
����������
�������

Citation: Yeh, C.-H.; Chen, J.-E.;

Chang, C.-J.; Huang, T.-C. Using

Enhanced Test Systems Based on

Digital IC Test Model for the

Improvement of Test Yield.

Electronics 2022, 11, 1115. https://

doi.org/10.3390/electronics11071115

Academic Editor: Fabian Khateb

Received: 3 March 2022

Accepted: 29 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Using Enhanced Test Systems Based on Digital IC Test Model
for the Improvement of Test Yield
Chung-Huang Yeh * , Jwu-E Chen, Chia-Jui Chang and Tse-Chia Huang

Department of Electrical Engineering, National Central University, Taoyuan 300, Taiwan;
jwu.e.chen@gmail.com (J.-E.C.); garaychang@gmail.com (C.-J.C.); nk00390848@gmail.com (T.-C.H.)
* Correspondence: yehsony@gmail.com

Abstract: In this work, we use statistical concepts to evaluate the joint probability distribution of
manufacturing and test parameters and estimate the future trend of wafer test yield. Owing to the
difference between the development speeds of testing technology and manufacturing technology,
the testing capability of wafers is far behind the manufacturing capability of the semiconductor.
Therefore, with the advancement in technology, the test yield loss caused by the tester inaccuracy has
become an important problem. In this article, we propose an enhanced integrated circuit (IC) test
scheme (ITS) that uses multiplex testing to improve test quality and test pass rate by retesting, and
we rely on the cost evaluation mechanism to obtain the best test and the best profit. Furthermore, the
International Roadmap for Devices and Systems (IRDS) 2017 data are used to estimate future test
yield trends, and the results prove that the enhanced test scheme (ETS) can effectively estimate the
best retest time to obtain the best test yield and the best profit.

Keywords: guardband test; threshold test; test quality; defect level; manufacturing yield

1. Introduction

According to reports from the International Technology Roadmap for Semiconductors
(ITRS), the testing technology is lagging far behind the design and manufacturing tech-
nologies [1,2]. If the tester technology stagnates, the quality and yield will worsen [3,4].
The testing capabilities of the tester and the development speed of the manufacturing tech-
nology are different. To ensure the reliability of critical electronic products, strict quality
control is required to eliminate all defective parts in the total number of parts; however,
owing to the slow development of testing technology, it is becoming increasingly difficult
to use existing technology to select highly reliable electronic products. Therefore, suppliers
must propose good methods to solve this problem. Currently, in the semiconductor testing
industry, retesting is being applied in the production process to improve test results [5–19].
In the actual test in the test factory, the retest strategy greatly improves the test yield. This
paper proposes a new test method (multiplex tests) to improve testing efficiency. The new
method involves moving the test guardband (TGB) and extending the test time, retesting
the chips that pass the test several times, and repeatedly searching for truly reliable prod-
ucts to increase the test yield. Conversely, we used multiplex testing methods to improve
the quality of products. We all know that zero-defect high-quality products (Zero Defect
Manufacturing, ZDM) [20,21] are the ultimate goal of all industries. The quality require-
ments in the biomedical or automotive electronics industries are stringent, with higher
safety requirements. Therefore, we used the multiplex testing method to reduce the errors
that occur during testing, the mobile test guardband to reduce the generation of killing
errors and missing errors, and obtain products with near-zero defects [22–28]. Multiplex
testing can improve the test yield and test quality; however, if the test time and the number
of tests are increased, the test cost will gradually increase. Furthermore, when the increased
test cost is higher than the increased profit (the profit obtained by expanding the test yield),
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Abstract: Many advanced power electronics control techniques present a steep computational load,
demanding advanced controllers, such as FPGAs. However, FPGA development is a daunting and
time-consuming task, inaccessible to most users. This paper proposes a complete methodology for
prototyping power electronics with Xilinx Zynq-based boards using Matlab/Simulink and HDL
Coder. Even though these tools are relatively well documented, and several works in the literature
have used them, a methodology for developing power electronics systems with them has never
been proposed. This paper aims to address that, by proposing a complete programming and design
methodology for Zynq-based power electronics and discussing important drawbacks and hurdles in
Simulink/HDL Coder development, as well as their possible solutions. In addition, techniques for
the implementation of all required peripherals (ADCs, digital outputs, etc.), system protections, and
real-time data acquisition on Zynq boards are presented. This methodology considerably reduces the
development time and effort of power electronics solutions using Zynq-based boards. In addition, a
demonstration Simulink model is provided with all proposed techniques and protections, for use
with a readily available development board (Zedboard) and ADC modules. This should further
reduce the learning curve and development effort of this type of solution, contributing to a broader
access to high-performance control prototyping using Zynq-based platforms. An application example
is presented to demonstrate the potential of the proposed workflow, using a Zedboard to control a
multilevel UPS inverter prototype with Model Predictive Control.

Keywords: FPGA; rapid prototyping; Simulink; HDL Coder; Xilinx Zynq; Zedboard

1. Introduction

Over the last years, many advanced computation and control techniques have been
proposed for power electronics. These advanced techniques include solutions such as
Model Predictive Control [1,2] or Artificial Intelligence [3], which have proven to be
highly advantageous in the fields of energy conversion and power electronics, resulting in
significant interest from both the scientific and industrial community. For example, Model
Predictive Control (MPC) has shown to be highly advantageous in power electronics,
providing good steady-state performance and excellent dynamic response [1,2]. In addition,
this type of controller allows the simultaneous pursuit of multiple independent (and often
conflicting) objectives and easy inclusion of system non-linearities and constraints. Hence,
it is highly advantageous for the control of complex multi-objective and multi-converter
systems, in all kinds of applications [1,2], such as wind generation [4], UPS systems [5,6] or
microgrids [7,8].

However, these advanced control techniques typically present a critical limitation:
they carry a very high computational burden. This characteristic makes their practical
implementation extremely difficult. It was only in recent years that available control
platforms have become sufficiently powerful to enable broader study and use of these
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types of computational solutions. The overall complexity of power electronics converters
has also significantly increased in the last decades due to the adoption of more complex
topologies (such as multilevel converters with an increasing number of levels) and more
complex systems and applications (such as multi-phase machines [4], modular/paralleled
converters [5], or multi-converter systems [5,6]). Using techniques such as MPC leads to an
enormous increase in the computational load of the controller. In addition, techniques like
MPC require high sampling frequencies, which means all computations must be completed
consistently within a very short period (tens of microseconds). Furthermore, the controller
must ensure precise timing and perfect synchronization between the acquisition of multiple
signals and numerous control inputs and outputs. These requirements greatly hinder the
practical implementation of advanced control techniques in power electronics and lead to
a critical need for new (affordable and industrially viable) control platforms with very high
processing power.

In the context of power electronics development, control platforms can typically
be divided into two types: rapid-prototyping solutions and custom platforms. Rapid-
prototyping solutions are mainly directed to development and laboratory use, presenting
easy-to-use interfaces, numerous safety features, and dedicated development tools that
enable fast and easy programming. However, these solutions typically present very high
costs, making them unviable for industrial use and inaccessible to many small companies
and research groups. On the other hand, custom-developed platforms provide significantly
lower costs and perfectly fit the specific needs of a specific product or application. However,
this type of solution typically requires dedicated hardware development and complex and
time-consuming programming using low-level tools. For this reason, this type of approach
is generally not appropriate for research purposes or initial development stages.

Currently, most rapid-prototyping solutions found on the market are based on central
processing units (CPUs) or digital signal processors (DSPs), which provide simple and
versatile programming, ideal for fast testing and development, with a low programming
effort. This approach can be found in products from dSPACE, OPAL-RT, Speedgoat,
National Instruments, and others. However, the sequential execution nature of processors
limits their processing throughput, limiting the sampling frequencies achievable with
complex control systems. Moreover, the sequential nature of processors and the need
to switch between multiple tasks limit their ability to ensure perfect timing in input and
output (I/O) management and hinder synchronization between different interfaces (such as
the ADC sampling and output signal updates). For this reason, several rapid-prototyping
platforms now use an FPGA to manage the I/O, in addition to the processor. This allows
precise interface control and enables critical parts of the code to be implemented in the
FPGA, taking advantage of its parallel execution. The code generation and deployment of
rapid-prototyping solutions differ from brand to brand but typically rely on well-known
software tools for programming. For example, dSpace, OPAL-RT, and Speedgoat rely on
Matlab/Simulink for model-based development, while National Instruments solutions
use Labview. On the other hand, many platforms use dedicated proprietary tools for
monitoring and interface development (for example, Control Desk from dSpace and RT-
LAB from OPAL-RT).

Despite their many advantages, including their ready-made nature and easy program-
ming, rapid-prototyping platforms typically share a common problem: a very high cost.
For this reason, researchers frequently resort to lower-cost solutions, such as development
boards. While cheap DSPs have historically been a go-to solution for low-cost prototyping
of power electronics, they lack the processing power required to control complex systems
with advanced control algorithms, such as MPC. Given the steep processing and timing
requirements of this type of controller, FPGAs become one of the main options for prototyp-
ing. FPGAs offer a high processing capacity and throughput due to their parallel computing
capabilities, enable precise I/O timing and synchronization, and guarantee a deterministic
processing time. These advantages make FPGAs ideal for advanced controller implementa-
tion. However, FPGA programming can be a daunting and time-consuming task, requiring
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highly specialized hardware description language (HDL) knowledge. The HDL Coder
tool found in Matlab/Simulink significantly simplifies FPGA programming, by providing
automatic HDL code generation from a model-based Simulink design. This significantly
speeds up FPGA development and eliminates the need for HDL expertise [9–12].

Regardless of the used programming technique, debugging and data acquisition
can be highly problematic on FPGAs since it is very difficult to have external access to
internal variables in real-time, and user interface implementation is also a significant
challenge. Hybrid System-on-Chip (SoC) solutions, which include both an FPGA and a
processor, partly solve this problem by simultaneously providing the determinism and
high processing power of FPGAs and the simple connectivity and user interface of a
processor. Furthermore, a dedicated communication interface between the FPGA and
processor enables easier data capture and variable visualization, making this solution
advantageous for prototyping. Xilinx Zynq chips are the most common hybrid SoCs and
are available on numerous development boards.

Despite the clear advantages of Zynq SoCs, their programming is still very complex,
especially for non-experts. However, it is now possible to use Matlab/Simulink to program
these chips entirely using model-based techniques. HDL Coder enables a direct generation
of HDL code for the FPGA directly from Simulink models, while Embedded Coder enables
code generation for the ARM processor found on Zynq chips. This reduces (or even
eliminates) the need for low-level programming and makes prototyping with these chips
viable to non-experts. Additionally, it is possible to simulate both the processor and FPGA
response directly from Simulink, shortening the development time. Given the low cost of
many Zynq-based development boards, these SoCs become an excellent choice for low-cost
prototyping with advanced control techniques.

Various work can be found in the literature taking advantage of both standalone FP-
GAs [11–15] and Zynq SoCs [10,16–25] to control power electronics devices. Most presented
Zynq-based solutions use development boards for prototyping [10,17,19–22,24,25], including
the Zedboard used in this paper [10,19–21,24]. A custom hardware platform is proposed in [17]
specifically for power electronics control. In [18], a high-performance custom control platform
is also proposed for power electronics, using the higher-end Ultrascale+ family of Zynq chips,
for ultra-high performance (but with significantly higher cost).

Many FPGA-based solutions found on the literature rely on conventional low-level
coding (typically using HDL and C on Xilinx tools) [16,17,20,21,23]. Other solutions
use the Xilinx System Generator toolbox in Matlab/Simulink, to enable model-based
design [19,24]. However, despite providing a model-based design approach, this tool does
not provide some of the advantages of HDL Coder, such as several automatic optimization
and pipelining options, automatic delay balancing, assisted fixed-point design, or the use
of regular Simulink blocks (much more intuitive for Simulink users).

Several solutions found on the literature have used Matlab/Simulink and HDL
Coder [10–15,25] for FPGA programming, including on Zynq chips [10,25]. However,
even though these works use these tools for experimental implementation, they do not
discuss their use, the programming philosophy, or their limitations. Therefore, even though
these papers discuss the advantages of using HDL Coder, they do not provide any in-
formation on its use or the development process. In fact, several papers mention only a
partial use of HDL Coder, to generate the HDL code for a given algorithm, then using other
development tools (such as the Xilinx Vivado suite) for final programming and deployment.
This paper proposes a complete methodology to fully program the FPGA of Zynq-based
boards using Simulink and HDL Coder and to deploy the code into the platform.

