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Abstract 

Sustainability is increasingly important in the wastewater treatment sector, and 

benchmarking studies are needed to identify the best practices in using resources 

efficiently. This work addresses this need by characterizing and benchmarking this sector 

in Portugal. Data from around 120 service providers, from 2015 to 2019, regarding inputs 

consumption, desirable and undesirable outputs, are used in a data envelopment analysis 

to benchmark these operators and to determine improvement potentials. A productivity 

change analysis revealed an increase from 2015 to 2019, essentially due to an increased 

technical efficiency. On the other hand, no real technological change seems to have 

occurred. A positive effect of the service providers dimension and certifications (quality, 

environmental and energy) on efficiency was found. Service providers with 

concessionary governance models and urban typology presented the highest efficiencies, 

whereas treatment plants underuse contributed negatively to efficiency. These results can 

inform the definition of strategic policies for the water sector, namely concerning the 

aggregation of small providers. The proposed methodology, based on the use of a 

comprehensive new set of studied variables and explanatory factors, allowed to determine 

the best characteristics regarding the techno-economic efficiency of Portuguese service 

providers, and can potentially be applied to identify role models in other countries. 
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1. Introduction 

Sustainability is currently of extreme importance for policy makers, regulators, 

managers, and the general public. In this respect, environmental protection, as well as 

technical, economic and social development, are fundamental pillars (UN, 2005; 

Davidson et al., 2007). Wastewater (WW) treatment systems are no exception and, 

therefore, must also pursue sustainability goals (Balkema et al., 2002; Molinos-Senante 

et al., 2016). A growing number of studies focus on WW treatment sustainability 

regarding techno-economic efficiency, mostly aiming to identify the best practices 

through benchmarking techniques. However, most of them assess facilities (treatment 

plants - TP) or treatment systems, rather than service providers (SP). On the other hand, 

assessing, and comparing SP allows looking for potential efficiency gains within a 

regional or national scope. Therefore, this study focuses on the WW treatment sector 

characterization and benchmarking of SP at a country scale. The Portuguese case is 

analyzed as an example. 

One of the most important pillars of the WW treatment sector sustainability relates 

to its social and financial impact, since costs are paid by consumers through tariffs. 

Personnel and energy consumption expenditures are the main operational costs (Molinos-

Senante et al., 2014; Castellet and Molinos-Senante, 2016), counterbalanced by WW 

revenues (RevWW). These economic factors are therefore studied in detail in the present 

work. The energy produced within a TP, using the produced biogas or renewable energy 

generation systems, is also considered in this study for its potential to reduce the 

procurement of energy to operate such systems. In addition, concerns with the rational 

use of clean water sources are growing, due to the increasing seasonal demand (related to 

more extreme and frequent climatic events) and supply scarcity (associated with the 

reduction of clean water sources in nature). Thus, the possibility of reusing (treated) WW, 

either internally or externally (public networks, crop irrigation, etc.), becomes 

increasingly important (Gonzalez-Serrano et al., 2005; Rodriguez-Garcia et al., 2011). As 

such, both the treated WW (TWW) and the reused WW (RWW) volumes were 

incorporated in this study. 

Sludge generation is another issue WW treatment systems must deal with (Molinos-

Senante et al., 2014; Castellet and Molinos-Senante, 2016). Although some sludge could 

be used for energetic valorization, e.g. in anaerobic biodigesters or by dehydrated sludge 



3 
 

incineration (Tchobanoglous et al., 2003), solely a fraction enters that pathway in 

Portugal. Therefore, the produced sludge leaving a TP is considered as an undesirable 

output, carrying costs to the SP that need to pay external entities for sludge treatment 

and/or deposition. 

Identifying the best systems, practices or units using their inputs (resources) 

efficiently for the generation of desirable outputs is increasingly relevant in sustainability 

studies (Molinos-Senante et al., 2014; Castellet and Molinos-Senante, 2016; Molinos-

Senante et al., 2016; Dong et al., 2017). The most efficient SP, identified through a data 

envelopment analysis (DEA), can become a reference for the remaining ones. The Slacks-

Based Measure (SBM) DEA model (Tone, 2001) is used in this work to compute the 

efficiency of each SP, as well as the improvement potential in the country as a whole. The 

analysis considers three inputs (allocated personnel, energy consumption and 

expenditures), four desirable outputs (RevWW, TWW, RWW and produced energy) and 

one undesirable output (produced sludge). The volume of collected WW (CWW) is used 

as a non-discretionary input variable, since SP cannot control how much WW they are 

required to treat.  

WW treatment is a dynamic process and, thus, both the position of a given SP within 

a benchmark, as well as the efficiency frontier, may change over time (Sala-Garrido et 

al., 2012; Pointon et al., 2016; Sala-Garrido et al., 2019). Accordingly, a Luenberger-

Malmquist (LM) productivity change analysis between 2015 and 2019 (encompassing 

LM total and technical efficiencies and technological changes) is also performed. 

Finally, in order to assess other explanatory factors that may affect the SP efficiency, 

cross-correlation (CC), ordinary least squares (OLS) and Kruskal-Wallis (KW) analyses 

were performed, relating the obtained efficiencies with the number of TP managed by 

each SP, septic tanks and lift stations, WW collection grid length and rehabilitation, 

energy efficiency (pumping systems), served households, population and TP 

dimensioning, governance model, TP typology, costs recovery, satisfaction and quality 

parameters compliance, and quality, environmental and energy certifications. 

 

2. Literature survey on service providers benchmarking 

Studies made at the SP level, rather than at the plant scale, tend to focus on drinking 

water supply, although some studies in the water sector (including WW treatment) can 

already be found and are next described. Marques et al. (2011) analyzed the 
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implementation of DEA and other benchmarking techniques in more than 50 countries, 

concluding that over 70% of the regulators used benchmarking tools for assessing the 

quality of service or to assist in the economic regulation of the water sector.  

Concerning WW treatment services, Byrnes et al. (2009) are among the first to study 

SP performance. Using DEA, they studied the economic efficiency of 56 non-

metropolitan SP in the New South Wales and Victoria regions to provide policy 

recommendations. Nafi et al. (2014) analyzed the cost functions of three SP in the Lyon 

region (France) to obtain performance indicators for benchmarking urban WW treatment. 

Pointon et al. (2016) studied the English and Welsh water and WW industry dynamic 

efficiency, for 10 SP in the 1997-2011 period, using a DEA approach, concluding that the 

inadequate intertemporal allocation of the inputs is the largest contributor to economic 

inefficiency.  

More recently, Sala-Garrido et al. (2019) have studied the differences between 22 

Chilean fully-privatized and concessionary water SP productivity, assessed by the LM 

directional distance function approach, between 2010 and 2016. Both the drinking water 

supply and the WW treatment services were studied and a decrease on the fully-privatized 

productivity was observed, mainly attributed to technical gap regression. A holistic 

evaluation was undertaken by Walker et al. (2021) to benchmark the sustainability of 12 

water sector SP in the United Kingdom over a 6-year period by the Hicks-Moorsteen 

productivity index. These authors endorsed customer satisfaction and water quality 

measures as preferable outputs to reflect sustainability and identified economies of scale 

and scope as drivers for productivity change. Greenhouse gas (GHG) emissions were 

considered by Molinos-Senante and Maziotis (2021) to compare productivity change of 

English and Welsh water sector SP, between 2011–2019, using LM. These authors found 

that the inclusion of GHG emissions decreased productivity, which is important when 

evaluating water companies for regulatory purposes. Furthermore, water source and 

treatment level, type of WW treatment facility, density and pumping capacities were 

found to influence productivity. Pereira and Marques (2022) proposed a two-stage DEA 

model to determine technical and scale efficiencies of 2160 Brazilian municipal water 

and sanitation services, observing significant scale inefficiencies. Water source, 

ownership and geography were found to be significant explanatory factors. These authors 

further suggested regulation and policy-making debureaucratization, stricter expenditure 

control, and investment in facilities expansion. Mocholi-Arce et al (2022) applied a two-

stage network DEA model to evaluate the cost and operational performance of 189 
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Chilean water sector SP, between 2010–2018, considering their service quality, noting it 

was possible to reduce costs and improve operational performance. They also reported 

public SP outperformed fully private and concessionary providers. 

