41, sw15} {sw3, swc39, swcc38, swc41, sw15}

11 {sw3, swc39, swcc37, swc41, sw15} {sw3, sw4, swc39, swcc38,
swc41, sw14, sw15}

12 {sw15, swc41, swcc37, swc39, sw3} {sw15, sw14, swc41, swcc38,
swc39, sw4, sw3}

13 {sw4, swc39, swcc37, swc41, sw16} {sw4, swc39, swcc38, swc41, sw16}
14 {sw4, swc39, swcc37, swc41, sw16} {sw4, swc39, swcc38, swc41, sw16}
15 {sw4, swc39, swcc37, swc41, sw16} {sw4, swc39, swcc38, swc41, sw16}
16 {sw16, swc41, swcc37, swc39, sw4} {sw16, swc41, swcc38, swc39, sw4}

17 {sw5, swc39, swcc38, swc41, sw17} {sw5, swc39, swcc38,
swc41, sw14, sw17}

18 {sw5, swc39, swcc38, swc41, sw17} {sw5, swc39, swcc38, swc41, sw17}

19 {sw5, swc39, swcc38, swc41, sw17} {sw5, sw4, swc39, swcc38,
swc41, sw14, sw17}

20 {sw17, swc41, swcc37, swc39, sw5} {sw17, sw14, swc41, swcc38,
swc39, sw4, sw5}

21 {sw6, swc39, swcc37, swc41, sw18} {sw6, swc39, swcc38, swc41, sw18}
22 {sw6, swc39, swcc37, swc41, sw18} {sw6, swc39, swcc38, swc41, sw18}
23 {sw6, swc39, swcc37, swc41, sw18} {sw6, swc39, swcc38, swc41, sw18}
24 {sw18, swc41, swcc37, swc39, sw6} {sw18, swc41, swcc38, swc39, sw6}

104

SDN Experimental Scenario & Algorithm Results

In contrast, the ONOS K-shortest algorithm chooses the path with less energy
consumption, so using swcc37 or swcc38 should be of equal cost. However, be-
cause the algorithm always uses the first path retrieved, when multiple paths
have the minimum energy cost, the only switch ever used in the paths is swcc38.

Figure 8.8 gives us the number of packets sent by swc39 in the simulations, which
helps to illustrate the behaviour described: with the K-shortest algorithm, the
swc39 switch never uses the swc39-swcc37 link so all the packets are sent through
swc39-swcc38; with our fairness heuristic, there is shared link utilisation since
around 2/3 of all packets are sent using swc39-swcc37 and 1/3 using swc39-swcc38.

Figure 8.8: Partial Inter Cluster - Packets Sent Comparison

Furthermore, the paths obtained by the K-shortest path algorithm follow a pat-
tern. The flows where the source and target edge switches have even identifiers
(Cubiboard machines) always opt to utilise the wired link between sw and swc
(Cubiboard to Raspberry Pi wired and Raspberry Pi to Cubiboard wired), inde-
pendently of the service, see flows 5-8, 13-16 and 21-24. The flows where edge
switches have odd identifiers (Raspberry Pi) and the service is voice (flows 2, 10
and 18) retrieved paths that prefer the wired link connections, as well.

Additionally, for all flows where edge switches have odd identifiers and the ser-
vice is video, BUD or BUDr, it is cheaper to use the Raspberry Pi to Cubiboard
wired link plus Cubiboard to Raspberry Pi wireless link (flows 1, 9 and 17 for
video service) than pay the cost of Raspberry Pi to Raspberry Pi wired.

Finally, for all paths where edge switches have odd identifiers and the service
is BUD or BUDr, besides the link preferences described previously, it is cheaper
to use Raspberry Pi to Cubiboard wireless link plus Cubiboard to Raspberry Pi
wired link (flows 3, 11 and 19 for BUD) than pay the cost of Raspberry Pi to
Raspberry Pi wired.

Regarding the observed loss and jitter of the UDP services, Table 8.5 contains the
calculated mean and standard deviation of the values of the iPerf metrics for the
generated video and voice services. Analysing the data, the average information

105

Chapter 8

Table 8.5: Partial Inter Cluster - iPerf UDP Metrics

Service Information
Sent (KB)

Speed
(Kbps) Jitter (ms) Lost

Percentage
Datagrams

Sent
Fairness Heuristic

video 36846.9
±41.805

1508.7
±8.361

0.02
±0.015

0.41%
±0.046

25767.8
±0.408

voice 601.5
±1.23

24.2
±0.16

0.026
±0.008

0.48%
±0.149

421.2
±0.408

K-shortest ONOS

video 36625.1
±264.396

1510.4
±15.530

0.03
±0.025

1.01%
±0.684

25767.3
±0.516

voice 603.8
±1.169

24.15
±0.217

0.023
±0.038

0.20%
±0.178

421.5
±0.548

sent (bytes and datagrams) and the transfer speed reports similar values, inde-
pendently of the forwarding solution, which is expected. Due note, the standard
deviation of the video service, using the K-shortest path, for these metrics is sig-
nificantly higher.

The jitter values are also identical between services and forwarding mechanisms
and are of overall negligible magnitude. Maybe in a more complex scenario, with
heavier loads and lengthier service events, a distinction might become apparent.

The loss values for video and voice, while using the fairness heuristic, are similar
probably because both services use identical paths: both use the wired link from
swc to sw in cluster 3. In contrast, the voice service of the K-shortest path, which
also uses this link, reports a smaller observable loss. This is caused by the fact
that the video service, with the K-shortest path algorithm, uses a different path
and so the voice flow doesn’t compete or interfere with it. This also justifies the
higher loss value of the video service with the K-shortest path: it uses wireless
links, that the voice service doesn’t use, that have a higher base loss probability,
recall Section 8.1.2.

8.2.3 Full Inter Cluster

This experiment is similar to the one performed in the previous section, where
there is traffic that needs to be forward to another cluster in the topology. The dif-
ference in on the fact that now, all of the clusters generate or receive service traffic.
This was done in an effort to see if the framework would handle an amount of
traffic more reminiscent of what can happen in a smart-city environment and to
analyse how the forwarding decisions would change.

Host machines connected to the edge switches of cluster 1 generate traffic that
needs to reach the hosts of cluster 4, traffic of cluster 2 targets hosts of cluster 5
and traffic of cluster 3 is directed to the hosts of cluster 6.

Clusters 1 through 3 have 18 hosts each producing traffic, 6 video services, 6 voice

106

SDN Experimental Scenario & Algorithm Results

Table 8.6: Full Inter Cluster Flows

ID Start
Time

Source
Target ID Start

Time
Source
Target ID Start

Time
Source
Target Service

25 0 sw1 :
sw19

49 90 sw7 :
sw25

73 180 sw13 :
sw31

video
26 5 50 95 74 185 voice
27 10 51 100 75 190 BUD

28 - sw19
: sw1 52 - sw25

: sw7 76 - sw31
: sw13 BUDr

29 15 53 105 77 195 video
30 20 54 110 78 200 voice
31 25

sw2 :
sw20 55 115

sw8 :
sw26 79 205

sw14 :
sw32 BUD

32 - sw20
: sw2 56 - sw26

: sw8 80 - sw32 :
: sw14 BUDr

33 30 sw3 :
sw21

57 120 sw9 :
sw27

81 210 sw15 :
sw33

video
34 35 58 125 82 215 voice
35 40 59 130 83 220 BUD

36 - sw21
: sw3 60 - sw27

: sw9 84 - sw33
: sw15 BUDr

37 45 61 135 85 225 video
38 50 62 140 86 230 voice
39 55

sw4 :
sw22 63 145

sw10 :
sw28 87 235

sw16 :
sw34 BUD

40 - sw22
: sw4 64 - sw28

: sw10 88 - sw34
: sw16 BUDr

41 60 sw5 :
sw23

65 150 sw11 :
sw29

89 240 sw17 :
sw35

video
42 65 66 155 90 245 voice
43 70 67 160 91 250 BUD

44 - sw23
: sw5 68 - sw29

: sw11 92 - sw35
sw17 BUDr

45 75 69 165 93 255 video
46 80 70 170 94 260 voice
47 85

sw6 :
sw24 71 175

sw12 :
sw30 95 265

sw18 :
sw36 BUD

48 - sw24
: sw6 72 - sw30

: sw12 96 - sw36 :
sw18 BUDr

services and 6 BUD services, for a total of 54 hosts, and clusters 4 through 6 also
produce BUDr responses to reply to BUD traffic.

Useful and detailed information about the iPerf traffic events can be found in Ta-
ble 8.6 while the resulting paths for each of the flows are documented in Table 8.7.

Table 8.7: Full Inter Cluster Paths

ID Path
Fairness

Path
K-shortest

25 {sw1, swc39, swcc38, swc42, sw19} {sw1, swc39, swcc38,
swc42, sw24, sw19}

26 {sw1, swc39, swcc38, swc42, sw19} {sw1, swc39, swcc38, swc42, sw19}

27 {sw1, swc39, swcc37, swc42, sw19} {sw1, sw4, swc39, swcc38,
swc42, sw24, sw19}

107

Chapter 8

Continuation of Table 8.7

ID Path
Fairness

Path
K-shortest

28 {sw19, swc42, swcc37, swc39, sw1} {sw19, sw24, swc42, swcc38,
swc39, sw2, sw1}

29 {sw2, swc39, swcc38, swc42, sw20} {sw2, swc39, swcc38, swc42, sw20}
30 {sw2, swc39, swcc37, swc42, sw20} {sw2, swc39, swcc38, swc42, sw20}
31 {sw2, swc39, swcc37, swc42, sw20} {sw2, swc39, swcc38, swc42, sw20}
32 {sw20, swc42, swcc37, swc39, sw2} {sw20, swc42, swcc38, swc39, sw2}

33 {sw3, swc39, swcc37, swc42, sw21} {sw3, swc39, swcc38,
swc42, sw22, sw21}

34 {sw3, swc39, swcc37, swc42, sw21} {sw3, swc39, swcc38, swc42, sw21}

35 {sw3, swc39, swcc37, swc42, sw21} {sw3, sw4, swc39, swcc38,
swc42, sw22, sw21}

36 {sw21, swc42, swcc37, swc39, sw3} {sw21, sw24, swc42, swcc38,
swc39, sw2, sw3}

37 {sw4, swc39, swcc37, swc42, sw22} {sw4, swc39, swcc38, swc42, sw22}
38 {sw4, swc39, swcc37, swc42, sw22} {sw4, swc39, swcc38, swc42, sw22}
39 {sw4, swc39, swcc38, swc42, sw22} {sw4, swc39, swcc38, swc42, sw22}
40 {sw22, swc42, swcc37, swc39, sw4} {sw22, swc42, swcc38, swc39, sw4}

41 {sw5, swc39, swcc38, swc42, sw23} {sw5, swc39, swcc38,
swc42, sw24, sw23}

42 {sw5, swc39, swcc37, swc42, sw23} {sw5, swc39, swcc38, swc42, sw23}

43 {sw5, swc39, swcc37, swc42, sw23} {sw5, sw4, swc39, swcc38,
swc42, sw24, sw23}

44 {sw23, swc42, swcc37, swc39, sw5} {sw23, sw24, swc42, swcc38,
swc39, sw4, sw5}

45 {sw6, swc39, swcc38, swc42, sw24} {sw6, swc39, swcc38, swc42, sw24}
46 {sw6, swc39, swcc38, swc42, sw24} {sw6, swc39, swcc38, swc42, sw24}
47 {sw6, swc39, swcc38, swc42, sw24} {sw6, swc39, swcc38, swc42, sw24}
48 {sw24, swc42, swcc37, swc39, sw6} {sw24, swc42, swcc38, swc39, sw6}

49 {sw7, swc40, swcc37, swc43, sw25} {sw7, swc40, swcc38,
swc43, sw26, sw25}

50 {sw7, swc40, swcc38, swc43, sw25} {sw7, swc40, swcc38, swc43, sw25}

51 {sw7, swc40, swcc37, swc43, sw25} {sw7, sw12, swc40, swcc38,
swc43, sw26, sw25}

52 {sw25, swc43, swcc37, swc40, sw7} {sw25, sw28, swc43, swcc38,
swc40, sw8, sw7}

53 {sw8, swc40, swcc38, swc43, sw26} {sw8, swc40, swcc38, swc43, sw26}
54 {sw8, swc40, swcc37, swc43, sw26} {sw8, swc40, swcc38, swc43, sw26}
55 {sw8, swc40, swcc37, swc43, sw26} {sw8, swc40, swcc38, swc43, sw26}
56 {sw26, swc43, swcc37, swc40, sw8} {sw26, swc43, swcc38, swc40, sw8}

57 {sw9, swc40, swcc37, swc43, sw27} {sw9, swc40, swcc38,
swc43, sw26, sw27}

58 {sw9, swc40, swcc37, swc43, sw27} {sw9, swc40, swcc38, swc43, sw27}

59 {sw9, swc40, swcc37, swc43, sw27} {sw9, sw12, swc40, swcc38,
swc43, sw26, sw27}

108

SDN Experimental Scenario & Algorithm Results

Continuation of Table 8.7

ID Path
Fairness

Path
K-shortest

60 {sw27, swc43, swcc37, swc40, sw9} {sw27, sw28, swc43, swcc38,
swc40, sw8, sw9}

61 {sw10, swc40, swcc38, swc43, sw28} {sw10, swc40, swcc38, swc43, sw28}
62 {sw10, swc40, swcc37, swc43, sw28} {sw10, swc40, swcc38, swc43, sw28}
63 {sw10, swc40, swcc37, swc43, sw28} {sw10, swc40, swcc38, swc43, sw28}
64 {sw28, swc43, swcc37, swc40, sw10} {sw28, swc43, swcc38, swc40, sw10}

65 {sw11, swc40, swcc37, swc43, sw29} {sw11, swc40, swcc38,
swc43, sw26, sw29}

66 {sw11, swc40, swcc37, swc43, sw29} {sw11, swc40, swcc38, swc43, sw29}

67 {sw11, swc40, swcc37, swc43, sw29} {sw11, sw12, swc40, swcc38,
swc43, sw26, sw29}

