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Classical Monte Carlo simulation methods have been used to evaluate the internal partition function of diatomic
and triatomic van der Waals molecules. All simulation methods are simple to implement and are shown to
yield very accurate results for AfO, Ar---O,, and Ar--CN when compared with the corresponding exact
quantum mechanical results. Their efficiencies are also examined.

1. Introduction possibility of observing direct three-body collisions as argued
by Pack and co-workers?

Several schemes have been proposed to explain the kinetics
of a recombination reaction, namely, the energy-trafgt€¥)
mechanism, a mechanisimvolving excited electronic stat&s
(EE), and theradical-complexor Chaperoft (RC) mechanism
(see also ref 11 and references therein). For the purpose of this
work, we will focus our attention on the RC mechanism. When
applied to the general reaction 1, it involves the following steps:

The calculation of the internal partition functi@:, and the
density of statedl, is an important topic which has a vast range
of applications. In fact, its accurate determination for a non-
separable potential is a long standing problem which goes back
to the foundations of statistical mechanics. The density of states
is required for the evaluation of reaction rate constants in
transition state theory (conventional or variational), while the
calculation ofQjn; is important, e.g., to study the equilibrium

properties of bound systems. In turn, its temperature dependence K,
is necessary to evaluate various thermodynamic quantities, such A+M=M--A (4)
as the Gibbs enthalpy and the Helmholtz function, which are K
used as standard input for many models in astrophysics; see BC + M==M--BC (5)

ref 1. For example, the solution of the equation of state for cool

stellar atmospheres requires very accurate value®pf3 K
However, the calculation din becomes particularly difficult M--A +BC—ABC+M ©6)
for systems involving weakly bound states such as van der ks
Waals (vdW) molecules. Indeed, the application of approximate A +M--BC—ABC + M (7)
methods like the harmonic oscillator and rigid rotor (HRR) K
approximation (which has been widely used to build up the M++A + M+--BC— ABC + 2M (8)
JANAF* tables of thermodynamic functions) is expected to give
poor results for such floppy (anharmonic) molecules. Note that according to this mechanism, the low pressure limit
Recently, we have been interested in the study of thermo- Of the second-order rate constant for formation of the stable
lecular association reactions of the general type triatomic molecule (H@ Os, or HCN) assumes the foh
A+BC+M—ABC+M 1) ko = (Kok, + K3ks)[M] )
As prototypes, we have investigatebe recombination reactions  Thus, an accurate evaluation of the equilibrium constants for
for formation of the hydroperoxyl radical and ozone, i.e. processes 4 and 5 is essential to obfajras a function of
temperature. In turn, the evaluation of tgandK3 equilibrium
X+0,+M—XO,+ M (X =H,O) (2) constants requires the knowledgej; for the involved vdwW

molecules. For simplicity, we concentrate on the-AD, Ar--
where M is a third body (this will be considered in this work to  -O,, and Ar-+(CN) vdW molecules and omit heretofore the “

be an argon atom), and most recently for the reaétion -=" symbol.
In quantum statistical mechanics (QSM), the internal partition
H+CN+M—HCN+M 3) function is represented by the following summation
The reaction leading to ozone formation is well-known to play - 2 + 1) ex _ 10
an important role in chemistry of the upper atmosphere, Qun ZJ( 1) expfie,) (10)

particulary in relation to the ozone depletion problem. It comes

therefore as no surprise that several previous studies have beewheree,; is the energy associated with the quantum statp (
reported for such a reaction. On the other hand, the reactionand the factor (2+ 1) accounts for the rotational degeneracy.
yielding hydrogen cyanide has been the subject of a very detailedNote that eq 10 refers to a specific electronic state of the
study by one of Uswith a view to illustrate the range of validity  molecule, and hence, it is assumed that no electronic excited
of the various mechanisms and thereby shed light on the states are involved at the temperatures of interest. In other words,
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the internal partition function assumes the fétm TABLE 1: Equilibrium Constant for Ar + O = ArO (in
cm? molecule ) Calculated from Two Different Potential
Qint = Qe (112) Energy Curves Using the Methods Described in the Text
ith the electronic partition function bei 1; Qyr stand EHPACE 612
Wi € electronic partition function beir@e = 1; Qu stands TIK classical quantum classical quantum