Considering the Portuguese reality, Carvalho and Marques (2014) applied DEA and 

partial frontier nonparametric methodologies to benchmark 74 SP operating on the water 

supply and/or WW treatment sectors in Portugal. Their results evidenced economies of 

vertical integration and scale in the drinking water supply and WW treatment sectors. In 

subsequent studies, using parametric techniques (Carvalho and Marques, 2015, 2016), 

economies of scope between water supply and WW treatment services were observed. 

Caldas et al. (2019) studied, using DEA, the scale economies of 308 Portuguese 

municipalities, establishing optimal services size. Scale economies were found, 

regardless of municipality size, with the authors suggesting the formulation of local 

government policies on a case-by-case basis. Marques and Simões (2020) analyzed the 

performance of Portuguese private and public water sector SP, in 2011-2015, based on 

investment effectiveness, quality of service, tariffs and prices. Results showed that the 

performance of private exceeded public SP. Benefit-of-the-doubt composite indicators 

formulated with a directional distance function were used by Henriques et al (2020) to 

benchmark 169 Portuguese WW SP. These authors found that larger scale, investment 

subsidies and energy production, alongside a concession model and urban typology, 

improve the quality of service for retail SP. Expanding the previous work, Mergoni et al 

(2022) benchmarked the environmental performance of 149 Portuguese utilities jointly 

active in the water supply, WW collection and solid waste management sectors by an 

analog methodology. Their results highlighted existing improvement potential especially 

for small and very large units, mostly operating in urban areas. 

To the authors’ best knowledge, the present work is one of the first benchmark 

studies, assessing the WW treatment sector from a techno-economic perspective for a 

long time period, aiming at identifying the potential for inputs (expenditure, personnel 

and energy) and undesirable outputs (sludge) reduction, and desirable outputs (RevWW, 

TWW, RWW and produced energy) increase. Indeed, the use of energy consumption and 

production, reused and revenue WW and sludge production have seldom been used in 

such studies (Sala-Garrido et al, 2019; Henriques et al, 2020; Molinos-Senante and 

Maziotis, 2021; Walker et al, 2021), and never simultaneously. Another contribution of 

this study is the assessment of a comprehensive set of explanatory variables (dimension, 

techno-economic, environmental, governance, typology and quality). Furthermore, this 
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study directly addresses a country scale perspective, rather than a TP facility, aiming to 

identify the best practices in the Portuguese reality. Moreover, besides being the first 

study with such characteristics, the proposed methodology can be used with data from 

other countries in order to identify their role model SP. 

 

3. Materials and Methods 

The methodology used in the current study is presented next. Upon a prior validation 

step, the collected data is further organized and analyzed in terms of its descriptive 

statistics. Next, a DEA (SBM model) analysis is carried out to study the SP efficiencies 

and improvement potentials. A LM productivity analysis is further employed to study the 

evolution of the productivity factors from 2015 to 2019. Finally, an explanatory factors 

analysis is performed employing CC, OLS and KW analyses. 

 

3.1 Data collection and validation  

The data used in this work was collected from the Annual Report of Water and Waste 

Services in Portugal (RASARP) from 2015 to 2019 made available by The Water and 

Waste Services Regulation Authority (ERSAR, 2016, 2017, 2018, 2019, 2020). SP that 

did not operate TP or did not present energy or economic data for the WW treatment were 

excluded. The identification and removal of potential outliers was performed by 

iteratively removing the SP presenting ratio values for CWW volume per personnel, CWW 

volume per consumed energy, CWW volume per expenditure, RevWW volume per CWW 

volume and TWW volume per CWW volume larger than twice the second highest value, 

in order to avoid biasing the results. Indeed, such outliers would artificially expand the 

efficiency frontier, creating unrealistic efficiency targets for the remaining SP. The 117 

(2015) to 124 (2019) SP remaining after outliers’ removal accounted for more than 2000 

TP each year, serving roughly 90% of the population and representing 90.4% of the WW 

treated in TP.  

The expenditure data, regarding WW treatment, was lacking from the RASARP 

source for a few SP (5 in 2016, 6 in 2017, 5 in 2018 and 4 in 2019), and was therefore 

estimated from their annual financial reports. For this purpose, total expenditures were 

obtained by considering the following costs: inventory variation, supplies and external 

services, personnel, amortizations, provisions, investments, operational costs, financial 
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costs, taxes and other costs. All expenditures were normalized to the fiscal year of 2018, 

considering the Portuguese inflation rates. 

The selected inputs, non-discretionary input, desirable outputs and undesirable 

output are presented in Table 1. Their total, minimum, maximum, average and standard 

deviation values are also presented in Table S.1 of the Supplementary material. 

 

Table 1 – Inputs, non-discretionary input, desirable and undesirable outputs.  

  Acronym Significance Units 

Inputs Per Allocated personnel (p.e. in one year) 

 EnC Energy consumption (kWh year–1) 

 Exp Total expenditure (€ year–1) 

Non-discretionary input CWW Collected WW m3 year–1 

Desirable outputs TWW Treated WW m3 year–1 

 RevWW Revenue WW m3 year–1 

 RWW Reused WW m3 year–1 

 EnP Energy production (kWh year–1) 

Undesirable output Slu Sludge generation (ton year–1) 

 

3.2 Explanatory factors 

A set of factors can affect the SP efficiency and, therefore, should be considered upon 

discussing the efficiency results. The parameters presented in Table 2 (dimension, techno-

economic, environmental, governance, typology and quality), found in the RASARP 

database or directly determined, were addressed as possible explanatory factors. Hence, 

a study was conducted to determine the influence of each of these factors on the efficiency 

coefficients for energy consumption, allocated personnel, total expenditure, RevWW, 

TWW, RWW, produced energy and produced sludge.  

 

Table 2 – Studied explanatory factors regarding the efficiency coefficients.  

  Acronym Significance Units 

D
is

cr
et

e
 

Gover. Governance model (direct management, delegation or concession) -- 

Typol. TP typology (rural, mostly urban or urban) -- 

Qual. Cert. Quality certification -- 

Env. Cert. Environmental certification  -- 

Ener. Cert. Energy certification  -- 

S
P

 d
im

en
si

o
n

  

CWW Volume of collected WW m3 year–1 

TP Number of treatment plants # 

ST Number of septic tanks # 

LS Number of lift stations # 

Cap. TP capacity m3 year–1 

HH Number of served households # 

Pop. Effectively served population p.e. year–1 
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GL WW collection grid length Km 

N
o

n
 S

P
 d

im
en

si
o

n
 

Recov. Costs recovery in percentage % 

Over. TP overuse (total treated volume over the TP capacity) % 

Under. TP underuse (total treated volume under the TP capacity) % 

EnE Energy efficiency of the pumping systems kWh m–3 

m–1 Rehab. Length of rehabilitated collector pipes per grid length m Km–1 

Adeq. TP adequateness (effectively served to dimensioned population) % 

Comp. Effluent quality parameters compliance  % 

Satisf. Satisfactory WW treatment (percentage of population with satisfactory treatment) % 

 

3.3 Data envelopment analysis (DEA) 

The model proposed by Farrell (1957) establishes a best practices frontier composed 

by the efficient productive units (decision-making units – DMU) in a sample. Such DMUs 

obtain the maximum possible output from a given set of inputs or use the minimum inputs 

possible to reach a given output. In the latter case, the (technical) efficiency of a DMU 

can be determined by calculating the maximum possible proportional reduction in input 

utilization in order to maintain the same level of production. Based on these ideas, DEA 

is a non-parametric technique to assess efficiency, which is able to consider a multiplicity 

of inputs and outputs and does not require assuming a specific production function. In 

addition, both inputs and outputs can be measured in different units (Cooper et al., 2006).  