68 {sw29, swc43, swcc37, swc40, sw11} {sw29, sw28, swc43, swcc38,
swc40, sw8, sw11}

69 {sw12, swc40, swcc37, swc43, sw30} {sw12, swc40, swcc38, swc43, sw30}
70 {sw12, swc40, swcc37, swc43, sw30} {sw12, swc40, swcc38, swc43, sw30}
71 {sw12, swc40, swcc37, swc43, sw30} {sw12, swc40, swcc38, swc43, sw30}
72 {sw30, swc43, swcc37, swc40, sw12} {sw30, swc43, swcc38, swc40, sw12}

73 {sw13, swc41, swcc37, swc44, sw31} {sw13, swc41, swcc38,
swc44,sw36, sw31}

74 {sw13, swc41, swcc38, swc44, sw31} {sw13, swc41, swcc38, swc44, sw31}

75 {sw13, swc41, swcc37, swc44, sw31} {sw13, sw14, swc41, swcc38,
swc44,sw36, sw31}

76 {sw31, swc44, swcc37, swc41, sw13} {sw31, sw32, swc44, swcc38,
swc41, sw14, sw13}

77 {sw14, swc41, swcc38, swc44, sw32} {sw14, swc41, swcc38, swc44, sw32}
78 {sw14, swc41, swcc38, swc44, sw32} {sw14, swc41, swcc38, swc44, sw32}
79 {sw14, swc41, swcc37, swc44, sw32} {sw14, swc41, swcc38, swc44, sw32}
80 {sw32, swc44, swcc37, swc41, sw14} {sw32, swc44, swcc38, swc41, sw14}

81 {sw15, swc41, swcc38, swc44, sw33} {sw15, swc41, swcc38,
swc44, sw32, sw33}

82 {sw15, swc41, swcc38, swc44, sw33} {sw15, swc41, swcc38, swc44, sw33}

83 {sw15, swc41, swcc37, swc44, sw33} {sw15, sw14, swc41, swcc38,
swc44, sw32, sw33}

84 {sw33, swc44, swcc37, swc41, sw15} {sw33, sw32, swc44, swcc38,
swc41, sw14, sw15}

85 {sw16, swc41, swcc38, swc44, sw34} {sw16, swc41, swcc38, swc44, sw34}
86 {sw16, swc41, swcc38, swc44, sw34} {sw16, swc41, swcc38, swc44, sw34}
87 {sw16, swc41, swcc37, swc44, sw34} {sw16, swc41, swcc38, swc44, sw34}
88 {sw34, swc44, swcc37, swc41, sw16} {sw34, swc44, swcc38, swc41, sw16}

89 {sw17, swc41, swcc38, swc44, sw35} {sw17, swc41, swcc38,
swc44, sw32, sw35}

90 {sw17, swc41, swcc38, swc44, sw35} {sw17, swc41, swcc38, swc44, sw35}

91 {sw17, swc41, swcc37, swc44, sw35} {sw17, sw14, swc41, swcc38,
swc44, sw32, sw35}

109

Chapter 8

Continuation of Table 8.7

ID Path
Fairness

Path
K-shortest

92 {sw35, swc44, swcc37, swc41, sw17} {sw35, sw32, swc44, swcc38,
swc41, sw14, sw17}

93 {sw18, swc41, swcc38, swc44, sw36} {sw18, swc41, swcc38, swc44, sw36}
94 {sw18, swc41, swcc38, swc44, sw36} {sw18, swc41, swcc38, swc44, sw36}
95 {sw18, swc41, swcc37, swc44, sw36} {sw18, swc41, swcc38, swc44, sw36}
96 {sw36, swc44, swcc37, swc41, sw18} {sw36, swc44, swcc38, swc41, sw18}

The behaviour of both, the fairness heuristic, and the K-shortest path algorithm
is very similar to the one documented in section 8.2.2, for the partial inter cluster
scenario. The fairness algorithm chooses paths that use the wired link that con-
nects sw with swc and utilises both the swcc37 and swcc38 switches (21 out of the
72 flows in the tables pass through swcc38). Regarding the K-shortest path of
ONOS, the paths follow the same pattern detected in the previous section. Only
the swcc38 is ever used, and depending on the models of the machines (Rasp-
berry Pi or Cubiboard) and the service type (video, voice or BUD), different links
are used to leave/arrive at the source/target switch (the switch connected to the
source/target hosts, respectively).

One difference from the previous experiments is that in the paths of the K-shortest
algorithm when multiple detours occur inside the same cluster, the same switch
would be used (sw14 for flows 1, 3, 4, 9, etc or sw4 for flows 3, 4, 11, 12, etc).
In these experiments, different switches are used for detour, e.g. flows 25 and
27 use sw24 and flows 33 and 35 use sw22. Since the energy cost is the same, we
conclude that when multiple paths have the minimum energy cost, the K-shortest
path doesn’t retrieve the list in any particular order.

Additionally, Figures 8.9, 8.9 and 8.11 illustrate the discrepancy in the utilisation
of the swcc redundant nodes between the forwarding solutions by reporting the
number of packets sent to each one throughout the experiment.

In the two first clusters, the traffic follows similar distributions: 1/3 of the traffic
uses one swcc and 2/3 passes in the other one. Keeping in mind that the majority
of the packets sent are from the video service, see Table 8.8, cluster 1 reports more
packets in swcc38, since 4 out of the 6 video service flows generated in this cluster
pass through it, while cluster 2 reports more packets in swcc37, since also 4 out of
the 6 video flows generated use it in their paths. The discrepancy in the number
of packets is bigger in the third cluster since only 1 out of the 6 video flows uses
swcc37.

In regards to the observed loss and jitter of the UDP services, Table 8.8 contains
the calculated average values of the iPerf metrics for the generated video and
voice services.

The average information sent (bytes and datagrams) and the transfer speed is
similar between the two forwarding solutions, which is expected since the flows
are generated using the same JSON file.

110

SDN Experimental Scenario & Algorithm Results

Figure 8.9: Full Inter Cluster - Packets Sent Comparison - Sent by swc39

Figure 8.10: Full Inter Cluster - Packets Sent Comparison - Sent by swc40

All the average jitter values are negligible, but in the K-shortest path, the average
jitter of the voice service the double of the video value. This is probably an outlier
caused by ONOS: e.g. a flow entry being installed a bit later than usual.

The distributions of the loss probability are similar to the ones in Section 8.2.2: the
fairness heuristic gives similar values for loss in video and loss in voice, probably
because both paths use wired links; the K-shortest path reports higher loss in the
video service, because it uses paths that utilise wireless links, which are more
likely to lose packets.

111

Chapter 8

Figure 8.11: Full Inter Cluster - Packets Sent Comparison - Sent by swc41

Table 8.8: Full Inter Cluster - iPerf UDP Metrics

Service Information
Sent (KB)

Speed
(Kbps) Jitter (ms) Lost

Percentage
Datagrams

Sent
Fairness Heuristic

video 36858.3
±24.14

1520.1
±9.44

0.02
±0.02

0.40%
±0.04

25767.3
±0.46

voice 601.6
±1.93

24.2
±0.22

0.029
±0.02

0.53%
±0.35

421.3
±0.47

K-shortest ONOS

video 36636.4
±237.06

1513.3
±14.29

0.022
±0.02

0.98%
±0.6

25767.4
±0.61

voice 603
±1.73

24.01
±0.21

0.041
±0.04

0.34%
±0.25

421.6
±0.51

8.2.4 Intra Cluster

After analysing the data produced in the previous experiences, we felt that a
more extensive intra cluster scenario was pertinent to test how the forwarding
algorithms would react to flows in this medium: links with less bandwidth ca-
pacity, links with a higher probability of losing packets, energy consumption of
wireless interfaces.

In Table 8.9 we can find the iPerf traffic events of this simulation.

The service flows were placed in a manner that allows us to visualise the conse-
quences of the arrival of consecutive service instances and analyse some machine
combinations not tested before: three sequential video traffic flows from hosts in
sw1 to hosts in sw3, Raspberry Pi to Raspberry Pi; three sequential voice traffic
flows from hosts in sw2 to hosts in sw5, Cubiboard to Raspberry Pi; three sequen-

112

SDN Experimental Scenario & Algorithm Results

Table 8.9: Intra Cluster Flows

ID Start Time Source Target Service
97 0

sw1 : sw3 video98 5
99 10
100 15
101 20
102 25

sw2 : sw5 voice

103 30 sw4 : sw6 BUD
104 - sw6 : sw4 BUDr
105 35 sw4 : sw6 BUD
106 - sw6 : sw4 BUDr
107 40 sw4 : sw6 BUD
108 - sw6 : sw4 BUDr

Table 8.10: Intra Cluster Paths

ID Path Fairness Path K-short
97 {sw1, sw3} {sw1, sw3}
98 {sw1, sw3} {sw1, sw3}
99 {sw1, sw3} {sw1, sw3}
100 {sw2, sw5} {sw2, sw5}
101 {sw2, sw5} {sw2, sw5}
102 {sw2, swc39, sw5} {sw2, sw5}
103 {sw4, sw6} {sw4, sw6}
104 {sw6, sw4} {sw6, sw4}
105 {sw4, sw6} {sw4, sw6}
106 {sw6, sw4} {sw6, sw4}
107 {sw4, sw6} {sw4, sw6}
108 {sw6, sw4} {sw6, sw4}

tial BUD traffic flows from hosts in sw4 to hosts in sw6, Cubiboard to Cubiboard.

The resulting flow paths that each forwarding solution retrieves can be found in
Table 8.10.

Analysing this data, the first thing that is noticed is the distinct path of the third
voice flow (flow id 102), where the fairness heuristic opted to change the traffic
path from the ones used in flows 100 and 101.

Firstly, we know that the path that minimises the energy weight is the one that
uses the sw2-sw5 link, because it is the one that K-shortest path uses. Additionally,
voice flows have a very small datarate when compared with the other services,
which means that the energy and delay weights for voice flows produce small
values, recall Section 7.3.1: the energy weight for voice in sw2-sw5 is 0.0425, while
for video is 0.11 and for BUD 0.847; the delay weight for voice in sw2-sw5 is 0.0017,
while for video is 0.1 and for BUD 0.889;

The behaviour of the fairness heuristic can be understated when we consider that

113

Chapter 8

for flows 100 and 101 the weight of the link was the value of the energy weight
(since it is higher than the delay weight and the loss is probably 0). When flow
102 reaches the controller, there was observable loss in the link sw2-sw5 caused by
the previous voice flows, and thus the weight of the link is now the value of the
loss weight. So the heuristic chooses to use the path that utilises swc39 since it
has 0 loss and minimal energy consumption.

This behaviour doesn’t apply to the other services since the energy costs are much
higher (because they have higher data), and the cost of paths with the swc39 node
always surpasses the cost of using the direct wireless mesh link.

The distribution of the packets sent by sw2 is documented in 8.12. The data re-
flects the service paths documented above: the K-shortest path sends all the pack-
ets directly to sw6, while the heuristic was able to distribute the load throughout
the resources.

Figure 8.12: Intra Cluster - Packets Sent Comparison

Notice that some packets were recorded leaving sw2 to swc39 with the K-shortest
path algorithm. These aren’t datagrams of service traffic, but are instead pas-
sive packets that ONOS subsystems generate necessary for the operation of the
Software Defined Network Controller (SDN-C).

Table 8.11 records the average values of the iPerf metrics for the generated video
and voice services. For the most part, the table contains identical values to the
ones of previous experiments. Some standard deviations are equal to zero since
this experience has fewer iPerf events than the others.

The novelty is that now services are reporting more losses, due to the fact that
only wireless links are being used. The exception is the path of flow 102, which
uses wired links, and that contributes to lowering the average value of losses in
the service of voice with the fairness heuristic.

114

SDN Experimental Scenario & Algorithm Results

Table 8.11: Intra Cluster - iPerf UDP Metrics

Service Information
Sent (KB)

Speed
(Kbps) Jitter (ms) Lost

Percentage
Datagrams

Sent
Fairness Heuristic

video 36556.8
±0.0

1495.04
±17.762

0.010
±0.004

1.2%
±0.057

25767.7
±0.577

voice 600.7
±2.08

24.1
±0.26

0.017
±0.003

0.6%
±0.36

421
±0.0

K-shortest ONOS

video 36556.8
±0.0

1515.5
±0

0.02
±0.0263

1.2%
±0

25767
±0.0

voice 593.3
±8.326

23.97
±0.321

0.016
±0.0201

1.8%
±1.34

421
±0.0

8.3 Discussion

With the overall results of the experiments, it can be concluded that the frame-
work performed its tasks properly.

The framework was successfully deployed in the ONOS controller and handled
the characteristics of an emulated scenario of a real smart-city environment: dif-
ferent machines with heterogeneous computing capabilities, distinct links prop-
erties and traffic of prevalent services. It was able to react upon the detection of
new service flows, and handle their respective packets, accordingly to the spec-
ified configurations of the user: dropping packets of unregistered services and
forwarding flows of expected services. The necessary rules were installed in
topology devices to enforce traffic paths. The snapshots of the topology were
successfully stored in the database enabling users to visualise the evolution of
topology behaviour, while the configuration parameters could be edited to allow
managing of forwarding solutions and configuration of authorised traffic.

Regarding the algorithms, the heuristic provided service paths with fairness con-
cerns enabling the distribution of the load and resource utilisation, while the
K-shortest path implemented the paths that minimised energy cost: the frame-
work gives forwarding solutions with heterogeneous capabilities, which users
can choose according to their needs.

Discussing the fairness aspect of the heuristic, for simple intra cluster scenarios,
we found that the heuristic achieves the same objective function value as the for-
mulation, which is the best possible scenario. For more complex scenarios, where
running the formulation is more cumbersome, we opted to analyse this aspect
by performing experiences. We found that instances of a traffic flow, with the
same service type and the same source and target switches, were taking different
paths: in the inter cluster experiences, recall Sections 8.2.2 and 8.2.3, both swcc37
and swcc38 nodes were utilised. For the intra cluster experiment, see Section 8.2.4,
some paths used the wireless link between switches, while others passed through
the cluster switch (swc).