Furthermore, the programming of the ARM processor in Zynq-based boards using the
Embedded Coder tool is not typically leveraged by the solutions found in the literature—
low-level development tools are typically adopted or the processor is not extensively
used. In [18], the authors discuss the advantages of using Embedded Coder for partial
development of the ARM processor code. However, it is only used to generate a C code for
specific algorithms, with that code being manually integrated into a more complex code



Electronics 2022, 11, 1130 4 of 42

using low-level tools. Hence, Embedded Coder is not used for the overall programming
of the ARM processor nor for direct deployment. The use of this tool is also only briefly
mentioned, but not discussed. To the best of the authors’ knowledge, no solutions found in
the literature have yet used the HDL Coder and Embedded Coder tools to fully program
and deploy power electronics control and monitoring solutions in Zynq-based boards, in
power electronics applications. This paper proposes a complete methodology and workflow
to design and deploy power electronics solutions entirely from the Matlab/Simulink
environment, without the need for interaction with additional tools or low-level coding
(neither C nor HDL).

In addition to the design methodology and development workflow, this paper ex-
tensively covers the real-time monitoring of power electronics systems from Simulink,
using Zynq-based boards. This presents a crucial advantage for debugging and fine-tuning
control algorithms implemented in the FPGA for real-time execution, not possible when
using stand-alone FPGAs (even if programmed using HDL Coder). In [18], a custom
interface is proposed for real-time monitoring, but it relies on custom code and therefore
implies development outside Matlab/Simulink, with low-level coding tools.

Even though the tools provided by Mathworks are relatively well documented and
make prototyping with Zynq devices significantly easier, their setup and use are not entirely
straightforward and can present a steep learning curve. For this reason, this paper presents
a detailed description on setting up and using all the necessary tools. The proposed design
methodology is then described in detail. This paper does not merely show how to use
the software tools, but instead presents a complete programming philosophy and design
methodology, from peripheral management to real-time monitoring. This includes the
analysis of several drawbacks of HDL Coder’s automatic code generation for real-time
power electronics control and solutions to overcome them.

This paper also proposes techniques for the implementation of all peripheral hardware
typically required for power electronics (ADCs, isolated digital outputs, etc.) and to
overcome possible controller limitations, such as insufficient input/output ports. Several
protection mechanisms are also proposed for safe power electronics prototyping. The
proposed solution allows a continuous real-time monitoring of any number of waveforms
and internal controller variables using Simulink External mode. A technique is also
proposed to perform lossless data acquisition (with no undersampling) of limited time
windows.

A demonstration model is provided by the authors, with the proposed techniques and
peripheral management code pre-implemented, for immediate testing on a commercially
available development board—a Zedboard—and with off-the-shelf ADC modules. This
provides the reader with a low-cost, easy-to-use starting point to test the proposed tech-
niques and start prototyping power electronics systems using the proposed methodology.
This should significantly reduce the learning curve and development effort of this type of
solution, contributing to a broader access to high-performance power electronics control
using Zynq-based platforms.

To demonstrate the potential of this type of controller for advanced control of power
electronics converters, the Zedboard is used to control a multilevel inverter using Model
Predictive Control. Experimental results are presented for the proposed techniques and for
the UPS application example.

To summarize, the main contributions of this paper are as follows:

• A complete design methodology for power electronics using Zynq-based boards and
Matlab/Simulink tools is proposed for the first time.

• The proposed methodology allows programming of both the FPGA and ARM proces-
sor found in Zynq-based boards entirely from the Simulink graphical environment,
with no low-level coding. Previous solutions found in the literature typically pro-
gram only the FPGA using Simulink and often for partial development (completed in
low-level tools). Few previous solutions have used Simulink to program the ARM
processor in Zynq chips for power electronics applications, and none have used it
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for complete development (FPGA+ARM) and real-time deployment and monitoring,
entirely from Simulink (with no additional tools or coding).

• The proposed methodology allows continuous real-time monitoring of power elec-
tronics systems with Zynq-based boards directly from Simulink, with no need to
develop custom interface tools. This presents a vital advantage for FPGA control
algorithm implementation, since it enables easy real-time access to any internal control
variable—critical for debug and controller tuning. A technique for data acquisition
with no sample loss is also proposed.

• Analysis of several HDL Coder drawbacks for power electronics control, such as
unreliable processor execution cycles or peripheral timing corruption due to automatic
delay balancing, is not properly described in the literature. Techniques are proposed
in this research to avoid/mitigate these problems.

• This paper also includes a proposal of hardware peripheral management techniques
and protection mechanisms to stop power converter operation in case of over-current,
over-voltage, processor lock (crash), or loss of communication with the host computer.

• We also provide distribution of a Simulink demonstration model including all pro-
posed programming techniques and hardware management solutions, for easy and
immediate reproduction and testing by the reader, using commercially available
development board and ADC modules.

This type of detailed study and proposal of a development methodology for rapid
prototyping of power electronics using Zynq-based devices has never been available in the
literature. Furthermore, the distribution of ready-to-use solutions (Simulink code made
available for direct use) provides a major contribution for research groups, educators, and
companies to be able to use these tools for power electronics prototyping, significantly
reducing the development time and effort.

This paper is organized as follows: in Section 2, the hardware requirements for power
electronics control are analyzed and possible implementations are discussed. In Section 3,
the proposed design philosophy for Zynq SoCs from Matlab/Simulink is presented.
Section 4 presents the required software tools and respective setup process. Section 5
is the main section of the paper and presents the proposed development methodology for
Zynq-based boards using Simulink. Section 6 presents a power electronics application
example controlled using a Zedboard. Lastly, Section 7 presents the final conclusions.

2. Control platform Hardware Requirements for Power Electronics Control

Power electronics systems can present radically different structures, with different
converter topologies and applications. Thus, hardware requirements change significantly
depending on the system and its defined requirements. For example, the number and type
of sensors and the number of semiconductors to control varies significantly depending on
the target application and converter topology. The connectivity requirements of the system
can also significantly vary, ranging from no connectivity at all (fully standalone operation)
to networked or internet-connected applications (critical for the industry 4.0 paradigm).

Figure 1 presents a simplified representation of some of the most common controller
interfaces and peripheral hardware required for power electronics converter control.

As shown in the figure, many distinct controller interfaces can be used in power
electronics control for different purposes. However, some interfaces are mandatory and
can be found in all power electronics controllers (highlighted in red in Figure 1):

• Digital outputs for power switch gate signals;
• Analog inputs for sensor data acquisition.
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Figure 1. Most common controller interfaces and peripheral hardware needed for power
electronics control.

Without these interfaces, closed-loop power converter control would be impossible.
Other interfaces can also be highly advantageous for power electronics design and control
but are not found in all applications. Some of the most common examples are:

• User interface and data acquisition—enables data visualization, debugging, and
parameter tuning;

• Gate driver status readout—useful when gate drivers provide status/error signals;
• Communication interfaces for interaction with other systems (e.g., other controllers),

internet connectivity or remote monitoring;
• Digital inputs/outputs for auxiliary signals, such as panel signaling and command.

All listed interfaces can be implemented in several manners. This paper presents
simple and inexpensive ways to implement these interfaces for prototyping using Zynq-
based controllers. The requirements for each interface and proposed implementations are
presented below.

2.1. Main Controller

The most critical component of the control platform is the main controller board. In
the context of this paper, the main controller is assumed to be a Zynq-based board. Using a
Zynq-based controller enables both the precise peripheral control and deterministic execu-
tion of an FPGA and the simple connectivity of a processor. In this paper, a commercially
available Zedboard development kit is used. This board was selected due to its wide
availability, comprehensive documentation, and vast community support. Additionally,
this board is pre-supported by HDL Coder and Embedded Coder, which means no manual
board configuration is required to start programming the board from Matlab/Simulink.
This is ideal for the first contact with Zynq-based development from Simulink, making
setup easier for new users.

2.2. Analog to Digital Converters (ADCs)

Analog inputs are essential in power electronics systems, as they define how the
controller perceives the state of the system. ADCs must have an acceptable level of precision
and a sufficiently high sampling frequency. In addition, all ADC channels must be sampled
simultaneously—this is especially important in many advanced control techniques, such
as MPC.

For easy implementation and reproduction, commercially available ADC modules
are used in this paper, specifically Pmod AD1 modules from Digilent [26]. Each module
provides two simultaneously sampled ADC channels with a 12-bit resolution and up to
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1 million samples per second. Each module can be directly plugged into a Pmod connector
on the Zedboard, making prototyping and experimenting very practical. The controller
must read data from the ADC modules using serial communication (implementation
discussed in Section 5).

2.3. Digital Inputs and Outputs

Digital inputs and outputs (I/O) are the most common interfaces found in control
boards, reading or writing binary signals. In power electronics, digital outputs are critical
for activating the power switch gate drivers. Digital inputs and outputs can also be used
for other purposes, such as interacting with auxiliary circuits, reading back gate driver
status or activating signaling (such as panel lighting). Hence, in complex power electronics
systems, such as those with multiple converters or multilevel topologies, a tremendous
amount of digital ports may be required.

Since most Zynq-based development boards have limited FPGA ports available exter-
nally, these may be insufficient to implement all necessary peripherals directly. In this case,
several techniques can be used to overcome the limitation.

Most converter topologies use complementary signals to activate pairs of power
switches: Thus, it is possible to generate control signals for only half the switches and use
external logic to invert those signals for the remaining switches. However, this makes it
impossible to simultaneously deactivate all switches (which might be necessary for safety
reasons). It also makes it impossible to generate a deadtime between the activation of
complementary switches. For this reason, this technique is not considered in this paper.
Instead, different approaches are proposed to increase the number of available digital
outputs (or inputs). These approaches are schematically represented in Figure 2 for the
output case (inputs can be implemented analogously).

Zynq
Board

Gate drivers or
other circuits����������

����������

Isolation* /
Level-shifting*

N N

(a)

Zynq
Board

Gate drivers or
other circuits����������

����������
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Shift Registers
4 N4

 !�"#�$���#�%�&�'(#�(�)

(b)

Gate drivers or
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Level-shifting*
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 !�"#�$���#�!%!�&_'��(�)

Zynq
Board

���������

 !"#
����������

Isolation* /
Level-shifting*

N

(c)

Figure 2. Proposed techniques for digital output implementation and expansion. (a) Direct connection
of FPGA ports to the target circuit. (b) Expansion of available output ports using shift registers.
(c) Expansion of available output ports using a secondary FPGA for port management.

If the used board has sufficient ports for all peripherals, each digital port can be
controlled directly by an FPGA port, as shown in Figure 2a. This is the easiest option to
implement and the most reliable. The gate activation signals must be isolated from the
potential of the power switch, not only to prevent short-circuits between different points of
the converter but also to protect the controller from any phenomena on the power circuit.
Optocouplers or digital isolators typically ensure this isolation. In this paper, SI8237 digital
isolators [27] are used, simultaneously providing isolation and level shifting from the 3.3 V
found on the Zedboard ports to 15 V, the voltage level required by the used gate drivers.
An analogous approach can be used for digital inputs.
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If sufficient ports are not available, it is possible to use serial-to-parallel shift registers
to convert a single data line (streamed serially) into a high number of outputs. This solution,
represented in Figure 2b, allows almost infinite expansion of the available outputs, with
very few data lines. However, the output port update time increases with the number of
signals, so a very long chain is not recommended. The non-negligible port update time
means this solution may not allow a reliable generation of deadtimes or the implementation
of modulators. This solution is therefore better suited for low-speed non-critical outputs.
In this paper, BU4094BCF shift registers [28] are used, associated in a daisy chain. This
way, only four data lines are needed on the Zynq FPGA-serial clock, data line, strobe,
and output enable. Furthermore, only four digital isolators are required, instead of one
for each channel. The used SI8237 isolators translate the signals to 15V, and the shift
registers operate directly at this voltage—this significantly reduces system cost compared
to individual isolators for all outputs. An analogous approach can be used for reading
inputs, using parallel-to-serial shift registers.

A more advanced solution, illustrated in Figure 2c, is to use a secondary (low-cost)
FPGA uniquely for port management. The main advantage of this approach is its extremely
high versatility. Since each output is controlled directly by an FPGA, deadtimes can be
precisely controlled, and modulation techniques can be easily implemented. The Zynq
controller sends commands to the secondary FPGA over a communication bus, so only a
few ports are needed on the Zynq board. The secondary FPGA is intended only for I/O
management and does not perform intensive calculations. Thus, very cheap FPGA boards
with a high number of ports can be used. This paper uses a Spartan 7 FPGA board (S7
Mini from Trenz [29]), which has 64 available FPGA ports. Even cheaper FPGA boards can
be found (e.g., Spartan 6 or Spartan 3 FPGAs). However, the Vivado tools only support
Xilinx 7-series FPGAs. Thus, a 7-series FPGA was selected to enable its programming from
Simulink (discussed in Section 5.8.4).