as usual for vibrational-rotational partition function. For the case
of a diatomic molecule, the quantum solution of eq 10 can be 100 1.539< 107 1.450x 10 1.648x 10°** 1.607x 10°**
obtained by calculating the vibratioralotational quantum 8 i"llggx igzs i'gggx 1g23 i'gggx igzs i'iggx igzs
states. However, for a larger system, such a calculation becomes, 55 3'_875>X< 102 3:654§ 10-24 4:173>X< 1024 4:103§ 1072
very difficult if not impossible®® Although enormous progress

in computer technology has made feasible such vibrational-
rotational calculations, the problem of very large CPU times

remains. We therefore focus our attention in this work on the
calculation of the partition function using classical statistical

mechanics (CSM).

The details are organized as follows. In section 2, we show, 5
by comparing the classical solutions with the exact quantum Q= %(2,uk'l')3/2 fmexpWV(r)]y[S/Z ﬁV(r)]rz dr (15)
ones, that CSM leads to negligible errors in the case of a h? o
diatomic molecule. Then, section 3 presents several Monte Carlo
(MC) simulation approaches to the partition functions of the wherey(a,b) is the incomplete’ function!” ando is the distance
ArO diatomic vdW molecule (section 3.1) and triatomics ArO  for which V(o) = 0. The integral in eq 15 is a one-dimensional

in magnitude that of the potential energy part (we assume the
zero of potential energy to correspond to the separated atoms
limit). By integrating over the angles, one gét3® after some
algebraic manipulation

and ArCN (section 3.2). The conclusions are in section 4. integral and can be resolved easily by any conventional
_ N ) numerical method. For some diatomic potential models such
2. Classical Approaches to the Partition Function as the generalized Lennard-Jonesnj, Morse, and Woolley
For a System Composed prartides confined to a volume curves, it is even pOSSible to get the analytical solution of eq
V, the classical expression @iy is 151819
To investigate the validity of the classical approach, we first
Q= %ff---fBexp[BH(q,p)]dqdp (12) compare the diatomic results for the internal partition function
h obtained from eq 15 with their accurate quantum analogs. For

. . . this purpose, we have calculat€sh; in eq 15 for ArO using
wheref is the number of internal degrees of freedadip,q) is two different models: EHFACE® (see also ref 21) and

the cl._assical Hamiltoniarg = {qu, Gz ... i aré generalized Lennard-Jones (612) potential functions (the latter is defined
coordinatesp = {p1, p2, ..., p the corresponding conjugate by?2 Ruin = 6.65 ande = —0.000279&). In turn, the exact
momenta, an@ = —1/T; the subscriptB” in the last integral quantum value oD has been obtained from eq’ 10 with the
indicates that the integrations are only over the degrees of " . -
freedom correspondingg to a bound sys);em. Nomtomsgthe € cal_culated_ by solving numerically th@Inuclear Sc_hrdmgtze:
total number of degrees of freedom N,3and hence the above equat!on using .the stapdard Num ooley algorithre> .
integration are over the= 3N — 3 internal degrees of freedom Classically, the integration of eq 15 for the EHFACE?2 potential
Note that by removing the coordinates of the center-of-mass function has been carried out using the trapezoidal method, while
: : L . for the Lennard-Jones {6L2) potential function, we have used
(thus, discarding the kinetic energy part due to translation of the analytical solution proposed by Gire!®® From the

the entire system), the allowed motions will be confined to . S

regions of phase space corresponding to a bound system. Noté:alculatedgim for ArO, we havg then determmgd the equilibrium

also that this requirement depends on the system underconstant Keq = K_z)_for reaction 4 by applying the standard
formalism of statistical mechanié&Table 1 shows the results

consideration, as it will be discussed in the following sections. ) >
As usualhf represents the volume of phase space corresponding®Pt@inéd from both the CSM and QSM approaches using the
above two potential energy curves over a wide range of

to a quantum state (cell).
For a diatomic molecule, the standard way to evaluate the temperatures. Clearly, the agreement between the CSM and

integral in eq 12 consists of adopting a system of spherical polar @SM results are very good for a given potential. This warrants

coordinates r1(0,¢); see Figure la. One then gets for the N principle the use of the CSM simulation approach to compute

corresponding Hamiltonian accurately the partition function of larger polyatomics.
Unfortunately, the CSM approach cannot be formulated
1 pi p,2 analytically for a polyatomic molecule when using a realistic
H(q.p) = o Pe + it o + 2u + V() (13) potential energy surface. Indeed, this problem has only been

solved (see ref 26) for the case whereim|V(q)| = . In

wherel andu are the momentum of inertia and the reduced particular, a difficulty which arises when formulating the
mass of the system, respectively. Thus, the internal partition Problem analytically refers to the choice of coordinate system.