115

Chapter 8

Finally, the results showed the potential gain of using our fairness proposal, as a
feasible forwarding solution, over typical out-off-the-shelf mechanisms that come
with the SDN-C. There are circumstances where the presented K-shortest path
approach is preferable (e.g. devices need to save battery), but to manage a real
topology it is flawed.

116

Chapter 9

Feature Testing & Validation

In this Chapter, we document the steps involved in the validation of the correct-
ness of requirements and framework routines.

Keep in mind, that this is not an exhaustive list of testing of all the components of
the framework. The aim is to illustrate a formal testing approach and cover the
routines we considered more critical: the ones directly related to requirements
(e.g. utilise end-points, save snapshots); validating the behaviour of external
works (e.g. JGraphT library).

We will be taking advantage of the BlackBox Testing approach. This is a tech-
nique in which the functionalities can be tested without having access or knowl-
edge of the internal code structure. To perform this testing approach it is only
necessary to have the requirements of a routine and to know the expected output
for a given combination of input parameters [Khan and Khan, 2012].

In this testing suite, we want to reach coverage of the bounding box valid input
parameters. This means that for each one of the routines, the tests will use com-
binations of the minimum and maximum valid value for each input parameter.

9.1 Web Server End-points

This section documents tests done against the end-points that the Web server
uses to expose functionality for users and external tools. To help build these
Representational State Transfer (REST) requests, the tool Postman1 was used.

Table 9.1 documents the tests done to retrieve information from the database.
The REST verb GET is used in the request and depending on the URI of the end-
points used the information of a different table is retrieved. The database had
information of multiple snapshots stored when we run the tests:

• *1 Returns code 200; Retrieves, in JSON format, all the entries of the database
table that the URI identifies.

1https://www.postman.com/product/tools/

117

https://www.postman.com/product/tools/

Chapter 9

Table 9.1: BlackBox Tests - Retrieving Information with End-points

Input
ID Verb End - Point

Expected
Outcome

Pass/
Fail

1 GET api/devices *1 PASS
2 GET api/ports *1 PASS
3 GET api/links *1 PASS
4 GET api/flowrules *1 PASS
5 GET api/bytestatistics *1 PASS
6 GET api/packetstatistics *1 PASS
7 GET api/hosts *1 PASS
8 GET api/interfaces *1 PASS
9 GET api/locations *1 PASS

10 GET api/energy *1 PASS
11 GET api/machines *1 PASS
12 GET api/devicemachinerelations *1 PASS
13 GET api/generalconfigurations *1 PASS
14 GET api/serviceconfigurations *1 PASS
15 GET api/servicehostrelations *1 PASS

All fifteen tests of Table 9.1 retrieved the expected output.

Table 9.2 documents the performed tests to retrieve and filter information from
the database. The REST verb GET is used in the request and depending on the
URI of the end-points, and the values of the two input parameters, the informa-
tion of a different table is retrieved. The uri parameter identifies a switch in the
database and the port is the identifier of one of the ports of the selected device.
The database had information from multiple snapshots stored when we run the
tests:

• *2 Returns code 200; Retrieves, in JSON format, all the entries of the database
table device where the uri is the identifier of the switch.

• *3 Returns code 200; Retrieves, in JSON format, all the entries of the database
table port where the uri is the identifier of the switch.

• *4 Returns code 200; Retrieves, in JSON format, all the entries of the database
table port where the uri is the identifier of the switch and port is the port
number of the device.

• *5 Returns code 200; Retrieves, in JSON format, all the entries of the database
table byte_statistics where the uri is the identifier of the switch and port is
the port number of the device.

• *6 Returns code 200; Retrieves, in JSON format, all the entries of the database
table port_statistics where the uri is the identifier of the switch and port is
the port number of the device.

All the tests in Table 9.2 passed successfully.

118

Feature Testing & Validation

Table 9.2: BlackBox Tests - Retrieving Filtered Information with End-points

Input
ID Verb End - Point uri port

Expected
Outcome

Pass/
Fail

16 GET api/devices/{uri} of:0000000000000001 - *2 PASS
17 GET api/devices/{uri} of:0000000000000009 - *2 PASS
18 GET api/devices/{uri} of:000000000000000a - *2 PASS
19 GET api/devices/{uri} of:000000000000002c - *2 PASS
20 GET api/devices/{uri}/ports of:0000000000000001 - *3 PASS
21 GET api/devices/{uri}/ports of:0000000000000009 - *3 PASS
22 GET api/devices/{uri}/ports of:000000000000000a - *3 PASS
23 GET api/devices/{uri}/ports of:000000000000002c - *3 PASS

24 GET api/devices/{uri}/ports/
{port} of:0000000000000001 1 *4 PASS

25 GET api/devices/{uri}/ports/
{port} of:0000000000000001 9 *4 PASS

26 GET api/devices/{uri}/ports/
{port} of:000000000000002c 1 *4 PASS

27 GET api/devices/{uri}/ports/
{port} of:000000000000002c 8 *4 PASS

28 GET api/devices/{uri}/ports/
{port}/bytestatistics of:0000000000000001 1 *5 PASS

29 GET api/devices/{uri}/ports/
{port}/bytestatistics of:0000000000000001 9 *5 PASS

30 GET api/devices/{uri}/ports/
{port}/bytestatistics of:000000000000002c 1 *5 PASS

31 GET api/devices/{uri}/ports/
{port}/bytestatistics of:000000000000002c 8 *5 PASS

32 GET api/devices/{uri}/ports/
{port}/packetstatistics of:0000000000000001 1 *6 PASS

33 GET api/devices/{uri}/ports/
{port}/packetstatistics of:0000000000000001 9 *6 PASS

34 GET api/devices/{uri}/ports/
{port}/packetstatistics of:000000000000002c 1 *6 PASS

35 GET api/devices/{uri}/ports/
{port}/packetstatistics of:000000000000002c 8 *6 PASS

119

Chapter 9

The last functionalities exposed by the web server are related to data manipula-
tion, see Table 9.3. The REST verb POST is used to add entries to the tables in the
database, while the PUT is used to update the information of existing entries in
the tables. To update/insert an entry in the database, a JSON must be sent in the
request body, as exemplified in the following list. The tests are documents in the
way that they are executed, due to some dependencies of the database schema,
and foreign key constraints:

Table 9.3: BlackBox Tests - Insert and Update Information with End-points

Input
ID Verb End - Point Body JSON

Expected
Outcome

Pass/
Fail

36 POST api/generalconfigurations **JSON1 *7 PASS
37 POST api/generalconfigurations **JSON1 *8 PASS
38 PUT api/generalconfigurations **JSON2 *9 PASS
39 POST api/machine **JSON3 *7 PASS
40 POST api/machine **JSON4 *7 PASS
41 POST api/energy **JSON5 *7 PASS
42 POST api/energy **JSON5 *8 PASS
43 PUT api/energy **JSON6 *9 PASS
44 POST api/devicemachinerelation **JSON7 *7 PASS
45 POST api/devicemachinerelation **JSON7 *8 PASS
46 PUT api/devicemachinerelation **JSON8 *9 PASS
47 POST api/serviceconfiguration **JSON9 *7 PASS
48 POST api/serviceconfiguration **JSON9 *8 PASS
49 POST api/serviceconfiguration **JSON10 *7 PASS
50 PUT api/serviceconfiguration **JSON11 *9 PASS
51 POST api/servicehostrelation **JSON12 *7 PASS
52 POST api/servicehostrelation **JSON12 *8 PASS
53 PUT api/servicehostrelation **JSON13 *9 PASS

Possible JSONs in the Request Body

**JSON1
{"pkey": 1, "wired_bw_mbs": 1000000, "wireless_bw_mbs": 1000000,

"flowrule_priority": 1000000, "flowrule_timeout":1000000,
"flowrule_appid":1000000, "default_fw_algorithm": "3-obj-fairness"}

**JSON2
{"pkey": 1, "wired_bw_mbs": 1, "wireless_bw_mbs": 1,

"flowrule_priority": 1, "flowrule_timeout":1,
"flowrule_appid":1, "default_fw_algorithm": "3-obj-fairness"}

**JSON3
{"name": "PI"}

**JSON4
{"name": "Cubi"}

**JSON5
{ "name": "energy_wireless_u", "energy_value": 0.0, "datarate": 0.0,

120

Feature Testing & Validation

"cof_degree_0": -0.00000001, "cof_degree_1": -0.00000001,
"cof_degree_2": -0.00000001, "machine_name": "PI" }

**JSON6
{ "name": "energy_wireless_u", "energy_value": 0.0, "datarate": 1000000,

"cof_degree_0": 1000000, "cof_degree_1": 1000000,
"cof_degree_2": 1000000, "machine_name": "PI" }

**JSON7
{"device_uri": "of:0000000000000001", "machine_name": "Cubi" }

**JSON8
{"device_uri": "of:0000000000000001", "machine_name": "PI" }

**JSON9
{"name": "video", "datarate_mbs": 0.00000001}

**JSON10
{"name": "voice", "datarate_mbs": 1000000}

**JSON11
{"name": "voice", "datarate_mbs": 0.00000001}

**JSON12
{"mac_src": "AA:BB:CC:DD:00:01", "mac_dst": "AA:BB:CC:DD:00:37",

"service_conf_name": "video"}

**JSON13
{"mac_src": "AA:BB:CC:DD:00:01", "mac_dst": "AA:BB:CC:DD:00:37",

"service_conf_name": "voice"}

• *7 Returns code 201; Inserts a table entry, with the information of the JSON,
in the respective table that the end-point Uniform Resource Identifier (URI)
identifies.

• *8 Returns code 500; Internal server error because of duplicate primary Keys
in the database.

• *9 Returns code 201; Updates the information of a table entry that the end-
point URI and the parameters of the JSON identify.

All the tests of Table 9.3 retrieved the expected output.

These tests helped validate the non functional requirement of the framework re-
lated to interoperability. External users can execute framework functionalities by
performing REST requests.

121

Chapter 9

9.2 CLI Commands

The framework contains a range of commands for users to monitor the frame-
work and configure the behaviour of the topology, recall Chapter 7. This section
documents the tests done to validate the correctness of these functionalities ac-
cessible via Command-Line interface (CLI).

Table 9.4 consists of the tests done to retrieve information from the database. Us-
ing the flag “–read” users can retrieve information of table arg1 from the database.
The database had information from multiple snapshots stored when we run the
tests:

Table 9.4: BlackBox Tests - Retrieving Information with CLI

Input
ID flag arg1

Expected
Outcome

Pass/
Fail

54 –read device *10 PASS
55 –read port *10 PASS
56 –read link *10 PASS
57 –read flowrule *10 PASS
58 –read byte_statistics *10 PASS
59 –read packet_statistics *10 PASS
60 –read host *10 PASS
61 –read interface *10 PASS
62 –read location *10 PASS
63 –read energy *10 PASS
64 –read machine *10 PASS
65 –read device_machine_relation *10 PASS
66 –read general_conf *10 PASS
67 –read service_conf *10 PASS
68 –read service_host_relation *10 PASS

• *10 Retrieves, and prints in the shell, all the entries of the database table that
arg1 identifies.

All the tests documented in Table 9.4 performed as expected.

Additionally, tests for the commands related to updating the database and pop-
ulating its tables are documented in Table 9.5. For the flag –loop, the arg1 repre-
sents the seconds between snapshot storage in the database, while for the –insert
and –update flags, it identifies the table to manipulate. The record in the table to
insert/update is identified by the information of the list of arg2.

122

Feature Testing & Validation

Table 9.5: BlackBox Tests - CLI for Management

Input
ID flag arg1 arg2

Expected
Outcome

Pass/
Fail

69 –reset - - *11 PASS
70 –init - - *12 PASS
71 –create - - *13 PASS
72 –loop 5 - *14 PASS
73 –loop 10 - *14 PASS
74 –stoploop - - *15 PASS
75 –snap - - *16 PASS
76 –insert general_conf **List1 *17 PASS
77 –insert general_conf **List1 *18 PASS
78 –update general_conf **List2 *19 PASS
79 –insert machine **List3 *17 PASS
80 –insert machine **List4 *17 PASS
81 –insert energy **List5 *17 PASS
82 –insert energy **List5 *18 PASS
83 –update energy **List6 *19 PASS
84 –insert device_machine_relation **List7 *17 PASS
85 –insert device_machine_relation **List7 *18 PASS
86 –update device_machine_relation **List8 *19 PASS
87 –insert service_conf **List9 *17 PASS
88 –insert service_conf **List9 *18 PASS
89 –insert service_conf **List10 *17 PASS
90 –update service_conf **List11 *19 PASS
91 –insert service_host_relation **List12 *17 PASS
92 –insert service_host_relation **List12 *18 PASS
93 –update service_host_relation **List13 *19 PASS

123

Chapter 9

List of input values for Table 9.5

**List1
[1, 1000000, 1000000, 1000000, 1000000, 1000000, 3-obj-fairness]

**List2
[1, 1, 1, 1, 1, 1, 3-obj-fairness]

**List3
[PI]

**List4
[Cubi]

**List5
[energy_wireless_u, 0, 0, -0.00000001, -0.00000001, -0.00000001, PI]

**List6
[energy_wireless_u, 0, 1000000, 1000000, 1000000, 1000000, PI]

**List7
[of:0000000000000001, Cubi]

**List8
[of:0000000000000001, PI]

**List9
[video, 0.00000001]

**List10
[voice, 1000000]

**List11
[voice, 0.00000001]

**List12
[AA:BB:CC:DD:00:01, AA:BB:CC:DD:00:37, video]

**List13
[AA:BB:CC:DD:00:01, AA:BB:CC:DD:00:37, voice]

• *11 Resets the database schema by deleting all the information of previous
tables and then creating the same database structure.

• *12 The tables general_conf, machine, energy, device_machine_relation,
service_conf, service_conf are initialised with predefined values.

• *13 Creates the database tables.

• *14 The framework should take a snapshot each arg1 seconds;

• *15 If the framework was taking snapshots of the topology, this command
should stop this looping action.