To determine the efficiency benchmark, consider k = 1, 2, ..., K DMUs, each one 

using a vector xk = (x1
k, x2

k, ..., xN
k) of N inputs, to produce a vector yk = (y1

k, y2
k, ..., yM

k) 

of M outputs. Let k' be a specific DMU within the sample set. One can define an efficiency 

score E (xk', yk'), assessing the ability of the k' DMU to achieve a pre-established 

production using the minimum inputs. For a given output vector, defined for each DMU, 

the objective is to determine to what extent its inputs vector can be minimized. An 

efficient DMU cannot further reduce inputs consumption, contrary to an inefficient DMU. 

The efficiency score E for each DMU k' can be calculated by solving the following linear 

program (Charnes et al., 1978; Cooper et al., 2007):  

min(𝜆) , 𝑠. 𝑡. :

 𝑦𝑚
𝑘´ ≤∑𝑧𝑘  𝑦𝑚

𝑘  

𝐾

𝑘=1

     𝑚 = 1,… ,𝑀     (𝐸𝑞. 1)

𝜆 𝑥𝑛
𝑘´ ≥ ∑𝑧𝑘  𝑥𝑛

𝑘 

𝐾

𝑘=1

   𝑛 = 1,… ,𝑁     (𝐸𝑞. 2)

 

Here, the efficiency benchmark E (xk', yk') = λ (considering the optimal value) 

indicates whether the k' DMU is efficient (if λ = 1) or inefficient (if 0 ≤ λ <1).  
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Furthermore, the difference between λ and 1 can be considered as the potential inputs 

reduction that can be achieved without changing production. 

DEA models such as the Charnes, Cooper and Rhodes – CCR (Charnes et al., 1978), 

assume constant returns to scale (CRS), with the constraint present in Eq. 3, whereas 

models as Banker, Charnes and Cooper – BCC (Cooper et al., 2007) consider variable 

returns to scale by assuming additionally the constraint present in Eq. 4.  

𝑧𝑘  ≥ 0, 𝑘 = 1,… , 𝐾         (𝐸𝑞. 3)

∑ 𝑧𝑘 = 1,

𝐾

𝑘=1

 𝑘 = 1,… , 𝐾    (𝐸𝑞. 4)
 

Radial models, as CCR and BCC, determine the overall efficiency of a DMU by 

assessing its maximum allowed proportional inputs reduction, or outputs increase, 

considering the efficiency frontier defined by its peers. On the contrary, a non-radial DEA 

model allows minimizing inputs in different proportions (Molinos-Senante et al., 2014). 

In non-radial DEA models, λ may have a different value (λn) for each input (Färe and 

Lovell, 1978), modifying the optimization problem function to 
1

𝑁
 min(∑ 𝜆𝑛

𝑁
𝑛=1 ) and 

adding the following restriction to the model: 

1 ≥  𝜆𝑛  ≥ 0, 𝑛 = 1,… ,𝑁     (𝐸𝑞. 5) 

One of the most used non-radial DEA models for determining efficiency benchmarks 

in TP (Lorenzo-Toja et al., 2015; Castellet and Molinos-Senante, 2016) is the slack-based 

model (SBM) (Tone, 2001), due to its elasticity in the calculation of inefficiencies for the 

different DMUs (Thrall, 1996; Cooper et al., 2007). The SBM model considers the non-

radial characteristics of the inputs and outputs, which makes it more appropriate to 

monitor inputs with vague interconnections (Cooper et al., 2007). The SBM model can 

be employed by solving the following minimization problem: 

min

(

 
1 −

1
𝑁
∑

𝑠𝑛
−

𝑥𝑛
𝑘   

𝑁
𝑛=1

1 +
1
𝑀
∑

𝑠𝑚
+

𝑦𝑚
𝑘   

𝑀
𝑚=1 )

 , 𝑠. 𝑡. :

 𝑦𝑚
𝑘 =∑𝑧𝑘  𝑦𝑚

𝑘  

𝐾

𝑘=1

− 𝑠𝑚
+ ,     𝑚 = 1,… ,𝑀     (𝐸𝑞. 6)

𝑥𝑛
𝑘 =∑𝑧𝑘  𝑥𝑛

𝑘  

𝐾

𝑘=1

+ 𝑠𝑛
−,        𝑛 = 1,… ,𝑁     (𝐸𝑞. 7)

𝑧𝑘  ≥ 0;  𝑠𝑛
− ≥ 0; 𝑠𝑚

+ ≥ 0,                (𝐸𝑞. 8, 9, 10)

 

where 𝑠𝑛
− are the input slacks (excess) and 𝑠𝑚

+  the output slacks (shortfall). 
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3.4 Productivity analysis 

The determination of the productivity evolution was based primarily on the 

calculation of the Luenberger-Malmquist (LM) total efficiency change (Chambers et al., 

1996). This index represents the productivity of the production point (xt+1, yt+1) relatively 

to the production point (xt, yt). A positive value indicates a productivity increase from 

period t to period t+1, whereas a negative value indicates a productivity decrease.  

𝐿𝑀 (𝑦𝑡+1, 𝑥𝑡+1, 𝑦𝑡 , 𝑥𝑡) = 

1

2
(𝜃𝑡+1(𝑥𝑡, 𝑦𝑡) − 𝜃

𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) + 𝜃
𝑡(𝑥𝑡, 𝑦𝑡) − 𝜃

𝑡(𝑥𝑡+1, 𝑦𝑡+1))   (𝐸𝑞. 11)  

where 𝜃𝑘 =
∑ 𝑤𝑖 𝑥𝑖𝑘
𝑀
𝑖=1

∑ 𝑤𝑗𝑦𝑗𝑘
𝑁
𝑗=1

 represents the distance function (or technical efficiency) of DMU 

k to the efficiency frontier (Färe et al., 1989, Chambers et al., 1996). Namely, 𝜃𝑡(𝑥𝑡, 𝑦𝑡) 

is the DMU efficiency at time t comparing to its efficiency frontier, 𝜃𝑡(𝑥𝑡+1, 𝑦𝑡+1) is the 

DMU efficiency at time t+1 comparing to the time t efficiency frontier, 𝜃𝑡+1(𝑥𝑡, 𝑦𝑡) is 

the DMU efficiency at time t comparing to the time t+1 efficiency frontier, and 

𝜃𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) is the DMU efficiency at time t+1 comparing to the time t+1 efficiency 

frontier.  

The LM index can be decomposed as the sum of the technical efficiency change (EC) 

and technological change (TC) indices (Chambers et al., 1996): 

𝐸𝐶 = [𝜃𝑡(𝑥𝑡, 𝑦𝑡) − 𝜃
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)]   (𝐸𝑞. 12) 

𝑇𝐶 = 
1

2
[𝜃𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) − 𝜃

𝑡(𝑥𝑡+1, 𝑦𝑡+1) + 𝜃
𝑡+1(𝑥𝑡, 𝑦𝑡) − 𝜃

𝑡(𝑥𝑡, 𝑦𝑡)]  (𝐸𝑞. 13)  

The EC index evaluates the evolution of the DMU’s technical efficiency (increase if 

above 0 and decrease if below), indicating if the DMU moved closer to (if positive), or 

away from (if negative), the convex efficiency envelope. The TC index evaluates the 

evolution of technological changes: if positive it denotes technological progress leading 

to an expansion of the efficiency frontier; if negative it denotes a regression, i.e., a 

contraction of the efficiency frontier. 