The communication interface with the secondary FPGA can be implemented in many
different ways, but a simple serial communication approach is proposed in this paper.
This approach requires only three output ports: two for communication (a serial clock
and a data line) and one output clock that indicates the start of the sampling period. The
synchronization with the secondary FPGA is implemented as shown in Figure 3.
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Figure 3. Proposed synchronization mechanism for outputs managed by the secondary FPGA.

As shown in Figure 3, the controller has a given (deterministic) calculation time. When
all calculations are complete, the main controller (Zynq) immediately sends the switching
states (or duty cycles) to be applied in the next sampling period to the second FPGA. This
way, the secondary FPGA receives this information before the next sampling instant. When
the next sampling period begins (indicated by the cycle_start bit), the secondary FPGA
applies the new states (or updates the duty cycle of the modulator, if one is used). This
guarantees near-perfect synchronization between the analog sampling and digital output
activation, making this solution perfect for critical signals and signals with strict timing
requirements, such as the power switch gate signals.
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In addition to outputs, the secondary FPGA can also be used to manage inputs. If
bidirectional communication is implemented, it can read inputs and return their value to
the Zynq-based controller.

2.4. User Interface and Data Acquisition

In this paper, all user interface and acquisition functions are performed using Mat-
lab/Simulink and supporting Add-Ons. This toolchain allows easy simulation and pro-
gramming of both the FPGA and processor components of the Zynq platform. The Zynq
board is network-connected to a host computer (via ethernet in the Zedboard case). The
host computer can monitor and control the system in real-time, allowing the user to ac-
quire data from the platform and alter controller parameters. The controller programming
philosophy and workflow are discussed in the following sections.

3. Proposed Design Philosophy for Zynq SoCs using Matlab/Simulink

Mathworks currently provides two workflows/add-ons for programming Zynq de-
vices: the Embedded Coder Hardware Support Package for Xilinx Zynq Platform and the SoC
Blockset Support Package for Xilinx Devices. These two solutions offer different features and
model design philosophies, but both enable the programming of the FPGA and ARM
processor in Zynq chips, and communication between them. The main difference found
when using these two solutions is a different Simulink model structure. While the Embedded
Coder Hardware Support Package implements all code (for both FPGA and processor) in the
same Simulink model, the SoC Blockset uses different Simulink models (files) to implement
each component (FPGA/processor), with a third model being used to interconnect the two
and explicitly define the communication interfaces. The SoC Blockset add-on offers addi-
tional communication features between the FPGA and processor, such as Direct Memory
Access and interrupts. However, these advanced communication mechanisms have proven
unreliable with low executions times (tens or even hundreds of microseconds), such as
those required in power electronics applications (confirmed by Mathworks support). For
this reason, these features are not particularly helpful in the context of power electronics
prototyping, addressed in this paper.

Even though the model implementation differs significantly between the Embedded
Coder Hardware Support Package and SoC Blockset, both add-ons can be used for power
electronics control and prototyping with Zynq boards, using the proposed development
philosophy, coding solutions, and peripheral implementations. The choice between these
two add-ons ultimately comes down to a personal preference or a given feature that might
be advantageous for a specific application. In this paper, the Embedded Coder Hardware
Support Package will be used, since the authors have found it more intuitive and easier
to use for the proposed development. For this reason, the presented workflow setup
instructions and Simulink models are targeted at this specific tool. Nonetheless, the
proposed power electronics development methodology with Zynq boards can be directly
transposed for use with the SoC Blockset, if preferred. The Simulink model organization
and communication blocks will differ, but the development methodology will be the
same, including the controller design philosophy, timing definition, delay management
techniques, data acquisition, peripheral management, protection mechanisms, etc.

Due to the existence of two processing units in hybrid SoCs (FPGA and ARM proces-
sor), algorithms can generally be implemented in three different ways:

• Algorithms can be executed uniquely on the ARM processor;
• Algorithms can be executed uniquely on the FPGA;
• Algorithms can be jointly executed on processor and FPGA—co-processing.

Execution entirely on the ARM is the easiest to achieve since programming a pro-
cessor is significantly easier than programming an FPGA. This is also true when using
Matlab/Simulink since most Simulink blocks are supported by Embedded Coder and
can be directly used for code generation (the same model used in simulation). Hence,
this is the fastest and easiest way to implement an algorithm on a Zynq SoC. However,



Electronics 2022, 11, 1130 10 of 42

the processor presents limited processing power and cannot achieve low sampling times
reliably. Furthermore, precise timing is not guaranteed, and I/O management at high
frequencies is nearly impossible. Thus, this design philosophy is typically not viable for
power electronics control with Zynq-based controllers.

On the other hand, the parallel nature of the FPGA allows a massive amount of
calculations to be performed in very little time, enabling very high sampling frequencies to
be achieved. More importantly, the execution is entirely deterministic, which means there
is no execution time variability. The highly accurate timing of FPGAs also allows precise
timing and synchronization of I/Os. Thus, running an algorithm entirely on the FPGA is
typically the solution with the best possible performance. However, FPGA programming is
significantly more complex and requires a different programming philosophy to leverage
the parallel execution capabilities. Additionally, the limited access to internal FPGA
variables makes debugging and data acquisition very hard and hinders interaction between
the user and the algorithm.

When co-processing an algorithm, its execution is divided between the FPGA and
processor, leveraging the advantages of both. This way, critical or calculation-intensive
parts of the algorithm can be executed on the FPGA, taking advantage of its parallelism.
At the same time, the processor can be used for connectivity, user interface, or to run parts
of the algorithm. Running part of the code on the processor can have several advantages.
For example, if a high amount of floating-point or double-precision calculations need to
be performed, it may be preferable to execute them on the processor since the FPGA has
limited resources to perform these operations (DSP slices). Thus, using both processing
units to execute a given algorithm provides higher design flexibility and can be highly
beneficial.

The main disadvantage of co-processing a given algorithm is that both the FPGA
and processor need to respect strict timing requirements to ensure correct execution. For
example, in power electronics control, all controller calculations must be completed within
a sampling period. If the control algorithm is co-processed, each processing unit must
finish its calculations in a given (very short) time and return the resulting data to the other.
While the FPGA has a deterministic calculation time, the CPU does not-the execution time
varies. Thus, if the processor fails to perform all calculations on time, the FPGA will use
the wrong data to perform the following steps, leading to incorrect results and non-optimal
control action. This is particularly problematic when high sampling frequencies are used.

With the used development board (Zedboard) and the Operating System (OS) image
provided by Mathworks, it was found that the ARM processor could not operate with low
sampling times reliably, leading the controller to skip execution in some sampling instants
(as confirmed by Mathworks support). This is shown in Section 5.6.

For this reason, the controller execution itself cannot be co-processed in this platform,
at least for advanced control algorithms, such as MPC (with a high computational load
and low sampling times). Hence, the control algorithm must be fully implemented in the
FPGA. However, this does not mean that the ARM processor is not used. Even though
the control algorithm is fully implemented in the FPGA, the overall proposed prototyping
system uses a co-processing approach. The processor is used for all supporting features,
such as controller variables visualization, data acquisition, and parameter changes. These
features are critical for debugging and safe converter control, but can be executed at a
lower frequency.

The HDL Coder tool found in Matlab/Simulink features two Processor/FPGA syn-
chronization methods: free-running and co-processing. In co-processing mode, the tool
automatically generates synchronization logic to synchronize the FPGA code with the
processor. This guarantees that the FPGA waits for data from the processor and vice versa.
However, in this implementation, the FPGA acts as a slave—it is the processor that controls
the timing of execution and sampling time. Thus, the FPGA can no longer guarantee
precise peripheral timing, and the sampling time may vary. While this may be appropriate
for other applications, it is unacceptable in power electronics control, especially given the
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lack of CPU execution reliability with low sampling times. Thus, the co-processing mode
of HDL C oder should be avoided when prototyping power electronics systems.

In free-running mode, no synchronization mechanism is implemented between the
FPGA and processor. However, since the control algorithm and all peripheral management
are executed uniquely on the FPGA, this does not carry any negative consequence. This
mode must be used for power electronics control using HDL Coder. The overall adopted
implementation philosophy is shown in Figure 4.
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Figure 4. Proposed execution philosophy for power electronics control using Zynq-based devices.

As shown in the figure, the FPGA is responsible for all interface management (using
the available FPGA ports) and the execution of the real-time control algorithm. The ARM
processor communicates with the FPGA through an AXI interface, receiving data from the
FPGA and sending new parameter values to the controller. The ARM code executes at a
lower frequency, to ensure execution reliability. The processor communicates with a host
computer executing Simulink in External Mode. From this computer, the user can visualize
and save data from the controller and manually alter control parameters.

The platform is programmed using the workflow illustrated in Figure 5. The user
initially designs the algorithms in a single Simulink model, with all code to be executed
on the FPGA under a single subsystem. Then, the HDL Coder tool generates HDL Code
for the specified platform and uses the Xilinx Vivado tools to synthesize that code for the
FPGA (in the background). HDL Coder also automatically generates an interface model
for programming the processor. In this model, the FPGA subsystem is replaced by the
appropriate AXI interfaces to read/write data from/to the FPGA. This model is then used
to generate code for the processor (using the Embedded Coder tool) allowing the real-time
monitoring and control of the system.

Zynq-based Controller Board
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Figure 5. Schematic representation of the Zynq programming workflow from Matlab/Simulink.

4. Development Workflow Setup

The presented development workflow requires several tools and components to be
properly configured. The overall setup process is schematically represented in Figure 6
and described in detail below.
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Figure 6. Setup process of the proposed development workflow.

The following software tools are required to develop and deploy control algorithms
from Matlab/Simulink to Zynq-based platforms:

• Matlab/Simulink with HDL Coder Toolbox and Embedded Coder Toolbox.
• Xilinx Vivado (System Edition is recommended, but the free Webpack can be used if

the chosen board is supported).

It is important to note that compatible versions of the two software tools must
be installed. Each HDL C oder release supports only one version of the Vivado De-
sign Suite, which can be found in [30]. For the results presented in this paper, Matlab
R2019b and Vivado 2018.3 were used. It should be noted that if Vivado System Edi-
tion is used, the “System Generator” tool does not officially support the Matlab version
required for HDL Coder compatibility, so it is necessary to manually alter the list of
compatible versions for the tool to interact with Matlab (steps found on [31]). If Vi-
vado System Edition is used, it is recommended to start Matlab using the System Gen-
erator tool, which automatically configures the connection to Xilinx tools. Otherwise,
the HDL generation tool must be configured manually every time Matlab is opened
(using the command hdlsetuptoolpath(‘ToolName’,‘XilinxVivado’,‘ToolPath’,‘C:
\Xilinx\Vivado\2018.3\bin\vivado.bat’), with the appropriate Vivado version).

The following Matlab Add-Ons must be installed from the Add-On Explorer:

• HDL Coder Support Package for Xilinx Zynq-7000 Platform.
• Embedded Coder Support Package for Xilinx Zynq-7000 Platform.
• A supported compiler (MinGW-w64 is a practical choice, which can be installed

directly from the Matlab Add-On Explorer).
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Next, it is necessary to configure the add-ons for the correct hardware board. In
order to use the HDL Coder, a board definition is required, which defines the target FPGA
and respective interfaces. The add-on natively supports several development boards,
which include the Zedboard used in this paper. For any of these boards, the tool includes
pre-configured board definition files, so no manual setup is required.

If the target platform is not pre-supported by HDL Coder, it is necessary to create a
custom board definition to enable FPGA code generation from Simulink. With appropriate
board definition files, the HDL Coder tool can generate code for any Xilinx board supported
by the used Vivado version. The board files can be found in C:\ProgramData\MATLAB\
SupportPackages\R2019b\toolbox\hdlcoder\supportpackages\zynq7000, where R201
9b should be replaced with the correct Matlab version. Custom boards should be added
here, according to the instructions found on [32]. After adding a custom board, Simulink is
able to generate code for its FPGA.

To program the ARM processor from Simulink, the Embedded Coder Support Package for
Xilinx Zynq-7000 Platform must also be configured. This requires the board to run an OS
which supports all features and libraries required by the tool, enabling communication and
programming directly from Simulink. Several development boards are natively supported
by this Add-On (including the Zedboard). For these boards, pre-configured OS images are
included. In this case, the user only needs to run the add-on setup from the Matlab Add-On
Manager. This provides a setup wizard which writes the OS image to the target SD card and
configures the network interface for communication with the board. Pre-configured files
for other boards can also be found on the official Mathworks GitHub [33] or in community
forums.

If the desired board is not pre-supported by Mathworks or the community, it is also
possible to generate a custom Linux OS image using the Buildroot tools provided by Math-
works [33] or building a custom Petalinux image with all required libraries. However, this
process depends on the target platform and requires a high level of familiarity with Linux
OS building and these specific tools, so it will not be discussed in this paper. Additionally,
if the user does not want to program the ARM processor using Simulink (only the FPGA),
the Embedded Coder Support Package setup can be skipped.

