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Resumo

O terceiro tipo de cancro mais comumente diagnosticado no mundo, e que ocupa
o segundo lugar em mortes relacionadas com o cancro, é o cancro colorretal (CRC).
O fígado é o órgão mais comum para a disseminação das metástases desse tipo de
cancro. A ressecção hepática é atualmente o tratamento mais efetivo para os doentes
com CRC que apresentam metástases hepáticas (MHCRC). No entanto nem todos
os doentes estão aptos para serem submetidos a este procedimento. O ideal seria
escolher um tratamento personalizado baseado na biologia do doente.

Diversos estudos demonstraram que o padrão de crescimento histológico (PCH)
são relevantes na escolha de tratamentos. O PCH é a margem de tecido entre as
metástases e o parênquima de fígado não-tumoral. Esse padrão pode ser classificado
em três tipos: desmoplástico (dPCH), infiltrativo (rPCH) ou expansivo (pPCH).
Contudo, apesar da sua importância, estes só podem ser determinados após a análise
histológica da peça removida cirurgicamente. A ressonância magnética (RM) é o
exame de escolha na avaliação pré-operatória dos doentes com MHCRC, uma vez
que possibilita estudar de forma detalhada a interface tumor-fígado. O trabalho
desta tese tem como objetivo desenvolver uma aplicação de inteligência artificial
para prever os PCH de forma não invasiva, a partir de imagens adquiridas por RM.

Foram analisadas imagens adquiridas por RM com a abordagem de radiómica,
que permite extrair informações biológicas a partir de uma imagem, e testaram-se
diversas técnicas de machine learning com o intuito de criar um modelo capaz de
classificar os tipos de PCH a partir da informação extraída das imagens. Entre
as categorias de abordagens de machine learning, foram consideradas duas aborda-
gens de classificação. A primeira abordagem, chamada de classificador multiclasse,
considerou três classes a serem classificadas: PCH desmoplástico, infiltrativo e ex-
pansivo. Já a segunda abordagem, de classificação binária, considerou um modelo
com apenas duas classes: PCH desmoplástico ou não desmoplástico (incluindo infil-
trativo e expansivo).

As informações extraídas das imagens (features) foram selecionadas testando
dois métodos diferentes. Criou-se um modelo de classificação para cada fase de
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aquisição de imagem no protocolo clínico de avaliação de MHCRC e avaliou-se a
capacidade preditiva de cada modelo utilizando as métricas de revocação, precisão,
f1-score, curva ROC e área sob a curva (AUC), e ainda a acurácia. As probabilidades
de uma lesão pertencer a uma classe em particular foram extraídas dos modelos com
melhor desempenho para cada fase, sendo consideradas como novas features num
modelo final que também foi avaliado utilizando as métricas mencionadas.

Os melhores resultados foram obtidos com o classificador binário. O f1-score
para a previsão do padrão desmoplástico foi de 0.84 para os dados de treino e 0.80
para os dados de teste. Os dados de teste também apresentaram uma AUC de 0.83.
A acurácia foi de 0.85 para o treino e de 0.82 para o teste.

Palavras-Chave: cancro colorretal, padrões de crescimento histológico, biomar-
cadores de imagem, ressonância magnética, radiómica, machine learning, multi-
classes, classe binária
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Abstract

The third most commonly diagnosed cancer worldwide and the second leading
cause of cancer-related deaths is colorectal cancer (CRC). The liver is the organ
most commonly affected by the spread of metastases from this type of cancer. While
liver resection is currently the most effective treatment for patients with CRC, that
have liver metastases (CRCLM), however not all patients are able to undergo this
procedure. Therefore, it would be ideal to choose a personalised treatment based
on the patient’s biology.

Several studies have shown that the knowledge of type of the histological growth
pattern (HGP)is important in the choice of treatments. The HGP is the tissue mar-
gin between the metastases and the non-tumour liver parenchyma. These patterns
can be divided into three types: desmoplastic (dHGP), replacement (rHGP) or
pushing (pHGP). However, despite their importance, it can only be determined af-
ter histological analysis of the surgically removed piece. Magnetic resonance imaging
(MRI) is the exam of choice in the preoperative evaluation of patients with CRCLM,
as it allows detailed examination of the tumour-liver interface. The aim of this work
is to develop an artificial intelligence application for non-invasive prediction of HGPs
from MR images.

Images acquired with MRI were analysed using a radiomics approach, which
allows biological information to be extracted from an image. Different machine
learning techniques were tested to build a model capable of classifying the types
of HGP based on the textural information extracted from the images. Among the
categories of machine learning approaches, two classification approaches were con-
sidered. The first approach, called the multiclass classifier, considered three classes
to be classified: desmoplastic HGP, replacement and pushing. The second approach,
the binary classifier, considered a model with only two classes: desmoplastic or non-
desmoplastic HGPs (including replacement and pushing).

The image information (features) to be included in the prediction models was
selected by testing two different methods. A classification model was created for
each phase of image acquisition in the CRCLM clinical assessment protocol and the
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predictive ability of each model was assessed using the metrics of recall, precision,
f1-score, accuracy, ROC curve and area under the curve (AUC). The probabilities
that a lesion belongs to a particular class were extracted from the best performing
models for each phase. These probabilities were included as new features in a final
model, which was also evaluated using the above metrics.

The best results were obtained with the binary classifier. The f1-score for
predicting the desmoplastic pattern was 0.84 for the training data and 0.80 for the
test data. The test data also showed an AUC of 0.83. The accuracy was 0.85 for the
training data and 0.82 for the test data, showing that some models were efficient in
classifying the desmoplastic histological growth pattern.

Keywords: colorectal cancer, histological growth patterns, imaging biomarkers,
magnetic resonance imaging, radiomics, machine learning, multiclass, binary class
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1
Introduction

Throughout the world, cancer is an alarming disease due to its high mortality
rate. This disease results from genetic mutations that cause changes in the signalling
pathways that control cell cycles, allowing uncontrolled cell division and growth. The
main cause for the high mortality rate in cancer is the invasive behaviour of cancer
cells, which allows the disease to progress and metastasise. Nearly 90% of cancer
deaths are due to metastasis. Malignant cells, derived from the primary tumour,
infiltrate into the surrounding parenchyma and, through the intravasation of blood
vessels, reach the circulation [1–5].

Approximately 10% of all cancers diagnosed worldwide and cancer-related deaths
are due to colorectal cancer (CRC). Each year, 1.2 million new cases of CRC are
discovered worldwide, and about half of these cases will have metastases [6, 7].

The liver is frequently affected by metastases. In Europe, secondary liver tu-
mours are much more common than primary ones. The venous drainage of the colon
and rectum via the portal vein to the liver may be one reason why this organ is the
main region for the occurrence of metastases in case of CRC [8, 9].

Liver resection is currently the most effective treatment for patients with col-
orectal cancer liver metastases (CRCLM). However, not all patients can undergo
this procedure, and liver recurrence in CRCLM is extremely common in the first
two years after surgery, so not all patients have long-term survival. In addition, this
approach is associated with a risk of perioperative morbidity and mortality, which
can significantly affect the patients’ quality of life. Another strategy that has been
widely accepted is the combination of surgery and neoajuvant chemotherapy (NAC).
It is important to emphasise that these treatments are not only aggressive, but also
require a clear, personalised medical approach, with the treatment of CRCLM being
carried out by a multidisciplinary team [7, 10, 11].
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1. Introduction

1.1 Contextualisation

A thorough understanding of tumour biology and clinical biomarkers is ex-
tremely important for the multidisciplinary team to choose an appropriate strategy
for action. Histological growth patterns (HGPs) were shown to be a practical prog-
nostic factor with predictive value. These patterns involve inter-and intra-lesion
heterogeneities of epigenetic, genetic, morphologic, and phenotypic properties, con-
ducting to variances in overall survival of patients with CRLM in relation to the
treatments performed. These growth patterns may be of desmoplastic or replace-
ment type, which are the most common, or the rarer types such as pushing, sinu-
soidal and portal [8, 10, 12–14].

The prognostic role of HGPs has been observed in several studies in which
the desmoplastic pattern, characterised by the presence of a thick band of stroma,
rich in blood vessels and lymphocytes, between the non-tumour and the tumour
parenchyma, is a predictor of favourable overall survival. On the other hand, the
replacement growth pattern, in which the tumour component spreads in a poorly
defined manner and invades the non-tumour liver cells, is associated with poorer
overall survival, which also occurs in others non-desmoplastic patterns [11].

Histological growth patterns also play an important role in more targeted treat-
ment selection. An example of this is the identification of patients who will benefit
from a liver transplant. In this procedure, one of the necessary prerequisites is the
liver-only disease, a feature more commonly present in patients with desmoplastic
patterns. Immunomodulatory therapies are also recommended for patients with this
type of pattern, while more aggressive perioperative chemotherapy may be indicated
for non-desmoplastic patterns. In addition, HGPs have also been shown to play a
prognostic role in non-colorectal cancers such as breast cancer, gastric cancer and
uveal melanoma, helping to clarify the failure of certain treatments. All of this un-
derscores the importance of predicting histopathological patterns in order to spare
patients unnecessary suffering that does not lead to positive outcomes [11, 15].

Nowadays, these pathological details of liver metastases are only known after
resection, which is an invasive and risky procedure for the patient. Fortunately,
however, there is a very attractive approach that allows to extract biological infor-
mation from images: radiomics. Radiomics is a powerful technique that allows the
analysis of textural features in medical images and enables effective classification of
tumours at the morphological and molecular levels. It has the advantage of being
non-invasive and is also time and cost effective [10, 11, 13, 16].
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1.2 Motivation
The introduction of a technique that allows prognostic biomarkers to be pre-

dicted in a non-invasive way from images obtained from patients using routine meth-
ods, such as magnetic resonance imaging, will save patients inconvenience and pos-
sible complications. Moreover, the fact that these biomarkers have the potential to
help making decisions about the most effective and personalised treatments for each
patient is of paramount importance in a disease where mortality is high and time is
often short.

1.3 Goals
This project aims to combine the texture analysis technique, radiomics, with

machine learning algorithms to predict the histological growth pattern of liver metas-
tases from images acquired using magnetic resonance imaging technology and estab-
lish a biomarker of prognostic with clinical value. The specific goals of this work
are i) to determine which textural and non-textural features are most prevalent in
this type of study using radiomics, as many are not visible to the naked eye and
ii) to determine which of these features better predict the nature of the histological
growth pattern using machine learning algorithms.

1.4 Structure
Chapter 2 of this thesis will cover the topics that will support this work. An

overview of the biology of colorectal cancer and liver metastases is given, followed
by the prevalence in the world, as well as risk factors, diagnosis and treatment.
Radiomics and machine learning methods are also presented in this chapter. Finally,
the last section of this chapter presents an overview of the application of radiomics
and machine learning in the context of predicting HGPs in colorectal cancer liver
metastases.

Chapter 3 is devoted to explaining the methods used to attempt to solve the
proposed problem. The chapter covers the criteria for the selection of patients for
the compilation of the database, the pathological characterisation, the acquisition of
images of the liver metastases as well as the selection of the regions of interest (ROI),
the description of the processing of these images, the feature selection methods and
the model generation.

In Chapter 4, a multiclass classification problem was considered in which the
model was trained and tested to predict the classes for the desmoplastic pattern,
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pushing and replacement. The results obtained were presented and discussed in
sections according to the methods used. The conclusions on this classifier can also
be found in this chapter.

In Chapter 5 the results for a binary classifier were presented and discussed,
where only two classes were considered, the desmoplastic and the non-desmoplastic
class. The conclusions for the results obtained with this classifier were also included.

Finally, in chapter 6, the final conclusions are drawn and perspectives for future
work are presented .
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2
Background Concepts And

State Of The Art

This chapter contains the information that supports the work developed in
this thesis. It covers concepts about colorectal cancer as well as liver metastases,
histological growth patterns and their types, the prevalence of the disease, risk
factors, diagnosis and current treatments, the importance of growth patterns in
selecting treatments, concepts related to the radiomics approach and a summary of
articles on the use of this technique in CRCLM.

In the gastrointestinal system, the colon and the rectum form the large intestine.
The colon consists of four sections (ascending colon in the proximal part, transverse
colon, descending colon and sigmoid colon, the last two in the distal part) and is
mainly responsible for the re-absorption of water from the intestinal contents after
they have passed through the jejunum and ileum. The final wastes eventually enters
the rectum, which serves as a faecal reservoir, and are finally excreted through the
anus [17]. Of all CRCs, 41% occur in the proximal part, with 22% involving the
distal part and 28% the rectum [18].

Generally, the progress of CRC follows characteristic patterns. It begins with
microscopic lesions at the crypt (crypt lesions), which are epithelial cell-based and
become small polyps over time (a neoplastic precursor lesion). As the polyps grow,
the epithelial cells that make them up have a growing number of mutations associ-
ated with cancer genes and gradually show a dysplastic phenotype [6, 17, 19].

A focus of carcinoma in situ formed by some malignant cells confined to the
polyp epithelium has the potential to invade and metastasise [17, 19]. Malignant
cells cross the basement membrane, invade the intestinal wall, then the lymphatics,
and finally enter the bloodstream through vessels and metastasise to various organs
such as the liver [17].
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2.1 Prevalence

CRC is the third most common type of cancer diagnosed worldwide, in both
women and men. This type of gastrointestinal cancer is a major health concern as
it is the fourth leading cause of cancer death in the world, causing about 900 000
deaths per year [6, 17, 20].

Incidence and mortality rates are about 25% lower in women than in men.
Developed countries have been shown to be the regions where these rates are higher.
More than two thirds of all cases of CRC and about 60% of all deaths related to
this cancer occur in countries with a high Human Development Index (HDI) [6, 21].

Of all newly diagnosed cancers in Europe, about 12.9% are CRC. Between 2000
and 2005, the number of deaths increased by 3% if only Portugal is considered [22].
By 2030, the incidence of this cancer is expected to increase by 60% to 2.2 million
new cases and 1.1 million deaths worldwide [21].

Although tracking and health care programs have recently evolved, most pa-
tients already have metastatic disease at the time of diagnosis. Approximately
14-18% of patients with CRC have metastases at the first clinical presentation, and
approximately 10-25% have metastases when the primary CRC is resected. Within
5 years of diagnosis, 20% to 50% of patients with CRC, usually die from metastatic
disease. If there is no treatment, patients with CRCLM have an average survival of
only 5 to 20 months [8, 23, 24].

2.2 Risk factors

The probability of developing CRC is equal to 4%-5% and risk factors include
lifestyle, environmental factors, heredity, and age [25].

Age is the main risk factor and one of the factors that cannot be changed. The
risk of developing CRC increases significantly after the age of 50 [25].

Another unmodifiable factor is genetic predisposition. Polyposis and non-
polyposis syndromes (Lynch syndrome) are related to CRC by heredity [6]. This
factor accounts for about 35% of the risk factors. Families with a positive history
account for 10-20% of the total number of patients with CRC [6, 20, 25].

In patients with inflammatory diseases associated with the large intestine, the
risk of developing CRC increases by 2.5% in people with Crohn’s disease, and 3.7%
in ulcerative colitis [25].

Smoking, poor diet, lack of exercise and alcoholism are some of the risk factors
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related to lifestyle, but unlike the above factors, these can be changed.