• *16 Takes a single snapshot of the topology.

124

Feature Testing & Validation

• *17 A new record is added to the database table arg1; The entry values are
the one of arg2.

• *18 An internal server error should be returned, warning the user that a
record with the same primary key exists already in the database.

• *19 A record is updated in the database table arg1; The entry values are the
one of arg2.

These tests performed helped validate the functional requirement of the frame-
work related to monitoring and management activities. Users can record topol-
ogy information and adjust the configurations of the framework to change the
behaviour of the topology.

9.3 Energy Formulas

Our fairness algorithm calculates the weights of links using the objectives of en-
ergy, loss probability and delay. Regarding the energy objective, we used the
formulas that [Kaup et al., 2018] proposed, recall Section 8.1.4. Due to the com-
plexity of the equations and the energy cost calculations, we devise some tests,
see Table 9.6, to confirm the correctness of our implementation.

• *20 For each of the tests, it is expected that the value of the normalised
energy objective is between]0.0, 1.0[.

The results were unexpected, tests 106, 107 and 108 failed. For Cubiboard to Cu-
biboard wired connections, the value of the energy consumption for the BUD ser-
vice returns a negative cost, and for the video and voice services, it returns a cost
bigger than the upper bound value used for normalisation, recall Algorithm 1 of
Section 7.3.1.

To resolve this problem, we searched for alternatives for the energy formulas, and
also tried to detect a possible error in our implementation when adapting it from
the original work. Because we didn’t detect any implementation issues in our
work, the other related works considered weren’t as suitable, and the problematic
combination wasn’t present in the experiences to be performed, the final decision
was to use the same formulas.

Furthermore, to perform the experiences, the only requirement was to have ma-
chine heterogeneity. The exact formulas of energy consumption are not of ex-
treme significance.

Finally, we recommend that the reader should look at the energy formulas pre-
sented, and the exact values of energy consumption documented with rational
and critical analysis.

125

Chapter 9

Table 9.6: BlackBox Tests - Normalised Objective Values

Input
ID source target link service

Expected
Outcome

Pass/
Fail

94
PI PI wired

video *20 PASS
95 voice *20 PASS
96 BUD *20 PASS
97 video *20 PASS
98 voice *20 PASS
99

PI PI wireless
BUD *20 PASS

100
PI Cubi wired

video *20 PASS
101 voice *20 PASS
102 BUD *20 PASS
103 video *20 PASS
104 voice *20 PASS
105

PI Cubi wireless
BUD *20 PASS

106
Cubi Cubi wired

video *20 FAIL
107 voice *20 FAIL
108 BUD *20 FAIL
109 video *20 PASS
110 voice *20 PASS
111

Cubi Cubi wireless
BUD *20 PASS

112
Cubi PI wired

video *20 PASS
113 voice *20 PASS
114 BUD *20 PASS
115 video *20 PASS
116 voice *20 PASS
117

Cubi PI wireless
BUD *20 PASS

9.4 Algorithms

This section documents the tests done to validate routines related to the forward-
ing algorithms, and the packet processor, recall Section 7.3.

One of the first steps was to validate the behaviour of the CapacityScalingMini-
mumCostFlow() method of the JGraphT library, recall Section 7.3.1.

We needed to guarantee that it behaved as intended: when a service needs to
be forward, the algorithm will return the path that minimises the links cost, and
where each link has enough bandwidth to transport the full service.

Figure 9.1 represents the scenario of the test performed to validate the behaviour:
there is a service, with size 16, that needs to go from node A to node C. The path
that minimises the cost is A-D-C, with cost of 20, but the links in this path don’t
have enough capacity to transport the service. Thus, it is expected that the path
A-B-C, with cost of 100 is used instead.

After running the algorithm, we found that the previous test FAILED: the service

126

Feature Testing & Validation

A B

D C

cost:30

cap:50

cost:5

cap:10

cost:5

cap:10

cost:30

cap:50

Figure 9.1: Structure of the JGraphT Test

was being divided to fit in both paths; 10 units of the size of the service were
using the path A-D-C, which minimises cost, and the remaining 6 units of service
size were using the path A-B-C.

To handle this issue, we proposed some modifications that might enforce the de-
sired behaviour: the size of the service is now 1 unit; the capacity of each link is
now 1 when the link has enough bandwidth to transport the whole service, and
0 otherwise. The caveat is that now we have to perform some additional calcula-
tions before we set the capacity of each link, and store the services that each link
is transporting in a given moment.

Due to the adjustments done in the algorithm, it now requires validation to en-

A B

D C

cost:30

cap:1

cost:5

cap:1

cost:5

cap:1

cost:30

cap:1

Figure 9.2: Structure of the JGraphT Modified Test

127

Chapter 9

sure that it performs as expected, see Figure 9.2. The service needs to go from
node A to node c, it now has size of 1 and the capacity of all links is 1. The
expected outcome is for the A-D-C to be selected.

After running the algorithm, we found that the previous test PASSED. The JGraphT
method now behaves as expected.

The next logical step is to test the implementation of the routine that performs
these additional steps. It should store the available bandwidth of every link in
the topology, decrease this value when a new service uses the link, and increase
it when a service stops using the link.

Table 9.7 contains the tests performed to validate the routine. In test 118, three
services, video, voice and BUD are generated in hosts connected in sw1 and need
to reach sw2. In test 119, three services, video, voice and BUD are generated in
hosts connected in sw1 and need to reach sw13.

Table 9.7: BlackBox Tests - Reserve and Replenish Bandwidth

Input
ID source target service

Expected
Outcome

Pass/
Fail

118
host1 host4 video

*21 PASShost2 host5 voice
host3 host6 BUD
host1 host37 video
host2 host38 voice119
host3 host39 BUD

*21 PASS

• *21 We expect that the available bandwidth of the links that constitute the
video path decreased by 1.5Mbits, the links of the voice path decreased by
0.0244Mbits and the link of the BUD path decreased by 12.88Mbits; After
the end of the service events, it is expected that the bandwidth that was
reserved is replenished.

The tests obtained the expected results, replenishing the correct amount of band-
width in links after the service ended.

128

Chapter 10

Conclusion

With this work, we showed the current importance and necessity of network
management. Recent and upcoming network services give emphasis to this need,
demanding more rigorous requirements and expecting more available bandwidth
with lower latency. The SDN paradigm is a powerful ally of network administra-
tors providing tools to more flexibly manage the behaviour of network devices.

We provide a management framework for the popular ONOS SDN-C, that main-
tains a collection of distinct forwarding algorithms in an effort to streamline the
activities of the forwarding life cycle. After the user selects the more appropri-
ate forwarding solution to use, the framework handles the traffic detection, path
selection and rule instalment automatically. Our platform has already been used
by research partners to accelerate their endeavours.

The results of the experiences conducted confirmed the usefulness and suitability
of our work for real scenarios. We performed tests in an ambient that resembles
a smart-city with regrades to device count and characteristics, traffic services and
wired and wireless connection medium. This ambient is also pertinent to show
the advantages of our fairness proposal when compared with out-of-the-shelf
options provided by SDN controllers.

Our proposed mechanism aims to maximise fairness of energy consumption, de-
lay, and observable loss. The results obtained show that this approach obtains
traffic flows with higher fairness than the K-shortest path algorithm existing in
the ONOS framework.

The framework was able to monitor network resources and adjust the solution
path accordingly. Our proposal was innovative since it is not common to see, in
the literature, multiple objectives with a min-max technique.

There is definitely a place in the state-of-the-art for more straightforward ap-
proaches like the K-shortest path algorithm that we adapted from ONOS. How-
ever, to use these “simple-minded” mechanisms to manage the traffic in such
complex and dynamic environments is not a good fit, since our experiments
found deterioration of the quality of services in the scenarios that resort to us-
ing them.

129

Chapter 10

This paradigm of supplying network administrators with multiple distinct for-
warding approaches is very powerful and flexible since they can effortlessly choose
the one more appropriate to use for each occasion.

10.1 Future work

This dissertation provides the possibility of several future work directions. The
most relevant are highlighted. One of the first approaches would be to deploy
the framework in a scenario with a wireless medium. The issues with Mininet-
Wifi prevented the current work from doing so, and we ended up simulating this
environment. This could provide more accurate confirmations of the suitability
of the framework for this medium. Deploying the framework on topologies with
different characteristics (e.g. devices, services, connections) would also increase
the reputation of the usefulness of our work.

Furthermore, a future release could include the distinction between different user
roles. Introducing authentication could help differentiate between users that can
only monitor the network assets and users that manipulate the behaviour of the
topology. Also adding to the value of this work, more forwarding solutions could
be added to the algorithm collection. Including other forwarding solutions, that
specialise in resolving prevalent network problems (e.g. minimise delay), means
that administrators have more flexibility over the behaviour of the topology.

In the current version of the framework, some features cannot be accessed through
the REST end-points. Due to project delays, we did not have enough budget to
research a way to integrate the RPC technology in the ONOS controller, necessary
to expose these features. In the near future, we will need to perform this research
for the SNOB-5G project. The acquired knowledge could be used to expose the
missing features in a future version of the framework.

Finally, the proposed ONOS management framework could be transformed into
the target tool that we initially proposed (see Appendix D): a modular framework
and SDN-C agnostic that could be deployed independently of the underlying
technologies.

130

References

Thomas Vachuska. Overview of ONOS architecture. https://wiki.
onosproject.org/display/ONOS/Overview+of+ONOS+architecture, 2015.
Last visited 2021-08-16.

David Perez Abreu, Karima Velasquez, Luís Paquete, Marilia Curado, and Ed-
mundo Monteiro. Resilient service chains through smart replication. IEEE
Access, 8:187021–187036, 2020. doi: 10.1109/ACCESS.2020.3030537.

Admin. Introducing 5G mmWave. https://www.5gmmwave.com/5g-mmwave/
introducing-5g-mmwave/, 2020. Last visited 2021-12-27.

Aerohive Networks. Link Budget Calculations and Choosing the Cor-
rect Antenna. https://docs.aerohive.com/330000/docs/guides/Aerohive_
LinkBudgetCalculations.pdf, 2014. Last visited 2021-12-20.

Basem Almadani, Abdurrahman Beg, and Ashraf Mahmoud. Dsf: A distributed
sdn control plane framework for the east/west interface. IEEE Access, 9:26735–
26754, 2021. doi: 10.1109/ACCESS.2021.3057690.

Andrea Campanella. Southbound protocols. https://wiki.onosproject.org/
display/ONOS/Southbound+protocols, 2016. Last visited 2021-08-18.

APS Networks. BF2556X-1T - Advanced Programmable Switch. https:
//www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,
2022. Last visited 2022-05-006.

Arun K. Arahunashi, S. Neethu, and H. V. Ravish Aradhya. Performance anal-
ysis of various sdn controllers in mininet emulator. In 2019 4th International
Conference on Recent Trends on Electronics, Information, Communication Technology
(RTEICT), pages 752–756, 2019. doi: 10.1109/RTEICT46194.2019.9016693.

Safa Ben Atitallah, Maha Driss, Wadii Boulila, and Henda Ben Ghézala.
Leveraging deep learning and iot big data analytics to support the smart
cities development: Review and future directions. Computer Science Review,
38:100303, 2020. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.
2020.100303. URL https://www.sciencedirect.com/science/article/pii/
S1574013720304032.

Aveiro Tech City Living Lab Team. Aveiro Tech City Living Lab Map. https://
www.google.com/maps/d/viewer?mid=1p7QSVjJkl5n6IiXf8c5DY6Lr9w6aaZb5,
2021. Last visited 2022-08-15.

131

https://wiki.onosproject.org/display/ONOS/Overview+of+ONOS+architecture
https://wiki.onosproject.org/display/ONOS/Overview+of+ONOS+architecture
https://www.5gmmwave.com/5g-mmwave/introducing-5g-mmwave/
https://www.5gmmwave.com/5g-mmwave/introducing-5g-mmwave/
https://docs.aerohive.com/330000/docs/guides/Aerohive_LinkBudgetCalculations.pdf
https://docs.aerohive.com/330000/docs/guides/Aerohive_LinkBudgetCalculations.pdf
https://wiki.onosproject.org/display/ONOS/Southbound+protocols
https://wiki.onosproject.org/display/ONOS/Southbound+protocols
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335
https://www.sciencedirect.com/science/article/pii/S1574013720304032
https://www.sciencedirect.com/science/article/pii/S1574013720304032
https://www.google.com/maps/d/viewer?mid=1p7QSVjJkl5n6IiXf8c5DY6Lr9w6aaZb5
https://www.google.com/maps/d/viewer?mid=1p7QSVjJkl5n6IiXf8c5DY6Lr9w6aaZb5

Chapter 10

aveirotechcity. Aveiro Tech City Living Lab - Caracterização Técnica. https://
www.aveirotechcity.pt/application/files/5716/0554/0015/AnexoII.PDF,
2021. Last visited 2022-01-22.

Riccardo Bassoli, Hugo Marques, Jonathan Rodriguez, Kenneth W. Shum, and
Rahim Tafazolli. Network coding theory: A survey. IEEE Communications Sur-
veys Tutorials, 15(4):1950–1978, 2013. doi: 10.1109/SURV.2013.013013.00104.

Fouad Benamrane, Mouad Ben mamoun, and Redouane Benaini. An east-
west interface for distributed sdn control plane: Implementation and eval-
uation. Computers & Electrical Engineering, 57:162–175, 2017. ISSN 0045-
7906. doi: https://doi.org/10.1016/j.compeleceng.2016.09.012. URL https:
//www.sciencedirect.com/science/article/pii/S0045790616302798.

Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.
Software-defined networking (sdn): a survey. Security and communication net-
works, 9(18):5803–5833, 2016.

Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A sur-
vey on service function chaining. Journal of Network and Computer Applica-
tions, 75:138–155, 2016. ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.
2016.09.001. URL https://www.sciencedirect.com/science/article/pii/
S1084804516301989.

Bill Snow. ONOS EMU Release. https://wiki.onosproject.org/display/
ONOS/Release+Notes?preview=%2F2129999%2F10159028%2FEmu+Release+
Summary+%281%29.pptx, 2015. Last visited 2021-08-16.