This paper focuses uniquely on prototyping with Zynq-based boards entirely from
Simulink, taking advantage of both the FPGA and processor, so both the HDL Coder
and Embedded Coder tools are used. Given that the used board (Zedboard) is entirely
supported by both tools, the initial setup is fast and effortless. This makes the Zedboard
a perfect platform for initial testing of the proposed development workflow and for lab-
oriented prototyping.

5. Proposed Zynq-Based Development Methodology Using Simulink

The proposed development methodology makes it possible to program and control
a Zynq-based controller (a Zedboard in this case) directly from Matlab/Simulink. This
way, low-level C and HDL coding is not necessary, and programming can be done using
a significantly simpler graphical model-based approach. System monitoring and control
can also be done directly from the Simulink graphical interface. This section discusses the
main steps and techniques for prototyping power electronics systems using this workflow.
As an addition to this paper, an example Simulink model can be found in [34], to help new
users get started with this development methodology. This demo provides the Simulink
code implementation of the all proposed design techniques, allowing readers to easily and
quickly implement the proposed prototyping solutions.

5.1. Simulink Model Structure

When developing code for Zynq-based chips, the Simulink model must clearly sep-
arate the contents to be executed in the FPGA and processor. This is done by creating a
single subsystem that includes all content to be executed on the FPGA. This is shown in
Figure 7, for the case of the demo provided in [34].
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Figure 7. Top-level view of the demo model provided in [34]. Red and green represent the sampling
times of the FPGA and processor, respectively.

In the model shown in Figure 7, the subsystem named FPGA contains all code to
be executed on the FPGA of the Zedboard. The code inside this subsystem will be used
directly for HDL code generation. The overall Simulink model can be used to accurately
simulate the response of the entire system (FPGA+processor). Everything outside the
FPGA block will be used to create a new model for programming the ARM processor
(denoted as interface model in Simulink).

When designing the overall Simulink model, the user must carefully define the sam-
pling time and data types to be used in the FPGA. Each port on the FPGA subsystem
translates directly to an AXI interface register (or registers) for communication with the
processor or to a physical FPGA I/O port (or multiple ports). When using different
sampling times in the FPGA and processor (as proposed in this paper), rate transition
blocks must be used to ensure a correct simulation of the system (shown in yellow in
Figure 7). Sample time consistency can be quickly checked by having Simulink display
different sample times in different colors (as shown in Figure 7). It is important to note that
all blocks inside the FPGA subsystem are included in the HDL code and therefore alter the
FPGA behavior. Thus, rate transition blocks must be included outside the FPGA subsystem,
to affect only the simulation. These blocks are also later removed from the interface model,
so the processor executes with a single sample time.

Inside the FPGA subsystem, the sampling time defines how fast the FPGA updates
its internal states (the FPGA clock). Hence, lower sampling times typically translate to
lower code latency and therefore higher throughput. However, lower sampling times also
make FPGA timing constraints more difficult to fulfill (often making a successful synthesis
impossible). While many algorithms can be implemented with a relatively high sampling
time, many peripherals (such as ADCs, communication interfaces or PWMs) cannot, as
this would make it impossible to implement high-speed or high-precision signals. For
this reason, a low sample time must be used when programming these interfaces (even if
several sampling times are used in the FPGA). All FPGA code in the provided example is
executed at 25 MHz (sampling period of 40 ns).



Electronics 2022, 11, 1130 15 of 42

5.2. Simulink Model Restrictions

When designing the Simulink model for Zynq programming, several restrictions must
be kept in mind.

5.2.1. Supported Simulink Blocks

A vast majority of blocks in the Simulink libraries can be used for code generation for
the Zynq ARM processor by the Embedded Coder tool. This makes ARM programming
very simple. On the other hand, only a limited number of Simulink blocks can be used for
HDL code generation. This limits a direct translation of models designed for simulation and
implies a higher design effort. The “HDL Coder” Simulink library includes HDL-specific
blocks and a complication of regular Simulink blocks fully compatible with HDL code
generation. Other blocks not found on this library may also be compatible. State machines
can also be implemented in the FPGA using the Stateflow tool. It is also possible to generate
HDL code directly from Matlab code, using the “Matlab Function” block. However, it is
important to note that not all Matlab functions are supported.

5.2.2. Data Types

A processor can perform all operations using floating-point and double-precision
data, making data handling extremely easy. On the other hand, an FPGA has limited
resources for performing floating-point operations and these frequently present higher
latency. Hence, it is typically preferable to perform (most) FPGA calculations using fixed-
point arithmetic (especially in complex algorithms, such as power electronics control).
In this case, data types must be carefully selected, to ensure sufficient data range for all
possible values, without compromising data precision. This selection can be done manually
(relatively easy in simple or well-defined systems), or aided by the “Fixed-Point Designer”
tool. In the demo model provided in [34], a 32 bit length is typically used, varying only the
portion of bits used for the fractional representation (scaling factor).

Due to the restrictions found on the FPGA design, non-critical calculations should
be performed on the ARM. For example, mean or RMS values computed only for user
monitoring (not used in the controller) can be calculated on the ARM. This provides three
major advantages: 1. fewer FPGA resources are used; 2. these operations can performed
using floating-point data; 3. pre-designed blocks can be used (e.g., those from the Simscape
libraries), which are not compatible with the HDL code generation. Consequently, the
implementation of these non-critical operations is significantly simpler in the ARM.

5.3. Algorithm Development and Design Philosophy

When designing algorithms for the the FPGA and ARM processor in Zynq chips, the
developer needs to understand their fundamental code execution differences.

As any other processor, the ARM processor in Zynq chips executes instructions
sequentially. This leads to very high versatility and easy programming. On the other hand,
it also means that true parallelism is not possible and precise execution timing cannot
be ensured. Hence, ARM execution is preferable for non-critical controller functions and
monitoring purposes.

On the other hand, an FPGA operates in a fully parallel manner—an immense amount
of operations can be done at the same time—and all operations are entirely deterministic.
This is extremely advantageous in terms of execution speed and timing management.
However, to fully take advantage of this potential, the designer must adjust his/her
mindset to this reality and implement the algorithms with these characteristics in mind.
Thus, someone used to regular Simulink coding or processor programming might need
some time to fully take advantage of FPGA capabilities.

5.3.1. Delay Balancing and Timing Consistency

The parallel nature of FPGAs also creates additional challenges, such as ensuring
timing consistency of the design. Take the very simple example of calculating x = a ∗ k + b,
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where k is a constant and a and b are two inputs updated simultaneously. Now assume that
the multiplication operation has a latency of three clock cycles in the FPGA. This means
that the result of a ∗ k is only updated three clock cycles after a is altered. Hence, if b is
updated simultaneously with a, during those three clock cycles, the value of x will be
incorrect—it will not be the correct result with the current values of a and b nor with the
previous ones. To avoid this, it is necessary to include an analogous delay of three cycles in
the variable b. This way, the result x keeps the previous value for three samples after a and
b are updated, but then is immediately altered to the correct new value—the operation has
an overall latency of three samples. This sort of delay balancing is often made manually
when using hardware description languages, and can be extremely difficult to implement
for complex algorithms. This makes FPGA programming a highly complex procedure,
requiring experienced developers.

However, FPGA programming from Simulink removes the main difficulties in FPGA
programming. First, HDL knowledge is not necessary at all, making FPGA programming
accessible to anyone with Simulink experience. Most importantly, the delay balancing is
automatically ensured by the HDL C oder tool, which automatically inserts all required
delays to ensure data timing consistency (in a manner invisible to the user). This is
highly advantageous and significantly reduces the programming difficulty. The HDL code
generated automatically by the HDL Coder tool may not be as efficient as that produced by
a skilled HDL programmer, since it relies on automatic code conversion tools, which may
not produce the simplest or fastest-executing HDL implementation in all cases. However,
it does enable non-HDL-experts to successfully program FPGAs.

However, despite being extremely useful for algorithm development and implementa-
tion, the automatic delay balancing provided by Simulink can create a significant problem
when managing peripherals, such as ADCs. When creating the code to manage these pe-
ripherals, the developer must ensure precise timing between the output and input signals.
This can be tested in simulation, wielding the correct result. However, when generating
HDL code, Simulink balances the delays between all inputs and outputs on the whole
FPGA subsystem. This means that the FPGA output signals to be applied to the ADC, for
example, will be delayed in order to match the longest controller calculation path. Thus, if
the controller has a high latency, the FPGA output signals to be applied to the ADC will be
significantly delayed, compromising the timing and synchronization between input and
output signals and consequently corrupting the ADC operation.

In order to ensure the correct timing and synchronization between peripheral inputs
and outputs, the delay balancing must be disabled for the top model (the FPGA subsystem)
and on the global model configuration (HDL Code Generation→ Optimization→ General
→ Balance Delays). This avoids delaying the outputs meant for peripheral control due to
large latencies on the remaining model. On the other hand, it is not desirable to have delay
balancing disabled entirely, as this would significantly increase the design effort. Thus,
separate subsystems can be used inside the FPGA subsystem, with delay balancing enabled
for each of them, but disabled for the overall model. This is shown in Figure 8 for the case
of the demo model.

As seen in Figure 8, the FPGA code has been divided into two types of subsystems:
peripheral management subsystems (ADCs and shift-register outputs) and all remaining
code. This ensures that peripheral management is not compromised by the delays in the
remaining code. In the case of the ADCs, this separation guarantees that the output signals
sent to the ADC are not delayed due to a high latency of the remaining code—ensuring
correct ADCs operation. The shift-register management only requires output ports, so the
synchronization between inputs and outputs is not critical. Hence, this block could be
included in the general code subsystem, without compromising the shift-register operation.
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Figure 8. Internal view of the FPGA subsystem of demo model provided in [34].

Delay balancing can be enabled or disabled for a specific subsystem using the HDL
Code→ HDL Block Properties menu when right-clicking the subsystem.

This solution provides both the advantages of the automatic Simulink delay balancing
and the required input/output synchronization for hardware peripherals. The need for
this solution can be easily verified by enabling the delay balancing on the overall demo
model, which causes the ADC to no longer operate correctly.

5.3.2. Sample Time Differentiation

When designing Simulink models with the proposed workflow, it is important to
clearly distinguish three different sampling times:

Controller sampling period In power electronics, a fixed sampling time is typically used
in the control system. This sampling time varies greatly with the used control tech-
nique and typically corresponds to the ADC sampling period. While conventional
control solutions can have sampling times as high as hundreds of microseconds or
even a few milliseconds, in advanced control techniques such as MPC, this period can
be as low as a few microseconds. The ADC and controller sampling period is denoted
in this paper as controller sampling period. This sampling period should be selected
considering the control system requirements and performance objectives. A lower
period typically promotes improved waveforms, but usually increases switching
losses, causing lower efficiency (even though this can be mitigated with advanced
techniques). A lower period also reduces the available time for computation, making
the system implementation more demanding. Furthermore, the used ADCs must be
able to sample new values at the chosen frequency—lower sampling periods will
require ADCs with higher sampling frequency, potentially increasing their cost. Thus,
the controller sampling time needs to be chosen carefully considering the controller
requirements, desired performance and overall system cost. If a modulation stage
exists, it is typically the same as the modulation period (synchronized with the mod-
ulation output). Since control strategy optimization is not the focus of this paper, the
selection of the actual sampling period value will not be discussed. In the provided
demo model, the controller sampling period is represented by Ts_ADC_sample and
has a default value of 70µs.
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FPGA sampling period Even though the FPGA code must ensure a correct controller
sampling period (and respective synchronization with the ADC acquisition), the
internal FPGA states update at a significantly higher frequency (up to hundreds of
MHz—periods as low as a few nanoseconds). The corresponding period is denoted
as FPGA sampling period and corresponds to the sampling period used in Simulink
inside the FPGA subsystem. In the provided demo model, the FPGA sampling period
is represented by Ts_FPGA and has a value of 40 ns. A low FPGA sampling period is
critical for the implementation of high-speed peripherals and communication and
allows lower latency to be achieved. However, the lower the FPGA sampling period,
the harder it is for FPGA timing constraints to be fulfilled. Consequently, greater
care must be taken when designing the system from Simulink. It should be noted
that multiple rates can be used inside the FPGA subsystem, but this carries some
implications in terms of design. This approach is not used in this paper.