In people who have a sedentary lifestyle with unhealthy eating habits, there is
an association with obesity, which is a very relevant risk factor. Due to the increase
in levels of visceral adipose tissue (VAT), there is an active hormonal component
of total body fat that promotes the release of pro-inflammatory cytokines, which in
turn can contribute to the occurrence of CRC. In this context, the probability of
developing CRC increases to 70% [25].

In the case of alcoholism, depending on the polymorphism of the enzymes that
metabolise alcohol, the acetaldehyde contained in the drink is considered carcino-
genic, which increases the likelihood of developing CRC. As for smoking, due to the
high content of carcinogens in its components, the risk of developing CRC increases
by up to 10.8%, as these components can easily enter the intestine and cause polyps
[25].

The authors of a study conducted in 1,099 patients with CRC over a 7-year
period suggest that in univariate analyses, characteristics such as age, depth of
tumour invasion, perineural and vascular invasion, and lymph node metastasis are
among the possible risk factors for the development of metachronous liver metastases
(MLM) [26].

2.3 Diagnosis

Although it is a slowly progressive cancer (it takes about 10 to 15 years for
the precursor lesion to develop into CRC) [6, 19], patients may present with various
symptoms such as anemia, abdominal pain, and rectal bleeding. However, this type
of cancer is usually not noticeable until it reaches an advanced stage [19].

The method of choice for diagnosis of CRC is colonoscopy, but as described
above, many patients with CRC develop liver metastases. Although computed to-
mography (CT) is widely used for the detection of liver metastases, magnetic reso-
nance imaging (MRI) is the gold standard for diagnosis [6, 27].

MRI allows radiologists to noninvasively diagnose focal liver lesions, hepatic
vascular disease, biliary and diffuse liver disease by careful selection of MRI param-
eters. The human body has an abundance of tissues rich in hydrogen (H1), such
as water, fat, and proteins, which is why proton or H1 magnetic resonance imaging
is mainly used in clinical settings. The patient is positioned inside a scanner with
a strong magnetic field B0, expressed in Tesla (T), generally in the cranial-caudal
direction. The protons then align their magnetic field either parallel or antiparallel
to it. The preferred state for alignment is the one that requires the least energy,
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so that more protons align in the low-energy state parallel to B0, while a minority
align in a higher energy state, which is antiparallel to B0. Moreover, protons also
have a precession motion, which is like spinning around its own axis. This motion is
quite fast, and the number of precession spins of the proton per second is called the
"precession frequency". This value depends on the strength of the applied magnetic
field B0 and can be calculated by the Larmor equation [28, 29].

To obtain an image, it is necessary to apply a radiofrequency (RF) pulse at
the Larmor frequency perpendicular to B0 in the region to be evaluated. When the
RF is absorbed by the tissue, some protons will change their energy state and the
number of protons in the antiparallel state with higher energy increases, causing a
net longitudinal magnetisation further away from the B0 direction. At the same
time, the protons will precess in phase, causing a new horizontal magnetisation.
After RF is turned off, the protons return to their normal low energy state, i.e.,
they return to the original longitudinal magnetisation direction align with the B0

field, and the interactions between protons and the surrounding tissue will also cause
a decay of the horizontal magnetisation. The energy released by the protons during
this process is electronically detected, allowing the formation of the image. The RF
signals, emitted and received, provide the information needed to build the image
and depend on two tissue properties, called T1 and T2 relaxation times. The T1
characterises the relaxation as the longitudinal magnetisation of protons realigns
with B0. This signal is tissue specific and depends on the surrounding structure
or lattice. The T2 component corresponds to the decay signal of the horizontal
magnetisation, since phase coherence is lost after RF excitation. Both T1 and T2
are significantly impaired under pathological conditions [28].

The main parameters that allow the images to be generated when they are
changed are the echo time (TE), the repetition time (TR) and the flip angle. By
choosing these parameters correctly, as well as the RF pulses, it is possible to modify
the resulting signal and obtain weighted images, i.e. T1-weighted (T1W) images,
where the T1 signal is emphasised, or T2-weighted (T2W) images, where the T2
signal is emphasised. These images are part of the series that make up liver MRI
protocols [28].

Compared to other cross-sectional imaging techniques, MRI provides much bet-
ter resolution for soft tissue. Furthermore, the excellence of this technique is demon-
strated when it comes to detecting small-sized metastases, with the sensitivity of
contrast-enhanced MRI (CE-MRI) being approximately 91%-97% [27].

Hepatobiliary contrast-enhanced magnetic resonance imaging agents such as
gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd- EOB-DTPA,
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Primovist® in Europe or Eovist® in the United States) has been shown to be a safe
and sensitive method for detecting liver metastases. This is due to the superiority
of the contrast between the lesion and the liver created by the uptake of gadolinium
at the base of the liver parenchyma. Accurate mapping of the number of colorectal
cancer metastases and their location is of paramount importance for preoperative
planning by surgeons and enables these professionals to more appropriately counsel
patients regarding the required surgery. In addition, adequate information about
metastases can also prevent patients from undergoing unnecessary surgery [30].

2.4 Colorectal liver metastasis

The liver is one of the organs where colorectal cancer metastases most commonly
occur, with 80% of all CRC metastases occurring in this organ [15]. This is because
the liver’s blood supply originates from the junction of the gastrointestinal tract
blood vessels via the hepatic portal vein, and cancer cells migrate into the liver
parenchyma in this bloodstream to form the liver metastasis [31].

Some studies have shown that about 25% to 30% of patients with CRC develop
liver metastases during the progression of the disease [32]. Metastases are still the
most common cause of death in patients with solid tumours [15]. Patients with CRC
have a worse prognosis if metastases are present in the liver [33].

Vidal-Vanaclocha proposed in 2011 that the progression of liver metastases is
composed of four phases. The first is called the microvascular phase. It occurs in
sinusoidal vessels as soon as the circulating tumour cells arrive. At this point, the
cancer cells must be able to attach to the endothelial cell layer and subsequently
transmigrate through the vascular endothelium (extravasation). The second phase
comprises the pre-angiogenic or intra-lobular micrometastatic phase and is charac-
terised by the recruitment of immune cells and stromal cells from the liver. At this
stage, the micrometastases are not yet vascularised. In the third phase, called the
angiogenic phase or pan-lobular phase, the recruitment of endothelial cells and the
formation of blood vessels is induced by the hypoxic microenvironment. In the last
phase, called the lobar growth phase, the new tumour can already be clinically de-
tected. The interactions between the hepatic microenvironment and the malignant
cells are responsible for the subsequent growth of the metastases as well as for the
progression of the four phases mentioned [16].
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2.5 Histological Growth Patterns
Histopathologic growth patterns (HGPs) represent the various interactions be-

tween micro-environmental cells and metastatic tumour cells, and provide a unique
interface between the surrounding liver and the tumour [15].

Considering the differences in the interface between the adjacent liver parenchyma
and tumour cells, the CRLM exhibits several types of patterns due to the multi-
ple biological processes that occur in this region, such as angiogenesis, interaction
with the cells’ immune system, paracrine and autocrine effects of growth factors,
which may ultimately have implications in the choice of the most appropriate sur-
gical therapy. These patterns may be pushing patterns (pHGP), sinusoidal and
portal patterns, or the most common and main types: Desmoplastic (dHGP) and
the Replacement (rHGP) [11, 13, 14].

2.5.1 Desmoplastic histologic growth pattern (dHGP)

In the desmoplastic pattern (also named encapsulated), in addition to a dense
lymphocytic infiltration, there is an arc of fibrous tissue isolating the metastases
of the liver parenchyma (Figures 2.1 and 2.2). This type of pattern shows a more
favourable diagnosis because the thick wall of collagen-enriched stroma provides a
barrier that prevents the tumour from spreading. Sprouting angiogenesis form new
blood vessels, and a reaction that is comparable to the healing of a wound is caused
by the cancer cells, inflammation, and the new blood vessels produce scar tissue
[8, 14, 15].

Figure 2.1: "Schematic representa-
tion of the desmoplastic pattern, the
tumour is separated from the liver
parenchyma by a band of fibrous tis-
sue, which contains tumour infiltrat-
ing lymphocytes". Adapted from [8].

Figure 2.2: "Representative image of
desmoplastic HGP in colorectal liver
metastases identified on H& E-stained tis-
sue sections. PT: peritumor, TU: tumour
regions, IM: invasive margin. It is possi-
ble visualise a rim of fibrotic tissue that
encapsulates the metastasis (IM region)".
Adapted from [14].
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The lymphocytic infiltration along with integrin blockade and the increase in
collagen type IV allow for a decreased infiltration of non-tumour parenchyma, lead-
ing to a more favourable prognosis. Furthermore, in a recent study, a higher R0
resection rate (when no tumour remains after surgical treatment) was observed in
CRCLMs with dHGP, suggesting that there may be protection against positive
marginal resection in this pattern due to the fibrous stroma being rich in inflamma-
tory cells, which is not seen in the replacement or pushing patterns [8, 11, 34].

It has also been found that patients who have mixed patterns in certain regions
(dHGP in combination with non-dHGP) have a less favourable prognosis than those
who have only a dHGP pattern at the interface between liver and tumour[11, 16].

2.5.2 Pushing histologic growth pattern (pHGP)
The pushing pattern is present when the surrounding liver tissue is compressed

by cancer cells, but without imitating the architecture of the healthy organ (Figures
2.3 and 2.4). This pattern is described as angiogenic type and is characterised by a
hypoxic environment, an aggressive factor, and resistance to treatments [8, 14].

Figure 2.3: "Schematic representa-
tion of the pushing pattern, the tu-
mour the tumour expands and com-
presses the surrounding hepatocytes."
Adapted from [8].

Figure 2.4: "Representative image
of pushing HGP in colorectal liver
metastases identified on H& E-stained
tissue sections. PT: peritumor, TU:
tumour regions, IM: invasive margin.
It is possible visualise the liver tissue
compressed and pushed away by the
tumour". Adapted from [14]

2.5.3 Replacement histologic growth pattern (rHGP)
In the rHGP, the cancer cells replace the hepatocytes and co-opt the sinusoidal

blood vessels at the tumour-liver interface (because plates formed by the cancer
cells are in continuity with the liver cell plates), without disturbing the stroma
architecture of the liver or inducing sprouting angiogenesis [15], as shown in Figures
2.5 and 2.6 .
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Since the rHGP liver metastases do not present secondary structures at the
tumour-liver interface, such as glandular structures, they are poorly differentiated.
An immune desert is represented by this type of metastasis, because of the low
infiltration of inflammatory and/or immune cell types. There is no fibrous stroma
in this type of pattern, as observed in dHGP, so the patient is at increased risk of
hepatic recurrence because of the risk of marginal resection [11, 15].

Figure 2.5: "Schematic representa-
tion of the replacement pattern, the
tumour permeates between the liver
hepatocytes, without disruption of
the normal architecture;". Adapted
from [8].

Figure 2.6: "Representative image of
replacement HGP in colorectal liver
metastases identified on H& E-stained
tissue sections. PT: peritumor, TU:
tumour regions, IM: invasive margin.
It is possible visualise the tumour
cells infiltrating the surrounding liver
parenchyma (IM region)". Adapted
from [14].

In a recent report, rHGP was found to be more prevalent in the new-onset liver
lesions during systemic treatment and to have a worse prognosis, having poorer
progression-free survival (PFS) and overall survival [15].

2.5.4 Sinusoidal and Portal Patterns
The presence of growing cancer cells within the septa of the liver or within the

connective tissue space of the liver capsule or portal tract is responsible for defining
the portal type. In the sinusoidal pattern, the cells grow around peri-sinusoidal
spaces or sinusoids [14].

2.6 Treatment
Currently available treatments for CRC include endoscopic or surgical resection,

immunotherapy, preoperative downstaging radiotherapy, and systemic therapy. For
liver metastases, successful treatment requires a multidisciplinary team composed
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of oncologists, radiation oncologists, colorectal surgeons, hepatobiliary surgeons,
among others, as the choice of treatment depends on the presentation, amount, and
location of these metastases, as well as the possibility of surgical resection, which is
the best option as it offers a survival rate of 38% to 51% in 5 years [6, 35, 36].

The technique of liver resection is quite risky and must be performed by ex-
perienced surgical teams at high volume centers. In this treatment approach, it
is extremely important to determine the amount of parenchyma to be removed.
Preserving as much of the liver as possible is of utmost importance, as many pa-
tients undergo chemotherapy, which carries a potential for hepatotoxicity, and are
therefore at high risk of liver failure. Although considered the "gold standard" for
CRCLM, only 10%-15% of patients can undergo partial hepatectomy. This is due to
the presence of lesions with an unfavourable anatomic location, insufficient future
residual liver volume to resect all lesions, poor general health, and the presence of
significant extrahepatic disease [37, 38].

Although the overall survival rate in 5 years is 47-60% after hepatectomy for
CRCLM, recurrence occurs in approximately 40-75% of patients, and of these, 50%
have recurrent liver involvement [36]. Compared with liver resection, ablative ther-
apy is considered minimally invasive and relatively safe in all its approaches: either
percutaneous, which is the least invasive and usually does not require deep general
anesthesia; during laparoscopic surgery, which requires experienced surgeons and
general anesthesia; or during open surgery, usually combined with resection and
which is the most invasive. In the literature on ablative therapy, the morbidity rate
is reported to be between 4% and 9%, while the mortality rate is between 0% and
2%. However, the most common complications associated with this technique are
postoperative bleeding, infectious complications such as liver abscesses, liver failure,
and cardiopulmonary complications, among other [39].

2.6.1 The importance of HGPs in selecting treatments

As we can see in the previous section (2.6), the treatments for CRCLM are quite
aggressive, and therefore individualised treatment tailored to the patient would be
ideal. Histopathologic growth patterns have already been shown to be relevant
prognostic factors (see subsections 2.5.1, 2.5.2 and 2.5.3).

The properties of HGPs also offer great potential for the selection of personalised
treatments, taking their different immune phenotypes as an example. Tumours
with low T-cell infiltration have generally been shown to have greater resistance to
immune checkpoint inhibitors. The desmoplastic growth pattern, which shows dense
infiltration of lymphocytes as well as high expression of genes related to immunity, is
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considered a valuable biomarker for the use of immunomodulatory therapy [11, 15].

In cases where partial hepatectomy is not possible as treatment for CRCLM
and liver transplantation is being considered, patients have a satisfactory response
to systemic chemotherapy, the primary tumour must be removed with liver-only
disease, the latter being a common feature in patients with desmoplastic-type HGP.
Even in nanotherapeutics, HGPs may have an impact, considering the development
of a method with great potential of nanocarriers that allow the drug to remain at
the desired tumour site and mitigate the side effects of conventional agents. Patients
who have a dHGP pattern will have a barrier to the administration of these drugs,
again showing the importance of knowing HGPs before treatment selection [11].

Predicting HGP before treatment may also improve the risk profile for recur-
rence. The desmoplastic pattern is associated with improved recurrence free survival,
when compared to other types. Thus, patients with non-desmoplastic patterns may
benefit from thermal ablation techniques as they have an increased risk of aggressive
and early recurrence, sparing them to futile and potentially risky surgical procedures.
In patients with this pattern, more aggressive perioperative chemotherapy may also
lead to positive outcomes [11].