Furthermore, the TC index can be decomposed in three parts: output biased 

technological change (OBTC), the bias of technological change caused by output change; 

input biased technological change (IBTC), the bias of technological change caused by 

input change; and magnitude of technological change (MATC). 

𝑂𝐵𝑇𝐶 =
1

2
[(𝜃𝑡+1(𝑥𝑡, 𝑦𝑡) − 𝜃

𝑡(𝑥𝑡, 𝑦𝑡)) − (𝜃
𝑡+1(𝑥𝑡, 𝑦𝑡+1) − 𝜃

𝑡(𝑥𝑡, 𝑦𝑡+1))]   (𝐸𝑞. 14) 

𝐼𝐵𝑇𝐶 =
1

2
[(𝜃𝑡+1(𝑥𝑡, 𝑦𝑡+1) − 𝜃

𝑡(𝑥𝑡, 𝑦𝑡+1)) − (𝜃
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) − 𝜃

𝑡(𝑥𝑡+1, 𝑦𝑡+1))] (𝐸𝑞. 15)  
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𝑀𝐴𝑇𝐶 = 𝜃𝑡+1(𝑥𝑡+1, 𝑦𝑡+1) − 𝜃
𝑡(𝑥𝑡+1, 𝑦𝑡+1)   (𝐸𝑞. 16) 

The use of TC and EC indices is already established in the water and WW sector 

literature (Pointon and Matthews, 2016; Molinos-Senante and Maziotis, 2021; Sala-

Garrido et al, 2019), and a few works further detail input and/or output based indices 

(Walker et al, 2021). In the current work, the SBM model was used, with variable returns 

to scale, for the benchmark analysis. Three different DEA models were used: i) an inputs’ 

oriented SBM (SBM-in) to minimize inputs consumption and undesirable outputs 

generation; ii) an outputs’ oriented SBM (SBM-out) to maximize desirable outputs 

production; and iii) a non-oriented SBM (SBM-none) simultaneously pursuing both 

goals. LM productivity indices, based on the SBM model with undesirable outputs, were 

employed for the productivity analysis, using MaxDEA 8 software for computations. 

 

3.5 Multivariate statistics 

Multivariate statistics were employed in the study of the selected explanatory factors 

influence on the efficiency coefficients for energy consumption, allocated personnel, total 

expenditure, RevWW, TWW, RWW, produced energy and produced sludge. Regarding 

the continuous explanatory factors (CWW, TP, ST, LS, GL, Rehab., Cap., Over., Under., 

Recov., EnE, HH, Pop., Adeq., Comp. and Satisf.), the p-values of an OLS analysis with 

the studied efficiency values were determined. Considering the different scale ranges of 

some explanatory factors, this study was conducted with raw as well as normalized values 

(both by log-norm and per CWW) in those cases (CWW, TP, ST, LS, GL, Cap., HH and 

Pop.). With respect to the discrete explanatory factors (Gover., Typol, Qual. Cert., Env. 

Cert. and Ener. Cert.), a KW analysis was performed between each of these factors group 

allocation and the studied efficiency coefficients. In both cases a CC analysis was 

performed among all variables to determine their inner relationships. 

The non-parametric KW test was performed to determine the influence of the discrete 

explanatory factors on the efficiency coefficients of the SP inputs and outputs. This test 

allows surveying for significant differences in the mean values of a given input or output 

efficiency with respect to each studied explanatory factor groups. Samples were 

considered not significantly different from each other for a level of statistical significance 

(p-value) greater than 0.05, and significantly different otherwise. Matlab 8.3.0 was 

employed for the KW analysis. 

A schematic representation of the benchmarking method is presented in Figure 1. 
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Figure 1 – Schematic representation of the benchmarking methodology. 

 

4. Results and Discussion 

4.1 Data characterization and analysis 

Figure 2 shows the evolution of the absolute and normalized (per CWW) values for 

the DEA factors (recall Table 2) concerning the SP analyzed (117 in 2015, 121 in 2016, 

119 in 2017, 120 in 2018 and 124 in 2019).  

During the analyzed period (2015 to 2019), CWW averaged 761 million m3 year–1, 

increasing 104 million m3 year–1, and allocated personnel affected to WW treatment, both 

directly and indirectly, averaged 4280 p.e. year–1, with an overall increase in absolute 

terms (580 p.e. year–1), though somewhat stationary when normalized per CWW volume 

(from 5.8510-6 to 5.8110-6 p.e. m–3). Total expenditure averaged 611 M € year–1, with 

an estimated increase of 17.6 M €, although slightly decreasing in normalized terms from 

0.91 to 0.81€ m–3. Finally, total energy consumption averaged 367 GWh year–1, 

increasing 50.2 GWh year–1 in absolute terms, while remaining stationary (from 0.51 to 

0.50 GWh m–3) in normalized terms. Therefore, although inputs (resources) consumption 

increased in absolute terms, when normalized per CWW inputs consumption was 

relatively stable throughout this period. 
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Figure 2 – Evolution of the absolute (a) and normalized (per CWW) (b) values for the inputs, 

desirable and undesirable outputs, from 2015 to 2019. 

 

From 2015 to 2019, RevWW volume averaged 625 million m3 year–1 and TWW 

volume averaged 602 million m3 year–1. RevWW and TWW increased 49.0 million m3 

year–1 and 75.5 million m3 year–1, respectively. Upon normalization per CWW, RevWW 

and TWW slightly decreased in that period, respectively from 8.8210-1 m3 m–3 to 

8.2710-1 m3 m–3 and from 8.0010-2 m3 m–3 to 7.9010-2 m3 m–3. These amounts dwarf 

the RWW volumes averaging 7.59 million m3 year–1, representing 0.99% of the CWW 

volume (1.26% of the TWW volume). Indeed, solely 20 to 27 SP reused WW from 2015 

to 2019. Although the absolute RWW volume has slightly increased 511 thousand m3, 

the normalized values (per CWW) slightly decreased from 1.0610-2 m3 m–3 to 9.8410-

3 m3 m–3. Considering energy production, only 14 to 16 SP have reported producing their 

own energy. The produced energy averaged 28.1 GWh year–1, representing around 7.7% 

of the total energy consumed, increasing 7.80 GWh year–1 in absolute terms, and from 

4.0310-2 to 4.4910-2 GWh m–3 in normalized terms.  

Concerning sludge generation, the absolute values averaged 470 thousand tons year–

1, increasing 11.9 tons year–1 in absolute terms, and from 6.2310-4 to 6.9110-4 tons m–

3 in normalized terms, from 2015 to 2019. Considering this undesirable output, both the 

absolute and the normalized values slightly increased throughout this period. 
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4.2 Efficiency analysis according to SBM orientation 

The resulting average efficiencies (not weighted by SP size) obtained for the three 

DEA models are presented in Figure 3. 

 

  

Figure 3 – Non-weighted average values of the SBM technical efficiencies for the inputs, 

desirable and undesirable outputs, in 2015-2019.  