ARM sampling period Ideally, the processor code would be executed at the same rate as
the controller. However, since the processor cannot execute Simulink-generated code
reliably at high frequencies, this is often impossible. Thus, a higher sampling period
is necessary for the ARM execution. To select an ARM sampling period that allows
reliable processor execution at a constant rate, some testing is necessary (described in
Section 5.6). From the experimental tests carried out with the Zedboard, it was found
that ARM execution was mostly unreliable with sampling periods below 150 to 200µs
(this may differ for other boards, different software versions, or different alorithms).
In the provided demo model, the ARM sampling period is denoted as Ts_ARM and has a
value of 210µs (triple the controller period). This essentially means that all data read
from the FPGA by the processor (and shown to the user) is undersampled—only one
in each three samples is read (approximately). Even though this is not ideal, it still
offers acceptable data visualization. Full-sampled data acquisition is also possible, as
proposed in Section 5.7.

The sampling times and other required variables of the demo model are defined in
the InitFcn callback, in the model properties.

The actual development and model design of control algorithms for the FPGA in
Simulink is not the objective of this paper. This implementation is highly dependent on the
programming choices and personal preference of the developer. Instead, this paper focuses
on all the supporting hardware, software, and workflow required for prototyping power
electronics systems with Zynq-based controllers from Simulink. This includes both the
hardware and software component of the required interfaces (ADCs, digital outputs, etc.),
the programming workflow, techniques for system monitoring and data acquisition from
Simulink, system protections, etc.. Thus, this paper should provide new users with a solid
base from which to safely and quickly start prototyping power electronics systems with
Zynq-based controllers from Simulink. This should significantly reduce the learning curve
and development time of this type of prototyping solution.

5.4. System Simulation in Simulink

One of the main advantages of designing Zynq-based controllers in Simulink is the
possibility to easily simulate the joint operation of both the FPGA and processor code. This
can be extremely useful and significantly reduce the development time. The simulation of
FPGA behavior is theoretically realistic on a clock-cycle level, producing faithful results
in all signals. However, one must note that the simulated model does not yet include the
inherent latency of some operations, as well as the corresponding delay balancing. This
means the final FPGA code will typically present a higher latency than the one observed
in the simulation (but still ensuring data consistency). The user must keep this in mind
when evaluating the overall latency or throughput of the developed algorithms. It is also
important to note that the impact of delay balancing on the peripheral management does
not exist in this simulation (without delay balancing), making it very hard for the user to
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perceive it and causing hardware peripheral problems with no apparent cause (when the
latency of the remaining algorithms increases).

As previously described and shown in Figure 7, it is critical to include rate transition
blocks in all ports that transfer data between the FPGA and processor. This ensures that
both the FPGA and ARM portions of the code are executed at the correct frequency. As
shown on the demo model, shown in Figure 7, rate transition blocks are not added in the
FPGA subsystem ports that correspond to physical FPGA pins, since these are not read to
or written by the processor. In these ports the user can observe the (simulated) signals on
the FPGA pins, at the full FPGA sampling frequency. Additionally, these ports can be used
to simulate the behavior of hardware peripherals and test the FPGA code response. In the
provided demo model, an ADC simulation block is provided to emulate the behavior of
the used ADC modules (Digilent Pmod AD1). This allows the testing of the developed
FPGA code to communicate with the ADCs and makes a closed-loop simulation of the
system possible.

It is important to note that the simulation of this complete system will imply an overall
simulation step equal to the smallest sampling time (the FPGA sampling time). Since this
sampling time is much smaller than the controller sampling time, the simulation is much
slower than that obtained with a regular Simulink simulation, running at the controller
sampling frequency.

5.5. HDL Code Generation and FPGA Programming

After the Simulink model of the FPGA code has been developed and verified in
simulation, it can be converted to HDL for programming the Zynq FPGA. This is done from
the HDL Workflow Advisor, found by right-clicking the FPGA subsystem in the Simulink
model (in the HDL code subgroup).

The HDL Workflow Advisor provides a guided workflow to verify the HDL com-
patibility of the Simulink model, generate HDL code, and synthesize a bitstream for the
FPGA. In case of problems or incompatibilities with HDL code generation, the tool pro-
vides relatively clear errors and warnings, identifying the problematic Simulink blocks or
options. The tool also provides a significant amount of options for platform configuration
and HDL code optimization. The tool is quite intuitive and well documented [35]. The
most important configurations are discussed next. All other options can be left as default,
at least at an initial development stage. In the provided demo model, the HDL Workflow
Advisor options are pre-configured, so they can be used as an example.

The following HDL Workflow Advisor steps (as numbered in the tool, though may
vary slightly for different MATLAB versions) are important and should be done carefully:

• 1.1. Set Target Device and Synthesis Tool—The correct target platform must be
selected here. If using a custom board (not initially supported by the Matlab Add-
Ons), this step can only be completed if a custom board definition has already been
installed. The Xilinx Vivado installation must also be correctly configured (either by
opening Matlab through the System Generator tool of the Vivado System Edition or
by running the appropriate Matlab command). The Vivado project created by HDL
Coder in the background can later be found on the “Project folder” chosen in this step.

• 1.3. Set Target Interface—In this step, the user must select the correct interfaces
associated with each port of the FPGA subsystem. All ports destined for data exchange
with the ARM processor (both inputs and outputs) should be mapped to an AXI4-
Lite interface. When this option is selected, the tool automatically assigns an AXI
register address to that specific port. This address is used both in the FPGA code and
on the interface model that is latter generated for programming the ARM processor.
This ensures that both processing units read/write the same register(s) and with the
correct data type. When programming both the FPGA and ARM from Simulink,
as proposed in this paper, there is no need to alter these automatically assigned
addresses. For all subsystem ports that represent physical FPGA ports, the correct
board pins must be selected in the target interface. In the case of the Zedboard, the
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available board interfaces are pre-configured, so the user can merely select the target
interface and respective pins (e.g., bit n of the Pmod Connector JA1, or bit n of the
LEDs General Purpose). In the provided demo model, all target interfaces are already
configured for the Zedboard, providing a simple example. As previously described,
the Processor/FPGA synchronization option must be set to Free running.

• 1.4. Set Target frequency—The user must select the FPGA clock frequency to be used
in the generated code. This frequency can typically be set to the highest sampling
frequency used in the FPGA code, corresponding to the FPGA sampling period.

• 2.3. Check Block Compatibility—This task requires no user action if delay balancing
is enabled on a global level. However, if delay balancing is disabled for the global
model and only enabled locally (as proposed in this paper), a warning is generated in
this step. To avoid blocking the verification, the Ignore warnings option must be set.

• 4.2. Generate Software Interface Model—In this step, the interface model for ARM
processor programming is generated (necessary for the proposed implementation).
This step generates a new Simulink model for the ARM processor, replacing all FPGA
code with the corresponding AXI interfaces (to read/write data from/to the FPGA). If
the user does not want to program the ARM processor using Simulink, this step can
be skipped.

• 4.3. Build FPGA Bitstream—This step performs the HDL synthesis and bitstream
generation. This process is performed by the Xilinx Vivado tools in the background
and enables the user to generate a usable FPGA bitstream without even opening the
Xilinx tools. This means the user does not need to be experienced with the Xilinx tools
workflow.

• 4.4. Program Target Device—this step enables the bitstream to be loaded onto the
FPGA. It is possible to load the code using the JTAG connection or through the network
connection to the host computer (Download option). When the code is sent to the
FPGA using the Download option, the FPGA automatically loads the generated code at
every boot. Thus, the generated code is permanently loaded into the FPGA. When the
JTAG option is used (micro-USB cable required), the code is only loaded once (until
power-down). The Download option is recommended, since a network connection is
already necessary to enable monitoring from Simulink.

After step 4.4 is executed, the FPGA immediately starts executing the generated code.
Thus, all connected peripherals will immediately start being used. For this reason, it is
important to ensure that the code starts in a safe point, i.e., with all system outputs blocked
(especially those regarding power switch gate signals). Some recommended protections
are discussed in Section 5.9.

5.6. ARM Programming and Simulink External Mode

The interface model created on step 4.3 of the HDL Workflow Advisor provides a
Simulink model ready for execution on the ARM processor. This model is equal to the
base Simulink model, but the content of the FPGA subsystem is now replaced with the
respective AXI interfaces for processor implementation. Hence, all ports referring to AXI
interfaces are replaced with the corresponding blocks for reading or writing information
into the AXI registers defined in step 1.3 of the HDL Workflow Advisor.

All FPGA subsystem ports that refer to physical FPGA I/O are ignored in this model
(outputs use a constant value of 0, while inputs are connected to terminator blocks). Thus,
these inputs and outputs (such as those used for the ADCs and digital output ports) can
be overlooked and any blocks used just for simulation can be eliminated (e.g., the ADC
simulation block in the demo model). Since all ARM code should be executed with the same
sampling time (the ARM sampling period), the rate transition blocks used for simulation
should now be removed. The altered interface model of the provided demo is shown in
Figure 9.
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Figure 9. Top-level view of the interface model generated from the demo shown in Figure 7, with all
rate transition and simulation-oriented blocks removed. The whole model is executed at the ARM
sampling time (in red).

It is important to make sure that the whole model is running at the intended sampling
time, otherwise execution may not be reliable. The signals read from the FPGA (subsystem
outputs) can be directly visualized using scopes or further manipulated in the processor as
regular Simulink signals (before a given result is viewed). All FPGA inputs are initialized
as zero in the FPGA, before the processor code is executed.

When the interface model is ready, it can be used to program the ARM processor.
Since this paper proposes the use of the processor as an interface to allow user interaction
with the FPGA, Simulink’s External Mode is used. The ARM processor communicates with
the host computer running Simulink through the configured network connection. This way,
when running the model in external mode, the user can view any signal in the interface
model approximately in real-time (using scopes, for example) and change parameters of
the model (constant values, switches, etc.), just as in a simulation.

The user can start execution in external mode using the “Monitor & Tune” button from
the Hardware tab in Simulink—shown in Figure 10.

Figure 10. Simulink menu interface for external mode execution.

If the Hardware tab does not exist, instead being replaced by a System on Chip tab, the
user needs to click the Hardware Settings button and alter the “Feature set for selected hardware
board” option to “Embedded Coder Hardware Support Package”. Zynq-based devices can also
be programmed from Simulink using the Soc Blockset toolbox, but this tool significantly
differs from the workflow proposed in this paper and will not be discussed. After clicking
the “Monitor & Tune” button, the model is automatically compiled for the target hardware
(the Zedboard in the demo case) and downloaded to the board. Once the program is loaded
onto the board, the external mode execution begins and the user is immediately able to
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view signals in the scopes, as well as alter model parameters. It is important to note that
the simulation stop time must be set to inf to enable continuous external mode execution.

The provided demo model is ready for immediate testing after HDL generation and
adaptation (as in Figure 9). Simply by running the model in External mode, the user can
immediately view all information returned from the FPGA in the scope. For easy testing,
the user can simply view the Ramp and Sine signals, generated internally by the FPGA. The
Ramp signal represents an integer ramp incremented internally in the FPGA by 1 at every
controller sampling period (70µs). Figure 11 shows the ramp waveform read by the ARM
processor when running at the controller sampling frequency (with a sampling time of
70µs) and at a frequency 3 times lower (ARM sampling time of 210µs).

0 1 2 3 4 5

Time (ms)

640

660

680

700

720

740

R
a

m
p

 v
a

lu
e

70 s

210 s

unreliable execution  

and sampling at 70 s

Figure 11. Ramp visualization in the demo model at the controller sampling frequency and under-
sampled by a factor of 3 (ARM sampling period of 70µs and 210µs, respectively).

As seen in Figure 11, the ARM processor cannot execute the code reliably at 70µs. This
causes it to miss sampling steps, delaying the readings and causing unreliable waveform
visualization. This is highly undesirable in power electronics applications, since any
waveform deformations due to unreliable code execution can be erroneously interpreted
as poor controller response or other phenomena, which would pose a major difficulty
for controller prototyping and tuning. Thus, it is preferable to have a lower sampling
frequency, with reliable waveform visualization. When using an ARM sampling period
is 3 times higher than the controller period (210µs), the ramp visible to the user in the
scope in external mode is consistently incremented in steps of 3. Hence, despite being
under-sampled, the waveform is reproduced reliably, which is highly desirable.

The Sine signal found on the demo model is a 50 Hz sine wave internally generated by
the FPGA. This signal is shown in Figure 12, as acquired by Simulink in External Mode,
running with different ARM sampling periods.
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Figure 12. Reference sine wave visualization in the demo model at the controller sampling frequency
(ARM sampling period of 70µs) and under-sampled by a factor of 3, 15, and 30 (ARM sampling
period of 210µs, 1050µs, and 2100µs respectively).