Nikos Bizanis and Fernando A. Kuipers. Sdn and virtualization solutions for the
internet of things: A survey. IEEE Access, 4:5591–5606, 2016. doi: 10.1109/
ACCESS.2016.2607786.

Cisco. Cisco Annual Internet Report (2018–2023). https://www.
cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.pdf, 2020. Last visited
2021-12-27.

Cisco. Cisco Catalyst 9130AX Series Access Points Data Sheet.
https://www.cisco.com/c/en/us/products/collateral/wireless/
catalyst-9100ax-access-points/nb-06-cat-9130-ser-ap-ds-cte-en.
html, 2021. Last visited 2022-01-22.

Alejandro Cohen, Homa Esfahanizadeh, Bruno Sousa, João P. Vilela, Miguel Luís,
Duarte Raposo, François Michel, Susana Sargento, and Muriel Médard. Bring-
ing network coding into SDN: A case-study for highly meshed heterogeneous
communications. CoRR, abs/2010.00343, 2020. URL https://arxiv.org/abs/
2010.00343.

Computer Hope Team. Computer terms, dictionary, and glossary. https://www.
computerhope.com/jargon.htm, 2022. Last visited 2022-01-09.

132

https://www.aveirotechcity.pt/application/files/5716/0554/0015/AnexoII.PDF
https://www.aveirotechcity.pt/application/files/5716/0554/0015/AnexoII.PDF
https://www.sciencedirect.com/science/article/pii/S0045790616302798
https://www.sciencedirect.com/science/article/pii/S0045790616302798
https://www.sciencedirect.com/science/article/pii/S1084804516301989
https://www.sciencedirect.com/science/article/pii/S1084804516301989
https://wiki.onosproject.org/display/ONOS/Release+Notes?preview=%2F2129999%2F10159028%2FEmu+Release+Summary+%281%29.pptx
https://wiki.onosproject.org/display/ONOS/Release+Notes?preview=%2F2129999%2F10159028%2FEmu+Release+Summary+%281%29.pptx
https://wiki.onosproject.org/display/ONOS/Release+Notes?preview=%2F2129999%2F10159028%2FEmu+Release+Summary+%281%29.pptx
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
https://www.cisco.com/c/en/us/products/collateral/wireless/catalyst-9100ax-access-points/nb-06-cat-9130-ser-ap-ds-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/wireless/catalyst-9100ax-access-points/nb-06-cat-9130-ser-ap-ds-cte-en.html
https://www.cisco.com/c/en/us/products/collateral/wireless/catalyst-9100ax-access-points/nb-06-cat-9130-ser-ap-ds-cte-en.html
https://arxiv.org/abs/2010.00343
https://arxiv.org/abs/2010.00343
https://www.computerhope.com/jargon.htm
https://www.computerhope.com/jargon.htm

References

Christoph Dietzel, Gianni Antichi, Ignacio Castro, Eder L. Fernandes, Marco
Chiesa, and Daniel Kopp. Sdn-enabled traffic engineering and advanced black-
holing at ixps. In Proceedings of the Symposium on SDN Research, SOSR ’17,
page 181–182, New York, NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450349475. doi: 10.1145/3050220.3060601. URL https:
//doi.org/10.1145/3050220.3060601.

Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max fair-
ness guarantee. IEEE Transactions on Communications, 66(4):1594–1608, 2018.
doi: 10.1109/TCOMM.2017.2787700.

Edge-core Networks. DCS800 - 6.4T PROGRAMMABLE DATA CENTER
SWITCH. https://www.aps-networks.com/products/bf2556x-1t/, 2022.
Last visited 2022-05-006.

Farzaneh Pakzad from Aptira. COMPARISON OF SOFTWARE DEFINED NET-
WORKING (SDN) CONTROLLERS. https://ryu-sdn.org/, 2021. Last visited
2022-01-17.

Faucet Organisation. What’s Ryu. https://github.com/faucetsdn/ryu, 2022.
Last visited 2022-01-17.

Lyndon Fawcett, Sandra Scott-Hayward, Matthew Broadbent, Andrew Wright,
and Nicholas Race. Tennison: A distributed sdn framework for scalable net-
work security. IEEE Journal on Selected Areas in Communications, 36(12):2805–
2818, 2018. doi: 10.1109/JSAC.2018.2871313.

Abderrahime Filali, Amine Abouaomar, Soumaya Cherkaoui, Abdellatif Kob-
bane, and Mohsen Guizani. Multi-access edge computing: A survey. IEEE
Access, 8:197017–197046, 2020. doi: 10.1109/ACCESS.2020.3034136.

Ramon R. Fontes, Samira Afzal, Samuel H. B. Brito, Mateus A. S. Santos, and
Christian Esteve Rothenberg. Mininet-wifi: Emulating software-defined wire-
less networks. In 2015 11th International Conference on Network and Service Man-
agement (CNSM), pages 384–389, 2015. doi: 10.1109/CNSM.2015.7367387.

Paula Fraga-Lamas, Mikel Celaya-Echarri, Leyre Azpilicueta, Peio Lopez-Iturri,
Francisco Falcone, and Tiago M. Fernández-Caramés. Design and empirical
validation of a lorawan iot smart irrigation system. Proceedings, 42(1), 2020.
ISSN 2504-3900. doi: 10.3390/ecsa-6-06540. URL https://www.mdpi.com/
2504-3900/42/1/62.

Ali Ghaffari. Congestion control mechanisms in wireless sensor networks: A
survey. Journal of Network and Computer Applications, 52:101–115, 2015. ISSN
1084-8045. doi: https://doi.org/10.1016/j.jnca.2015.03.002. URL https://www.
sciencedirect.com/science/article/pii/S1084804515000557.

Fuad A. Ghaleb, Bander Ali Saleh Al-Rimy, Wadii Boulila, Faisal Saeed, Maz-
nah Kamat, Mohd Foad Rohani, and Shukor Abd Razak. Fairness-Oriented
Semichaotic Genetic Algorithm-Based Channel Assignment Technique for

133

https://doi.org/10.1145/3050220.3060601
https://doi.org/10.1145/3050220.3060601
https://www.aps-networks.com/products/bf2556x-1t/
https://ryu-sdn.org/
https://github.com/faucetsdn/ryu
https://www.mdpi.com/2504-3900/42/1/62
https://www.mdpi.com/2504-3900/42/1/62
https://www.sciencedirect.com/science/article/pii/S1084804515000557
https://www.sciencedirect.com/science/article/pii/S1084804515000557

Chapter 10

Node Starvation Problem in Wireless Mesh Networks. Computational Intelli-
gence and Neuroscience, 2021:1–19, aug 2021. ISSN 1687-5273.

Syed Sherjeel A. Gilani, Amir Qayyum, Rao Naveed Bin Rais, and Mukhtiar
Bano. Sdnmesh: An sdn based routing architecture for wireless mesh networks.
IEEE Access, 8:136769–136781, 2020. doi: 10.1109/ACCESS.2020.3011651.

Noé Godinho, Henrique Silva, Marilia Curado, and Luís Paquete. A reconfig-
urable resource management framework for fog environments. Future Gen-
eration Computer Systems, 133:124–140, 2022. ISSN 0167-739X. doi: https:
//doi.org/10.1016/j.future.2022.03.015. URL https://www.sciencedirect.
com/science/article/pii/S0167739X22000905.

P. Goransson, C. Black, and T. Culver. Software Defined Networks: A Comprehensive
Approach. Elsevier Science, 2016. ISBN 9780128045794. URL https://books.
google.pt/books?id=u01ODAAAQBAJ.

Yosra Hajjaji, Wadii Boulila, Imed Riadh Farah, Imed Romdhani, and Amir Hus-
sain. Big data and iot-based applications in smart environments: A systematic
review. Computer Science Review, 39:100318, 2021. ISSN 1574-0137. doi: https:
//doi.org/10.1016/j.cosrev.2020.100318. URL https://www.sciencedirect.
com/science/article/pii/S1574013720304184.

Hajar Hantouti, Nabil Benamar, Tarik Taleb, and Abdelquoddous Laghrissi. Traf-
fic steering for service function chaining. IEEE Communications Surveys Tutori-
als, 21(1):487–507, 2019. doi: 10.1109/COMST.2018.2862404.

Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir Gure-
vich, Florian Zeiger, Reinhard Frank, and Michael Menth. A survey on data
plane programming with P4: fundamentals, advances, and applied research.
CoRR, abs/2101.10632, 2021. URL https://arxiv.org/abs/2101.10632.

Intel. Different Wi-Fi Protocols and Data Rates. https://www.intel.
com/content/www/us/en/support/articles/000005725/wireless/
legacy-intel-wireless-products.html, 2022. Last visited 2022-04-27.

International Telecommunication Union. IMT Vision – Framework and
overall objectives of the future development of IMT for 2020 and
beyond. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.
2083-0-201509-I!!PDF-E.pdf, 2015. Last visited 2021-12-27.

Internet Engineering Task Force (IETF). Network Configuration Protocol (NET-
CONF). https://www.rfc-editor.org/rfc/rfc6241, 2022a. Last visited 2022-
05-05.

Internet Engineering Task Force (IETF). RESTCONF Protocol. https://www.
rfc-editor.org/rfc/rfc8040, 2022b. Last visited 2022-05-05.

Internet Engineering Task Force (IETF). The YANG 1.1 Data Modeling Language.
https://datatracker.ietf.org/doc/html/rfc7950, 2022c. Last visited 2022-
05-05.

134

https://www.sciencedirect.com/science/article/pii/S0167739X22000905
https://www.sciencedirect.com/science/article/pii/S0167739X22000905
https://books.google.pt/books?id=u01ODAAAQBAJ
https://books.google.pt/books?id=u01ODAAAQBAJ
https://www.sciencedirect.com/science/article/pii/S1574013720304184
https://www.sciencedirect.com/science/article/pii/S1574013720304184
https://arxiv.org/abs/2101.10632
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://www.intel.com/content/www/us/en/support/articles/000005725/wireless/legacy-intel-wireless-products.html
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
https://www.rfc-editor.org/rfc/rfc6241
https://www.rfc-editor.org/rfc/rfc8040
https://www.rfc-editor.org/rfc/rfc8040
https://datatracker.ietf.org/doc/html/rfc7950

References

Indrarini Irawati and Mohammad Nuruzzamanirridha. Spanning tree protocol
simulation based on software defined network using mininet emulator. vol-
ume 516, pages 395–403, 03 2015. ISBN 978-3-662-46741-1. doi: 10.1007/
978-3-662-46742-8_36.

Md. Tariqul Islam, Nazrul Islam, and Md. Al Refat. Node to node performance
evaluation through ryu sdn controller. Wireless Personal Communications, 112
(1):555–570, 2020. doi: 10.1007/s11277-020-07060-4.

Einollah Jafarnejad Ghomi, Amir Masoud Rahmani, and Nooruldeen Nasih
Qader. Load-balancing algorithms in cloud computing: A survey. Journal of
Network and Computer Applications, 88:50–71, 2017. ISSN 1084-8045. doi: https:
//doi.org/10.1016/j.jnca.2017.04.007. URL https://www.sciencedirect.com/
science/article/pii/S1084804517301480.

RhongHo Jang, DongGyu Cho, Youngtae Noh, and DaeHun Nyang.
Rflow⁺: An sdn-based wlan monitoring and management
framework. In IEEE INFOCOM 2017 - IEEE Conference on Computer Commu-
nications, pages 1–9, 2017. doi: 10.1109/INFOCOM.2017.8056995.

Michael Jarschel, Thomas Zinner, Tobias Hossfeld, Phuoc Tran-Gia, and Wolf-
gang Kellerer. Interfaces, attributes, and use cases: A compass for sdn. IEEE
Communications Magazine, 52(6):210–217, 2014. doi: 10.1109/MCOM.2014.
6829966.

Mike Jia, Weifa Liang, Zichuan Xu, and Meitian Huang. Cloudlet load balancing
in wireless metropolitan area networks. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications, pages 1–9,
2016. doi: 10.1109/INFOCOM.2016.7524411.

Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo.
Burstradar: Practical real-time microburst monitoring for datacenter networks.
APSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450360067. doi: 10.1145/3265723.3265731. URL https://doi.org/
10.1145/3265723.3265731.

Fabian Kaup, Stefan Hacker, Eike Mentzendorff, Christian Meurisch, and David
Hausheer. Energy models for NFV and service provisioning on fog nodes. In
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium,
pages 1–7. IEEE, apr 2018. ISBN 978-1-5386-3416-5.

Mohd Ehmer Khan and Farmeena Khan. A comparative study of white box, black
box and grey box testing techniques. International Journal of Advanced Computer
Science and Applications, 3(6), 2012.

Zohaib Latif, Kashif Sharif, Fan Li, Md Monjurul Karim, Sujit Biswas, and
Yu Wang. A comprehensive survey of interface protocols for software de-
fined networks. Journal of Network and Computer Applications, 156:102563, 2020.
ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2020.102563. URL https:
//www.sciencedirect.com/science/article/pii/S1084804520300370.

135

https://www.sciencedirect.com/science/article/pii/S1084804517301480
https://www.sciencedirect.com/science/article/pii/S1084804517301480
https://doi.org/10.1145/3265723.3265731
https://doi.org/10.1145/3265723.3265731
https://www.sciencedirect.com/science/article/pii/S1084804520300370
https://www.sciencedirect.com/science/article/pii/S1084804520300370

Chapter 10

Xinlu Li, Brian Keegan, Fredrick Mtenzi, Thomas Weise, and Ming Tan. Energy-
efficient load balancing ant based routing algorithm for wireless sensor net-
works. IEEE Access, 7:113182–113196, 2019. doi: 10.1109/ACCESS.2019.
2934889.

LightReading Team. OpenDaylight Project Founded. https://wiki.
onosproject.org/display/ONOS/Southbound+protocols, 2013. Last visited
2022-01-16.