 

Considering simultaneous minimization of inputs consumption and undesirable 

outputs production, and maximization of desirable outputs (SBM-none), the obtained 

non-weighted average efficiencies in 2015-2019 were 0.517 overall, 0.815 for energy 

consumption, 0.857 for allocated personnel and 0.845 for expenditures. Regarding inputs 

consumption, efficiencies were relatively similar, although slightly higher for allocated 
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personnel and lower for energy consumption. On the other hand, quite lower efficiencies 

were obtained for two of the desirable outputs, namely 0.111 for produced energy (the 

least efficient) and 0.164 for RWW. On the contrary, higher efficiency values were 

attained for RevWW averaging 0.926, TWW averaging 0.800 and produced sludge 

averaging 0.957. 

When the primary goal is minimizing inputs consumption, the SBM-in results should 

be analyzed instead. In such case, the non-weighted average efficiencies were 0.659 for 

energy consumption, 0.766 for allocated personnel and 0.785 for expenditures. 

Comparing these results with the SBM-none results, it is apparent a decrease in the 

obtained efficiencies (5-year average), with energy consumption presenting the lowest 

and expenditures the highest efficiencies.  

On the other hand, if the primary goal is the production of desirable outputs, the 

SBM-out results should be analyzed. In this case, the non-weighted average efficiencies 

were 0.913 for RevWW, 0.782 for TWW, 0.110 for produced energy and 0.162 for RWW. 

This represents a decrease (vs. SBM-none) in the efficiencies (5-year average), though 

still presenting higher efficiencies for RevWW than for TWW, and for RWW than for 

energy generation. Finally, regarding sludge generation, SBM-in results (minimization of 

an undesirable output) reveal a 5-year average efficiency decrease (regarding SBM-

none), though still presenting, by far, the highest average efficiency (0.962) of the studied 

variables. 

The use of non-weighted averages allows for the characterization of individual SP 

efficiencies. However, given the quite diverse CWW volumes that each provider accounts 

for, such averages do not represent the global WW treatment efficiency. For that purpose, 

a weighted (by CWW) average should be used (Figure 4). 

The 2015-2019 weighted average efficiencies obtained for the SBM-none model 

were 0.840 overall, 0.912 for energy consumption, 0.909 for allocated personnel and 

0.895 for expenditures. Considering that larger (in terms of CWW) SP obtained higher 

efficiencies than smaller (in most cases), this resulted in a clear increase of the weighted 

average efficiencies, except for generated sludge. Furthermore, a shift could also be 

observed in the inputs’ efficiency, with energy consumption now presenting the highest 

efficiency and expenditures the lowest. Another noticeable change is the increased (vs. 

non-weighted) efficiency in generating desirable outputs, averaging 0.976 for RevWW, 

0.984 for TWW, 0.793 for produced energy and 0.917 for RWW. The large difference in 

the latter two can be explained by the large number of small SP, not reusing TWW or 
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generating energy, with their null efficiency lowering the non-weighted efficiency values. 

And, although the produced sludge still attained large efficiencies, averaging 0.954, it 

was now surpassed by both RevWW and TWW. 

 

 

Figure 4 – Weighted average values of the SBM technical efficiencies for the inputs, desirable 

and undesirable outputs, in 2015-2019. 

 

The SBM-in weighted average efficiencies in 2015-2019 were 0.900 for energy 

consumption, 0.856 for allocated personnel and 0.874 for expenditures. This represents a 

small decrease (regarding SBM-none) in the obtained efficiencies (5-year average), 

presenting slightly higher efficiencies for energy consumption and lower for allocated 
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personnel. On the other hand, the SBM-out results averaged 0.971 for RevWW, 0.981 for 

TWW, 0.771 for produced energy and 0.911 for RWW, representing a small decrease (vs. 

SBM-none) in the obtained efficiencies (5-year average), though maintaining the same 

relative ranking among outputs efficiency. Finally, regarding sludge generation, the 

analysis of the SBM-in results reveals no significant efficiency change regarding SBM-

none (negligible decrease in 5-year average), with the average efficiency (0.951) lagging 

solely to RevWW and TWW. 

  

4.3 Improvement potential analysis 

The potential improvement values for the inputs and undesirable outputs 

minimization and desirable outputs maximization, i.e. the distance from each SP to the 

efficiency frontier in a given year (representing the lost potential in that year), determined 

from 2015 to 2019, are shown in Figure 5 (and Table S.2 of the Supplementary material).  

 

 

Figure 5 – Improvement potential for the inputs and undesirable outputs minimization and 

desirable outputs maximization, according to the efficiency frontier, from 2015 to 2019. 

 

Considering model SBM-none, the improvement potential averaged 31.7 GWh year–

1 for energy consumption, 388.5 p.e. year–1 for allocated personnel and 63.8 M € year–1 

for total expenditure. Considering the SBM-in model instead, the improvement potential 

for the inputs slightly increases, averaging 36.2 GWh year–1 for energy consumption, 

612.6 p.e. year–1 for allocated personnel and 76.7 M € year–1 for total expenditure. 

Regarding the undesirable produced sludge, the improvement potential averaged 21.9 

thousand tons year–1, according to SBM-none. This value amounts to 22.8 thousand tons 
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year–1 if one seeks to minimize the generation of undesirable outputs. And, although the 

produced sludge is inherently dependent on the TWW, other factors are also important, 

such as the treatment system, use of coagulation/flocculation agents, the dehydration 

process or even its use for energy generation.  

Concerning the generated outputs, and the SBM-none model, the improvement 

potential averaged 1.53 million m3 for RevWW, 1.00 million m3 for TWW, 7.60 GWh 

year–1 for produced energy and 703 thousand m3 for RWW. On the other hand, if one 

seeks to maximize the production of desirable outputs (SBM-out), the improvement 

potential increases to an average 1.85 million m3 for RevWW, 1.21 million m3 for TWW, 

8.63 GWh year–1 for produced energy and 751 thousand m3 for RWW.  

 Furthermore, one should note that these potential improvements result from the 

efficiency frontier set by the surveyed SP and do not consider efficiency gains that the SP 

in the efficiency frontier could also achieve (thus changing the efficiency frontier and the 

improvement potentials). Indeed, within the surveyed SP, solely 1.27% of the TWW was 

reused, with the produced energy accounting for solely 7.62% of the energy consumption 

(and only in 6 and 27, out of 601 occasions, the SP reused more than 5% of the TWW or 

produced more than 10% of their energy consumption, respectively). These results are in 

sharp contrast with the 30% self-produced energy (by 2030) target defined by the 

Portuguese Government for SP in Portugal (Portuguese Secretary of State for the 

Environment, 2022). Considering the average energy production in 2015-2019, this 

would demand an increase in the produced energy of roughly 110.6 GWh year–1. 

Analogously, a target of reusing 30% of the WW in 2030 would represent the need to 

increment RWW by roughly 157.8 million m3 year–1. 

 

4.4 Evolution of the productivity indices from 2015 to 2019  

The SP efficiency evolution was determined by the use of LM productivity indices, 

based on the SBM model with undesirable outputs. Considering the simultaneous 

minimization of the inputs’ consumption and undesirable outputs generation, and 

maximization of the desirable outputs, the SBM-none approach was used. The resulting 

total efficiency (LM), technical efficiency (EC) and technological (TC) change indices 

are presented in Figure 6.  

Considering the total (LM) efficiency change, 50.6% of the SP increased their total 

efficiency (comparing 2019 to 2015) against 49.4% that decreased. Furthermore, in all 

adjacent years, the SP increasing total efficiency were above 50%. Regarding the 
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technical (EC) efficiency change, again the number of SP that increased (approaching the 

efficiency frontier) its technical efficiency (37.1%,) was larger than the ones that 

decreased (32.6%). On the other hand, a larger number of SP (53.9%) saw its 

technological efficiency change (TC) decrease, against 46.1% that saw an increase. 