Figure 12 clearly shows the negative effect of an unreliably execution with low sam-
pling periods (70µs)—what should be a perfect sine wave is shown distorted. The effect of
under-sampling on data visualization is also shown for a factor of 3, 15, and 30. As shown,
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a higher sampling period leads to lower waveform definition. In the provided demo, a
reliable ARM execution can be found at 210µs. Thus, high under-sampling factors (15
and 30) are unnecessary in this case. However, if lower sampling periods are used on the
controller (easily feasible in the FPGA), the under-sampling factor will necessarily take
much higher values. Figure 12 demonstrates the effect of such significant under-sampling
on data visualization quality.

It is important to note that as the ARM code complexity increases, so does its execution
time. Thus, if many calculations are done in the ARM (e.g., mean and RMS values), a higher
sampling period may be necessary to ensure reliable execution. Thus, the user must find
an ARM sampling period that provides reliable execution, while simultaneously ensuring
sufficient detail for waveform visualization.

Despite the necessary under-sampling of signals, Simulink external mode provides
continuous real-time monitoring of the system in a simple manner.

To export the data viewed on scopes to the Matlab workspace, the user only needs to
enable logging on each scope. The number of samples to be saved to be workspace can
be altered from the Control Panel icon seen in Figure 10—duration option in the Signal &
Triggering sub-menu. To keep all data (when exceeding the defined maximum number of
samples), the user can setup archiving in the Data Archiving sub-menu, which will save
individual files with the defined number of samples.

5.7. Data Acquisition

As clearly visible in Figure 12, the external mode execution allows the user to visualize
signals in real-time, but with reduced resolution. While this might be perfectly acceptable
for system monitoring, in certain situations it may be required to have full-sampled acqui-
sition. For this reason, a simple technique for data acquisition is presented. This technique
uses FIFOs implemented in the FPGA block RAM to store a given sampling window, which
is then transferred to the ARM processor at a slower frequency. This allows a limited time
window to be acquired at the full controller sampling frequency (with no under-sampling).

The presented technique is based on example models from Mathworks, improved to
enable running FIFOs and advanced triggering capabilities. The proposed implementation
can return a time windows starting before the triggering instant, making it possible to
acquire a time windows surrounding a given event. This is crucial to capture relevant
events in power electronics, such as transients, protection triggerings, etc.

The data acquisition block included in the demo allows the simultaneous acquisition
of 4 signals (the ramp and sine waves and the voltage signals measured using the ADCs). If
the user wishes to acquire more signals, additional FIFOs should be included inside this
block (simply by copying one of the existing lines). All results shown below are obtained
directly from the demo model and can be easily reproduced.

In the proposed implementation, new data is permanently read into the FIFO, to
ensure that data previous to the acquisition triggering instant can be acquired. At every
(controller) sampling instant, a new sample is pushed into the FIFO and the oldest one
is pushed out. This way, the FIFO is kept full (with the most recent data) at all times,
until an acquisition trigger is received. In the provided demo, new data is pushed into
the FIFO every time the ADCs acquire a new sample and after the corresponding voltage
is calculated (at the controller sampling period). The FIFO_Read signal (controlled from
the processor) triggers the acquisition and the FIFO_Pos signal defines how many samples
before the trigger should the retrieved (lower than the total FIFO length). The total FIFO
size is defined by the FIFO_length variable in the InitFcn callback (1000 by default).

Figure 13 displays the full-sampled data acquisition of the sine signal with a FIFO
length of 1000 samples and a FIFO position of 0 (FIFO_pos = 0)—acquisition starting at
the triggering moment.
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Figure 13. Sine wave full-sampled acquisition using a FIFO window of 1000 samples, starting at the
trigger instant (previous samples = 0).

As seen in this figure, the FIFO retains 1000 elements before the FIFO_Read signal is
asserted. After the assertion, the FPGA waits for another 999 samples to be acquired and
then starts to send back data to the ARM (in the FIFO output). This means the full acquired
time window is located after the triggering instant (shown between the two instants marked
in red). From Figure 13 it is clear that the retrieved FIFO data corresponds to the marked
FIFO window of the signal directly read from the AXI interface (with higher resolution).
The recovered window corresponds to a period of FIFO_length× Ts_ADC_sample = 1000×
70µs = 70 ms and the data takes FIFO_length× Ts_ARM = 1000× 210µs = 210 ms to be
transferred to the processor. The data transfer time and acquired interval are independent
from the number of signals to be captured, since each signal is stored in an individual FIFO
and transferred to the processor using a dedicated AXI register.

If the FIFO_pos variable is altered to 500, the retrieved sampling window should be
centered with the triggering signal (FIFO_read). This is shown in Figure 14.
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Figure 14. Sine wave full-sampled acquisition using a FIFO window of 1000 samples, starting
500 samples before the trigger instant.

This case provides data from before and after the capture trigger. This is extremely
useful when prototyping power electronics systems, since it allows the system to save data
both before and after a given event—for example, for viewing the system behavior that led
to a given threshold being crossed and the following response, or to observe the system
response before and after a given reference is changed. In this case, the FIFO only needs to
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read an additional 499 new samples before starting to return values to the processor, so the
data transfer starts sooner.

It is important to note that in the demo model the acquisition is triggered manually
from the processor simply for ease of testing. The trigger signal could come from any event
chosen by the user (such as protections being triggered, parameter changes, etc.) or even
by one of several events (by performing an OR operation on several trigger signals).

Figure 15 demonstrates the case in which the FIFO window starts 999 samples before
the trigger instant. In this case, the FPGA immediately starts sending FIFO data back to the
processor (in the next execution). In this case, waveforms are recovered up to the triggering
instant.
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Figure 15. Sine wave full-sampled acquisition using a FIFO window of 1000 samples, starting 999
samples before the trigger instant.

Since the provided block has a variable trigger position (not hardcoded into the FPGA
code), different events can be programmed to trigger data captures with different trigger
configurations (for better viewing in each case). This can be quite useful to allow posterior
offline study of transients or undesired phenomena.

As a comparison, Figure 16 demonstrates the FIFO acquisition of 1000 samples, when
a processor sampling time of 1050µs is used.
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Figure 16. Sine wave full-sampled acquisition using a FIFO window of 1000 samples, when the
processor sampling time is 1050µs.

Since the same controller sampling period is used, the 1000 samples in the FIFO cover
the same time window (70 ms). However, the same 1000 data points take significantly
longer to return to the processor—1.05 s. The advantage of full-sampled acquisition is
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clearly demonstrated for this case in Figure 17, in which the waveform read directly from
the AXI interface is compared to the window acquired using the FIFO.
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Figure 17. Comparison between the waveforms read directly from the AXI interface (under-sampled)
and retrieved from the FIFO (full-sampled), with a processor sampling time of 1050µs.

It is important to note that a FIFO length significantly higher than 1000 samples could
be used, for acquiring longer time windows. For example, the FPGA code generated
from the demo model utilizes only approximately 3% of the Block RAM available in the
Zedboard. Thus, for the same four signals, a capture window more than 30 times longer
could be used without exceeding the available FPGA resources. Nonetheless, as the user
increases the number of signals stored in FIFOs, the length of each FIFO should decrease
proportionally to ensure an equivalent memory usage.

5.8. Hardware Interfaces

A critical part of prototyping power electronics systems is to guarantee a correct
operation of the required hardware interfaces, such as analog inputs (ADCs), digital
outputs, communication interfaces, etc. Since all peripherals are managed by the FPGA,
all code for peripheral control must be implemented within the FPGA subsystem. The
proposed implementations for each of the most common interfaces required for power
electronics are described next.

5.8.1. Analog to Digital Converters (ADCs)

In this paper, a Pmod AD1 module was used, for the simultaneous sampling of two
analog channels. The Simulink code for this specific ADC is provided in the demo model,
for a single module (two channels). The demo assumes that the module is installed in
the lower row of the Pmod Connector JA1, as shown in Figure 18. For use in any other
connector, the interface for the ADC ports must be adjusted in step 1.3 of the HDL Workflow
Advisor.

Each Pmod AD1 module is connected to the FPGA using two input ports and two
output ports, as well as the ground and power pins, as shown in Figure 18b. The output
ports control the ADC acquisition (CS) and the data transfer (SCLK), while the two inputs
read (serially) the digital values obtained by the ADC on each channel (transferred after the
conversion). These inputs and outputs can be found directly on the ADC block included in
the demo model, as seen in Figure 8. The GND and VCC connections do not have to be
mapped on the Simulink model, since these two ports are hardwired to the power places
on the Zedboard. The ADC block provided in the demo model is implemented using a
state machine in Stateflow. This also serves as an example on how to use the Stateflow tool
to implement state machines in the FPGA.

As previously described, the ADC subsystem must not be delay balanced in relation
to the remaining code, or the output signals will be delayed to match the latency of the
remaining code. This will compromise the synchronization between the input and output
ports, corrupting the ADC operation.
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Figure 18. Pmod AD1 module installation for testing with the Zedboard and demo model. (a) Module
assembly as used in the demo. (b) Schematic representation.

After the acquisition and conversion, the ADC block shown in Figure 8 returns the
12 bit integer (in an unsigned 32-bit integer format) at ports ADC0 and ADC1. Inside the
balanced delays subsystem, the actual voltage applied to each ADC channel is calculated
(at the voltage gain subsystem). The demo model supports two ADC voltage calculation
modes: bipolar and unipolar. When the bipolar_adcs signal is False, the block converts the
ADC readout into the exact voltage found on the ADC—in the range 0–3.3 V. However, in
power electronics most sensors produce a bipolar signal, with both positive and negative
values. Therefore, signal conditioning is required to convert the output sensor voltage not
into a bipolar range, but into the unipolar range 0–3.3 V, accepted by the ADC. When this is
done, a zero voltage produces a signal centered within the acceptable range—1.65 V. Thus,
all values in the inferior half of the measurement range correspond to negative values
and values on the upper half represent positive values. In this case, the bipolar_adcs signal
should be set to True. This causes the output voltage of the ADC to be translated into a
bipolar range between −1.65 V and 1.65 V. In both unipolar and bipolar cases, the user
only needs to multiply the given voltage by the sensor gain and the measured signal is
obtained. In the demo model, the ADC mode can be altered manually in external mode.

The ADC voltages visualized using the Simulink External Mode are shown in Figure 19
for a sine waveform generated using a signal generator.
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Figure 19. ADC voltage visualization using Simulink external mode with the demo model. (a) Sine
wave applied to the ADCs. (b) ADC voltages read in unipolar mode. (c) ADC voltages read in
bipolar mode.

As seen in Figure 19, the voltage obtained from both ADC channels is practically
equal, due to the simultaneous sampling characteristic of the Pmod AD1 module.
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In the provided demo, a serial clock frequency of 2.5 MHz was used to read values
from the ADC. In this case, the full conversion and data acquisition takes approximately
6.4µs to be completed. The ADC communication period can be adjusted in the InitFcn in
the model properties.

5.8.2. Direct Digital Outputs

In power electronics control, digital outputs are of paramount importance, since these
control the power switch gate driver circuits. Thus, the ideal digital output implementation
is a direct one—each output signal is generated directly by an FPGA port. With this
implementation, each output channel can be independently controlled. This allows precise
timing control for each channel, making the implementation of high-resolution modulation
techniques possible. Additionally, protection mechanisms such as interlocks and deadtimes
can be implemented between channels.

This is also the most reliable implementation possible for digital outputs, since external
logic and auxiliary circuitry are minimized—only isolation and level-shifting are typically
required. In this paper, SI8237 digital isolators are used to simultaneously translate the
signal from the 3.3 V found on the Zedboard to 15 V (the voltage level used by the gate
drivers) and isolate the signals from the potentials of the power circuit. This not only
reduces the amount of required ICs, but also ensures significantly lower propagation delay
than optical isolators and level-shifters (under 45 ns per the datasheet—under 20 ns in
the performed tests). This extremely low delay is significantly lower than the typical
turn-on and turn-off times of power switches and therefore contributes very little to timing
imprecision.

The main disadvantage of this technique is that it requires a high amount of available
outputs on the FPGA (especially with complex converter topologies), and a high amount
of digital isolators.

In terms of FPGA code, this technique requires no additional effort, as each signal
is directly connected to an FPGA pin and requires no extra programming. In the demo
model, a 50 Hz square wave modulation is generated in the FPGA for the activation of
an (hypothetical) H-bridge converter. The pulses_out output provides the four activation
pulses, which are connected to the Pmod Connector JB1 by default. These pulses include
interlocks and deadtimes between complementary switches (discussed in Section 5.9.1)
and are permanently blocked if any protection is triggered (Section 5.9.2). The generated
output pulses, measured on Pmod Connector JB1, are shown in Figure 20.

Figure 20. 50 Hz square wave generated by the FPGA (measured on Pmod Connector JB1).