Felipe A. Lopes, Marcelo Santos, Robson Fidalgo, and Stenio Fernandes. A soft-
ware engineering perspective on sdn programmability. IEEE Communications
Surveys Tutorials, 18(2):1255–1272, 2016. doi: 10.1109/COMST.2015.2501026.

Michael Menth, Habib Mostafaei, Daniel Merling, and Marco Häberle. Imple-
mentation and evaluation of activity-based congestion management using p4
(p4-abc). Future Internet, 11(7), 2019. ISSN 1999-5903. doi: 10.3390/fi11070159.
URL https://www.mdpi.com/1999-5903/11/7/159.

Moreira Miguel. Yawmd: multiple medium support and performance improve-
ments for wmediumd. Master’s thesis, FCUP, 2020.

Mininet Team. Mininet. http://mininet.org/, 2022a. Last visited 2022-01-11.

Mininet Team. Mininet Wifi Manual. https://usermanual.wiki/Pdf/
mininetwifidraftmanual.297704656/html#pf9, 2022b. Last visited 2022-01-
11.

Mirantis Blog. What’s in OpenDaylight? https://www.mirantis.com/blog/
whats-opendaylight/, 2022. Last visited 2022-01-17.

Dritan Nace and Michal Pioro. Max-min fairness and its applications to routing
and load-balancing in communication networks: a tutorial. IEEE Communica-
tions Surveys & Tutorials, 10(4):5–17, 2008. doi: 10.1109/SURV.2008.080403.

National Institute of Standards and technology. COMPUTER SECURITY RE-
SOURCE CENTER). https://csrc.nist.gov/glossary, 2022. Last visited
2022-05-04.

Jorge Navarro-Ortiz, Pablo Romero-Diaz, Sandra Sendra, Pablo Ameigeiras,
Juan J. Ramos-Munoz, and Juan M. Lopez-Soler. A Survey on 5G Usage Scenar-
ios and Traffic Models. IEEE Communications Surveys & Tutorials, 22(2):905–929,
2020. ISSN 1553-877X.

Musa Ndiaye, Adnan M. Abu-Mahfouz, and Gerhard P. Hancke. Sdnmm—a
generic sdn-based modular management system for wireless sensor networks.
IEEE Systems Journal, 14(2):2347–2357, 2020. doi: 10.1109/jsyst.2019.2927946.

Network Working Group. Internet Security Glossary, Version 2). https://www.
ietf.org/rfc/rfc4949.txt, 2007. Last visited 2022-05-04.

Niu Y., Li Y., Jin D., Su L., Vasilakos A. V. A survey of millimeter wave communi-
cations (mmwave) for 5g: opportunities and challenges. Wireless Networks, 21
(8):2657–2676, 2015.

136

https://wiki.onosproject.org/display/ONOS/Southbound+protocols
https://wiki.onosproject.org/display/ONOS/Southbound+protocols
https://www.mdpi.com/1999-5903/11/7/159
http://mininet.org/
https://usermanual.wiki/Pdf/mininetwifidraftmanual.297704656/html#pf9
https://usermanual.wiki/Pdf/mininetwifidraftmanual.297704656/html#pf9
https://www.mirantis.com/blog/whats-opendaylight/
https://www.mirantis.com/blog/whats-opendaylight/
https://csrc.nist.gov/glossary
https://www.ietf.org/rfc/rfc4949.txt
https://www.ietf.org/rfc/rfc4949.txt

References

ONAP Team. ONAP Architecture. https://docs.onap.org/en/guilin/guides/
onap-developer/architecture/onap-architecture.html, 2022a. Last visited
2022-01-16.

ONAP Team. ONAP Overview. https://docs.onap.org/en/guilin/guides/
overview/overview.html, 2022b. Last visited 2022-01-16.

Open Networking Foundation. OpenFlow Switch Specification
v1.5.1. https://opennetworking.org/wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf, 2015. Last visited 2022-01-09.

Open Networking Foundation. ONOS FEATURES. https://opennetworking.
org/wp-content/uploads/2019/12/ONOS-Features_v1.pdf, 2019. Last visited
2021-08-16.

Open Networking Foundation. P4 Language Tutorial. https://opennetworking.
org/wp-content/uploads/2020/12/P4_D2_East_2018_01_basics.pdf, 2020.
Last visited 2021-10-19.

Open Networking Foundation. ONF OpenFlow Conformant: Certified Product
List. https://opennetworking.org/product-registry/, 2022a. Last visited
2022-01-10.

Open Networking Foundation. SD-CORE. https://opennetworking.org/
sd-core/, 2022b. Last visited 2022-01-17.

Open Networking Foundation. SD-RAN. https://opennetworking.org/
sd-ran/, 2022c. Last visited 2022-01-17.

OpenDaylight Project. OpenDaylight Controller Overview.
https://docs.opendaylight.org/en/stable-silicon/user-guide/
opendaylight-controller-overview.html, 2021. Last visited 2022-01-16.

OpenDayLight Team. P4 Language Simple Router. https://github.com/
opendaylight/p4plugin/blob/master/apps/simple-router/src/main/
resources/p4/simple-router.p4, 2018. Last visited 2022-01-11.

OpenDaylight Team. OpenDaylight Magnesium. https://www.opendaylight.
org/what-we-do/current-release/magnesium, 2020. Last visited 2022-01-16.

Overlaid. OpenFlow – Basic Concepts and Theory. https://overlaid.net/2017/
02/15/openflow-basic-concepts-and-theory/, 2017. Last visited 2022-01-10.

PANTHEONtech. FRINX’s UniConfig is now pow-
ered by PANTHEON.tech’s lighty.io. https://www.
globenewswire.com/news-release/2018/10/16/1622110/0/en/
FRINX-s-UniConfig-is-now-powered-by-PANTHEON-tech-s-lighty-io.
html, 2018. Last visited 2021-08-01.

PANTHEONtech. lighty.io 15. https://github.com/PANTHEONtech/lighty,
2021a. Last visited 2021-08-01.

137

https://docs.onap.org/en/guilin/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/guilin/guides/onap-developer/architecture/onap-architecture.html
https://docs.onap.org/en/guilin/guides/overview/overview.html
https://docs.onap.org/en/guilin/guides/overview/overview.html
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2019/12/ONOS-Features_v1.pdf
https://opennetworking.org/wp-content/uploads/2019/12/ONOS-Features_v1.pdf
https://opennetworking.org/wp-content/uploads/2020/12/P4_D2_East_2018_01_basics.pdf
https://opennetworking.org/wp-content/uploads/2020/12/P4_D2_East_2018_01_basics.pdf
https://opennetworking.org/product-registry/
https://opennetworking.org/sd-core/
https://opennetworking.org/sd-core/
https://opennetworking.org/sd-ran/
https://opennetworking.org/sd-ran/
https://docs.opendaylight.org/en/stable-silicon/user-guide/opendaylight-controller-overview.html
https://docs.opendaylight.org/en/stable-silicon/user-guide/opendaylight-controller-overview.html
https://github.com/opendaylight/p4plugin/blob/master/apps/simple-router/src/main/resources/p4/simple-router.p4
https://github.com/opendaylight/p4plugin/blob/master/apps/simple-router/src/main/resources/p4/simple-router.p4
https://github.com/opendaylight/p4plugin/blob/master/apps/simple-router/src/main/resources/p4/simple-router.p4
https://www.opendaylight.org/what-we-do/current-release/magnesium
https://www.opendaylight.org/what-we-do/current-release/magnesium
https://overlaid.net/2017/02/15/openflow-basic-concepts-and-theory/
https://overlaid.net/2017/02/15/openflow-basic-concepts-and-theory/
https://www.globenewswire.com/news-release/2018/10/16/1622110/0/en/FRINX-s-UniConfig-is-now-powered-by-PANTHEON-tech-s-lighty-io.html
https://www.globenewswire.com/news-release/2018/10/16/1622110/0/en/FRINX-s-UniConfig-is-now-powered-by-PANTHEON-tech-s-lighty-io.html
https://www.globenewswire.com/news-release/2018/10/16/1622110/0/en/FRINX-s-UniConfig-is-now-powered-by-PANTHEON-tech-s-lighty-io.html
https://www.globenewswire.com/news-release/2018/10/16/1622110/0/en/FRINX-s-UniConfig-is-now-powered-by-PANTHEON-tech-s-lighty-io.html
https://github.com/PANTHEONtech/lighty

Chapter 10

PANTHEONtech. About lighty.io. https://lighty.io/
lighty-io-sdn-made-easy/, 2021b. Last visited 2021-08-01.

PANTHEONtech. Software-Defined Networking: Made Easy. https://lighty.
io/, 2021c. Last visited 2021-08-01.

PANTHEONtech. OUR PARTNERS. https://lighty.io/references/, 2021d.
Last visited 2021-08-01.

PANTHEONtech. LIGHTY.IO COMPONENTS. https://lighty.io/
components/, 2021e. Last visited 2021-08-01.

PANTHEONtech. ONAP SDN-C. https://lighty.io/
onap-sdnc-on-lighty-io-use-case/, 2022. Last visited 2022-01-16.

RFC7950. The YANG 1.1 Data Modeling Language. https://datatracker.ietf.
org/doc/html/rfc7950, 2016. Last visited 2022-01-16.

Kari Rikkinen, Pekka Kyosti, Marko E. Leinonen, Markus Berg, and Aarno Parssi-
nen. Thz radio communication: Link budget analysis toward 6g. IEEE Commu-
nications Magazine, 58(11):22–27, 2020. doi: 10.1109/MCOM.001.2000310.

Ryu Team. WHAT’S RYU? https://ryu-sdn.org/, 2017. Last visited 2022-01-17.

Salman, Ola and Elhajj, Imad H. and Kayssi, Ayman and Chehab, Ali. Sdn con-
trollers: A comparative study. In 2016 18th Mediterranean Electrotechnical Con-
ference (MELECON), pages 1–6, 2016. doi: 10.1109/MELCON.2016.7495430.

Huaizhou Shi, R. Venkatesha Prasad, Ertan Onur, and I.G.M.M. Niemegeers. Fair-
ness in wireless networks:issues, measures and challenges. IEEE Communi-
cations Surveys & Tutorials, 16(1):5–24, 2014. doi: 10.1109/SURV.2013.050113.
00015.

Miguel Silva, Pedro Teixeira, Christian Gomes, Duarte Dias, Miguel Luís, and
Susana Sargento. Exploring software defined networks for seamless handovers
in vehicular networks. Vehicular Communications, 31:100372, 2021. doi: 10.1016/
j.vehcom.2021.100372.

Sejun Song, Hyungbae Park, Baek-Young Choi, Taesang Choi, and Henry Zhu.
Control path management framework for enhancing software-defined network
(sdn) reliability. IEEE Transactions on Network and Service Management, 14(2):
302–316, 2017. doi: 10.1109/TNSM.2017.2669082.

Thanos G. Stavropoulos, Asterios Papastergiou, Lampros Mpaltadoros, Spiros
Nikolopoulos, and Ioannis Kompatsiaris. Iot wearable sensors and devices in
elderly care: A literature review. Sensors, 20(10), 2020. ISSN 1424-8220. doi:
10.3390/s20102826. URL https://www.mdpi.com/1424-8220/20/10/2826.

Hadar Sufiev, Yoram Haddad, Leonid Barenboim, and José Soler. Dynamic sdn
controller load balancing. Future Internet, 11(3), 2019. ISSN 1999-5903. doi:
10.3390/fi11030075. URL https://www.mdpi.com/1999-5903/11/3/75.

138

https://lighty.io/lighty-io-sdn-made-easy/
https://lighty.io/lighty-io-sdn-made-easy/
https://lighty.io/
https://lighty.io/
https://lighty.io/references/
https://lighty.io/components/
https://lighty.io/components/
https://lighty.io/onap-sdnc-on-lighty-io-use-case/
https://lighty.io/onap-sdnc-on-lighty-io-use-case/
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://ryu-sdn.org/
https://www.mdpi.com/1424-8220/20/10/2826
https://www.mdpi.com/1999-5903/11/3/75

References

PanJun Sun. Security and privacy protection in cloud computing: Discussions
and challenges. Journal of Network and Computer Applications, 160:102642, 2020.
ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2020.102642. URL https:
//www.sciencedirect.com/science/article/pii/S1084804520301168.

José Suárez-Varela and Pere Barlet-Ros. Towards a netflow implementation
for openflow software-defined networks. In 2017 29th International Teletraffic
Congress (ITC 29), volume 1, pages 187–195, 2017. doi: 10.23919/ITC.2017.
8064355.

THE LINUX FOUNDATION. ONOS Project Joins Linux Foundation in
Strategic Partnership. https://www.linuxfoundation.org/press-release/
onos-project-joins-linux-foundation-in-strategic-partnership/, 2015.
Last visited 2021-08-16.

The Linux Foundation. ODL User Stories. https://www.opendaylight.org/
use-cases/stories, 2021a. Last visited 2022-01-16.

The Linux Foundation. Platform Overview. https://datatracker.ietf.org/
doc/html/rfc7950, 2021b. Last visited 2022-01-16.

Brian Trammell and Elisa Boschi. An introduction to ip flow information ex-
port (ipfix). Communications Magazine, IEEE, 49:89 – 95, 05 2011. doi: 10.1109/
MCOM.2011.5741152.

Travis Fagerness. Estimating Wireless Range. https://www.allaboutcircuits.
com/technical-articles/wireless-range/, 2015. Last visited 2021-12-20.

Ning Wang, Kin Hon Ho, George Pavlou, and Michael Howarth. An overview
of routing optimization for internet traffic engineering. IEEE Communications
Surveys Tutorials, 10(1):36–56, 2008. doi: 10.1109/COMST.2008.4483669.

Paul Zanna, Pj Radcliffe, and Karina Gomez Chavez. A method for comparing
openflow and p4. In 2019 29th International Telecommunication Networks and
Applications Conference (ITNAC), pages 1–3, 2019. doi: 10.1109/ITNAC46935.
2019.9077951.

Guowei Zhang, Fei Shen, Yang Yang, Hua Qian, and Wei Yao. Fair task offloading
among fog nodes in fog computing networks. In 2018 IEEE International Confer-
ence on Communications (ICC), pages 1–6, 2018. doi: 10.1109/ICC.2018.8422316.