HGPs also play a prognostic role in liver metastases from non-colorectal cancers,
such as gastric cancer, breast cancer and uveal melanoma. In a study of patients
with uveal melanoma liver metastases, Barnhill et al. [40] showed that - similar
to colorectal cancer and breast cancer - patients with a replacement pattern had
a lower survival rate than patients with a desmoplastic pattern. In breast cancer,
anti-angiogenic therapy failed in clinical trials because the predominant pattern of
HGP was found to be of the replacement type, and as observed in the CRCLM
data, this type of lesion does not respond effectively to this therapy. Therefore, the
importance of prior prediction of histopathological patterns is reiterated [11, 15].

However, the HGPs have the disadvantage of being known only after surgical
resection of the liver metastasis. Since this tumour is very heterogeneous, liver
biopsy, which also carries a risk of complications, is not a viable option [15].

Jones et al.[41] have demonstrated that preoperative biopsies have a negative
impact on survival after liver resection and that it may not be justifiable in patients
with potentially resectable disease. In New Zealand, a study of 43 patients who
underwent preoperative biopsy of CRCLM found that seven of them had extrahep-
atic dissemination. The researchers associated this situation with a image-guided
biopsy or biopsy at the time of laparotomy for bowel resection [41, 42]. Therefore,
a non-invasive method for detecting HGPs is needed.
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2.7 Radiomics Approach

The explosion of "Big Data" ushered in the new era of artificial intelligence (AI)
algorithms - intelligence proven by machines - which is being widely applied in a
variety of fields, including medicine, especially radiology. However, AI is unlikely
to replace human experience in this field, as converting human experience into con-
sistent and adequate computer models is a major challenge, especially when human
knowledge is not complete. Nevertheless, there has recently been a great deal of
interest in an approach known as the "science of discovery", which focuses on the
exploration of large amounts of data to discover patterns that enable the formula-
tion of new hypotheses. Such approaches are purely data-driven. One of the most
popular is called radiomics or texture analysis [43].

Radiomics is a technique for extracting high-dimensional data from medical ra-
diographic images. Medical images contain a large amount of data (in the form of
grey level patterns) with information about disease-specific processes that cannot be
detected by the human eye and conventional visual inspection. It is very promising
and is widely used in the field of oncology thanks to initial support from the Quan-
titative Imaging Biomarker Alliance and National Cancer Institute. In 1973, some
researchers attempted to classify images based on texture features. Decades later,
in 1995, there were signs that it would be possible to train computer algorithms
to identify medical images when researchers used a convolutional neural network to
identify lung nodules. Then, in the late 2000s, researchers tried to determine the
relationship between tumour pictures and their genome types. However, these stud-
ies were conducted with a small dataset, meaning that the radiomic models created
at the time could not be validated by external organisations, as they were based
on small datasets from individual organisations. However, with the improvements
and innovations in the field of medical imaging, radiomics in oncology has rapidly
evolved and was first proposed by Philippe Lambin in 2012. This technique allows
the identification of quantitative imaging biomarkers (features) to determine, for
example, prognostic evaluation, response to therapy and survival in several tumours
[10, 44–48].

Radiomics goes beyond the visual interpretation of images, as it allows us to
detect variations in texture, shape, or intensity. Moreover, the goal of this technique
is to convert images into data with high throughput and accuracy. Radiomics can be
performed with different modalities of medical imaging, such as magnetic resonance
imaging (MRI), positron emission tomography (PET) and computed tomography
(CT) [46, 49]. In 2014, radiomics was used in the field of oncology to study features
from CT images for diagnostic and predictive purposes. In 2016, it was found for the
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first time that the radiomics technique applied to CT images would allow the pre-
diction of lymph node metastases in patients with CRC. Used in MRI, the radiomics
technique allows, for example, the detection of micro-structural changes in the liver
parenchyma. In a study with animals suffering from CRLM, micrometastases could
be detected with this technique even before histopathological evidence [8, 44, 50].

In summary, this method quantifies the image’s texture information by math-
ematically extracting the spatial distribution of signal intensities and the relation-
ships between pixels using AI analysis techniques. Examples of the steps that can be
followed in the radiomics process are: Image acquisition, segmentation, image pro-
cessing, feature extraction, feature selection and finally model building [46, 48, 49].
This workflow can be seen in Figure 2.7.

Figure 2.7: Example of a radiomics workflow for an oncological problem.

2.7.1 Radiomics framework

As mentioned earlier, radiomics technique can be used in various types of med-
ical imaging such as PET, CT and MRI. However, since this project is based on
images acquired using MRI, the description of the technique will focus on this imag-
ing modality.

2.7.1.1 Image acquisition

Soft tissues can be characterised thanks to the functional information and high
structural contrast provided by MRI technology. Tissue properties, such as acquisi-
tion parameters and relaxation times, form a complex interplay that produces the
signal intensities in this type of images [49, 51].

In MRI examination, both common 1.5T and 3T scanners are very suitable for
imaging the liver, although the examination may take some time. The exam consists
of pre-contrast and post-contrast sequences. T1-weighted (T1W) images, which
are part of the pre-contrast phase, refer to image series that have a low signal for
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water molecules, i.e. dark areas. Images of a normal liver should show a consistent
T1 signal, or isointense with the paraspinal muscles and slightly hyperintense in
relation to the spleen. On T1W images, evidence of abnormal signal from the liver
parenchyma is an indicator of pathology. Liver masses (whether malignant or not)
are often seen as a low-intensity signal on these images. T1 images can also be in
phase if the signals from fat and water add up, or out of phase if the signals from
these substances go in opposite directions and cancel each other out [28, 29].

Even in the pre-contrast phase, T2-weighted (T2W) images are very useful to
detect lesions because of the high contrast and low dynamic range. Liver cysts,
biliary hamartomas, abscesses, and hemangiomas are hyperintense. Hepatic solid
masses are typically hyperintense in these organs, but less intense than cysts [28, 29].
Infiltrating tumor cells and vasogenic edema are detected by the hyperintensity
of the T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) sequence [51].
Diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE) are
also part of the protocol for magnetic resonance imaging of the liver. Based on local
differences in the movement of water molecules, DWI allows the characterisation
of possible changes in the cellular structure of the tissue [28, 29, 49, 51]. It has
been hypothesised that this technique, namely by providing apparent water diffusion
coefficient (ADC) maps, may indicate cell death following therapy [51]. Solid masses
and tumors have low ADC values, while tumor necrosis due to treatments has high
ADC values [28].

In DCE imaging, the gadolinium contrast agent is administered intravenously,
and its passage through the vessels and tissues is observed over time. This allows
visualisation of the distinction between normal tissue and lesions as capillary perme-
ability and vascularization increase. Therefore, this technique allows the extraction
of volume fraction, permeability and vascular flow. The likelihood that lesions are
malignant can also be determined by the kinetic study of enhancement, which as-
sesses the time course of signal intensity within the lesion [29, 49, 51].

The phases of a dynamic image consist of [28, 29]:

(I) The pre-contrast phase, which helps detect hemorrhage.

(II) The late arterial phase (AP), which occurs 15-30 seconds after injection, which
is useful for detecting hypervascular lesions.

(III) The portal venous phase (PVP), which occurs between 45 and 75 seconds after
contrast injection; at this time, the portal veins are completely opacified and
the liver parenchyma enhances homogeneously from the hepatic arteries.

(IV) The delayed phase, which occurs 2 to 5 minutes after contrast injection and
is slowly excreted by the kidneys, causing the liver to begin to show reduced
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enhancement.

2.7.1.2 Segmentation of regions of interest

The segmentation of regions of interest is a crucial step in the radiomics ap-
proach. In this step, the region in which the features are to be computed must be
defined. In two dimensions, the region of interest (ROI) is delineated, and in three
dimensions, the volume of interest (VOI) is delineated. Image segmentation can be
performed manually, semi-automatically or fully automatically, with the first two
methods being the most widely used [46].

Manual segmentation must be performed by an experienced radiologist, or ra-
diation oncologist, and has the disadvantage of being time consuming and varying
depending on the number of datasets and images to be segmented. Semi-automatic
segmentation can be performed using standard image segmentation algorithms and
is usually performed with manual correction. Both segmentations involve significant
observer bias, and according to some studies, several radiomic features are not free
from inter- and intra-observer variations in the considered delineations [46, 51].

Fully automated segmentation can be performed using Deep Learning algo-
rithms. This is the best option for image segmentation as it avoids variability in
inter- and intra- observations. Currently, several algorithms have been trained for
segmenting different organs, and platforms such as 3D Slicer and MITK have several
integration options for these algorithms. However, the generalizability of the trained
algorithms is still quite limited and their application to a diverse dataset leads to
failure. Therefore, further studies are needed to improve these algorithms [46].

Intensities in images are arranged uniformly in intervals or spaces. These regular
positions are called pixels in 2D images and voxels in 3D images. Segmentation
promotes the creation of a ROI mask, assigning a value of 1 to each voxel belonging
to the ROI, while assigning a value of 0 outside the ROI [52].

2.7.1.3 Image processing

Image processing is the step aimed at improving the quality and homogeneity
of the image from which the radiomic features are extracted. Images acquired by
MRI, for example, have Gaussian and Rician noise. Moreover, the intensities are
not homogeneously distributed over the image, so corrections are needed [52, 53].

Most textural features require interpolation for isotropic voxel spacing to allow
comparisons between different samples, batches or cohorts, and image data. They
also need interpolation to become rotationally invariant. After applying the interpo-
lation algorithms, the ROIs or VOIs masks must also be interpolated. Since MRIs
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might not provide isotropic data, different interpolation approaches are required
[52, 53].

Pixels/voxels that fall outside a certain range of grey levels can be removed by
outlier filtering and resegmentation. In the case of MRI, it is necessary to use the
first method because this type of data has units of arbitrary intensity, which makes
a range resegmentation impossible. The most commonly used method is to calculate
the average (µ) and standard deviation (σ) of the grey levels that are inside the ROI
and exclude the grey levels that are outside the range given by: µ ± 3σ [46].

Finally, it is necessary to discretise the range of image intensities that lies within
the ROI/VOI. This step is important to reduce the noise. It also makes the textural
features tractable and improves the computational efficiency. Discretisation essen-
tially has the function of grouping the voxel intensities into uniformly distributed
intervals or bins, which is very similar to creating a histogram [46, 51, 52]. Discreti-
sation can be performed in two ways:

1. Fixing the bin size in units of voxel intensity [51].

2. Fixing the number of bins, e.g., 32 or 64. Some authors recommend fixing 64
bins to achieve a high degree of robustness and reproducibility [51].

2.7.1.4 Feature extraction

The final processing step is called feature extraction. In this step, the radiomic
features that describe the tumour’s texture patterns (e.g. heterogeneous or not), its
shape, its relationship with the surrounding tissue, its location, and the properties
of the tumour intensity histogram (e.g. high or low contrast) can be calculated
[46, 49].

According to some authors, features are classified as being of first-order, second-
order or higher-order. First-order features (or global statistics) are considered as
features of the histogram-based type. They represent the distribution of voxel inten-
sities that lie within ROIs, but without taking into account the spatial interactions
between them. Second-order (or textural) features represent the spatial distribu-
tion of intensity levels in the voxels. The grey level scale allows visualisation of
the spatial variation in the intensity (texture) levels. These features can be used
to determine intratumoral heterogeneity. Higher order features aim to emphasise a
particular feature by applying filters to the image to obtain patterns that may or
may not be repeated [51, 54].

Since there are several formulas for calculating these features [46], the guidelines
of the Image Biomarker Standardisation Initiative (IBSI), which allows to standard-
ise these calculations [52], were followed in this work. According to the IBSI, the
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classification of the features is divided into six categories:

1. Morphological - Features that describe the geometric aspects of the region
of interest (example: area, volume, etc.) and the shape properties (example:
elongation, sphericity, etc.) [52].

2. Local intensity - The intensity of local features can be calculated using the
voxel intensities that lie within a defined neighbourhood around a central voxel.
The local intensity peak and the global intensity peak belongs to this class of
features [52].

3. Intensity-based statistical - The distribution of intensities within the ROI can
be described by these types of features. These features include mean intensity,
intensity variance, intensity skewness, 10th intensity percentile, and so on.
These features do not need to be discretised [52].

4. Intensity histogram-based - The discretisation of the original intensity distri-
bution into intensity bins makes it possible to construct an intensity histogram.
Features such as mean discretised intensity, median discretised intensity, dis-
cretised intensity skewness, among others, belongs to this category [52].

5. Intensity volume histogram-based - The relation between the discretised in-
tensities i and the volume fraction containing the last intensity i can be de-
termined by this category of features, such as the features intensity at volume
fraction, volume fraction difference between intensity fractions, and so on [52].

6. Texture matrix-based - Although textural features were developed for evaluat-
ing surface texture in two-dimensional images, their analysis can be performed
on images for both 2D slices and 3D objects. Features in this category are di-
vided into:

• Grey level co-occurrence matrix (GLCM) - This matrix describes how
the combinations of grey levels (discretised intensities) of both adjacent
pixels and voxels, in the case of a 3D volume, are distributed around one
of the directions of the image [52].

• Grey level run length matrix (GLRLM) - The length of a sequence of
pixels/voxels having the same grey level around a m direction is defined
by this matrix [52].

• Grey level size zone matrix (GLSZM) - This matrix allows counting the
number of zones/groups of linked voxels. Voxels are linked only if the
adjacent voxel has the same discretised grey level [52].

• Neighbourhood grey tone difference matrix (NGTDM) - Alternative to
GLCM defined by Amadasun and King [55].
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• Neighbouring grey level dependence matrix (NGLDM) - Alternative to
the GLCM defined by Sun and Wee [56].

• Grey level dependence matrix (GLDM) -This matrix quantifies the de-
pendencies of the grey levels (number of connected voxels within a dis-
tance δ that are dependent on the central voxel) in an image [57].

2.7.1.5 Feature selection

It is possible to extract a large number of features from a single image, and de-
pending on the number of filters used in the process, this number may be unlimited.
However, such a large number of features in a model with a small number of cases
(for example) can lead to overfitting. Overfitting occurs when the model performs
very well on the training data but not on the new unseen data, so that generalisa-
tion is not possible. It is extremely important to reduce the overfitting to allow the
construction of a robust radiomic signature that is generalisable and, furthermore,
robust to detect variations between new patients that were not considered in the
training model. It should also be noted that not all features are useful, as many are
redundant or highly correlated with each other, or are not yet strongly associated
with the given classification task, so their removal is a crucial step at this stage,
which is called feature selection [46, 51, 53, 58].

Recursive feature elimination (RFE) and minimum redundancy maximum rele-
vance (mRMR) are some of the different feature selection algorithms and have been
used in this project (see Section 3). mRMR is an algorithm developed for select-
ing features from microarray data (which can be used to monitor gene expression
of thousands of genes) [59]. It simultaneously selects the features with the highest
correlation to a class, which is called relevance, and the features with the lowest
correlation to each other, which is called redundancy [60]. For the calculation of
relevance, the F-statistic can be used, which is the ratio between two variances (it
measures the dispersion of a data set around the mean), and for redundancy, the
correlation can be used [61].

RFE is a method that recursively selects features considering an ever decreasing
set of features. It uses an estimator that is trained on the initial set of features and
determines the importance of each feature. The less important features are then
removed from this set. Then this process is repeated, and the feature set is reduced
until reaching the minimum number of features that yield the best performance [62].
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2.7.1.6 Model building

After selecting the most relevant, stable, and non-redundant features in the
feature selection step (2.7.1.5), a model can be developed to solve the clinical problem
[53].