function is given by Probably, the natural option for a triatomic molecule would be
1 to use bipolar coordinaté$. However, eq 12 cannot be
_ N L L Y Y o simplified to a one-dimensional integral as in the diatomic case
nt = = ex ,
Qe hQ‘/(; j; 0 f_“’f_‘”‘f_"" P and hence the viability of the CSM approach @f; depends

(BH)d6 d¢ dr dpd dp¢ dp, (14) essentially on the efficiency of the numerical method which

deals with the multidimensional integral in eq 12. Usually, the

where the limits of integration for the variablgsandp (now Monte Carlo simulation method is applied to multidimensional
{r,0,¢} and{p,ps.ps}) are fixed from the condition that the integrals with good results and, for this purpose, we investigate
kinetic energy contribution to the Hamiltonian cannot exceed in the next section how it performs for diatomics and triatomics.
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3. The Monte Carlo Simulation Method TABLE 2: A Comparison of the Classical MC and QSM
. . ) Results for Qi Obtained for the ArO vdW Molecule at T =
3.1. Calculation of Qint for ArO. As usual, the diatomic 300 K Using the EHAFACE2 Potential Energy Curve
molecule is described in phase space by the six Cartesian

coordinategy® (i = 1—6) and their associated momem (i method Qe Neot € (%)
= 1-6). We further define the coordinates such tQét(i = A 785-6& 2-8 1g :143
1-3) indicates the position of the center of mass of the molecule, Ec 293' Gi 2-2 i p 100
andQW(i = 4—6) the position of atom B with respect to atom QSM 699.7

A; PO(i = 1-6) are the corresponding conjugate momenta. It + Classical crude MC. simulati hod. this wotClassical
therefore remains to define the conditions representative of theimprO\?esjlche;lcchL:mi|ati0nSIr:1n:tsg(cjm tmset vSofké:lzaSss\li\::al Ba;igf,‘s
pc:und ?ystem. Qlearly, hheytﬁorrespond t(I) ?Itut?]tlog's Wh?“i_ themethod, this work? Quantum statistical mechanical result, this work.
internal energy is smaller than or equal to the dissociation
energy, which implieH(p,q) < 0 where
. when these values are adopted to calcu@tg Clearly, the
_ (02 efficiency of this crude MC method is poor (this is defined by
H(p.q) 2u; GP +V(QaQsQ0) (16) € = Nin/Niwy): ~1%. However, this problem can be easily
’ overcome by increasing the number of trials. For example, by
We emphasize that the reference potential energy correspond#/sing 10 trials, the calculated value becomes very close to the
to the infinitely separated atoms and that we have not taken QSM result. o ) )
into account any quasi_bound states Of the molecule (for a As usual, the Standal’d deV|at|0n error aSSOCIated W|th eq 19
discussion on this topic, see ref 2). Three variants of the Monte IS given by
Carlo technigue have then been investigated to calc@ate
which are described next. [exp’(—pH,) - exp(pH)A
3.1.1. Crude Monte Carlo Techniqu&/e define here for the 0=V N —1
six coordinates a minimum and a maximum displacement, tot
namely, Qmin, Qmax Pmin, and Pmax. The simulation has then
been carried out by defining

(20)

where the angle brackets denote taking the arithmetic mean over
the Nyt Sampling points,

Q(i) = Qmin + (Qmax_ Qmin)g (17) N

1 in
4 [exp’(—BH) = — exf(—fH;) (21)
P(I) = F)min + (Pmax - Pmin)g (18) NtotI:
whereé is a random number in the range-{Q]; (i = 4,6). At Nin
this stage the Hamiltonian is calculated and the point accepted [exp(—pH)0= —) exp(£H) (22)
in case its value is smaller than zero (bound state situation); toti=

otherwise, it is rejected, i.e., expfH;) = 0, and a new point _
sampled. The integral in eq 12 is then replaced by the standard 3.1.2. Impraed Crude Monte Carlo Techniqulaturally, a