However, this trend was not homogenous in all adjacent years, with opposite results 

appearing from 2015 to 2016 and from 2018 to 2019. Considering all the above, it seems 

that the efficiency frontier did not expand from 2015 to 2019 but rather slightly contracted 

(representing a possible technological regression) with a larger number of SP closing their 

gap to the efficiency frontier as well as gaining net (total) efficiency.  

 

 

Figure 6 – Weighted average (a) and percentage of SP with values larger than, equal to, and 

smaller than 0 (b), for LM-none, EC-none, TC-none, OBTC-none, IBTC-none, OBTC-out and 

IBTC-in, from 2015 to 2019. 

 

Analyzing the weighted average of the efficiency change indices, an overall positive 

evolution was apparent in the SP total efficiency as well as towards the efficiency frontier 

(0.05 for LM and 0.06 for EC, comparing 2019 to 2015), confirming the prior analysis. 

However, no significant evolution of the efficiency frontier was observed (TC of -0.01), 

pointing towards no real technological progress or regress, given that the larger SP (in 

terms of TWW) tendentially presented higher TC values than the smaller SP. 

Addressing the inputs minimization efficiency change, and considering the SBM-

none model, 59.6% of the SP saw an increase in IBTC-none. Furthermore, in all adjacent 
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years, over 50% of the SP increased IBTC efficiency. In accordance, when the weighted 

average was analyzed, a (slight) positive IBTC-none value (0.02) was observed from 

2015 to 2019. On the other hand, if the primary goal is minimizing inputs consumption, 

the SBM-in approach should be used. In this case, a larger number (47.2%) of SP saw an 

increase in the IBTC-in values in all adjacent years. Again, the weighted average of the 

ITBC-in was slightly positive (0.02), representing a minimal increase in inputs efficiency 

in this period. 

Regarding the outputs’ maximization efficiency change, and considering SBM-none, 

61.8% of the SP saw an increase in OTBC-none. Furthermore, in all adjacent years, the 

SP increasing OBTC efficiency were above 50%. However, a marginally negative (-0.01) 

OTBC-none weighted average was obtained, since larger SP tendentially presented lower 

OTBC-none values than smaller SP. On the other hand, if the primary goal is the 

production of desirable outputs, the SBM-out approach should be employed. In this case, 

and in accordance with the SBM-none approach, the number of SP that saw an increase 

(57.3%) in OTBC-out from 2015 to 2019 surpassed the SP that saw a decrease (41.6%), 

which also happened in all adjacent years. On the other hand, the OTBC-out weighted 

average was slightly negative (-0.02), again due to larger SP tendentially presenting lower 

OTBC-out values than smaller SP. These results lead to a minimal decrease of the 

desirable outputs efficiency from 2015 to 2019. 

 

4.5 Analysis of explanatory factors 

A set of factors may affect the SP efficiency. Table 3 presents the results of the R 

and p-values of an OLS analysis between the continuous explanatory factors introduced 

in Section 3.2 and the efficiencies obtained in the DEA, namely the SBM-none efficiency 

coefficients obtained for energy consumption, allocated personnel, total expenditure, 

RevWW. TWW, RWW, produced energy and produced sludge. 

The CC performed within the set of explanatory factors (recall Table 2) configuring 

the SP dimension (CWW, TP, ST, LS, Cap. HH, Pop. and GL) provided for high 

correlation coefficients (R), as expected, between CWW and the remaining factors (R>0.8 

for the LS and GL (in log-norm terms), and R>0.9 for the TP, Cap., HH, and Pop.), except 

for ST. As expected, the importance of the set of these explanatory factors, regarding the 

studied efficiencies, was, for the most, comparable. The lowest correlation coefficient 

was obtained for the ST (R=0.029), given that lower volumes of generated WW can be 

more easily dealt with by the sole use of ST, rather than requiring the use of TP. 
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Table 3 – Obtained R and p-values for the continuous explanatory factors regarding the 

efficiency coefficients.  

  EnC Per. Exp. RevWW TWW EnP RWW Slu. 

CWW 0.181 b*** 0.194 b*** 0.176 b*** 0.113 b** 0.277 b*** 0.516 b*** 0.635 b*** 0.034 

TP –0.137 c*** –0.109 c** –0.124 c** –0.078 0.224 b*** 0.357 a*** 0.336 a*** –0.048 

ST 0.086 a* –0.125 c** 0.044 –0.056 –0.040 –0.088 c* –0.176 c*** 0.049 

LS –0.314 c*** –0.123 c** –0.236 c*** 0.072 –0.173 c*** 0.341 a*** 0.460 b*** –0.069 

Cap. 0.253 b*** 0.157 b* –0.236 c** 0.100 0.539 b*** 0.463 b*** 0.524 b*** 0.115 

HH 0.165 b*** –0.167 c*** 0.165 b*** 0.187 b*** 0.305 b*** 0.541 b*** 0.648 b*** 0.032 

Pop. 0.111 a* 0.175 b*** 0.101 a* 0.085 0.376 b*** 0.444 a*** 0.512 b*** –0.117 b** 

GL –0.202 c*** –0.160 c*** –0.233 c*** 0.091 b* 0.260 b*** 0.341 a*** 0.501 b*** 0.037 

Recov. 0.122 ** 0.129 ** 0.222 *** 0.172 *** 0.201 *** 0.237 *** 0.324 *** –0.022 

Over. 0.215 ** 0.192 * 0.209 ** –0.046 0.171 * –0.099 0.025 0.069  

Under. –0.240 ** –0.268 *** –0.235 ** 0.068  –0.057 0.027  0.019  –0.079 

EnE 0.022 0.100  0.054  0.066 –0.104 –0.224 *** –0.292 *** 0.160 * 

Rehab. –0.038 –0.012 0.046 –0.056 –0.052 –0.078 –0.075 0.004  

Adeq. –0.035  0.117 ** 0.026  –0.067 0.098 * 0.096 * 0.083 * 0.010  

Comp. 0.075  0.046  0.085 0.114 * 0.246 *** 0.271 *** 0.382 *** –0.121 ** 

Satisf. 0.077  0.027  0.084  0.148 ** 0.252 *** 0.255 *** 0.352 *** –0.121 ** 

a Raw values; b Log-norm values; c Values normalized by CWW; * p-value<0.05: ** p-value<0.01; *** p-

value<0.001 

 

Overall, the log-norm CWW was found to be an explanatory factor (p-value < 0.05) 

for all studied efficiency coefficients except for the undesirable output – sludge (similarly 

to the GL and HH). Indeed, as the SP CWW increased, higher inputs minimization and 

outputs maximization efficiencies were obtained. The primal importance of the 

normalized (per CWW) LS and GL for the inputs efficiency (and mainly for the EnC and 

Exp.) is also noteworthy. Indeed, an increase in the number of lift stations, and in the 

collectors’ grid length, was found to negatively influence the energy consumption and 

expenditures SP efficiency. Alongside the log-norm CWW, also the normalized HH and 

GL (both per CWW) and log-norm Pop. could be established as explanatory factors for 

the personnel efficiency. An increase in the CWW volume and log normalized served 

population seems to positively affect the efficiency, but the opposite occurs for the 

normalized (per CWW) collectors grid length and number of households.  