Ideally, two different image sets should be used to estimate the performance of
a machine learning , with the largest used for training and fine-tuning the model
and the smallest (ideally from another institution) used to validate the model and
allow for external validation, resulting in more realistic estimates of the model’s per-
formance and ensuring the development of radiomic signatures that can be applied
in the clinical setting [53].

Most published models are based on retrospective cohorts of patients from a
single institution. In this case, internal validation is used. In internal validation,
the study sample is divided into a training subset, which is used to develop the
training model, and a test subset, which is used to evaluate and validate the model.
In cases where the dataset is very small (approximately 50 to 100 patients), internal
validation carries a high risk of bias, as a single test set with only a few data instances
(20-30 patients) will lead to increased optimistic or pessimistic estimates regarding
model performance. The cross-validation approach - in more detail in the section 2
- may be one approach to address this issue, where a small cohort can be split into
multiple training and test sets [53].

In radiomics, there are two main learning schemes: supervised learning, where
the performance of the model is assessed relative to the ground truth (output data),
which is known, and unsupervised learning, where the model uses the input data to
be trained to uncover possible correlations or associations, without known output
objectives [53]. These concepts are explained in more detail in the next section 2.8.

2.8 Machine learning Approaches

Machine learning is a programmable computational approach that is capable
of learning from data (experience). Typically, a model is created that is intended
to predict a specific outcome based on a set of features. This outcome (output)
can be quantitative, such as the amount of leukocytes in the blood, or qualitative,
such as the presence or absence of a particular disease. In radiomics, identifying
the best-fitting machine learning models is crucial for stable and clinically relevant
radiomic biomarkers [45, 63, 64].
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2.8.1 Types of machine learning

It is possible to categorise machine learning systems as ’supervised’, ’unsuper-
vised’, ’semi-supervised ’ and ’reinforcement’ depending on the type of supervision
they receive during the data training (training phase) [65].

2.8.1.1 Supervised learning

In supervised learning, the algorithm is fed labelled training data, i.e. in addi-
tion to the input values of the individual variables (features), the desired solutions
(labels) are also inserted. In this way, the algorithm attempts to model the rela-
tionships between the variables and the labels [65].

In the supervised learning category, "Regression" and "Classification" tasks are
typical of this type of system.

1. Regression - In the Regression task, the aim is to predict a continuous target
value, e.g. the amount of glucose in the body [65].

2. Classification - The classification task is about learning how to classify new
input data into a certain class label. While regression predicts a continuous
quantity, classification predicts a nominal output value. To assess how good
a classification algorithm is, one can use metrics extracted from the so-called
confusion matrix [65].

This matrix is a two-dimensional matrix that summarises the performance
of the classifier with respect to a given test dataset [66]. The table 2.1 is a
typical representation of a confusion matrix. The rows represent the actual
(true) class of an object, while the columns represent the prediction made by
the model. In this case there are two classes, the positive represented by the
number 1 and the negative represented by the number 0. In a model to be
developed, the aim is to obtain of the best possible class assignment to each
in the data, depending on the threshold value reached (see Figure 2.8).

Table 2.1: Confusion matrix example.

Confusion matrix
Predicted 1 Predicted 0

Actual 1 TP FN
Actual 0 FP TN

An example of a confusion matrix for a three-case multiclass problem is given
in table 2.2:
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Table 2.2: Example of a confusion matrix for a three-case multiclass problem. On
this matrix, the rate of true positives for class 2 is calculated.

Confusion matrix
Predicted 2 Predicted 1 Predicted 0

Actual 2 TP FN FN
Actual 1 FP TN FN
Actual 0 FP FN TN

The confusion matrix parameters are [67]:

• True positives (TPs) - True positives occur when the model correctly
predicts the positive class, i.e. whether a person has a disease or not, the
model says that the disease test is positive, and in reality, the patient has
the disease.

• True negatives (TNs) - True negatives is when the model correctly pre-
dicts the negative class, i.e. in the same case of the portability of a
disease, the model says that the person does not have it, and in fact the
person does not have it.

• False positives (FPs) - In this case, the model incorrectly predicts the
positive class. The model says that the person has the disease when in
fact the person does not have it.

• False negatives (FNs) - False negatives occur when the model incorrectly
predicts the negative class, i.e. when the model classifies a person as not
having the disease, when indeed the person has it.

A lot of information can be gained with the confusion matrix. One of the
most important metrics is recall, also known as true-positive rate (TPR) or
sensitivity, and is given by the formula:

TPR = TP

TP + FN
(2.1)

This formula gives us the rate of positive cases correctly detected by the clas-
sifier [65].

Another important metric is Specificity (TNR), which measures the proportion
of people who do not have the disease and have received a negative result. It
is given by equation [66]:

TNR = TN

TN + FP
(2.2)
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There are other metrics, such as the false positive rate (FPR), i.e. the prob-
ability that the classifier gives a positive answer when in fact it is negative,
given by the formula:

FPR = FP

TN + FP
(2.3)

It can also be calculated as FPR = 1-Specificity. Picture 2.8 represents the
output probability produced by a model that classifies an event into a certain
class if the probability is greater than a threshold value. If we shift the thresh-
old to the left, we get more negative values, so we have a lower sensitivity and
a higher specificity. If we do the opposite, i.e. if we lower the threshold, we get
more values that are classified as positive, so that the sensitivity increases and
the specificity decreases. If we increase the sensitivity (TPR), since the FPR
is 1-specificity, the number of false positives also increases. There is a tradeoff
between these quantities and a good compromise between them is required.

Sensitivity vs Specificity

Threshold

TPTN

FN FP

100% Sensitivity 100% Specificity

Figure 2.8: Scheme of the decision threshold. If the threshold is shifted to the left,
the sensitivity is higher and also the number of false positives. If the threshold is
shifted to the right, the specificity is higher and the number of false negatives results
also increases.

The false negative rate (FNR), on the other hand, indicates the probability of
the classifier giving a negative answer when in fact it is positive. It is described
by the following equation:

FNR = FN

FN + TP
(2.4)

The proportion of correctly obtained classifications (true positives and true
negatives) can be determined with the expression:

Accuracy = TP + TN

TP + TN + FP + FN
(2.5)
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It is also possible to calculate the precision, which is defined as the ratio
between the positive real cases and the total number of positive cases predicted
by the model [66]. The formula is as follows:

Precision = TP

FP + TP
(2.6)

In general, precision is used in conjunction with the TPR metric because it is
possible for the classifier to achieve trivially perfect precision by ignoring all
instances except one (precision=1/1=100% ) [65].

The ratio between the actual negative instances and the total number of in-
stances predicted by the model is called the Negative Predictive Value (NPV)
and can be calculated as follows:

NPV = TN

TN + FN
(2.7)

The harmonic mean between precision and recall is called the F1-score and is
calculated with the following formula:

F1 − score = 2 × Precision×Recall

Precision+Recall
(2.8)

The receiver operating characteristic curve, or ROC curve, is a plot of the true
positive rate versus the false negative rate for different thresholds. The figure
2.9 shows a diagonal line representing the ROC curve of a random classifier.
For a classifier to be considered good, it must be as far as possible from this
line, i.e. it must be in the upper left corner. One way to check the performance
of the classifier, i.e. its ability to distinguish between classes, is to measure the
area under the curve (AUC). The higher the AUC, the better the model is at
predicting values that belong to the negative class (predicting zeros as zeros)
and predicting values that belong to the positive class (predicting ones as
ones). Models whose AUC corresponds to the value 1 are the perfect models.
Models that have an AUC value of 0.5, on the other hand, are completely
random models [66, 68].

An example of a ROC curve in a three-class classifier is shown in picture 2.10.
In the picture, class 1 is classified better than class 0, which in turn is better
than class 2.
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Figure 2.9: Example of a ROC curve. In the figure, the dashed line represents a
random model, while the blue line represents a better classifier as it is closer to 1.
The ROC curve is the representation of the results obtained by performing a scan
on the thresholds values.
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Figure 2.10: Example of a ROC curve for multiclass problem.

An important factor in a predictor is that it must be able to perform well
not only for existing data but also for new data, i.e. we want to generalise
its performance. Therefore, it is common to divide the database into two
sets. One is used for training to calculate the loss function (which is nothing
more than the representation of the error between the obtained and expected
values), minimise it and optimise the parameters. The other set is used in the
testing step to evaluate the performance of the model with new data [65, 69].

However, typically the amount of data may be limited, particularly in clinical
settings. Therefore, when using a large amount of data available to train the
model, the validation set will be too small, resulting in a very noisy estimate
of forecast performance (with high variance). The cross-validation approach
may be one approach to address this issue, where a small dataset can be
split into multiple training and test sets. Cross-validation is a procedure in
which the data is divided into K partitions. The model is trained with k-
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1 of these partitions and the last partition is used to test the model. We
can do the same process for all k possible combinations. A scheme of cross-
validation can be seen in the figure 2.11. Then it is possible to calculate the
average performance of our model for all repetitions. This procedure makes it
possible to use the maximum available data to train the model and estimate
the generalised accuracy [69].

Figure 2.11: Example of a five fold cross-validation. The data is divided into five
folds, four for training (blue) and one for validation (green).

2.8.1.2 Unsupervised, Semisupervised and Reinforcement learning

In unsupervised learning, the system attempts to learn without a label. The
training data is unlabelled and the algorithm tries to identify groups in the database.
The algorithms "clustering", "visualisation and dimensionality reduction" and "as-
sociation rule learning" are part of unsupervised learning [65].

The semi-supervised learning algorithm works with a large part of the training
data without labelling and a very small part with labelling [65].

The reinforcement learning algorithm is based on a reward and punishment
system. The "agent" can observe the environment it is in and select/execute actions
to perform in that environment, being punished or rewarded depending on the action
selected [65].

2.8.2 Machine learning classifiers

2.8.2.1 Support vector machine

A very powerful classification algorithm capable of detecting extremely subtle
patterns in complex databases with high accuracy and widely used in bioinformatics
projects is the Support Vector Machine (SVM). Its purpose is to generate a decision
boundary (hyperplane) between two classes that allows prediction of the labels of
one or more feature vectors. On the figure 2.12, two dotted lines represent the
classes’ margins and a solid line represents a hyperplane that not only separates the
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two classes but is also as far away as possible from the closest training instances
of each class. If we compare this illustration to a road, the hyperplane will not
be affected if we add more training instances outside the road, as the instances at
the corners of the road will support it. These instances are called support vectors
[65, 70, 71].

Figure 2.12: Example of a support vector machine classifier.

Originally, Vladmir Vapnik proposed the SVM algorithm in 1963 to create a
linear classifier [71]. The linear SVM classification model allows, given a new case
x, to predict to which class this case belongs using the decision function given by
ŷ= wT .x+b = w1.x1 + ...+wn.xn + b, where w is the feature weights vector, x is the
input feature vector and b is the bias. If the result obtained gives a positive value,
it means that class ŷ is a positive class (1), if it is negative, it means that the class
is negative (-1), as can be seen from the following equation [65, 71].

ŷ =

−1 if wT .x+b < -1,
1 if wT .x+b ≥ 1

Finding a value for w and b that allows the margin to be as wide as possible to
avoid (hard margin) or restrict (soft margin) margin violations means training the
linear SVM classifier [65].

2.8.2.2 Naive Bayes

The Naive Bayes classifier is a supervised learning algorithm based on the gen-
eral assumption that all features are independent of each other given the value of
the class variable. This algorithm is quite simple to create, with seemingly simplify-
ing assumptions. Nevertheless, this classifier works very well in complex real-world
applications such as medical diagnosis [72, 73].

This algorithm requires a small amount of training data to estimate the neces-
sary parameters and can be extremely fast compared to other, more sophisticated
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methods. It is based on Bayes’ theorem and helps to determine the conditional prob-
ability of the occurrence of two events based on the probability of the occurrence of
each event [62, 74].

Two very popular algorithms of this classifier are the Naive Bayes Bernouilli
(NBB), where there can be multiple features but each one is considered a binary
variable, and the Naive Bayes Gaussian (NBG), which is based on the assumption
of a normal distribution of probabilities [62, 74].

2.8.2.3 Decision Trees

Decision trees are a model that integrates a set of basic tests in a coherent and
efficient manner. This model allows the comparison of a numerical characteristic
with a threshold value for each test. In this model, decision making is hierarchical
and follows a path based on the measurement of parameters and subsequent tests.
Each tree consists of branches and nodes. In a category to be classified, the features
in each node are represented, while the value that the node should take is defined by
each subset. This type of algorithm can be used to solve both classification problems
and regression problems [75, 76].

Figure 2.13: Example of a decision tree in the hypothetical classification of a polyp.

An example of how decision trees work can be the following: in a case where a
polyp is potentially malignant, we start the model at the root node or at depth 0.
At this point, for example, we ask whether or not the polyp has a size greater than
15 mm. If the answer is yes, the next node is called the child node or depth 1, which
corresponds to the left side of the image 2.13. If there are no other child node, then
we have a leaf node where no further questions are asked. So just look at the class
predicted by the model in this node, which in this example is malignant. Now if
the polyp is not larger than 15 mm, then the right child node is created where it
is asked whether this polyp is larger than 10 mm or not. If yes, then the polyp is
probably malignant (depth 2, left), if no, then it is probably benign (depth 2, right).
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At the end, the output of the decision tree is given by an intuitive set of rules that
follow a certain path along the decision tree.

2.8.2.4 Random forest

The Random Forest Classifier (RFC) was first proposed by Leo Breiman of the
University of California in 2009 and is an algorithm that has been successfully used
to identify diseases in disease diagnosis. It consists of several decision trees (basic
classifier) that are completely independent of each other [77, 78].

Figure 2.14: Illustration of a Random forest classifier.

An example of this classifier can be found in Figure 2.14. In this figure, when
the test data is inserted into the classifier, its label is determined based on the voting
of the results of each classifier (each decision tree).

2.8.2.5 Logistic regression

The logistic regression classifier (LR) is a statistical model in which a logistic-
like function is fitted to the dataset, modeling the probability of occurrence of a
class. These models are widely used in statistics and have proven useful in many
real-world problems [79].

This model calculates a weighted sum of the input and output characteristics of
logistics for this outcome. This logistic (or logit) is a sigmoid function that outputs
a number between 0 and 1. The equation 2.9 gives the Logistic Regression model
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estimated probability [65].

p̂ = hθ(X) = σ(θT .X) (2.9)

From the equation 2.9, θ is the parameter vector. The logit is the σ and is
calculated as:

σ(t) = 1
1 + exp(−t) (2.10)

Once the model estimates the probability that an instance (X) belongs to a
positive class, a prediction ŷ is easy to make [65].

ŷ =

0 if p̂ < 0.5,
1 if p̂ ≥ 0.5

2.8.2.6 Multi-layer perceptron

The multilayer perceptron (MLP) is a type of neural network algorithm con-
sisting of three types of layers: the input layer, the output layer and the hidden
layer. The input layer enables the reception of the signals to be processed, while the
output layer is responsible for the necessary tasks such as prediction and classifica-
tion. Between the input and output layers are the hidden layers, which can be any
number and are responsible for the actual computational engine of this algorithm.
In MLP, the data is received in the input layer and the desired task (e.g. a classifi-
cation task) is executed in the output layer [80]. An example of this algorithm can
be seen in 2.15.