Monte Carlo summation simple way to improve the efficiency of the crude Monte Carlo
simulation consists of decreasing as much as possible the
ziN:inlexp(_ﬂHi) sampling volume. This can be partially fullfilled by choosing
S= VST (19) an appropriate coordinate system for phase space sampling. For
(o)

example, to perform the coordinate space sampling, we first
) ~_ recall that the Cartesian coordinates are related to the polar ones
whereNy is the total number of randomly generated points in through the relations

phase spacd\i, the number of points satisfying the condition

[H(p,a) = 0], and the total sampled volumé is defined by ~ x=rsinf cos¢, y=rsinfsing, and z=rcosd 23)

6
- - i i with the infinitesimal element of volume being given b

Vs = (ng)ax_ Qr(:w)in)(Pg?ax - Pr(1I1)in) (20) 99 Y
=

dV=r’sin6 d dg dr

Of course, a crucial step in this “crude” Monte Carlo scheme is o

the definition of the phase space volume to be randomly Where the limits are &= 6 < 7 and 0= ¢ < 27. Then, we
sampled. In other words, the sampled volume should include NOteé that the angular part can be integrated analytically, and
the true volume but be as close as possible to it. Unfortunately, énce the random sampling is reduced to the variabteglp.

there is not an obvious way to accomplish this using Cartesian On the other hand, the volume of a sphere is proportional to
coordinates. The choice 8 andPmaxis suggested by itself: the cube of its radius, and hence a uniform sampling procedure

Prmax = (24Eq)Y2 and Ppin = —Prmax Wherey is the reduced in r andp requires that the two variables are obtained from
mass of the system, arig; is the dissociation energy of the 3 3 3 3

i it - [=[Min + (v — T} (24)
molecule. On the other hand, the selection of position coordi min max — "'min
nates is arbitrary in the sense that they can assume any value 5 5 5 3
between—o and +. For practical purposes, one may fix a P = [Prmin T (Prmax — Prmin)&] (25)

priori such a range, say, by considering only distances smaller

than 3@ or so since the interaction energy should be essentially Thus, an advantage of using such a coordinate system is that
negligible outside this range. Such a selection implgs = the sampling volume can now be split on the product of two
—1537 and Qmax = 15ap. Table 2 shows the results obtained spherical volumes. One has,
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Vs = VQVP (26) TABLE 3: Values of Qj, for the ArO vdwW Molecule over a
Wide Range of Temperatures: See Also the Text and Table
. . 2
where Vg represents the configuration space volume, ¥pd

the corresponding momentum space volume: mC

TIK Qsme method A& method B Method C
4 3 3

Vo= 2(r3 . — 3. 27 100 4612  463.4-4.6  462.1+2.4  461.2+1.9
e 3 (Fmax ~ i) @7 200 6293  633.9%6.1 630.5-3.2 629.3-24

400 7380 744472 739.4£37  738.0+28
vo=4 o3 3 28 500 7622  768.9%7.4  763.6£38  762.1+28
p = 37(Pmax ~ Pin) (28) 600 7788  785.87.6  780.2:3.9  778.7+29
700 7909  798.67.7  792.3:4.0  790.8+29

i , 800  800.0  807.4-7.8 801540  800.0+3.0
Although the definition ofpmay is the same as stated above, 959  g973 8147278 8088L40  807.2+ 30

Pmin Will Nnow be zero. Concerning thevariable, its range can 1000 813.1 820.% 7.9 814.6+ 4.1 813.0+ 3.0

be c_:hosen -SUCh tha&a’-‘ Corresp_onds to a distance for which aQuantum statistical mechanical result, this wdrklassical crude
the interaction energy is negligible (s_ay,ax - 1_5a°)' In turn, MC simulation method, this work.Classical improved MC simulation
rmin Must be chosen as small as possible but different from zero yethod. this work? Classical Barker's method this work.