Yuming Zhang, Yan Liu, Lingfeng Guo, and Jack Y. B. Lee. Measurement of a
large-scale short-video service over mobile and wireless networks. IEEE Trans-
actions on Mobile Computing, pages 1–1, 2022. doi: 10.1109/TMC.2021.3139893.

139

https://www.sciencedirect.com/science/article/pii/S1084804520301168
https://www.sciencedirect.com/science/article/pii/S1084804520301168
https://www.linuxfoundation.org/press-release/onos-project-joins-linux-foundation-in-strategic-partnership/
https://www.linuxfoundation.org/press-release/onos-project-joins-linux-foundation-in-strategic-partnership/
https://www.opendaylight.org/use-cases/stories
https://www.opendaylight.org/use-cases/stories
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://www.allaboutcircuits.com/technical-articles/wireless-range/
https://www.allaboutcircuits.com/technical-articles/wireless-range/

Appendices

141

Appendix A

Terminology

This appendix serves the purpose of listing and explaining critical concepts nec-
essary to understand the dissertation work.

We used literature work, protocol documentation, and online glossaries, like [Na-
tional Institute of Standards and technology, 2022], [Network Working Group,
2007] and [Computer Hope Team, 2022], as references for the terminology con-
cepts.

• Action Set is an Openflow (OF) pipeline concept. Each packet that enters
a device for pipeline processing has an action set as a way to accumulate
actions while the packet is processed by each table. These actions are exe-
cuted in a specified order when pipeline processing ends [Open Network-
ing Foundation, 2015].

• Advanced Blackholing is a network management activity. Standard black-
holing allows redirection of traffic as a means to protect infrastructure from
congestion, while data analysis is conducted. Advanced Blackholing uses
the Software Defined Network (SDN) paradigm to allow operators to spec-
ify fine-grained drop policies as a way to automate the process [Dietzel
et al., 2017].

• Anomaly detection “An intrusion detection method that searches for activ-
ity that is different from the normal behaviour of system entities and system
resources” [Network Working Group, 2007]. By constantly monitoring and
analysing traffic, these devices can detect when an unusual type of data is
transferred or odd data volumes are sent.

• Broadcast prevention is a feature of Software Defined Network Controller
(SDN-C) that blocks broadcast messages from typical discovery protocols.
These protocols exist in traditional networking paradigms to discover new
elements of the network, but in SDN, this responsibility lies in the controller.

• Congestion control manages incoming traffic in an effort to avoid service
degradation caused by congestion. This can be accomplished by monitoring
packet delay and reducing sent rates or dropping queued packets [Ghaffari,
2015]

143

Appendix A

• Fairness A property of an access protocol for a system resource whereby the
resource is made equitably or impartially available to all eligible users [Net-
work Working Group, 2007].

• Load balancing is a network management activity. It is the ability of a net-
work device efficiently distribute incoming traffic across redundant con-
nections or multiple servers depending on how busy each device is, thus
making the links and server instances less clogged [Computer Hope Team,
2022].

• Multi-access Edge Computing (MEC) is a paradigm whereby operators
open their edge Radio Access Network (RAN) to authorised third-parties
cloud applications and services, enabling faster and flexible deployability
to subscribers. MEC utilises 5G technologies to provide low latency and
high bandwidth of cloud capabilities in edge infrastructure, closer to where
data is produced [Filali et al., 2020].

• Millimeter Wave (mmWave) is a radio access technology that operates in
high frequency bands, from 24 to 100 GHz but can go up to 300 GHz [Ad-
min, 2020]. Compared with traditional 2.4 and 5 GHz communications, it
has smaller coverage and smaller penetration but gives higher datarates
and less interference, due to reduced spectrum competition. [Niu Y., Li Y.,
Jin D., Su L., Vasilakos A. V., 2015]. This technology emerged as a way to
enable large bandwidths and high datarates in 5G wireless networks.

• Network Coding is a networking technique whereby accumulating the in-
formation of various transmissions, network throughput is increased, out-
performing routing solutions [Bassoli et al., 2013]. A traditional example
is in Figure A.1, where network coding surpasses routing throughput in a
butterfly network. Node S generates traffic types x and y. Each sink, R1
and R2 needs to receive both traffic types but each link can only transmit
either x or y in one time unit. Using routing, all the information reaches the
sinks in 5 time units, but network coding only needs 4 time units. This is
because node 3 encodes the information, link 3-4 transmit the two types of
data and node 4 decodes the data.

• Service Function Chaining “(SFC) is a mechanism that allows various ser-
vice functions to be connected to each other to form a service enabling car-
riers to benefit from virtualized software defined infrastructure” [Bhamare
et al., 2016].

• Traffic engineering is a technique of network evaluation and consequently
network optimisation whereby an operator can manually define traffic flow
paths in an effort to more efficiently use network resources. Normally this is
an offline process that helps predict the behaviour of the network in certain
conditions [Wang et al., 2008].

• Traffic Steering is the activity of enforcing the desired filtering, modifica-
tion or optimisation of traffic when traffic engineering evaluations are per-
formed. “Defined as the forwarding and routing logic of traffic among ser-
vice Functions” [Hantouti et al., 2019].

144

Terminology

Figure A.1: Network coding in a butterfly network [Bassoli et al., 2013]

145

Appendix B

Openflow Pipeline and Control
Channel

This appendix serves the purpose of detailing the steps involved in the OF pipeline
and also the interface between OF enabled devices and the SDN controller. Gath-
ering this knowledge was crucial to reaching our goals but it isn’t necessary to
understand this work.

Openflow Pipeline

The OF packet pipeline can be divided into ingress processing and egress process-
ing. The Ingress processing is mandatory and egress processing is optional. In
the ingress processing, a packet enters a device via an ingress port, and packet in-
formation may be modified, such as updating certain fields in the packet header,
see Figure B.1.

In the egress processing, packets before being sent to the output port are matched
against egress tables which can also update packet headers, or even drop the
packet.

The ingress and output ports can be of different types:physical ports are “real”
hardware ports of OF devices; logical ports are device-dependent abstractions
that can map to multiple hardware ports and perform some modifications on
packets; reserved ports are defined by the OF specification and represent special
actions (e.g, reserved port ALL can be used as an output port to mirror the packet,
reserved port CONTROLLER represents the OF channel used to communicate
with the controller) [Open Networking Foundation, 2015].

A packet starts ingress processing at flow table 0 where it tries to match with a
table entry, highest priority entry first. Matching of packets against table entries
can use packet headers, ingress port, metadata field (used to pass information
between 2 flow tables), and other pipeline fields (values attached to the packet for
pipeline processing and not associated with packet headers [Open Networking
Foundation, 2015]).

147

Appendix B

Figure B.1: Flowchart of packet pipeline in an Openflow switch [Open Network-
ing Foundation, 2015]

If no match is found a table miss entry is triggered. This is a special table entry,
with priority 0, that can be introduced in tables to work as a fallback in the case
no matching occurs in the other table entries. This entry can be configured to
drop the packet, send it to the controller over the OF channel, or could continue
to the next step in pipeline processing [Overlaid, 2017].

When matching occurs the instruction set of the entry is executed. These instruc-
tions either modify the pipeline processing (e.g. direct the packet to another flow
table), contain a set of actions to add to the action set of the packet or contain a
list of actions to perform immediately to the packet.

The packet action set is a list of actions that each ingress packet has. It starts
empty and during processing, the action set of each packet can be modified and

148

Openflow Pipeline and Control Channel

populated with actions to be executed in the specified order when ingress pipeline
processing terminates.

If one of the instructions in the instruction set is the Goto-Table the processing
continues at the specified table. The instruction set of the last flow table doesn’t
have this instruction, thus pipeline processing terminates.

At the end of the ingress pipeline, the actions of the actions set are executed.
Within these actions, if a Group action is executed the packet is then forward to
a group to be further processed, and if a Output action is executed the packet is
forward to the specified output port to start egress processing [Open Networking
Foundation, 2015].

If the switch has egress tables, egress processing starts. If no valid egress table is
configured as the first egress table the packet is forward out through the specified
output port. Note that the egress tables identification attribute needs to have a
higher value than the identifier of ingress tables. This is important to stop loops in
the pipeline, because packets can only be forward, using the Goto-Table action,
to a table with higher identifiers [Open Networking Foundation, 2015].

At the beginning of egress processing, the action set contains only an output ac-
tion for the current output port, and the values of the pipeline fields are preserved
from ingress processing [Open Networking Foundation, 2015]. For the most part
egress processing is similar to ingress processing. At the end, the pack is forward
out of the switch.

Instructions, Actions, and Counters

Each flow entry can be populated with instructions to be executed when a packet
matches the entry. There are different types of instructions available in the lat-
est version of OF, some are required to be implemented by switches and some
are optional. Table B.1 compiles a list of possible instructions to use with OF.
Execution order is given by the order of instructions in the table.

Table B.1: Instructions of Openflow version 1.5.1 [Open Networking Founda-
tion, 2015]

Requirement Instruction Description

Optional Apply-Actions
action(s)

Applies the specific action(s) immediately to the
packet. May be used to modify the packet between
two tables or to execute multiple actions of the same
type.

Required Clear-Actions
Clears all the actions in the action set immediately.
Support of this instruction is required only for table-
miss flow entries and is optional for the rest.

Required Write-Actions
action(s)

Merges the specified set of action(s) into the current
action set. If an action of the given type exists in the
current set, overwrite it.

...

149

Appendix B

Table B.1: Instructions of Openflow version 1.5.1 (continued)

Requirement Instruction Description

...

Optional Write-Metadata
metadata / mask

Writes the masked metadata value into the meta-
data field.

Optional Stat-Trigger
stat thresholds

Generate an event to the controller if some of the
flow statistics cross one of the stat threshold values.

Required Goto-Table
next-table-id

Indicates the next table in the processing pipeline.
The table-id must be greater than the current table-
id. This instruction is optional if the pipeline only
has one table.

Some instructions require a list of actions in their configurations. The action set
also keeps a list of actions to execute. There are different types of actions available
in the latest version of OF, some are required to be implemented by switches and
some are optional. Table B.2 compiles a list of possible actions to use with OF.
Execution order is given by the order of actions in the table.

Table B.2: Actions of Openflow version 1.5.1 [Open Networking Foundation,
2015]

Requirement Action Description

Required Output port_no
This action forwards a packet to a specified Open-
flow port where it starts egress processing.

Required Group group_id Process the packet through the specified group.

Required Drop
There is no explicit action to represent drops. In-
stead, packets whose action sets have no output ac-
tion and no group action must be dropped

Optional Set-Queue
queue_id

This action sets the queue id for a packet. The queue
id value determines the queue used for scheduling
and forwarding the packet when the output action
is used. It is used to provide Quality of Service
(QoS).

Optional Meter meter_id
Directs packet to the specified meter. If the switch
supports meters, this action is mandatory.

Optional Push-Tag/Pop-Tag
ethertype

Switches may support the ability to push/pop
tags(e.g. push/pop a VLAN header onto the
packet, push/pop a new MPLS shim header onto
the packet).

Optional Set-Field field
type value

The various Set-Field actions are identified by
their field type and are used to modify the values
of respective header fields in the packet.

Optional
Copy-Field src
field type dst
field type

This action copies data between any header or
pipeline fields.

Optional Change-TTL ttl
Modifies the values of some packet properties (e.g.
IPv4, Time to Live (TTL), IPv6, Hop Limit).

150

Openflow Pipeline and Control Channel

Several counters can be used in OF, some are required to be implemented by
switches and some are optional. Table B.3 compiles a list of possible counters to
use with OF.

Table B.3: Counters of Openflow version 1.5.1 [Open Networking
Foundation, 2015]

Requirement Counter Bits

Per Flow Table

Required Reference Count (active entries) 32
Optional Packet Lookups 64
Optional Packet Matches 64

Per Flow Entry
Optional Received Packets 64
Required Received Bytes 64
Optional Duration (seconds) d 32
Optional Duration (nanoseconds)d 32

Per Port
Required Received Packets 64
Required Transmitted Packets 64
Optional Received Bytes 64
Optional Transmitted Bytes 64
Optional Receive Drops 64
Optional Transmit Drops 64
Optional Receive Errors r 64
Optional Transmit Errors 64
Optional Receive Frame Alignment Errors 64
Optional Receive Overrun Errors 64
Optional Receive CRC Errors 64
Optional Collisions 64
Required Duration (seconds) d 32
Optional Duration (nanoseconds)d 32

Per Queue
Required Transmit Packets 64
Optional Transmit Bytes 64
Optional Transmit Overrun Errors 64
Required Duration (seconds)d 32
Optional Duration (nanoseconds)d 32

Per Group
Optional Reference Count (flow entries) 32
Optional Packet Count 64
Optional Byte Count 64
Required Duration (seconds)d 32
Optional Duration (nanoseconds)d 32

Per Group Bucket
Optional Packet Count 64
Optional Byte Count 64

...

d The amount of time the {∗} entry has been installed in the switch
r The total of all receive and collision errors

151

Appendix B

Table B.3: Counters of Openflow version 1.5.1 (continued)

Requirement Counter Bits

Per Meter
Optional Flow Count 32
Optional Input Packet Count 64
Optional Input Byte Count 64
Required Duration (seconds)d 32
Optional Duration (nanoseconds)d 32

Per Meter Band
Optional In Band Packet Count 64
Optional In Band Byte Count 64

d The amount of time the {∗} entry has been installed in the switch
r The total of all receive and collision errors

Openflow Control Channel

The OF control channel is the interface that allows OF enabled devices to talk with
the SDN controller. Devices can support multiple interfaces to communicate with
controllers as a way to share management of the switch. Through this interface,
three message types can be exchanged, Controller-to-switch, Asynchronous, and
Symmetric. This channel is usually encrypted using Transport Layer Security
(TLS) but may be run directly over TCP [Overlaid, 2017].