Figure 2.15: Illustration of a multilayer perceptron classifier with a single hidden
layer.
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2.9 Radiomics Applications - CRCLM

In a study of 194 patients with rectal cancer, Shu et al. [81] used radiomics
to predict the risk of synchronous liver metastases (SLM) in these patients. They
succeeded in extracting about 328 radiomic features from T2W images acquired
with 3T MR. To reduce the feature set and create the radiomic signature, they
turned to LASSO. They then used principal component analysis (PCA) to select the
remaining features. The predictive model was then built using linear regression and
decision curve analysis to test the advantages of LASSO and PCA. They also used
two independent cohorts, one for training and one for validation, and found that the
model using LASSO had the greatest benefit, with an AUC of 0.857 and a confidence
interval of [0.787-0.912] in the training set and an AUC of 0.834 [0.714 -0.918] in the
validation set. They created a nomogram using the multivariate logistic regression
model, which was combined with clinical risk factors and the features obtained using
LASSO. With this nomogram, they obtained very positive results, with a predictive
performance in the training set of 0.921 [0.862-0.961] and in the validation set of
0.912 [0.809-0.97]. Finally, they concluded that the use of the radiomic technique in
primary rectal cancer has great potential to become a non-invasive clinical tool for
predicting the risks associated with SLM.

In a study with mice, Becker et al.[82] investigated whether they could correlate
texture features with the growth of an intrahepatic tumour before metastases became
visible to the naked eye. To perform this textural analysis procedure, they applied
the Radiomics technique to MRI-extracted images of the livers of eight male C57BL6
rats (8-10 weeks) injected with syngeneic MC -38 colon cancer cells and two rats
injected with phosphate-buffered saline as a control group. They used MATLAB
routine for the textural analysis, which allowed them to extract four first-order
features and twenty-eight higher-order features. The R software was used for the
statistical analysis. Since it was a very small sample, it was not possible to use
machine learning algorithms to test the usefulness of a large number of features.
In this study, they found that three features, Energy, SRE (GLRLM) and GLN
(GLSZM), were independent and had a linear correlation before metastases became
visible, and they also checked several other co-dependent features. Surprisingly, the
features obtained from the gray-level GLCM, GLRLM and GLSZM matrices were
found to be influenced by the growth of metastases, which could be an indicator of
tumour neovascularisation or destruction of the hepatic acini (smallest functional
unit of the liver). Although these authors conclude that MRI textural analyses have
the potential to detect liver metastases so early that they are not yet visible to the
naked eye, further studies are needed and should be performed in human patients if
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possible.

2.9.1 Radiomics to predict HGPs

2.9.1.1 CT images

Cheng et al [33] used the radiomics approach to predict HGPs in CRLMs
from images of patients with chemotherapy naive CRLM, undergoing to an ab-
dominal contrast-enhanced multidetector CT (MDCT). A total of 126 CRLMs with
histopathological confirmation were evaluated. Image segmentation was performed
in the pre- and post-contrast phases (AP and PVP) and resulted in a total of 540
radiomic features extracted from the tumour-liver interface (TLI). The lesions were
divided into training and validation for model construction and external validation.
Minimum redundancy and maximum relevance were used to select the HGP-related
features. To distinguish between desmoplastic and replacement, they used decision
trees as classifiers. Finally, to assess whether qualitative imaging and clinical factors
have a potential power to predict HPs, they combined selected clinical factors with
the three radiomic signatures obtained in the previous step. In addition, the authors
constructed a nomogram based on the extent to which the radiomic signature as well
as clinical factors contribute to the differentiation of HGPs. As a result, they found
that fusion of the three fused radiomics signature phases resulted in better predic-
tive performance, with an AUC of 0.926 for the training cohort and 0.939 for the
external validation cohorts. Finally, they concluded that a radiomic model applied
to MDCT images has the potential to predict the HGPs of CRLMs non-invasively.

2.9.1.2 MR images

Han et al. [13] performed a study with a sample of 182 resected and histopatho-
logically proven patients from two institutions, with exclusion criteria being inade-
quate quality of images fromMR for analysis, patients who had received preoperative
systemic and/or regional treatments, and inadequacy of haematoxylin and eosin-
stained sections of the tumour-liver interfaces of the resected CRLM specimen. To
obtain images of the lesions, they used magnetic resonance imaging. Subsequently,
the ROIS were manually delineated using the ITK-SNAP software, in 5 image se-
quences, T1W, T2W, AP, PVP and ADC. Finally, about 74 textural features and
18 first-order features were identified. For feature selection, the intra/interclass cor-
relation coefficient was used to select the most stable features and the robust feature
selection (RFS) [83] method was used to select the radiomic features. To build the
model, they used the decision tree to evaluate the ability of each sequence to pre-
dict the HGPs. They obtained five signatures after applying this algorithm to the
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five sequences for the tumour region and for the tumour-liver interface. Then they
used the forward stepwise regression method to select the desired sequence from the
five signatures and finally generated the final signature. They also performed cross-
validation at both institutions to avoid the effect of a training/validation cohort
split.

The final result of this study showed that the TLI radiomics model performed
better than the tumour zone radiomics, with an AUC of 0.912 versus 0.879 for
internal validation. The combination of models proved to discriminate well, with an
AUC of the training cohort nomogram of 0.971, the internal validation of 0.909 and
the external validation cohort of 0.905, so at the end of the study they concluded
that MRI-based radiomics is a possible method with great potential for predicting
the predominant HGPs in CRCLM.
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Methods

This chapter presents the methods used to carry out this work. It is divided
into six sections describing every step from the acquisition and compilation of the
dataset to the final model for the classification task.

3.1 Patient population

The dataset is composed by MR images of the liver of patients who underwent
hepatectomy for CRCLM in the surgical department of the Coimbra University
Hospital Center between 2013 and 2020. The exclusion criteria for patient selec-
tion were: rehepatectomy; incomplete clinical records; suboptimal imaging files;
non-assessable pathological material; and no preoperative hepatospecific contrast-
enhanced liver MR was performed more than 40 days before surgery. A total of 37
patients were included.

The patient records contain information such as age, sex, interval between MRI
and surgery, date of surgery, MRI equipment, clinical presentation (whether the
lesion is metachronous or synchronous), location of the lesions and size of the lesions.
This information corresponds to the categorical features. Each individual lesion was
considered as one instance of the dataset in this project, and the lesions should have
a size equal or greater than 10 mm to be included. Each patient may or not present
more than one lesion. Therefore, a total of 82 lesions were evaluated.

The present study was authorised by the Institutional Review Board of the
Coimbra University Hospital Center (number CHUC-127-19).

3.2 Pathological characterisation

The Hematoxylin and Eosin (H&E) Staining was used to carry out the patho-
logical characterisation of each lesion. The H&E technique is the modern basis for
cancer diagnosis. This technique is routinely used to identify different tissue types
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and morphological changes. The contrast between acidophilic eosin and basophilic
haematoxylin makes it possible to observe the different parts of the cells and their
types. Haematoxylin has a dark blue colour. It can bind to structures that have an
acidic character, such as the nucleus and the rough endoplasmic reticulum, giving
them a blue-violet hue. Eosin, on the other hand, has a pink colour and stains pro-
teins. So, in a typical healthy tissue, we see the nucleus in blue and the cytoplasm
(as well as the extracellular matrix) in different shades of pink [84, 85].

Histopathological growth patterns can be quickly identified by the pathologist
and therefore do not require time-consuming or expensive investigations, which is
an advantage for low-resource settings. To correctly analyse and classify CRCLM
HGPs, a detailed macroscopic examination of a specimen deemed appropriate is
required with at least one specimen per tumour centimetre [8].

The pathologist can recognise the desmoplastic pattern by a fibrous arc, amor-
phous nuclei and the angiogenic character. In metastases with the replacement
pattern, the infiltrative character is observed, while in pushing, there is a compres-
sion of the hepatocytes by the tumour cells. An example of a hepatologist’s vision
for the desmoplastic pattern can be seen in Figure 2.2, for the pushing pattern in
Figure 2.4 and for the replacement in Figure 2.6.

In mixed patterns, the pathologist observes more than one of these patterns,
each corresponding to up to 25% of the tumour surface area of the liver parenchyma
[7]. For a pattern to be correctly classified, it must be present on approximately
50-75% of the peace.

In this project, all lesions were assessed by an experienced pathologist using
the H&E technique. After evaluation, a total of 41 lesions were identified as desmo-
plastic, 24 as replacement, 10 as pushing, 6 as pushing and replacement (mixed
patterns) and 1 as pushing and desmoplastic (mixed patterns), thus forming the
"ground truth" for our machine learning approach.

3.3 Image acquisition

Magnetic resonance images of the liver of the patients were acquired using 1.5T
and 3T machines (see sections 2.3 and 2.7.1.1). In this project, images from both
devices were used to avoid reducing the sample size. The images assessed were
extracted the T1W Dual Echo Sequence (with in-phase and out-phase), T2W FS
(fat-suppressed to suppress the signal from the adipose tissue) and T1 FS Portal
phases (contrast study), with the Portal phase being the best phase to observe the
metastases at the radiological level.
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The parameters used for the image acquisition are listed in Tables 3.1 and
3.2. The image files of each patient were retrieved from the image archiving and
communication system (PACS) of the hospital. The corresponding slices from each
patient were stored in Digital Imaging and Communications in Medicine (DICOM)
format, the international standard for medical imaging.

Table 3.1: Parameters used for image extraction with a 1.5T machine.

Phase Parameter Value
Portal Slice 3 mm

TR 4.88 ms
TE 2.31 ms

T1W Slice 8 mm
TR 101 ms
TE 2.27 ms

T2W Slice 5 mm
TR 900 ms
TE 77 ms

Table 3.2: Parameters used for image extraction with a 3T machine.

Phase Parameter Value
Portal Slice 2.5 mm

TR 4 ms
TE 1.31 ms

T1W Slice 2.5 mm
TR 4 ms
TE 1.31 ms

T2W Slice 4 mm
TR 2000 ms
TE 92 ms

3.4 ROI Selection
The ROIs were delineated, for each lesion, by an experienced radiologist and

manually drawn using the free open-source software package 3D Slicer. In this
project, the ROIs were drawn on the raw image.

A 4 mm painting tool was used to delineate the ROIs, which were drawn to
include the liver-lesion interface, up to 2 mm to the inside of the lesion and 2 mm to

39



3. Methods

the outside, to identify features between the tumour and the interface of the liver.
Figure 3.1 is an example of a ROI, drawn in one liver metastasis from CRC.

(a) Example of a MR image. (b) Example of a ROI in a MR
image.

Figure 3.1: The first image is a picture of the liver with a metastasis, taken in
the Portal phase. The second image shows the ROI, which is located above this
metastasis.

Some lesions had vessels in their vicinity, these vessels were excluded during
delineation. For each of the 82 lesions, one ROI was extracted in each image ac-
quisition phase (T1W, T2W, and Portal), resulting in 246 ROIS, and each one was
saved as an image file in nrrd format.

3.5 Image processing and feature extraction

For image processing as well as feature extraction, the pyRadiomics package
was used [57]. The pyRadiomics is an open-source Python package that follows the
IBSI [52] for radiomics feature extraction from medical imaging.

First, the images of each phase were introduced together with the ROI masks,
then the image processing was performed, consisting of normalisation, interpolation,
discretisation and selection of the image type (original and filtered with LoG and
wavelet filters), and finally the features were extracted in different files for each
phase. These process follows the workflow shown in the figure 3.2 and was carried
out using the Python programming language version 3.7.

3.5.1 Image processing

Normalisation was applied to the images of MR because the intensity of the
image is usually relative, and it is not possible to compare two images directly [86].
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Figure 3.2: Workflow of image processing and feature extraction with the open
source Python package pyRadiomics. In this package, the original images and their
respective ROI masks are used as input values. Then the processing procedures and
finally the feature extraction are applied. The values obtained are then stored in
files corresponding to the individual phases.

The calculation used for normalisation is described by pyRadiomics as follows:

fx = s(x− µx)
σx

(3.1)

Where x is the original intensity and fx is the normalised image. The average
of the image intensity values is given by µx and σx is the standard deviation. The
s value is a scaling factor and has the value 1 in this calculation.

3.5.1.1 Interpolation

As described in 2.7.1.3, interpolation is a relevant process in image processing.
It is important for reproducibility to have consistent spacing of isotropic voxels across
different devices and measurements [52]. Therefore, the images were interpolated
with a resample pixel spacing of 2mm×2mm×2mm, using the B-spline interpolator.

3.5.1.2 Discretisation

According to Tixier et al [87], to calculate the texture features it is necessary
to discretise the voxel values in an interval chosen as a power of 2, and therefore
the total number of bins should be approximately between 8 and 128 [86, 87]. For
this dataset, the majority of gray values in ROIs are in the range between 34 and
300, thus the chosen binWidth value is equal to 3, to include values within the bin
range when dividing the smallest range by the chosen binWidth and the same for
the largest range.
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3.5.1.3 Image type

The wavelet transform and the Laplacian of Gaussian (LoG) filter were applied
to the information of the input image (signals). The wavelet transform applies a
high-pass filter (H), which allows the passage of signals with high frequencies, and
a low-pass filter filter (L), which allows the passage of signals with low frequencies,
in the three dimensions of the image, and decomposes it into eight parts. An image
labelled as Wavelet-LLL means that the L filter has been applied in the x-direction
as well as in the, y- and z- directions. The possibilities of the eight parts are
given by the combination of filters in each of the three dimensions: Wavelet-LLL,
Wavelet-LLH, Wavelet-LHL, Wavelet-LHH, Wavelet-HLL, Wavelet-HLH, Wavelet-
HHL and Wavelet-HHH [13, 57]. An example of a wavelet transformation is shown
in the picture 3.3.

Figure 3.3: Example of a wavelet transformation applied to a three-dimensional
image (input). In the output you can see the eight parts of the decomposition.

The LoG filter combines the Gaussian distribution (smooths the image accord-
ing to the σ value of the filter) with the Laplacian (a differential operator to detect
intensity changes in the smoothed image) [88]. In this project, the values of σ equal
to 2.0, 3.0, 4.0 and 5.0 were used.

3.5.2 Feature extraction

A total of 1222 features, summarised in Table 3.3, were extracted from each of
the ROIs, in each image type.

For the categorical features, only features Size, Lesion type and Lesion size were
considered in this study, as these are the only clinically relevant features. The feature
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Table 3.3: Radiomic features: First order; Grey level co-occurrence matrix (GLCM);
Grey level dependence matrix (GLDM); Grey level run length matrix (GLRLM);
Grey level size zone matrix (GLSZM); Neighbourhood grey tone difference matrix
(NGTDM), Wavelet and Laplacian of Gaussian were extracted from each ROI using
the pyRadiomics package.

Radiomic Features Total

First order 19
GLCM 24
GLDM 14
GLRLM 16
GLSZM 16
NGTDM 5
Wavelet 752
LoG 376
Total 1222

Size corresponds to the size of the lesion at the histological level, while the feature
Lesion size corresponds to the size of the lesion seen on MR images. Therefore, only
this information can be compared. A total of 1224 features were considered. The
Lesion type corresponds to the ground truth.

3.6 Feature selection and model building
After the extraction of the features, the selection of the features and the cre-

ation of the classification model was done considering two classification types: Mul-
ticlass and Binary classification. For these purposes, the Python language library
scikit-learn [62], which is geared towards the practical application of machine
learning, and the open-source tool pandas [89, 90] for data analysis and manipula-
tion, were used.