5.8.3. Digital Outputs Using Shift-Registers

As described in Section 2.3, the FPGA may not have sufficient I/O for a direct con-
nection of all signals. In this case, shift-registers can be used to expand the number of
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available I/O. In this paper, BU4094BCF shift-registers are used. These shift registers only
require four data signals—serial clock, serial data, latch and enable signals. In the provided
demo model, these signals are generated by the output ports SRO1_CLK, SRO1_DATA,
SRO1_LATCH, and SRO1_EN of the FPGA subsystem, respectively. The serial clock and
data lines are used to transmit the intended data serially into the shift-register. The latch
signal asynchronously transfers the data currently into the (internal) shift-registers to the
outputs of the IC, while the enable signal enables or disables all outputs of the IC.

Even though each BU4094BCF has eight output signals, one can use only as much
outputs as needed. For example, in the provided demo, only four outputs are required
(for a hypothetical H-bridge converter). Thus, one can update only 4 bits at a time to the
shift-register, reducing the overall data transfer time. This is demonstrated in Figure 21, for
the case of transferring 4 and 8 bits to the shift register (using the demo model).

(a) (b)

Figure 21. Shift-register data transfer and output update, for the cases of 4 and 8 used bits.
(a) Four output bits used (demo default). (b) Eight output bits used.

As shown, as the number of used output bits increases, so does the data transfer time.
While it takes approximately 1µs from operation start to output update, when updating
only four outputs (including the propagation delay of the shift-register), this increases to
1.5µs when using eight output bits. Hence, if several shift-registers are used in a daisy-
chain, the output update time will increase considerably. This means this type of output
approach might not be viable for the implementation of deadtimes, for example, since
the data update times can easily become higher than the intended deadtime itself. In the
demo model, the shift-register outputs do not use deadtimes. Additionally, high-precision
modulation techniques cannot be implemented when using shift-registers, because the
minimum time between two non-simultaneous state changes can never be lower than the
data update time (which might be long for complex converters). On the other hand, when
using control techniques that update all outputs simultaneously at specific times, the data
update time can be suppressed by transferring the desired data and then holding the latch
signal until the intended update time. This provides a significantly lower output update
delay. However, this also makes the technique more vulnerable to interference, since any
noise during the (long) waiting time could corrupt all output bits (with a single unintended
shift).

Given the characteristics of this type of implementation, it is particularly suited for
slow and non-critical signals, such as signaling or slow command (contactors, relays, etc.).

In the provided demo, the shift-register is assumed to be installed in Pmod Connector
JD1, as shown in Figure 22.
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Figure 22. Shift-register installation for testing with the Zedboard and demo model. (a) Experimental
assembly. (b) Schematic representation.

To alter the number of output bits to be used in the provided demo model, it is
only necessary to alter the parameter in the Shift-register outs block. If more than eight
outputs are used, additional shift-register ICs need to be included in the daisy-chain. In
the provided code, the shift-register outputs are only updated when their respective values
are altered at the input of the block.

When using this approach, only the four data lines connecting the FPGA and shift-
register need to be isolated. When using SI8237 isolators, these also translate the signals to
15V, and the shift-registers can operate directly at this voltage. This has two advantages:
it significantly reduces system cost compared to individual isolators for all outputs, and
it improves shift-register response, since this particular IC has a lower propagation delay
when supplied by a higher voltage. An analogous approach can be used for reading inputs,
using parallel-to-serial shift registers.

5.8.4. Digital Outputs Using a Secondary FPGA for Port Management

As described in Section 2.3 and illustrated in Figure 2, an alternative solution to
expand I/O without loosing the precise timing management of direct FPGA outputs is to
use a secondary FPGA uniquely for I/O management. This way, the secondary FPGA can
offer exactly the same performance than the primary Zynq-based board, requiring only
a small amount of ports on the main controller. Since port management does not require
intensive calculations, any low-cost FPGA can be used as the secondary FPGA.

In this paper, a Trenz S7-Mini board (with a Xilinx Spartan 7 chip) is used, with a
custom board that includes the FPGA and all required auxiliary ICs (such as level-shifters
and digital isolators). The Zedboard and custom secondary FPGA board are shown in
Figure 23.

Serial communication is used to transfer data from the Zedboard to the S7-Mini and
an additional bit is used to signal the start of cycle (the output update instant or PWM
window start), as explained in Section 2.3 and illustrated in Figure 3.

This implementation requires programming of a non-Zynq FPGA, which is not in the
scope of this paper. Therefore, the implementation details will not be discussed and this
will serve only as an example of how this type of solution can be used for Zynq-based
platform expansion.
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Figure 23. Zedboard and custom board for I/O management using an S7-Mini board. (a) Zedboard
and custom secondary FPGA board. (b) Schematic connection representation.

Figure 24 demonstrates the sampling, communication and output update instants
when controlling a three-level NPC UPS inverter using an MPC control technique (dis-
cussed in Section 6), using the Zedboard for ADC sampling and controller execution and
the S7-Mini to manage all digital outputs (for gate driver activation).

(a) (b)

Figure 24. ZedBoad output expansion using a secondary S7-Mini FPGA. (a) Sampling, communica-
tion, and update times. (b) Zedboard to S7-Mini communication delay.

As described in Section 2.3, the Zedboard acquires all ADC signals and performs
all required control calculations to obtain the new converter output states. As seen in
Figure 24a, this takes slightly over 10µs (difference between the yellow and blue instants).
As soon as this information is obtained, the Zedboard starts transmitting that information to
the secondary FPGA (S7-Mini) through serial communication. In this case, the information
takes approximately 6µs from start of transmission (from the Zedboard) to the full reception
and processing (by the S7-Mini), as seen in Figure 24b. This communication time includes
custom framing information, to enable transmission of different data to the S7-Mini. When
the S7-Mini receives the information, it performs no immediate action. Instead, it waits
until the start of cycle flag is asserted to apply the new states to the converter output (or
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update the PWM duty cycles in other control solutions). This way, a very small delay is
obtained between the ADC sampling and output update (only a few tens of nanoseconds).
The secondary FPGA implements the same deadtime used in the Zedboard (1µs, shown in
the next section), so the rising edge of pulse 1, shown in green in Figure 24a, is delayed by
1µs in relation to the update instant.

The most important advantage of this technique is its extreme versatility. Not only
can the secondary FPGA update digital outputs at a specific instant (as used in Finite
Control Set MPC in the example), but also implement advanced modulation techniques,
deadtimes, etc., with the same performance as if they were implemented in the main (Zynq-
based) board. Additionally, the secondary FPGA can also be used to implement additional
communication interfaces or digital inputs. It can, for example, read inputs at a very high
rate, but relay information to the main FPGA only when a given event occurs, significantly
reducing the communication load. More importantly, it allows a cheap expansion of the
FPGA I/O, since many Zynq-based development boards present a relatively low amount
of user-accessible FPGA ports. For example, the used S7-Mini board from Trenz offers 64
usable FPGA ports for approximately 40€. Using a secondary FPGA for I/O management
also enables the implementation of remote I/O; only the communication lines between the
two FPGAs need to be carried over the (possibly long) distance, with all I/O management
(such as PWM generation or event detection) being done locally.

5.9. System Protections and Fail-Safes

One of the most important parts of power electronics prototyping is to ensure the
safety and protection of the prototype and remaining equipment. For this reason, it is
very important to implement effective protection mechanisms before performing any
tests with the power converter. This section presents some important protection systems
for prototyping power electronics with Zynq-based systems. The demo model includes
all described protections, which can be used to jump-start the development of power
electronics using this platform and the proposed development workflow.

5.9.1. Power Switch Interlocks and Deadtimes

In the vast majority of power electronics converters there are pairs of complementary
switches, which cannot be active simultaneously (typically causing a short-circuit). Hence,
it is critical to ensure that those devices cannot be turned on simultaneously—typically
denoted as switch interlock. Additionally, it is also important to ensure that a given device
is completely deactivated before activating its complementary switch. This is typically done
by implementing a deadtime, which is a waiting time between the deactivation of a given
switch and the activation of the complementary switch. While some gate drivers already
provide this feature, the deadtime length is typically chosen by altering (re-soldering)
circuit components in each gate driver circuit, which makes it difficult to alter deadtimes
during a prototyping stage. Furthermore, most gate drivers can only provide interlocks and
deadtimes between adjacent switches, which cannot be used in some advanced converter
topologies, such as several multilevel converters (where complementary switches are not
adjacent).

For this reason, it is extremely practical to implement deadtimes directly in the
controller—they can be implemented between any channels and altered quickly and
easily without any hardware modification. In the demo model, a simple 50 Hz square wave
modulation is implemented for an H-bridge converter, for demonstration purposes. The
interlocks and deadtimes block, found inside the balanced delays subsystem implements both
interlocks and deadtimes between switches 1 and 2 and between switches 3 and 4. The
overall square-wave signals and deadtimes obtained with the demo model are shown in
Figure 25.
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(a) (b)

Figure 25. Square-wave pulses for an H-bridge converter and respective deadtimes. (a) Square-wave
pulses for H-bridge. (b) Deadtimes between pulses.

As shown in Figure 25b, each switch is only allowed to turn on 1µs after its comple-
mentary switch is disabled. Thus, by including this block before the FPGA output ports
(after the controller output), it is ensured that complementary switches cannot be acci-
dentally activated simultaneously, for example, due to programming errors. This ensures
prototype safety even in initial development stages. The Interlocks and deadtimes block
can be easily altered to include additional switches or to implement deadtimes between
different switch pairs.

The deadtime duration is defined in the InitFcn in the model properties and can
easily be altered (the code will automatically adapt to this variable change). In this paper, a
relatively short deadtime of 1µs was used because fast-switching SiC Mosfets were used
in the application example shown in Section 6. For IGBT power switches, the deadtime
typically needs to have larger values.

5.9.2. Overcurrent and Overvoltage Protections

Another important safety feature in power electronics prototyping is to ensure that
the system is immediately deactivated if a given safety limit (typically voltage or current
limit) is reached. This is implemented in the demo model in the protections block, found
inside the balanced delays subsystem—shown in Figure 26.

This block compares the voltages read from the ADCs (V1 and V2) with their respective
defined limits. In the demo, these limits are received from the ARM processor and can be
altered by the user at any time in External mode. If a given signal surpasses the defined limit
(in absolute value), the protection output (BLOCK output) is permanently asserted. This
blocking signal is then used to block the output converter pulses, as shown in Figure 26. If
a protection is triggered, all output pulses are permanently disabled (logical False). The
protections can then be reset by asserting the protection_reset signal coming from the ARM
processor (in External mode). It should be noted that the protections are completely disabled
if the reset signal is left permanently as True.

The internal implementation of the protections block can be easily replicated to trigger
the protections with any given signal or detection.
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Figure 26. Protections block and respective pulse blocking mechanism found in the demo model.

5.9.3. Processor-Lock Fail-Safe

Even though External mode execution is mostly reliable, it has been found that its
execution can sometimes crash, causing sudden interruption of the communication with
the controller. This was found to happen more frequently when attempting to execute the
ARM code with low executions times. Additionally, network problems can also block the
communication between the Zynq controller and the host computer and even the host
computer itself can crash. If the communication with the host computer is lost, the ARM
code execution is suspended.

Regardless of the cause, when the External mode execution blocks, the platform will
continue to operate and the user may be left with no way to monitor its operation or even
interrupt it. When prototyping power electronics converters, especially at early testing
stages, this can be critical, as the user will have no way to deactivate the converter, even
if something goes wrong. For this reason, this paper proposes a processor-lock fail-safe,
which automatically deactivates the power converter if communication with the host
computer (running the model in External mode) is lost.

This fail-safe is implemented by generating a clock signal in the ARM code (connected
to the Arm_CLK port of the FPGA subsystem; shown in Figure 7). This clock signal alters
its state at every ARM execution cycle and sends its new value to the FPGA through the
AXI interface. Every time the FPGA detects a change in this signal, it knows the ARM code
is executing and External mode is running correctly. To prevent the power converter from
operating without user supervision, a blocking signal is generated whenever the ARM fails
to alter this clock signal for a given number of consecutive ARM execution periods (by
the Arm_Running_CHECK block). This signal triggers the protections block, which then
disables the output power switch activation pulses permanently (until the protections are
reset). The demo model considers 10 ARM execution cycles as the threshold for fail-safe
triggering.

This simple mechanism is critical for safety when prototyping with external mode
and should provide a robust testing platform for new Zynq users.

5.10. General Prototyping Suggestions and Advice

Given the proposed methodology and all provided code in the demo model, any user
with Simulink knowledge should be able to start prototyping with Zynq-based devices
(especially with the Zedboard). In addition to the control platform and code development,
some suggestions are included next for more stable and reliable prototyping with this type
of platform.