Regarding RevWW and TWW, the log-norm HH is among the most decisive 

explanatory factors, with larger number of served households positively influencing these 

outputs efficiencies. In fact, the number of households was the main explanatory factor 

regarding the RevWW and TWW (in the later alongside the served population and TP 
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capacity). As for the above inputs and desirable outputs efficiencies (with the exception 

of RevWW), the energy production and RWW efficiencies were found to have multiple 

explanatory factors. In both cases, however, the CWW and the number of served 

households (both in log-norm terms) seem to be among the most important. Care should 

be taken, however, in establishing definitive conclusions given the relative low number 

of SP that produce energy and/or reuse WW. Finally, regarding the Slu. efficiency, within 

this set of explanatory factors, solely the log-norm Pop. presented a p-value under 0.05, 

with the sludge efficiency increasing with the decrease of the served population, which 

can be explained by larger populations producing higher WW volumes requiring 

treatment in TP instead of ST. 

Our results align with the literature, confirming the importance of SP dimension 

explanatory factors to its efficiency, emphasizing the treated and/or collected WW. 

Indeed, Byrnes et al (2009), Walker et al (2021) and Pereira and Marques (2022) had 

already found economies of scale for SP up to an ‘optimal’ size, and (dis)economies of 

scale thereafter, which also applies to the Portuguese reality (Carvalho and Marques, 

2014, 2015, 2016; Caldas et al, 2019; Henriques et al, 2020; Mergoni et al, 2022). Byrnes 

et al. (2009) and Molinos-Senante and Maziotis (2021) also highlighted the positive 

relevance of the collectors’ grid and connections to efficiency. Also, economies of 

vertical integration, output density and scope have been found by Carvalho and Marques 

(2014, 2015, 2016). 

Regarding the continuous explanatory factors not directly related to the SP 

dimension, a strong inner correlation (R=0.939) occurred solely between the Comp. and 

Satisf., which could be expected given that both represent quality parameters (of the 

TWW and of the service as perceived by the population). 

Similarly to the explanatory factors configuring the SP dimension, a p-value under 

0.05 could be found regarding the Recov. for all inputs minimization and desirable 

outputs maximization efficiencies. Indeed, these efficiencies rose alongside the SP costs 

recovery. High inputs and desirable outputs efficiencies can both affect and be affected 

by costs recovery. Lower demands for overall expenditures (encompassing energy and 

personnel expenditures), and higher revenue WW and produced energy, enable better 

costs recovery. On the other hand, higher costs recovery may lead the SP to invest on 

improved treatment technology and equipment and mains construction and rehabilitation. 

No significant differences could be found regarding the SP costs recovery for the sludge 

minimization efficiency. 
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Neither a decreased WW quality, nor a less than satisfactory treatment (highly 

correlated as reported above), were found to be trade-offs for inputs minimization and 

desirable outputs maximization efficiencies. Indeed, the desirable outputs efficiencies 

rose alongside the increase of the quality compliance and satisfactory treatment, whilst 

no significant p-values could be found regarding the inputs’ efficiency. A synergistic 

effect could be observed between the Comp. and Satisf, on one hand, and EnP and RWW 

on the other. Indeed, as the amount of removed pollution increases, so generally occurs 

to the produced biomass (excess sludge), which can be used for energy production (via 

anaerobic digestion, waste energy valorization, etc.). On the other hand, higher treated 

WW quality fosters its reuse, which could be behind the positive influence found for the 

RWW. Regarding the sludge minimization efficiency, the efficiency increase is 

accompanied by a decrease of the quality parameters. Again, this could be due to the 

increase of produced biomass. 

Both TP over and underuse could be inferred as explanatory factors for the inputs 

minimization efficiency. However, contrary to the expected negative influence of TP 

underuse in the inputs efficiencies, TP overuse seemed to have a positive effect. As the 

CC analysis found no strong negative correlation between the TP overuse and the quality 

parameters (R=0.215 for Comp. and R=0.198 for Satisf.), the TP may present an increased 

ability to sustain WW loads higher than their stated capacities. On the other hand, the TP 

over and underuse do not appear as explanatory factors for both the desirable outputs 

maximization and undesirable outputs minimization efficiencies (except for the Over., 

relating to the TWW). Furthermore, the SP served to dimensioned population 

adequateness, although being slightly positively correlated with the Over. (R=0.295) and 

negatively correlated with the Under. (R=–0.266) does not appear to be an explanatory 

factor for the inputs efficiencies (as well as for the undesirable output), except for the 

personnel to some extent. However, it was found to be so regarding the desirable outputs 

efficiencies (except for RevWW). 

The length of rehabilitated collector pipes per grid length (Rehab.) seems to not 

significantly affect any of the efficiencies, whereas the energy efficiency of the pumping 

systems seems to affect the EnP, RWW and sludge efficiencies. However, when 

considering the p-values obtained for the energy production, RWW and sludge 

efficiencies of other explanatory factors, the EnE importance seems dimmed.  

Table 4 presents the results of the KW analysis between the discrete explanatory 

factors introduced in Section 3.2 and the efficiencies obtained for the factors considered 
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in the DEA. The studied governance groups (Gover.) were direct management (1), 

delegation (2) and concession (3). TP typology groups (Typol.) were rural (1), mostly 

urban (2) and urban (3). Regarding the quality, environmental and energy certification, 

two groups (absence – 0 and presence – 1) were considered for each certification. 

 

Table 4 – Obtained p-values for the discrete explanatory factors regarding the efficiency 

coefficients.  

  Group EnC Per. Exp. RevWW TWW EnP RWW Slu. 

Gover. 1 vs. 2 NS NS NS NS *** *** *** NS 

 1 vs. 3 ** ** ** NS *** *** *** * 

 2 vs. 3 NS NS NS NS NS *** *** NS 

Typol. 1 vs. 2 NS NS NS NS *** *** *** *** 

 1 vs. 3 ** *** ** NS *** *** *** NS 

 2 vs. 3 ** *** * NS NS *** *** NS 

Qual. Cert. 0 vs. 1 *** * * NS *** *** *** NS 

Env. Cert. 0 vs. 1 *** ** ** NS *** *** *** NS 

Ener. Cert. 0 vs. 1 ** ** *** ** ** *** *** NS 

NS – Not significant; * p-value<0.05: ** p-value<0.01; *** p-value<0.001 

 

The SP quality, environmental and energy certifications influence in the studied 

efficiency coefficients was also assessed. In all cases, and for all inputs and desirable 

outputs, except for the quality and environmental certifications for the RevWW 

efficiency, the above certifications can be considered as possible explanatory factors (p-

values below 0.05), with the SP presenting such certifications attaining higher 

efficiencies. Furthermore, regarding the energy production and RWW, the obtained p-

values indicate these parameters are among the most influential ones, alongside the SP 

dimension parameters. On the other hand, with respect to the sludge efficiency, these 

certifications seem not to be explanatory factors. Again, it is also important to note that 

the presence of such certifications is positively correlated with the SP dimension. 

Furthermore, and with respect to the energy certification, R values of 0.634 and 0.462 

were found with the LS and TP, respectively, stressing the importance of adequate energy 

practices for these energy intensive installations. 

The governance model was found to be related with the inputs minimization and 

outputs maximization efficiencies. Regarding inputs minimization, the SP within the 

concession model tend to obtain higher efficiency values, and the direct management the 

lowest. On the other hand, the governance model was not found to relate with the RevWW 

efficiency, contrary to the TWW where the direct management resulted in lower 



25 
 

efficiency values. With respect to both EnP and RWW efficiencies, a significant 

distinction could be found between the three models, again with the direct management 

presenting the lowest values and the concession model the highest. Finally, the 

governance model was also found to relate with the Slu. efficiency, with the SP within 

the concession model presenting the lowest efficiency values, and within the direct 

management the highest. 