All the processes described in this chapter were applied to each image acquisi-
tion phases (Portal, T1W and T2W). A general overview of the workflow used to
create the final model can be seen in Figure 3.4. First, the data were divided into a
training set and a test set, then the features were standardised, and then the number
of features was reduced (feature selection). The model was then trained and evalu-
ated. In the end, the prediction probabilities were extracted for each phase of the
image acquisition (more on this in section 3.6.2). Finally, the probabilities were used
as input data for a final decision model. In the final model, feature (probabilities)
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selection and performance evaluation were performed.

Figure 3.4: Scheme of the workflow adopted. For each of the phases (Portal, T1W
and T2W), the data were split, the features were standardised, the features were
selected, the model was trained with the training data, the model was evaluated for
training and testing data, and finally the probabilities were extracted. The extracted
probabilities were then used as input data for the final model combining the three
phases. For this model, feature selection and model evaluation were performed
again.

Multiclass classification did not include patients with mixed patterns, leaving
only desmoplastic (D), pushing (P) and replacement (R) patterns. The data were
then split into 90% for training and 10% for testing, randomly, as the number of
pushing and replacement cases is quite small.

Clinically, identifying the desmoplastic pattern from an image would already
help physicians to choose a more appropriate treatment because, as mentioned in
sections 2.5.1 and 2.6.1, this pattern responds better to several less aggressive ther-
apies than the other patterns. For this reason, in the binary classifier, lesions were
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divided in two categories, desmoplastic and non-desmoplastic, and there was no
exclusion of lesions. The split of the dataset for the binary classifier was 80% for
training and 20% for testing, randomly.

When dividing the data set into a training set and a test set, the number
of examples of each class in each set were kept proportional. After splitting the
dataset, the non-categorical features were standardised to be centred on zero. The
calculation performed for standardisation is described in equation 3.2, where x is
the standard score of a sample, u is the average of the training samples and s is the
standard deviation of the training samples.

z = (x− u)
s

(3.2)

To avoid data leakage between sets, centralisation and dimensioning is done
for each feature by calculating the relevant statistics of on the training set only, as
the test set is considered future information and if it would be introduced could
influence the prediction accuracy and lead to overestimated results. Therefore, after
normalising the training group, the mean and variance were stored and used to
normalise the test group as well. Figures 3.5 and 3.6 show an example of a feature
before and after standardisation respectively.

Figure 3.5: Example of a non-
standardised first-order feature that
represents the average gray level in-
tensity within the ROI.

Figure 3.6: Example of a first-order
feature representing the average gray
level intensity within the ROI after
standardisation.

3.6.1 Feature selection

Although the number of features is quite high, many of them may contain
redundant or unimportant information, which may affect the performance of the
model. Therefore, two different approaches to reduce the features’ space were tested.
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3.6.1.1 First method

In this first approach (shown schematically in Figure 3.7), which was only ap-
plied in the multiclass case approach, features with the module of the Pearson cor-
relation above a threshold of 0.8 were first removed. The Pearson method assigns
values in a range between -1 and 1, where -1 means a completely negative corre-
lation, 0 means no correlation and 1 means a completely positive correlation. For
example, a positive correlation between two variables means that when one vari-
able increases, the other also increases, while with a negative correlation when one
variable increases, the other decreases [91].

Then, agglomerative hierarchical clustering was applied to agglomerate similar
features in the same cluster (a new feature is made of an agglomeration of features)
to further reduce their dimension. The parameters affinity and linkage were set.
Affinity is the method used to calculate the linkage. In this case, the Euclidean
metric, which indicates the shortest distance between two points, was used.

The linkage is a criterion that determines the distance between features, and
features are grouped to minimise this criterion [62]. In this case, the average of the
distances of each observation of two groups was used. A total of 50 clusters were
formed for each phase.

The categorical features Size and Lesion Size had their importance evaluated by
applying the tree-based estimator and ranking their importance relative to the non-
categorical features. They seemed to have some importance for the three phases, so
both were introduced. Finally, the recursive feature elimination (RFE) algorithm
with cross-validation was applied.

The RFE is a wrapper-type method that allows you to select a set of features
that are most appropriate for a given method. The RFE algorithm recursively
considers smaller and smaller groups of features. The importance of each feature is
calculated and the less important features are removed from the group [62, 92]. To
find the optimal number of features, a cross-validation loop (RFECV) was used.

Figure 3.7: Workflow of feature selection according to the first feature selection
method.
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3.6.1.2 Second method

Considering the possibility that the features with high correlation contain infor-
mation relevant to the model but were likely to be discarded in the selection method
described above, a different approach to feature selection was tested.

This second method was implemented to improve the predictability of the mul-
ticlass model, and only this method was used in the binary classification.

First, mRMR (described in 2.7.1.5) was applied, which selects the features with
high correlation with the output (class) and low correlation between themselves.
Then, the RFE was applied to select the optimal number of features. However,
as it can exclude the categorical features and thus prevents the evaluation of their
impact on the predictive power of the model, the model was evaluated without the
categorical features (see Figure 3.8 ) and with their introduction after the RFE was
applied (see Figure 3.9).

Figure 3.8: Workflow of feature selection according to the sec-
ond method of feature selection without categorical features.

Figure 3.9: Workflow of feature selection according to the second
method of feature selection with categorical features.

3.6.2 Classification

3.6.2.1 Individual models

After feature selection, the training group was evaluated using stratified 8-fold
cross-validation for the multiclass classifier and 7-fold cross-validation for the binary
classifier, preserving the percentage of samples for each class. The models trained
and evaluated were: Logistic Regression, Random Forest, Multi-layer Perceptron,
Naive Bayes Bernoulli, Naive Bayes Gaussian and Support Vector Machine. For
each model, a grid search was applied, which exhaustively searches for the best
parameters for the model. The list of parameters optimised for each model can be
found in Table 3.4.
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Table 3.4: Models and their respective optimised parameters, the description of
which was adapted from [62].

Model Parameters

LR ′inverse of regularisation strength′,′penalty′,′solver′

RF ′bootstrap′,′maximum depth of the tree′

′number of features to consider when looking for the best split′

′minimum number of samples required to be at a leaf node′

′minimum number of samples to split an internal node′

′number of trees in the forest′,′criterion′

SVM ′regularisation parameter′,′kernel coefficient′,′kernel type′

MLP ′hidden layer sizes′,′learning rate′,′ alpha′,′solver′

′maximum number of iterations′,′activation function′

NBB ′smoothing parameter′,′class prior′,′fit prior′

′threshold for binarizing ofsample features′

NBG ′variance smoothing′

To assess the ability of the model to predict with the training data, the metrics
described in 2.8.1.1 obtained with the confusion matrix were used: Precision, Recall,
Accuracy and f1-score. The ROC curve was plotted along with the AUC. The One
vs. Rest Classifier was used to calculate the ROC and the AUC curve in multiclass
models. For the multiclass models, which have an unbalanced amount of data for
each class, Precision versus Recall was used as another evaluation metric.

Test data was then fed to the models to evaluate the generalisation performance.
The probability of an event belonging to a particular class was extracted for the
model with the best performance for the Portal, T1W and T2W phases and these
probabilities were used as input variables for the final model for training and testing.

3.6.2.2 Final model

The probabilities from the previous step became the new features, resulting in
9 features for multiclass and 6 for binary. At this stage, the new dataset is already
divided into training and testing. RFE was applied again to select the features. The
classifier used in this step was SVM. The final model was then evaluated using the
metrics mentioned earlier: Precision, Recall, Accuracy, f1- Score, ROC curve and a
Precision versus Recall curve.
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3.6.2.2.1 Evaluating the redundancy of the phases

The possibility of redundant information from the phases was also tested.
Therefore, three additional final models were created, considering only two phases
instead of three, i.e. Portal with T1W, T1W with T2W and Portal with T2W.
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4
Multiclass classifier

This chapter presents and discusses the results of the multiclass approach for
predicting classes desmoplastic (D), pushing (P) and replacement (R), using the
procedures described in chapter 3.

After splitting the dataset, the number of cases in the training data was 37
cases of class D, 8 cases of class P and 22 cases of class R. For the test data, the
split was 4 cases of class D, 2 cases of class P and 2 cases of class R.

4.1 Feature selection with the first method

After the clustering process, a total of 50 clusters were formed for each phase
(Portal, T1W and T2W). The categorical features were assessed for relevance in
relation to the other clusters and individually (described in 3.6.1.1). Both categorical
features showed relevance in the data set and were therefore retained.

These features were added to the RFE along with the clustered features, which
resulted in a total of 37 optimal features for the Portal phase, 13 for the T1W phase
and 37 for the T2W phase. The model was trained and evaluated considering these
selected features.

4.1.1 Model evaluation

The metrics used to evaluate the models (precision, recall, f1-score and accu-
racy), obtained through the confusion matrix (described in section 2 of topic 2.8.1.1),
were described in chapter 3.

The f1-score, which combines the precision and recall metrics, provides infor-
mation about how accurate and robust the classifier is. It was therefore used as the
main metric for selecting the best model based on cross validation on the training
data.

The ROC curve was also used, but this metric may be considered insufficient
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with unbalanced data, as a small number of correct or incorrect predictions may
cause a sudden change in the curve and thus in the AUC value. Therefore, the
precision vs. recall curve, which expresses the relationship between precision and
recall for different probability thresholds, was plotted to facilitate the interpretation
of the results and the selection of the model.

The plot of precision vs. recall is interpreted similarly to the ROC curve. The
closer to 1, the better the classifier; at 50%, the classifier is considered random and
below that, poor.

4.1.1.1 Portal phase

The best results for the Portal phase using the training data were obtained with
the Naive Bayes Gaussian algorithm previously described in 2.8.2.2.

For this phase, a precision of 63% for class D and 50% for class R was obtained.
Using the recall metric, it was verified that the lesions can be correctly identified
as D in 89% of the cases, compared to 32% for R. The model has a classification
capacity (f1-score) of 0.74 for class D, while for class R it is only 0.39.

The accuracy for the training data for this phase was 60%. However, this metric
is not appropriate for imbalanced data, as it is possible to obtain good results even
with a poor classifier by ignoring minority classes such as class P. Therefore, this
metric was not considered in the selection of the model.

For the testing data, the classifier of the Portal phase achieved a classification
capacity (f1-score) of 67% for class D and 80% for class R. This indicates that this
model is a good classifier for class R. However, looking at the results of the training
data, which includes many more cases, the classifier for class D seems to be more
reliable.

In the case of class P, due to the small amount of data for both training and
testing, it was expected that the model would not be able to classify the cases
correctly and this was observed as most of the metrics gave a zero result.

4.1.1.2 T1W phase

For the T1W phase, the support vector machine described in 2.8.2.1 proved to
be the best classifier. For the training data, the model was able to correctly classify
all cases belonging to class D and therefore had a recall of 1.0 or 100%.

For class R, only two cases were correctly classified and verified a precision of
1.0. However, at the time the model was selected, this was not considered a reliable
metric because, according to the equation described in 2.6, TP and FP are taken into
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account, but there was no FP in the confusion matrix, so only TP was considered,
resulting in a precision of 100% (or 1.0).

Thus, the f1-score continued to be the most considered metric. It was 0.73 for
class D and only 0.17 for class R. The Precision versus Recall plot was consistent
with these results.

The accuracy was 0.58 in the training data and 0.62 in the test data. In the
test data, the recall of the class D was 100%, the precision was 57% and the f1-score
was equivalent to 0.73.

4.1.1.3 T2W phase

In the T2W phase, the random forest classifier described in 2.8.2.4 was con-
sidered the one with the best performance. The accuracy was 0.58 for the training
data and 0.5 for the test data.The choice of this classifier was mainly based on the
results obtained with the f1-score. The f1-score in the training data was 0.70 for
class D, indicating that this model might be suitable for classifying this class. Its
performance was then evaluated for the test data.

The confusion matrix obtained with the test data showed that all D cases were
classified correctly, but no R and P cases were classified appropriately, resulting in
an f1-score of 0.73 for class D and zero for the others.

4.1.2 Final model

As described in the chapter 3, the probabilities extracted from each phase were
introduced as new features in a final model. In this step, the features did not need
to be standardised as they are already on the same scale. After applying the RFE,
a total of 6 features (out of 9) were identified.

Figure 4.1: Confusion matrix for the
training data for the final model.

Figure 4.2: Confusion matrix for the
test data for the final model.
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The SVM was then applied. Figure 4.1 and 4.2 shows the results of the confusion
matrix for the training data and for the test data, respectively. In figures 4.3 and 4.4
it is possible to observe the ROC curve for the training and test data, respectively.

Figure 4.3: ROC curve and AUC for
the training data in the final model.

Figure 4.4: ROC curve and AUC for
the testing data in the final model.

Table 4.1: Results of the evaluation metrics for the final model with the SVM
classifier for the training and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 1.00 1.0 1.00 D 0.57 1.00 0.73
P 1.00 1.00 1.00 P 0.00 0.00 0.00
R 1.00 1.00 1.00 R 0.00 0.00 0.00

From figures 4.1 and4.3 and table 4.1, it appears that the model is perfect for the
training data. This could be possible considering that the information entered into
this final model is information retrieved from previously trained individual phase
models.

In the test data, it can be observed that the classifier seems to classify only
class D, which is the majority class and therefore not a suitable classifier.

4.1.2.1 Phases redundancy

Considering that some phases may introduce redundant information and that
one classifier is not as good as the others due to this effect, the final model was
tested by introducing information from only two phases: Portal with T1W, Portal
with T2W and T1W with T2W.

It was found that the TIW with T2W model have better performance than the
others for the test data, with an f1-score of 0.73 for class D, while the others had a
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score of 0.67.

The accuracy was also calculated for each of the models and all had a score of
0.5 for the test data. The f1-score showed no significant improvement compared to
the final model using the three phases in the test data, wich was 0.73 (Table 4.1).

4.1.3 Conclusions

Some results suggest that this model has the potential to classify class D. How-
ever, perhaps clustering is not the best approach to feature selection for this study,
motivating the use of mRMR as presented in the next section.

4.2 Feature selection with the second method

In an attempt to improve on the previous results, the second approach described
in 3.6.1.2 was tested.

4.2.1 Disregarding categorical features

The workflow shown in Figure 3.8 has been used, where categorical features are
not considered. After applying mRMR, the best features were extracted and then
introduced into the RFE. In total, 11 features were obtained for the Portal phase,
13 for the T1W phase and 10 for the T2W phase.

4.2.1.1 Model evaluation

The results of applying the metrics already described to this new approach are
shown below.

4.2.1.1.1 Portal phase

In the Portal phase, the best results were obtained with the Naive Bayes
Bernoulli classifier described in 2.8.2.2.

In figure 4.5 it is possible to verify the results of the confusion matrix acquired
for the training data and for the test data. For the training data, the model was
able to predict 30 D cases correctly, 12 R cases correctly and only 1 P case. As for
the test data, the model correctly predicted 3 D cases, zero P cases and all R cases.
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(a) Train set (b) Test set

Figure 4.5: Confusion matrix for the training and test data of the Portal phase with
the classifier NBB.

The results of the evaluation metrics for the training and test data are described
in Table 4.2.