5.10.1. Wiring and Interference

As in any system, noise and interference can have a major impact on system reliability.
For this reason, dangling-wire and breadboard-based installations should generally be
avoided. This type of wiring is perfectly acceptable for initial testing, but may not be
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suitable for EMI-rich environments, such as near high-voltage and high-current power
electronics converters. Figure 27 demonstrates this type of connection, as used for the
initial testing of a power inverter control (discussed in Section 6).

Figure 27. Zedboard wiring for initial testing of power inverter control.

This type of solution is acceptable for circuit testing, but the dangling wires act
as antennas, which tends to cause problems, especially in high-speed communication
interfaces. Therefore, it is recommended that after initial testing, custom board solutions are
developed (if possible) to operate in a mezzanine fashion (direct board-board connection).
This significantly reduces noise and increases system reliability.

5.10.2. Shielding and Proximity to Noise Sources

In power electronics, two of the main sources of EMI are the switching elements
themselves and inductors subjected to switching. When prototyping power converters,
and especially when using dangling-wire installations, such as that shown in Figure 27, it
is important to install all possible noise sources as far away from the controller as possible,
to reduce interference. Additionally, it is also very important to use proper shielding, to
protect the controller from noise radiated from the power circuit.

As an example, the system shown in Figure 27 was used to control a UPS inverter
(Section 6). At an initial stage, the controller was installed next to the power circuit, with
no shielding. In these conditions, the EMI was sufficient to actually cause the Zedboard
to momentarily shutdown, interrupting the converter operation. Simply by moving the
power circuit away from the controller and including some shielding (in this case, in the
form of an old computer case—seen in Figure 27), the system can operate correctly. Thus,
this is an important factor to consider, especially when working with higher voltage and/or
current levels. Similar solutions based on stacked boards (no dangling wires) have been
tested in the laboratory and proven to be significantly more robust regarding EMI.

6. Application Example—Control of a Multilevel Converter using MPC

As an example to demonstrate the potential of the proposed prototyping and develop-
ment workflow, Simulink was used to develop and program a Finite Control Set Model
Predictive Controller for a UPS inverter, for execution on the Zedboard. The overall system
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representation is shown in Figure 28 and the experimental setup is shown in Figure 29. The
controller internal assembly can be seen in Figure 27.
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Figure 28. Schematic representation of the experimental setup used for UPS inverter control.

Figure 29. Experimental UPS inverter prototype setup.

A three-level Neutral-Point-Clamped converter topology was used, to increase the
controller complexity. This multilevel topology has 12 power switches and 27 distinct
switching possibilities. The UPS inverter is fed by a DC bus generated using an auto-
transformer and a three-phase rectifier with capacitive filtering. A DC bus voltage of
approximately 210 V is used. The UPS inverter uses an LC output filter, with parameters
2.7 mH and 66µF. A three-phase output voltage reference with 120 V RMS is used.

LEM sensors and custom signal conditioning boards are used to acquire the four
currents and four voltages shown in Figure 28. The signal conditioning circuitry converts
each (bipolar) sensor measurement into an analog unipolar voltage in the range 0–3.3 V, to
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be read by the ADC (a zero sensor reading translates directly a voltage of 1.65 V, centered
with the ADC range). The bipolar voltage calculation used in the demo model is therefore
used. Four Pmod AD1 modules are used to measure these eight signals simultaneously.

The output gate driver activation signals for the 12 Mosfets are obtained directly from
independent Zedboard outputs. Each signal is isolated using SI8237 digital isolators, which
ensure isolation and convert the signal from the 3.3 V at the Zedboard port to 15 V, as
required by the used gate drivers. This system was also tested using the shift-register and
secondary FPGA approaches for the implementation of the output pulses, with similar
results being obtained. Nonetheless, this direct output implementation is advantageous
because it allows deadtimes to be implemented (unlike the shift-register approach) and
is less susceptible to EMI than using a secondary FPGA (since there is no need for the
high-speed serial communication bus between FPGAs, which can be affected by noise).

A controller sampling period of 70µs is used, with an FPGA sampling period of 40 ns
and an ARM sampling period of 210µs (the same periods used in the demo model). The
controller takes approximately 11µs from the start of cycle (ADC sampling instant) to
obtain the control states which should be applied at the next sampling instant. This can be
seen in Figure 24a, when executing the same controller code, but using a secondary FPGA
to control the outputs. Since the ADC conversion and data readout takes approximately
6.4µs, this means the FPGA takes approximately 4.6µs to perform all calculations required
by the MPC algorithm and obtain the final switching decision. This is a quite low controller
latency, especially considering that the FPGA programming done in Simulink was not
optimized for fast execution. This means the same control algorithm could easily be used
with a sampling time considerably below 10µs if the ADC communication frequency
was increased. This would be extremely difficult to achieve with purely processor-based
controllers, demonstrating the advantage of using the proposed Zynq-based solution for
power electronics prototyping.

Since the study of the UPS inverter control is not the objective of this paper, the
converter operation will not be studied in detail. Instead, only the main waveforms will
be presented, to demonstrate the correct operation of the controller when executed in the
Zedboard.

The MPC controller has two objectives in its objective function: minimization of
load voltage error (in an αβ reference frame), and minimization of the DC bus capacitors
unbalance. The implemented UPS inverter prototype is used to feed both a linear load
(resistive) and highly non-linear load (three-phase diode rectifier with parallel RC load).
The results obtained in both cases are displayed in Figures 30 and 31.

(a) (b)

Figure 30. UPS Inverter prototype experimental waveforms with linear and non-linear loads, acquired
with the the oscilloscope. (a) Linear Load. (b) Non-Linear Load.
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Figure 31. UPS Inverter prototype experimental waveforms with linear and non-linear loads, acquired
with the Zedboard, using Simulink External mode. (a) Linear Load. (b) Non-Linear Load.

As seen in Figures 30 and 31, the UPS is able to maintain sinusoidal output voltage with
relatively low distortion, even when feeding a highly non-linear load. When feeding a linear
load, the load voltage THD is approximately 2.6%. In the non-linear case, which generates
highly non-linear current waveforms, a load voltage THD of 3.4% is obtained. In both cases,
the load voltage distortion is well below the limits defined in international standards. The
DC bus capacitors also remain perfectly balanced in both scenarios. Hence, the controller
is working perfectly, ensuring good performance in both considered objectives.

The waveforms presented in Figure 31 were obtained directly using Simulink External
mode, which demonstrates the perfectly acceptable visualization provided by this execution
mode (even with some under-sampling). The continuous External mode execution is
extremely useful for overall system monitoring and for controller parameter adjustment
and tuning.

The proposed FIFOs can also be used to obtain the full-sampled waveforms. These
can be useful, for example, for precise THD calculation or fine controller debugging or
reproduction. Figure 32 shows the load voltage waveforms measured directly from the
AXI interface in External mode (under-sampled) and the waveforms reconstructed from the
FIFO during the same time window (full-sampled).

As seen in Figure 32, the FIFO allows the waveforms to be acquired with significantly
higher detail. This is important for better reproduction and for more accurate calculation
of THDs, RMS values, etc.
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Figure 32. Load voltage waveforms acquired directly from the AXI interface and using the FIFO, for
the same time window.

7. Conclusions

A complete methodology for programming Zynq-based boards for power electronics
prototyping using Matlab/Simulink and the HDL Coder and Embedded Coder tools is pro-
posed in this paper for the first time. The proposed methodology enables the programming
of Zynq chips, enabling the user to develop and monitor power electronics systems entirely
from the Simulink graphical interface. This enables any user with Simulink experience to
prototype power electronics systems with Zynq boards, even with no HDL or C expertise.

Unlike previous work found in the literature using HDL Coder for power electronics
development, the proposed methodology allows full programming and deployment of
code for both the FPGA and ARM processor, entirely from the Simulink, with no need for
low-level coding or development in external tools. Most solutions found in the literature
use Zynq boards as headless systems (no interface) or use custom-developed tools or
low-level programming for graphical monitoring and data acquisition. The proposed
techniques allow continuous real-time monitoring of power electronics systems directly
from Simulink, providing a versatile and easy-to-use solution.

A thorough description of the setup and use of all tools required for the proposed
software workflow is presented. The proposed design methodology and limitations of the
Zynq platform are discussed in detail, proposing an optimal task distribution between the
FPGA and processor for power electronics development, considering these limitations. The
Simulink design requirements and limitations are also discussed, such as sampling times
definition, delay balancing management and ARM execution reliability. The implementa-
tion of external hardware interfaces is also discussed in detail. Several shortcomings of
the Zynq platform and Simulink tools that were not previously analyzed in the literature
are discussed in detail, including possible peripheral timing corruption due to the auto-
matic delay balancing mechanism in Simulink, which can compromise ADC operation, for
example. A design solution is proposed to avoid this problem.

A data acquisition technique is also proposed for lossless (full-sampled) data acqui-
sition, avoiding under-sampling due to a high processor execution time. This technique
allows high-definition sampling of data, with customizable oscilloscope-like trigger control,
which is ideal for power electronics applications, to enable the capture of specific events
(displaying lossless data before and after the triggering event).

The proposed design methodology includes safety mechanisms to protect the system
from over-voltages and over-currents, and avoid loss of control when the CPU crashes
or communication with the host computer is lost. This guarantees that the FPGA safely
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disables the power converter when unwanted events are detected or the user loses the
ability to monitor and control of the system (due to CPU or communication failure).

The Simulink implementation of all proposed techniques and mechanisms of the
proposed design methodology is provided in a demo model. This enables easy and imme-
diate reproduction by the reader and provides a major advantage for any new user—this
typically cannot be found online, especially for all components needed for power electron-
ics prototyping. The provided demo model uses only commercially available hardware
(Zedboard development kit and Pmod AD1 ADC modules). This should jump-start de-
velopment using this design methodology for any interested research group, company or
individual.

The potential of the proposed workflow for power electronics control is demonstrated
by controlling a three-level Neutral-Point-Clamped UPS inverter prototype with model
predictive control. The low execution times obtained in the results (even without spe-
cific optimization) and good obtained UPS performance demonstrate that the proposed
workflow can easily be used for the control of complex power electronics converters with
advanced control techniques, using low-cost control platforms and peripheral hardware.

Author Contributions: Conceptualization, L.C.; methodology, L.C.; software, L.C. and D.C.; valida-
tion, L.C. and D.C.; formal analysis, L.C. and D.C.; investigation, L.C. and D.C.; resources, A.M.; data
curation, L.C. and D.C.; writing—original draft preparation, L.C. and D.C.; writing—review and
editing, L.C., D.C. and A.M.; visualization, L.C., D.C. and A.M.; supervision, L.C. and A.M.; project
administration, A.M..; funding acquisition, L.C. and A.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Project SAICT-45-2017-POCI-01-0145-FEDER-
029112—PTDC/ EEI-EEE/29112/2017, funded by Programa Operacional Temático Competitividade
e Internacionalização—FEDER and by the Foundation for Science and Technology (FCT)—OE, and
in part by the Project UIDB/EEA/50008/2020, funded by FCT–OE.

Data Availability Statement: The demo model utilized in this paper is available here: https://
github.com/PS-Co-IT/Zynq_Simulink, last accessed on 7 February 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Alam, M.; Ahmad, S.; Anees, M.A.; Tariq, M.; Azeem, A. Comprehensive Review on Model Predictive Control Applied to Power

Electronics. Recent Adv. Electr. Electron. Eng. 2020, 13, 632–640. [CrossRef]
2. Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model Predictive Control for Power Converters and

Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [CrossRef]
3. Zhao, S.; Blaabjerg, F.; Wang, H. An Overview of Artificial Intelligence Applications for Power Electronics. IEEE Trans. Power

Electron. 2021, 36, 4633–4658. [CrossRef]
4. Gonçalves, P.; Cruz, S.; Mendes, A. Finite Control Set Model Predictive Control of Six-Phase Asymmetrical Machines—An

Overview. Energies 2019, 12, 4693. [CrossRef]
5. Oliveira, T.; Caseiro, L.; Mendes, A.; Cruz, S.; Perdigão, M. Model Predictive Control for Paralleled Uninterruptible Power

Supplies with an Additional Inverter Leg for Load-Side Neutral Connection. Energies 2021, 14, 2270. [CrossRef]
6. Caseiro, L.M.A.; Mendes, A.M.S.; Cruz, S.M.A. Cooperative and Dynamically Weighted Model Predictive Control of a 3-Level

Uninterruptible Power Supply With Improved Performance and Dynamic Response. IEEE Trans. Ind. Electron. 2020, 67, 4934–4945.
[CrossRef]

7. Garcia-Torres, F.; Zafra-Cabeza, A.; Silva, C.; Grieu, S.; Darure, T.; Estanqueiro, A. Model Predictive Control for Microgrid
Functionalities: Review and Future Challenges. Energies 2021, 14, 1296. [CrossRef]
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