Published literature presents mixed results concerning the relevance of the 

governance model for the SP efficiency, depending on the studied country, period and 

efficiency parameter. Whereas Byrnes et al (2009), Sala-Garrido et al (2019), Henriques 

et al (2020) and Marques and Simões (2020) determined a positive influence of private 

and/or concessionary SP, Mocholi-Arce et al (2022) and Pereira and Marques (2022) 

noted higher performances for public SP and/or under direct management. 

The typology of the TP was also studied, with the SP within the urban TP group 

being found significantly different from the remaining ones in terms of inputs 

minimization efficiencies and presenting the highest efficiencies for all inputs (EnC, Per. 

and Exp.). On the other hand, the typology did not influence the RevWW efficiency, 

contrary to the TWW where the rural TP resulted in lower efficiencies. With respect to 

both the produced energy and RWW efficiencies, a significant distinction could be found 

between the three typologies, again with the rural presenting the lower values and the 

urban the highest. Finally, the TP typology was related to the sludge efficiency, with the 

SP having mostly urban TP presenting the lowest efficiency values. Furthermore, the SP 

within the direct management model were overwhelmingly of rural typology, unlike the 

delegation and the concession models mainly of the mostly urban typology (R=0.511 

between TP typology and governance model). 

The obtained TP typology results are in accordance with the ones obtained by 

Henriques et al (2020) for the Portuguese WW SP in 2018. On the other hand, the results 

found by Mergoni et al (2022), although seemingly contradicting the current results 

(positive relationship with environmental pressure for rural areas), are circumscribed to a 

much narrow set of studied variables (water losses, structural collapses, gas emission and 

recycled waste) and not directly related to WW, SP range (solely SP incorporating water, 

WW and solid waste treatment and a single year (2018). 

Possible explanations for the above results may reside on the fact that:  

i) the governance model and TP typology correlated with the SP dimension 

parameters (R=0.737 for both the log-norm of CWW and HH, with the 
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typology, and R=0.590 between the log-norm CWW and the governance 

model). The SP dimension increased from rural, to mostly urban and to urban 

typologies, and from direct management to delegation and to concession. 

Indeed, the SP dimension could be a driving force behind the governance 

model and TP typology relationships with the studied efficiencies. 

ii) the quality parameters values (explanatory factors for sludge efficiency) 

increased from direct management, to delegation and to concession model, as 

well as from rural, to mostly urban and to urban typology (R=0.401 and 

R=0.384 for the governance model, R=0.363 and R=0.354 for the TP 

typology, respectively for quality compliance and satisfactory treatment). 

Again, the quality parameters values could be an explanation for the 

relationships of the governance model and TP typology with the efficiencies. 

iii) the SP within the direct management model, and of rural typology, seldom 

present environmental or energy certifications, whereas the presence of 

quality certifications (all explanatory factors) increased from direct 

management, to delegation and to concession model, as well as from rural, to 

mostly urban and to urban typology (R=0.570, R=0.462 and R=0.321 for the 

governance model, R=0.492, R=0.351 and R=0.233, for the typology, 

respectively for the environmental, quality and energy certifications). 

 

5. Conclusions 

In this study the collected, revenue, treated and reused WW volumes, sludge 

generation, allocated personnel, expenditure and energy consumption and production 

data, from 2015 to 2019, were used to benchmark the techno-economic efficiency of the 

Portuguese WW sector.  

Simultaneous minimization of inputs used and sludge production, and maximization 

of desirable outputs, led to an overall weighted average efficiency of 0.840. Among 

inputs, energy consumption obtained the highest efficiency, closely followed by allocated 

personnel and expenditures. Regarding the desirable outputs, the treated WW presented 

the highest efficiency, closely followed by revenue WW, produced sludge (undesirable 

output) and reused WW with the produced energy falling short of the above. Strict inputs 

minimization and desirable outputs maximization were analyzed and accounted for other 

improvement potentials scenarios. These results do not consider possible efficiency gains 
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that SP in the efficiency frontier could also undertake. Indeed, within the surveyed SP, 

solely 1.27% of the treated WW was reused  with the produced energy attaining solely 

7.62% of the energy consumption (against the 30% threshold for these OI, expected to be 

set for Portuguese goals for 2030).  

Most SP increased their efficiency from 2015 to 2019, essentially by approaching the 

efficiency frontier, leading to a 5% weighted overall efficiency increase and 6% in the 

technical efficiency. On the other hand, most SP saw their technological efficiency 

decrease, though the corresponding weighted average pointed towards no real 

technological change. Furthermore, a minimal increase in the inputs’ consumption 

efficiency could also be inferred in this period, as well as a minimal decrease on the 

efficiency of desirable outputs generation. 

The most relevant explanatory factors affecting efficiency were related to SP 

dimension. Collected WW volume, TP capacity, served population and number of served 

households had a positive impact on most inputs and desirable outputs efficiencies, 

whereas collectors grid length and number of TP and lift stations exerted a negative 

influence on the inputs and a positive on the desirable outputs’ efficiencies. Regarding 

the particular case of the revenue WW, only the number of served households, collected 

WW volume and collectors grid length (to some extent) were influential. Finally, 

regarding sludge efficiency, solely the served population was found to exert a (negative) 

influence. 

Costs recovery was found to be positively associated to the inputs and desirable 

outputs efficiencies. A synergistic effect could be observed between the WW quality, 

satisfactory WW, energy production and reused WW, although a possible trade-off may 

exist between the quality parameters and sludge efficiency. TP underuse and overuse 

analysis suggests that the studied TP may present an increased ability to sustain higher 

WW loads than their stated capacities. The SP quality, environmental and energy 

certifications exerted a positive influence over the inputs and desirable outputs 

efficiencies. The importance of adequate energy practices for these energy intensive 

installations was also stressed. SP within the concession model led to higher efficiency 

values of inputs and desirable outputs efficiencies, and direct management to lower 

efficiencies. Likewise, SP with urban TP presented the highest efficiencies for the inputs 

and most desirable outputs efficiencies, and rural TP the lowest. Yet, SP dimension, WW 

quality and certification could be driving forces behind the governance model and TP 

typology relationships with the studied efficiencies. 
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Considering the above, the SP techno-economic efficiency seems to benefit from 

large SP, policy of compliance to environmental, quality and energy certification, and a 

strict control of the number of lift stations, collectors grid length and TP underuse. Given 

that governance models and typology were found to correlate with each other and with 

SP dimension, quality parameter values and certifications, the concession model and 

urban typology resulted in higher efficiency values, opposite to the direct management 

model and rural typology. That being the case, benefits will arise also regarding costs 

recovery, WW quality compliance and satisfactory WW treatment which, far from being 

a trade-off of improved efficiencies, are rather a positive consequence in most cases. 

Indeed, the sole exception found was a possible trade-off between sludge efficiency and 

WW quality compliance. 

These results reinforce, and complement, the recommendations of the Portuguese 

Strategic Plan for Water Supply and Wastewater and Stormwater Management – 

PENSAARP 2030 (Portuguese Secretary of State for the Environment, 2022), regarding 

the aggregation of smaller SP to form larger entities, pursue of WW quality compliance 

and certification practices, increased control of expenditures (or costs recovery), energy 

and allocated personnel, and environmental (energy, water) sustainability. Indeed, this 

study allowed identifying the main factors that should be taken into consideration for each 

of the above objectives. Furthermore, considering the governance model, this study may 

also be useful regarding possible reorganization of the Portuguese WW sector, stressing 

the strong and weak points of the current SP models, pointing towards the adoption of 

more suitable management practices by direct management SP (mostly municipalities). 

This conclusion is also aligned with PENSAARP 2030, which states the need for the 

adoption of autonomous management accounting and the creation of supporting 

mechanisms for smaller SP aggregation and business management restructuring. 
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