Table 4.2: Results of the evaluation metrics for the Portal phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.68 0.81 0.74 D 0.60 0.75 0.67
P 0.33 0.12 0.18 P 0.00 0.00 0.00
R 0.60 0.55 0.57 R 0.67 1.00 0.80

The table shows that the model has an acceptable performance in predicting
class D in both the training and test data. The f1-score for the test data for class R
is quite high as the model was able to predict all cases correctly. However, it should
be noted that the sample space is quite small (only two cases).

In 4.6 it is possible to verify the results for the ROC curve and the AUC for
the training and test sets, and in figure 4.7 the results for the precision versus recall
curve are presented.

It is possible to observe that the ROC curve for the training data matches the
precision versus recall curve for classes D and R, as both indicate that this is a good
classifier for these classes. However, there is a discrepancy in the evaluation of class
P, where the ROC curve indicates that it is a relatively suitable classifier for this
class, with an AUC of 0.62, but if we look at the table 4.2 and the Precision versus
Recall curve, we can see that it is a weak classifier for this class.

56



4. Multiclass classifier

(a) Train set (b) Test set

Figure 4.6: ROC Curve and the respective AUC obtained for the training and test
data of the Portal phase with the NBB classifier.

Figure 4.7: Precision vs recall curve obtained for the training data of the Portal
phase with the NBB classifier.

For this phase, the accuracy is 0.64 for the training data and 0.62 for the test
data.

4.2.1.1.2 T1W phase

The best model for classification in the T1W phase was the NBB, as in the
Portal phase. The results of the confusion matrix obtained for the training data and
for the test data can be seen in figure 4.8. For the training data, the model correctly
predicted 25 D cases, 14 R cases and 3 P cases. In the test, the model correctly
predicted 3 out of 4 D cases, 1 out of 2 P cases and 1 out of 2 R cases.

Table 4.3 shows the results of the evaluation metrics for the training and test
data. For class D, it is observed that f1-score is suitable for both the training and
test data, while for class P, f1-score is suitable for the test data, but looking at the
training data, it is seen that the classifier for this class is weak. Figure 4.9 shows
the ROC and the AUC curves for the training and test data, and Figure 4.10 shows
the precision versus recall for the training data.
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(a) Train set (b) Test set

Figure 4.8: Confusion matrix for the training and test data of the T1W phase with
the classifier NBB.

Table 4.3: Results of the evaluation metrics for the T1W phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.76 0.68 0.71 D 0.60 0.75 0.67
P 0.30 0.38 0.33 P 1.00 0.50 0.67
R 0.58 0.64 0.61 R 0.50 0.50 0.50

(a) Train set (b) Test set

Figure 4.9: ROC Curve and the respective AUC obtained for the training and test
data of the T1W phase with the NBB classifier.
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Figure 4.10: Precision vs recall curve obtained for the training data of the T1W
phase with the NBB classifier

From Figures 4.9 and 4.10, it can be seen that for class P in the training data,
the ROC curve and the precision vs recall curve are consistent with each other
and also consistent with the results described in the table, which means that this
classifier is a weak classifier for class P. For class D data, the model is a suitable
classifier for both training and testing data, and the same is true for class R. The
accuracy obtained for this phase is 0.63 for the training data and 0.62 for the testing
data.

4.2.1.1.3 T2W phase

For the T2W phase, the best results were obtained with the Logistic regression
classifier described in 2.8.2.5. From the confusion matrices obtained for the T2W
phase, for the training data almost all cases from class D were correctly predicted
(34 out of 37) and for the test data the performance was similar (3 out of 4).

(a) Train set (b) Test set

Figure 4.11: Confusion matrix for the training and test data of the T2W phase with
the classifier LR.

From the ROC curves of the training and test data, it can be seen that the
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classifier is appropriate for class D, with an AUC of 0.67 for training and 0.62 for
test, which is consistent with the graph of Figure 4.13 and with the results in Table
4.4. The accuracy of the model for the T2W phase is 0.67 for the training data and
0.5 for the test data.

Table 4.4: Results of the evaluation metrics for the T2W phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.68 0.92 0.78 D 0.50 0.75 0.60
P 0.50 0.250 0.33 P 1.00 0.50 0.67
R 0.69 0.41 0.51 R 0.00 0.00 0.00

(a) Train (b) Test

Figure 4.12: ROC Curve and the respective AUC obtained for the training and test
data of the T2W phase with the LR classifier.

Figure 4.13: Precision vs recall curve obtained for the training data of the T2W
phase with the LR classifier
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4.2.1.2 Final model

After applying the RFE, a total of 8 features were obtained and used in the
SVM. The results of the confusion matrix for the training and test data can be seen
in figure 4.14. From the confusion matrices, the results of the evaluation metrics are
described in table 4.5, where we can observe a very satisfactory f1-score for classes
D and R for the training data, and the same is also observed with the test data.

(a) Train set (b) Test set

Figure 4.14: Confusion matrix for the train and test data for the final model.

Table 4.5: results of the evaluation metrics for the final model with the SVM clas-
sifier for the training and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.77 0.81 0.79 D 0.75 0.75 0.75
P 0.57 0.50 0.53 P 1.00 0.50 0.67
R 0.76 0.73 0.74 R 0.67 1.00 0.80

(a) Train set (b) Test set

Figure 4.15: ROC curve and AUC for the final model.
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In Figure 4.15, it can be seen that this model has an AUC of 0.83 for the
training data of class D, and an AUC of 0.69 for the test data of the same class. For
class R, the AUC is 0.85 for the training data and 0.83 for the test data. Finally,
using the accuracy, a score of 0.76 was obtained for the training data and 0.75 for
the test data.

4.2.1.2.1 Phases redundancy

Finally, it was checked whether the performance of the model improved when
the information from one of the phases was excluded. From the confusion matrices
in figure 4.16, the results for the metrics shown in Table 4.6 were obtained.

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 4.16: Confusion matrix for the training data with the SVM classifier.

Table 4.6: Results of the evaluation metrics for the final models with the SVM
classifier for the training data.

PortalwithT1W PortalwithT2W T1WwithT2W

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.68 0.86 0.76 D 0.61 0.95 0.74 D 0.76 0.78 0.77

P 0.00 0.00 0.00 P 1.00 0.12 0.22 P 0.50 0.25 0.33

R 0.70 0.64 0.67 R 0.67 0.27 0.39 R 0.56 0.64 0.60

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 4.17: Confusion matrix for the test data with the SVM classifier.
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From the confusion matrices for the test data, presented in figure 4.17, the
results of the evaluation metrics for the test data shown in Table 4.7 were obtained.
The ROC curve together with the AUC for the training and test data can be seen
in figures 4.18 and 4.19.

The accuracy for the Portal with T1W model was 0.69 for the training data
and 0.50 for the test data, while for the Portal with T2W model the accuracy was
0.63 for the training and only 0.38 for the test, while the accuracy of the T1W with
T2W phase was 0.67 for the training and 0.50 for the test.

Table 4.7: Results of the evaluation metrics for the final models with the SVM
classifier for the test data.

PortalwithT1W PortalwithT2W T1WwithT2W

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.50 0.75 0.60 D 0.43 0.75 0.55 D 0.50 0.75 0.60

P 0.00 0.0 0.00 P 0.00 0.00 0.00 P 0.00 0.00 0.00

R 0.50 0.50 0.50 R 0.00 0.00 0.00 R 0.50 0.50 0.50

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 4.18: ROC Curves and respective AUC for training data.

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 4.19: ROC curves and respective AUC for test data.

4.2.1.3 Conclusions

From the results, it can be concluded that the model using the information
from the three phases has a very satisfactory classification capacity for classes D
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and R. When one of the phases is removed, the classification capacity of the model
decreases, indicating that the information from each phase is relevant to the model.

4.2.2 Introduction of categorical features

According to the workflow in Figure 3.9, the categorical features were introduced
after applying the RFE.

4.2.2.1 Model evaluation

In the Portal phase, the model performed well for the training and test data
using the random forest algorithm. The f1-score for the training data was 0.76 for
class D and 0.67 for the test data. Class R had an f1-score of 0.56 for the training
data, and this result was equal to 0.80 for the test data. Class P had no predicted
cases.

The T1W phase showed the best results with the NBB algorithm, with an f1-
score of 0.71 for class D, 0.33 for class P and 0.61 for class R on the training data.
For the test data, this was 0.67 for classes D and P and only 0.5 for class R.

In the T2W phase, the best results were obtained with the NBG. However, only
class D was classified in the test data, with an f1-score of 0.67 for this class.

4.2.2.2 Final model

Using the information from the three phases and applying the SVM, the model
obtained an f1-score of 0.57 for the test data in classes D and R (0 for class P), but
for the training data, the score was 0.95 for classes D and R, and 0.86 for class P.

4.2.2.2.1 Phases redundancy

In an attempt to improve the model, one of the phases was removed. The
results for the Portal with T1W and Portal with T2W models were exactly the
same as those obtained with the three phases. This is because RFE selected the
same features and included much of the information from the Portal phase. However,
when this phase is removed, the model performs even worse on the training data. As
mentioned earlier, when using the three phases or the models with the Portal phase,
the f1-score was 0.95 for classes D and R. However, when this phase is removed, the
f1-score decrease to 0.76 for class D and 0.62 for class R.

The accuracy was also lower for this model, while for the others it was 0.94 for
the training data, in T1W with T2W it was only 0.67. In the case of the test data,
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all models had a score of 0.5.

4.2.2.3 Conclusions

Given the introduction of the categorical features, the model shows a worse re-
sult when the phases are combined. However, when the phases are used individually,
the Portal phase was the one that showed the best performance in classifying the
class D.

4.3 General conclusions
The model with the second approach, without categorical features and taking

into account the information from the three phases, was the one that could classify
classes D and R best. Unfortunately, class P could not be reliably classified by the
model because the sample was very small.

It has also been found that the performance of the final model for classification
decreases when the categorical features are added. However, when evaluating each
phase individually, the results for class D are acceptable.

The model was found to have the potential to classify class D. As more data is
collected, it is possible that the performance for this class can be improved. For this
reason, a binary model was created to try to improve the model’s ability to classify
this class (against any other class).
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Binary Classifier

This chapter will present and discuss the results obtained considering a binary
classification model for the desmoplastic (D) and non-desmoplastic (ND) classes,
using the second method described in 3.6.1.2.

After splitting the dataset, the number of distributed cases in the training data
was 32 cases belonging to class D and 33 cases belonging to class ND. In the test
data, the split was 9 cases for class D and 8 for class ND.

5.1 Model without categorical features
Following the workflow shown in Figure 3.8 in Chapter 3, a model without the

categorical features Size and Lesion size was first tested.

5.1.1 Feature selection

After applying the mRMR algorithm, the best features were extracted, which
were then used in the RFE. For the Portal phase, an optimal number of 9 features
was obtained, while for the T1W phase this value corresponded to 10 and for the
T2W phase this value was equal to 8.

5.1.2 Model evaluation

The metrics used to assess the classification capacity of the model were men-
tioned in section 3.6.2 of chapter 3 (precision, recall, accuracy, f1-score, ROC curve)
and explained in detail in 2.8.1.1 of chapter 2. As the data are balanced between
classes, the accuracy metrics and the ROC curve itself are considered.

5.1.2.1 Portal phase

In the Portal phase, the best results were obtained with the linear classifier lo-
gistic regression. The confusion matrices for the training and test data are presented
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in Figure 5.1.

(a) Train set results. (b) Test set results.

Figure 5.1: Confusion matrix for the training and test data of the Portal phase with
the classifier LR.

From the matrices, the results of the model evaluation metrics described in
Table 5.1 were obtained.

Table 5.1: Results of the evaluation metrics for the Portal phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.71 0.78 0.75 D 0.86 0.67 0.75
ND 0.77 0.70 0.73 ND 0.70 0.88 0.78

The table shows that in this model, the rate of cases correctly classified as
belonging to class D (true-positive cases) relative to all cases classified as belonging
to class D (true-positive cases added to false-positive cases) is 71% for the training
data and 86% for the test data.

The rate of the cases correctly classified as class D (true-positive cases) in
relation to all cases classified as class D (true-positive cases plus false-negative cases)
is equal to 78% for the training data and 67% for the test data. Based on the f1-
score, it can thus be stated that this classifier is around 75% accurate and robust
for both training and test data.

The accuracy for the training data is equivalent to 0.74 or 74%, while for the
test data it was 0.76 or 76%. The ROC curves, along with the AUC, of the training
and test data can be seen in figures 5.2a and 5.2b.
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From the curves it can be seen that the model has a very satisfactory classifi-
cation performance for the training and test data, with an AUC of 0.72 and 0.77
respectively.

(a) ROC curve and AUC for train set. (b) ROC curve and AUC for test set.

Figure 5.2: ROC Curve and the respective AUC obtained for the training and test
data of the Portal phase with the LR classifier.

5.1.2.2 T1W phase

For the T1W phase, the best results were obtained with the multilayer percep-
tron classifier (MLP) described in 2.8.2.6.

(a) Train (b) Test

Figure 5.3: Confusion matrix for the training and test data of the T1W phase with
the classifier MLP.

From the table 5.1.2.2, the f1-score of only 56% shows that this is probably a
random classifier for the test data. The accuracy for the training data was 0.77,
while for the test data it was only 0.53.

Figure 5.4 shows that the model for the training data has an AUC of 0.74,
which is considered satisfactory, while the classifier for the test has an AUC of only
0.53. Therefore, the model is considered too complex for this phase.
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Table 5.2: Results of the evaluation metrics for the T1W phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.73 0.84 0.78 D 0.56 0.56 0.56
ND 0.82 0.70 0.75 ND 0.50 0.50 0.50

(a) ROC curve and AUC for train set. (b) ROC curve and AUC for test set.

Figure 5.4: ROC Curve and the respective AUC obtained for the training and test
data of the T1W phase with the MLP classifier.

5.1.2.3 T2W phase

In the T2W phase, the best results were obtained with the NBB classifier. The
results of the confusion matrices and the results of the evaluation metrics for the
training and test data can be seen in Figure 5.5 and Table 5.3 respectively.

The table shows that the f1-score of this classifier for the training data is 66%
for class D and 67% for class ND. For the test data, this value increases to 71% for
class D and 75% for class ND. The accuracy of this model is 0.66 for the training
data and 0.71 for the test data.

Figure 5.6 shows that the AUC is 0.66 for the training data and 0.71 for the test
data, and the model of this phase generally gives adequate results for classification.
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(a) Train (b) Test

Figure 5.5: Confusion matrix for the training and test data of the T2W phase with
the classifier NBB.

Table 5.3: Results of the evaluation metrics for the T2W phase model for training
and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.66 0.66 0.66 D 0.75 0.67 0.71
ND 0.67 0.67 0.67 ND 0.67 0.75 0.71

(a) ROC curve and AUC for train set. (b) ROC curve and AUC for test set.

Figure 5.6: ROC Curve and the respective AUC obtained for the training and test
data of the T2W phase with the NBB classifier.

5.1.3 Final model

In order to test the impact of a phase containing information from a model
that does not perform as well, it was decided to keep the T1W phase in the final
model. Therefore, in the final model, the information from the three phases was
included. Then the RFE was applied. A total of 5 features were kept. The selected
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features were Portal D, Portal ND, T1D, T1ND and T2ND, where Portal D and
Portal ND are the probabilities obtained for the Portal phase for the desmoplastic
and non-desmoplastic classes respectively, T1 D and T1 ND are the probabilities
obtained for the desmoplastic and non-desmoplastic classes of T1W phase and T2
ND is the probability obtained for the non-desmoplastic class of T2W phase.