Controller-to-switch messages are initiated by the controller and used to directly
manage or inspect the switch. Switch response might be necessary [Open Net-
working Foundation, 2015; Overlaid, 2017]. The possible messages of this type
are:

• Feature where the controller requests the identity and basic capabilities of
a switch. The switch responds to the request. Commonly performed when
establishing a Control Channel connection;

• Configuration serves to set or query configuration parameters of the switch;

• Modify-State used to manage flow/group entries or action buckets of a
group;

• Read-States used to retrieve statistics of the switch (e.g current configura-
tion, statistics, and capabilities);

• Packet Outs used by the controller to send a packet out of a switch port. The
message sent must also contain a list of actions to be applied to the packet;

• Barrier request and reply messages are used by the controller to guaran-
tee that message dependencies have been met or to receive notifications for
completed operations;

• Role-Request used when a switch connects to a different controller as a way
to define the role of each of them (e.g. equal, slave, master);

152

Openflow Pipeline and Control Channel

• Asynchronous-Configuration used by the controller to create an additional
filter for asynchronous messages received. It is also used to query an exist-
ing filter.

Asynchronous messages are initiated by the switch, without controller solicita-
tion, and are used to update the controller on a switch state change or to announce
a packet arrival [Open Networking Foundation, 2015; Overlaid, 2017]. The pos-
sible messages of this type are:

• Packet-in is used to transfer a packet to the controller. Used when the
switch forwards a packet to the reserved port CONTROLLER;

• Flow-Removed informs the controller that flow entry has been removed.
This notification is only sent to the controller if the flow entry was config-
ured with a flag OFPFF_SEND_FLOW_REM;

• Port Status informs the controller of a change in port configuration or state
changes;

• Role-status informs the controller of a change of its role (e.g when a new
controller elects itself master);

• Controller-Status informs the controller when the status of an OF channel
changes;

• Flow Monitoring used to inform the controller of changes in a flow table if
the controller defines monitors to track changes in that table.

Symmetric messages are initiated either by the switch or controller and sent with-
out solicitation [Open Networking Foundation, 2015; Overlaid, 2017] These mes-
sages include:

• Hello messages are exchanged upon connection startup;

• Echo verifies the liveness of connection and can be used to measure latency
or bandwidth. An echo reply is expected to be received;

• Error are used to notify problems to the other party;

• Experimenter provides a standard way for OF switches to offer additional
functionality OF message type space.

153

Appendix C

P4 Pipeline and Example

This appendix explains the behaviour of the data plane programming model
of the Programming Protocol-Independent Packet Processors (P4) language, the
pipeline steps of the model and also contains an example of a P4 program that
does simple routing. This information is needed to fully understand the proto-
col, but it is not necessary to understand this work.

P4 Pipeline

There are different data plane programming models but we will focus on Protocol-
Independent Switching Architecture (PISA) because it is the model of the P4 lan-
guage.

PISA consists of three major programmable components, a programmable parser,
a programmable match-action pipeline, and a programmable deparser.

The parser handles the field extraction of the incoming serialised packet informa-
tion. The programmer can declare headers of protocols that will be extracted to
an organised structure with help of a directed flow graph.

The match-action pipeline consists of a sequence of match-action units where
each unit can have one or more match-action-tables (MATs), see Figure C.1.

The MATs consist of lookup keys and corresponding actions. Parsed packet in-
formation is matched against the lookup keys of the MATs to try to find an entry
that matches. When an entry is selected, packet header information can be mod-
ified by the corresponding actions. The control plane can influence the run-time
behaviour by modifying the table’s lookup key entries and corresponding actions
that populate the MATs

The deparser converts the packet headers of the organised structure back into
serialised information.

Besides the programmable components, there can be fixed-function components
in the pipeline. Depending on the device’s architecture, it can have these fixed
function blocks between MATs, before the parser, or after the deparser. Some

155

Appendix C

Figure C.1: PISA model [Hauser et al., 2021]

fixed function examples would be header checksums, ingress/egress port blocks,
packet replication mechanisms for multicast, and traffic managers to handle packet
buffering, queuing, and scheduling [Hauser et al., 2021].

P4 Routing Template

This means that P4 programs need to be designed to comply with the target’s
architecture: Figure C.2 represents the components that make up a popular P4
pipeline model, V1model, and in pages 157 through 160 we present a P4 template
for routing program, to use in with V1model architecture model [OpenDayLight
Team, 2018].

Figure C.2: V1model pipeline architecture [Hauser et al., 2021]

The V1model architecture is constituted by a parser, ingress MATs, ingress check-
sum, traffic manager, egress MATs, egress checksum, and deparser.

The P4 template program starts by defining a constant variable to represent the
IPV4 ethertype that will be useful in the parser. Then the header structures for
ethernet and ipv4 are defined and used to for the packet header structure.

156

P4 Pipeline and Example
Header definition

1 #include <core.p4>
2 #include <v1model.p4>
3

4 const bit<16> TYPE_IPV4 = 0x800;
5

6 /******* H E A D E R S *********/
7

8 typedef bit<9> egressSpec_t;
9 typedef bit<48> macAddr_t;

10 typedef bit<32> ip4Addr_t;
11

12 header ethernet_t {
13 macAddr_t dstAddr;
14 macAddr_t srcAddr;
15 bit<16> etherType;
16 }
17

18 header ipv4_t {
19 bit<4> version;
20 bit<4> ihl;
21

22 bit<8> diffserv;
23 bit<16> totalLen;
24 bit<16> identification;
25 bit<3> flags;
26 bit<13> fragOffset;
27 bit<8> ttl;
28 bit<8> protocol;
29 bit<16> hdrChecksum;
30 ip4Addr_t srcAddr;
31 ip4Addr_t dstAddr;
32 }
33 struct metadata {
34 /* empty */
35 }
36

37 struct headers {
38 ethernet_t ethernet;
39 ipv4_t ipv4;
40 }
41

The next block has the packet parser and the ingress checksum definition. The
parser works like a flow graph. It starts in the state start and successfully ends in
an acceptable state. This parser will first go to the ethernet parser block to extract
the corresponding packet header. Afterwards, the flow graph goes to the IPV4
parser, if the ethernet etherType indicates that there is one, if not it goes to an
accept state and finishes. In the IPV4 parser, the packet IPV4 header information
is extracted and the flow graph successfully terminates.

The ingress checksum is also defined but there is no logic in the method in this
implementation.

157

Appendix C
Parser+Checksum definition

42 /******** P A R S E R **********/
43 parser MyParser(packet_in packet,
44 out headers hdr,
45 inout metadata meta,
46 inout standard_metadata_t
47 standard_metadata) {
48

49 state start {
50 transition parse_ethernet;
51 }
52

53 state parse_ethernet {
54 packet.extract(hdr.ethernet);
55 transition select(
56 hdr.ethernet.etherType) {
57 TYPE_IPV4: parse_ipv4;
58 default: accept;
59 }
60 }

61

62 state parse_ipv4 {
63 packet.extract(hdr.ipv4);
64 transition accept;
65 }
66 }
67

68 /****C H E C K S U M****/
69

70 control MyVerifyChecksum(
71 inout headers hdr,
72 inout metadata meta) {
73 apply { }
74 }
75

The ingress control block is defined in the next snippet. The apply method checks
if the IPV4 header was successfully extracted during packet parsing, to then per-
form packet matching with table ipv4_lpm. The table structure is defined (possi-
ble matching parameters and possible actions to apply to packets) as well as the
logic of the actions that can be applied to packets (drop and ipv4_forward). Tak-
ing a look at ipv4_forward, this function changes header parameters to perform
forwarding o the packet to another switch.

158

P4 Pipeline and Example
Ingress Processing

76 /**** I N G R E S S ****/
77

78 control MyIngress(inout headers hdr,
79 inout metadata meta,
80 inout standard_metadata_t
81 standard_metadata) {
82

83 action drop() {
84 mark_to_drop();
85 }
86

87 action ipv4_forward(
88 macAddr_t dstAddr,
89 egressSpec_t port) {
90

91 standard_metadata.egress_spec
92 = port;
93 hdr.ethernet.srcAddr
94 = hdr.ethernet.dstAddr;
95 hdr.ethernet.dstAddr
96 = dstAddr;
97 hdr.ipv4.ttl
98 = hdr.ipv4.ttl - 1;
99 }

100 table ipv4_lpm {
101 key = {
102 hdr.ipv4.dstAddr: lpm;
103 }
104 actions = {
105 ipv4_forward;
106 drop;
107 NoAction;
108 }
109 size = 1024;
110 default_action = NoAction();
111 }
112 apply {
113 if (hdr.ipv4.isValid()) {
114 ipv4_lpm.apply();
115 }
116 }
117 }

The egress control block and egress checksum of the template are present next.
The egress control block is empty, thus there is no egress processing. The egress
checksum component has some logic to perform checksum validation in the IPV4
header of the packet. This is important because this header might have been
modified in previous control blocks.

Egress+Checksum definition
118 /**** E G R E S S ****/
119 control MyEgress(inout headers hdr,
120 inout metadata meta,
121 inout standard_metadata_t
122 standard_metadata) {
123 apply { }
124 }
125

126 /**** C H E C K S U M ****/
127 control MyComputeChecksum(
128 inout headers hdr,
129 inout metadata meta) {
130

131 apply {
132 update_checksum(
133 hdr.ipv4.isValid(),
134 { hdr.ipv4.version,
135 hdr.ipv4.ihl,

136

137 hdr.ipv4.diffserv,
138 hdr.ipv4.totalLen,
139 hdr.ipv4.identification,
140 hdr.ipv4.flags,
141 hdr.ipv4.fragOffset,
142 hdr.ipv4.ttl,
143 hdr.ipv4.protocol,
144 hdr.ipv4.srcAddr,
145 hdr.ipv4.dstAddr },
146 hdr.ipv4.hdrChecksum,
147 HashAlgorithm.csum16);
148 }
149 }

This last template segment contains the deparser block and the the V1Switch

159

Appendix C

function. The deparser reconstructs the indicated headers before the packet is
forwarded out of the switch and the V1Switch function declares all the functions
necessary for the V1model.

Deparser+Main definition
150 /**** D E P A R S E R ****/
151

152 control MyDeparser(packet_out packet,
153 in headers hdr) {
154 apply {
155 packet.emit(hdr.ethernet);
156 packet.emit(hdr.ipv4);
157 }
158 }

159 /**** S W I T C H ****/
160 V1Switch(
161 MyParser(),
162 MyVerifyChecksum(),
163 MyIngress(),
164 MyEgress(),
165 MyComputeChecksum(),
166 MyDeparser()
167) main;

160

Appendix D

Framework Vision in the First
Semester

This appendix contains detailed information documenting the vision of the dis-
sertation in the first semester and the planning done to achieve our objectives.

Our main goal was to develop a modular framework layer above the typical
SDN-C for network monitoring and management independently of the SDN-C
and related technologies used in topologies.

Having highly interchangeable framework components enables easier integra-
tion of a new technology when necessary: to manage the network with a new
controller, a new module needs to be implemented to act as an interface for the
rest of the framework components, see Figure D.1

For example, the blocks inside the bracket communicate with each other to en-
able the management functionalities of the framework. If the network needs to
change from using controller A to using controller B, the only block that needs re-
placement is the orange block “’Interface Controller A”. The business logic of the
management and monitoring algorithms built in the framework (green blocks)
could be still utilised.

To reach our main objective at the time, we defined the following goals:

1. Information collection: elaborate a module to collect and store network
statistics and topology information required for management and monitor-
ing;

2. Engine for algorithms: build and deploy a server to import and run the
custom management algorithms.

3. Framework asset management: build a framework module to list all assets
and to approve/remove them as devices that can act on the network;

4. Framework user management: build a framework module to list and man-
age user accounts with permission to act on the topology, or use the data in
the framework;

161

Chapter 10

REST Endpoints

Controller A

Network devices

GUI CLI Other

Business Logic
Load Balancing

Service Fairness
Device Monitoring

...

Controller Interface
Interface

Controller A

User

Figure D.1: Vision for the Framework in the First semester

5. End-points for monitoring operations: expose end-points to retrieve infor-
mation from the framework, in order to be used by external tools. Exposes
user and asset information, network statistics and available algorithms.

6. End-points for management operations: exposes end-points so that exter-
nal tools can orchestrate network elements. Allows management of user
and asset information and activation/deactivation and configuration for al-
gorithms.

162

	Introduction
	Main Objectives
	Contributions
	Document Structure

	Background
	Software Defined Networking
	Traditional Networking Paradigm
	SDN Paradigm
	SDN controllers
	Comparison

	SDN Related Protocols
	Openflow
	Data plane programming and P4
	Other Protocols and Languages

	Network emulation
	Mininet
	Mininet-WiFi

	Traditional Monitoring Protocols

	Research Projects & Related Work
	Ongoing projects
	SNOB-5G
	MH-SDVANET

	Related SDN European projects
	Management solutions for SDN
	Summary

	 Research Objectives & Approach
	Objectives
	Approach
	Research and Development Methodology
	Planning
	Issues and Readjustments
	Risks

	Requirements Elicitation
	Management Activities
	Functional Requirements
	Use Case Diagrams & User Stories

	Non Functional Requirements
	Design and Technical Restrictions
	Requirement Listing
	Requirement Fulfilment Analysis

	Project Architecture
	C4 Model
	Architectural Artefacts

	Framework Development
	Permanent Storage
	Database Schema
	Metrics collector

	Web Server
	Forwarding Mechanisms
	Custom Fairness algorithm
	K-shortest ONOS algorithm

	Potentially Interesting Features

	SDN Experimental Scenario & Algorithm Results
	Experimental Environment
	Problems with Mininet-Wifi
	Mininet Environment
	Generate Traffic
	Energy Formulas

	Experiences & Results
	Heuristic Validation
	Partial Inter Cluster
	 Full Inter Cluster
	 Intra Cluster

	Discussion

	Feature Testing & Validation
	Web Server End-points
	CLI Commands
	Energy Formulas
	Algorithms

	Conclusion
	Future work

	Appendix Terminology
	Appendix Openflow Pipeline and Control Channel
	Appendix P4 Pipeline and Example
	Appendix Framework Vision in the First Semester