Confusion matrices for training and test data using the SVM classifier can be
visualised in figure 5.7. The results of the assessment metrics tabulated in 5.4 were
obtained from the matrices.

(a) Train (b) Test

Figure 5.7: Confusion matrix for the training and test data of the final model.

Table 5.4: Results of the evaluation metrics for the final model with the SVM
classifier for the training and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.97 0.91 0.94 D 0.83 0.56 0.67
ND 0.91 0.97 0.94 ND 0.64 0.88 0.74

The accuracy of this classifier was 94% for the training data and 71% for the
test data.
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Figure 5.8: ROC Curve and AUC for
the training set in the final model.

Figure 5.9: ROC Curve and AUC for
the test set in the final model.

Figure 5.8 shows an AUC of 0.88 for the training data and Figure 5.9 shows an
AUC of 0.72 for the test data.

5.1.3.1 Phases redundancy

The impact of the information from the phases on the final model and possible
redundancies were then tested. However, it is noteworthy that while the T1W
phase had the worst classification performance, the RFE algorithm did not exclude
the information from this phase neither in the Portal with T1W model nor the T1W
with T2W model, thus having an impact on these classifiers.

In all models, RFE selected an optimal number of 3 features, and for the Portal
with T1W model, the selected features were Portal D, T1 D and T1 ND. For the
Portal with T2W model, the selected features were Portal D, Portal ND, T2 ND
and finally, for the T1W with T2W model, the selected features were T1 D, T1 ND
and T2 ND.

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 5.10: Confusion matrix for the training data with the SVM classifier.

From the matrices shown in image 5.10, the results for the metrics listed in
Table 5.6 were obtained.

The accuracy considering the training data for the Portal with T1W model is
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Table 5.5: Results of the evaluation metrics for the final models with the SVM
classifier for the training data.

PortalwithT1W PortalwithT2W T1WwithT2W

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.88 0.88 0.88 D 0.84 0.84 0.84 D 0.90 0.88 0.89

ND 0.88 0.88 0.88 ND 0.85 0.85 0.85 ND 0.88 0.91 0.90

88%, for the Portal with T2W model it is 85% and for the T1W with T2W model
it is 89%.

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 5.11: Confusion matrix for the test data with the SVM classifier.

Table 5.6: Results of the evaluation metrics for the final models with the SVM
classifier for the test data.

PortalwithT1W PortalwithT2W T1WwithT2W

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.62 0.56 0.59 D 1.00 0.67 0.80 D 0.62 0.56 0.59

ND 0.60 0.75 0.67 ND 0.73 1.00 0.84 ND 0.56 0.62 0.59

The accuracy considering the test data for the Portal with T1W model and
T1W with T2W model is 59%, for the Portal with T2W model it is 82%. Figure
5.13 shows that the Portal with T2W model has the best ROC curve with an AUC
of 0.83 for the test data.
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(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 5.12: ROC Curves and respective AUC for training data.

(a) Portal with T1W. (b) Portal with T2W. (c) T1W with T2W.

Figure 5.13: ROC curves and respective AUC for test data.

From the results, the Portal with T2W model exhibits an excellent classification
capacity.

5.1.4 Conclusions

Of all the phases presented, the Portal phase was the one that scored highest in
the classification of classes, individually. The T1W phase was the one that performed
worst in the classification. However, it is important to emphasise that only a small
amount of data was considered and that the model could perform better if more
data were added.

If the T1W phase is not included in the final model, i.e. a model that only
includes information from the Portal and T2W phases, one obtains a model with a
very satisfactory classification capacity that gives much better results. In summary,
in these data, considering only two classes and ignoring the categorical features, the
best final model for classification is the one considering information from images of
phases Portal and T2W.
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5.2 Model with categorical features

In this section, the workflow shown in Figure 3.9 from Chapter 3 was used.
After applying mRMR and RFE, the two categorical features size and lesion size
were added to check whether their information improves or degrades the model.

5.2.1 Model evaluation

For the models of each phase, it was found that the results were generally
considered reasonable. For the Portal phase, an f1-score of 0.73 for the training
data and 0.75 for the test data was obtained for class D using SVM. The AUC
of the ROC curve was 0.71 for the training data and 0.77 for the test data. The
accuracy was approximately 0.72 for the training data and 0.76 for the test data.

For the T1W phase, the model had results close to those of a random model.
The f1-score was 0.81 for the class D training data when the Random Forest was
evaluated, but when the test data was applied this value drops to 0.59. The AUC of
the ROC curve also shows similar behaviour, with an AUC of 0.71 obtained for the
training data and an AUC of 0.59 for the test data. The accuracy for the training
data was 0.78, while it was only 0.59 for the test data.

For the T2W phase model, the best results were obtained with the NBB algo-
rithm. The f1-score for class D was 0.66 for the training data and 0.71 for the test
data. The AUC for the training data was 0.66 and for the test data it was 0.71.
Finally, the accuracy was approximately 0.66 for the training data and 0.71 for the
test data.

5.2.2 Final model

Although the individual phases with categorical features show relatively better
results than the individual phases when the categorical features are disregarded, the
evaluation of the final model yielded a considerably worse result. Confusion matrices
for training and test data using the SVM classifier can be visualised in 5.14.

The accuracy for the training data was 0.97 and for the test data 0.59. From
the results obtained, it is clear that the model for the test data has much lower
performance when compared to the training data.
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(a) Train (b) Test

Figure 5.14: Confusion matrix for the training and test data of the final model.

Table 5.7: Results of the evaluation metrics for the final model with the SVM
classifier for the training and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.97 0.97 0.97 D 0.60 0.67 0.63
ND 0.97 0.97 0.97 ND 0.57 0.50 0.53

Figure 5.15: ROC Curve and AUC
for the training set in the final model.

Figure 5.16: ROC Curve and AUC
for the test set in the final model.

5.2.2.1 Phases redundancy

The weight of each phase in the final model was reviewed. As with the model
without categorical features, the best results were obtained when the information
from the T1W phase was disregarded. The results for the model containing only
information from the Portal phase with the T2W phase can be seen in Figures 5.17
and 5.19 and in the table 5.8. The accuracy for this model for the training data was
0.78 and for the test data 0.71.
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(a) Train (b) Test

Figure 5.17: Confusion matrix for the training and test data of the Portal with
T2W model.

Table 5.8: Results of the evaluation metrics for the Portal with T2W model with
the SVM classifier for training and test data.

Train set Test set

Class Precision Recall F1-
Score

Class Precision Recall F1-
Score

D 0.75 0.84 0.79 D 0.75 0.67 0.71
ND 0.83 0.73 0.77 ND 0.67 0.75 0.71

Figure 5.18: ROC curve for the train-
ing data of the Portal with T2W
model.

Figure 5.19: ROC curve for the test
data of the Portal with T2W model.

5.2.3 Conclusions

The results indicate that the final model has an acceptable classification capac-
ity for class D, if the T1W phase is disregarded.
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5.3 Leave-One-Out Cross-Validation
In cross validation, there is a special type called Leave One Out Cross Validation

(LOOCV) where the number of iterations is exactly equal to the number of instances
in the dataset [93]. In each iteration, the test set is only one data instance, and the
training set includes all other instances. In this case, the same processes as described
in Chapter 3 were carried out, using LOOCV instead of 7-fold cross validation.

Initially, the models were evaluated without considering the categorical features.
Based on the individual results, it was found that the Portal phase with the SVM
classifier produced the best results, with an f1-score of 0.75 for the training data
and of 0.67 for the test data for class D. In addition, the AUC of the ROC curve
was 0.77 for the training data and 0.65 for the test data. The T1W phase produced
the worst results. In this phase, LR was used and it resulted in an f1-score of 0.81
for the training data, but for the test data it was only 0.56 for class D. The AUC of
the training data was 0.80 and for the test data it was only 0.53.

The final model that accounted for the T1W phase showed an f1-score of only
0.38 for class D with the test data and an AUC of only 0.42. Removing the T1W
phase improved the f1-score for class D and the AUC of the test data slightly to
0.46 and 0.60, respectively.

(a) Train (b) Test

Figure 5.20: Confusion matrix for the training and test data of the Portal with
T2W model without categorical features.

The introduction of categorical features was then tested and was found to have
a positive effect on the models. Again, the best results for each phase were obtained
with the Portal phase, with an f1-score of 0.75 for the test data in class D using the
SVM algorithm and an AUC of 0.77. The worst results were also obtained with the
T1W phase, with an f1-score of 0.47 for class D with the test data using the LR and
an AUC of only 0.47.
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Table 5.9: Results of the evaluation metrics for the Portal with T2W model with
the SVM classifier for training and test data.

Train set Test set

Class Precision Recall F1-
score

Class Precision Recall F1-
score

D 0.96 0.84 0.90 D 0.75 0.33 0.46
ND 0.86 0.97 0.91 ND 0.54 0.88 0.67

Figure 5.21: ROC curve for the train-
ing data of the Portal with T2W
model without categorical features.

Figure 5.22: ROC curve for the test
data of the Portal with T2W model
without categorical features.

The final model considering the three phases showed an f1-score of 0.47 for
class D and an AUC of 0.47 with the test data. However, when the T1W phase is
removed, the results are much better, with an f1-score of 0.75 for class D with the
test data and an AUC of 0.77.

Table 5.10: Results of the evaluation metrics for the Portal with T2W model with
the SVM classifier for training and test data.

Train set Test set

Class Precision Recall F1-
score

Class Precision Recall F1-
score

D 0.81 0.81 0.81 D 0.86 0.67 0.75
ND 0.82 0.82 0.82 ND 0.70 0.88 0.78

The accuracy for the Portal with T2W model was 0.82 for the training and 0.76
for the test, while this value for the Portal with T2W model without taking the
categorical features into account was 0.91 for the training but only 0.59 for the test
data.
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(a) Train (b) Test

Figure 5.23: Confusion matrix for the training and test data of the Portal with
T2W model with categorical features.

Figure 5.24: ROC curve for the train-
ing data of the Portal with T2W
model with categorical features.

-
Figure 5.25: ROC curve for the test
data of the Portal with T2W model
with categorical features.

5.4 General conclusions

From the results presented in this chapter, it appears that it is possible to
create a model that can satisfactorily predict the desmoplastic growth pattern from
an image. The model disregarding the categorical features and using information
from only Portal and T2W phases as input yielded an f1-score of 0.84 for the training
data and 0.80 for the test data. In addition, the training data had an AUC of 0.83.
However, for the model to adapt better or as satisfactorily to new data, more data
is required.

Acquiring more data is also interesting for building models that can reliably
predict the R or P class, since using only the available data will obtain a model with
very high but unreliable results.

In the case of a classifier of class P, for example, out of 82 lesions only 10 belong
to this class. Therefore, the classifier will have an excellent ability to predict the
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non P class (NP), resulting in extremely high values for precision, recall, etc. for
this class, but will probably be close to zero for the P class.

In the Portal, T1W and T2W phases, which were used in the model with
the best results, it was found that after applying the RFE algorithm, most of the
selected features were of the texture type. In the portal phase 7 out of 9 features
are texture features, in the T1W phase 7 out of 10 features are texture features
and in the T2W phase 5 out of 8 features are texture features. This is to be
expected as the grey levels express the different textures between healthy and tumour
tissue and are therefore extremely important for identifying growth patterns. The
biological interpretability of the features should as maximised as possible, to allow
users (clinicians and technicians) not only to rely on these approaches but also to
guide intervention strategies upon the most informative features.
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The aim of this project was to develop a model that can predict the histopatho-
logical growth pattern of liver metastases in colorectal cancer from a magnetic res-
onance image. As the results presented in this thesis show, some models were suc-
cessful in predicting the desmoplastic growth pattern, such as the model containing
Portal with T2W information, without considering categorical features, which had
an f1-score of 0.80 for class D, an AUC of 0.83 and an accuracy of 0.82 in the test
data.

Moreover, the models built with information of the portal phase individually
seemed to give reasonable results in most cases, compared to the models considering
features extracted from the T1W phase, which resembled a random model in many
cases. The reason that the portal phase gives better results could be the same reason
why radiologists visualise metastases better in this phase, namely the contrast in
the image. However, this is only a guess, because it is not possible to conclude that
good results for class D classification are always obtained in this phase, as the data
sample is small and therefore more studies should be performed. It was also found
that the categorical features influence the model to some extent.

For future work, it would be interesting to test what weight the individual cat-
egorical features have in the final model and which of the information (histological
or radiological) tends to influence the final model positively or negatively. Further-
more, an investigation of the weight of each radiomics feature in classification and
its interpretability should also be addressed.

As mentioned in the methodology chapter, the database also included patients
who were undergoing chemotherapy. The creation of a feature that takes this infor-
mation into account and the re-testing of the model would therefore be clinically rel-
evant and technically plausible, as chemotherapy affects the liver structures [94, 95]
and may consequently affect the extracted information (feature extraction).

In order for the models presented here to better generalise, more data needs
to be acquired, or in alternative these models could be developed relying upon a
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database of synthetic data.
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Glossary

ADC Apparent diffusion coefficient

AI Artificial intelligence

AP Arterial phase

AUC Area under the curve

CE-MRI Contrast-enhanced MRI

CRC Colorectal cancer

CRCLM Colorectal cancer liver metastases

CRLM Colorectal liver metastases

CT Computed tomography

D Desmoplastic

DCE Dynamic contrast-enhanced

dHGP Desmoplastic histological growth patterns

DICOM Digital Imaging and Communications in Medicine

DT Decision trees

DWI Diffusion-weighted imaging

FLAIR Fluid attenuated inversion recovery

FN False negative

FNR False negative rate

FP False positive

FPR False positive rate

FS Fat-suppressed

GLCM Grey level co-occurrence matrix

GLDM Grey level dependence matrix
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GLRLM Grey level run length matrix

GLSZM Grey level size zone matrix

H&E Hematoxylin and Eosin

HGP Histological growth pattern

IBSI Image biomarker standardisation initiative

LoG Laplacian of Gaussian

LR Logistic regression classifier

MDCT Contrast-enhanced multidetector CT

MLM Metachronous liver metastasis

MLP Multi-layer perceptron

MR Magnetic resonance

MRI Magnetic resonance imaging

mRMR Minimum redundancy maximum relevance

NAC Neoajuvant chemotherapy

NBB Naive Bayes Bernoulli

NBG Naive Bayes Gaussian

NGLDM Neighbouring grey level dependence matrix

NGTDM Neighbourhood grey tone difference matrix

NPV Negative predictive value

P Pushing

PCA Principal component analysis

PET Positron emission tomography

PFS Progression-free survival

pHGP Push histological growth patterns

PVP Portal venous phase

R Replacement

RFC Random forest classifier

RFE Recursive feature elimination

RFP Radiofrequency pulse

rHGP Replacement histological growth patterns
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ROC Receiver operating characteristic

ROI Region of interest

SLM Synchronous liver metastases

SVM Support vector machine

TE Time of echo

TLI Tumour-liver interface

TN True negative

TNR True negative rate/Specificity

TP True positive

TPR True positive rate/Recall

TR Time of repetition

T1W T1-weighted

T2W T2-weighted

VAR Variance

VAT Visceral adipose tissue

VOI Volume of interest
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