(e.g.,rmin = 0.01ay) to avoid an overflow due to the Coulombic

pole in the potential energy at the united atom limit of the For a diatomic, the definition of the boundary surface is given
collapsed diatomic. We still use eq 19 to evaluate the integral straightforwardly byH(p,r) = 0, which impliesp?/2u = —V(r).

in eq 12, and eq 20 for the associated errors. SomewhatFollowing the above scheme, we then chonggas the value
surprisingly, the efficiency turns out to be only about 4 times of ¢ in eq 15 andnaxas the distance for which we may consider
larger than that of the crude MC approach; see Table 2. This the interaction energy to be negligible (in this work, we consider
can be understood from the fact that the sampling volume hasrmax= 15ag). Fixedpmin = 0, we then chooseat random while
been reduced by a factor of 4; note that we have now two the value ofpmax is fixed from the boundary surface. The
spheres, with each of them having a volume nearly two times sampling of the other variables (step 3) is done next using eqs

smaller than that of the cube in which they are inscribed. 24 and 25. Regarding the weight factors, one should keep in
3.1.3. Barker’s Algorithm The approach described in this mind that we are using spherical coordinates, and hence the
section is an adaptation of a method proposed by B#rkdrich weights must be calculated acording to eqs 27 and 28. The

has originally been suggested to calculate the sum and densitystandard deviation associated with eq 30 assumes now the
of states of a given molecule. As before, the main idea is to form?8.2

choose the sampling volume to be as close as possible to the

integrated one such as to increase the efficiency of the method. o> =[N(N — 1)]_12(fgwg -9? (31)

Of course, in the limit, one may achieve unit efficiency. In the

approaches described in the previous paragraphs, each randonable 2 compares the results from the three sampling methods
variable was sampled independently from each other leadingdescribed above, all based or° Bampling points. Clearly the

to a uniform distribution. In this approach, the range of each best agreement with the exact quantum result is obtained with
variable is instead considered to be a function of the variables Barker's method. Similarly, for the same degree of precision,
previously sampled. Thus, the obtained distribution is no longer the number of required sampling points is smallest for the
uniform, and weight factors need to be considered. For con- Barker's approach and largest for the crude MC method. Note
venience, we report next the algorithm adopted, and provide that the efficiency of a MC method is usually defined as the
the final expression to calculate the integral in eq 12; further percentage of the physically acceptable points (those satisfying
details and formal demonstrations can be found in the original the boundary conditions) among the total number of sampled

work 28 points. Obviously, Barker's method leads always to 100%

The general procedure consists of the following steps: 1. efficiency, since all sampled points are physically acceptable.
Define a boundary surface in thedimensional spac® = Table 3 shows in turn the results obtained@g over the range
F(EW,...£M) such that the integration domain is completely of temperatures 10& T/K < 1000, while providing also a
contained in this surface. 2. Fix the randedx — Cmin) for the comparison with the values obtained from other methods. As
£@ variable, and thetﬁ)m value for all othersj(= 2, n). 3. observed, there is good agreement between all results.

Sample at random the variable in the given range. 4. Calculate 3.2. Calculation of Qi for ArO ; and ArCN. The first
the value offmax according to the boundary surface defined in difficulty which arises when one applies Barker’s procedure to
step 1 for the variable§?(j = 2, n), and repeat step 3 for all @ triatomic system is to define the binding condition, i.e., the
these variables. 5. Calculate the weight for each sampled pointregion of phase space for which the internal energy is smaller

g according to than the dissociation energ¥d). Indeed, for a polyatomic

molecule, this definition is not unique, since there is more than
no _ one dissociation channel. The problem gets simplified in the
W, = rl[@(,{])ax— g0, (29) case of a vdW molecule, since the natural choice will be to

= assume as reference energy that associated to the-dtoomd

diatomic dissociation channel, e.g., A(QN) — O,(CN) + Ar,

6. Calculate the integral according to and hence, the values Bf; used in this work are for the ArO
and ArCN,—122.9 cntt and —58.0 cn1?, respectively.
S=Zf,WyN (30) In a space-fixed Cartesian system of coordinates, a point in

phase space will be describedfgy(i = 1, 9) andp; (i = 1, 9).
wherefy = exp(—H(q,p)/kT), and N is the total number of Since we are interested in the calculationf;, we adopt the
sampled points. Clearly, we have ndlx= Ny: = Nin, and hence generalized coordinates described in ref 30 in such a way that
all points satisfy the conditior < 0. (Q4, Qs, Qg) identify the position of atom C with respect to
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Vg = 27R5,,JcosBr ) — cosbr )II3 -
27R%,[c0sOr ) — cosbr )3 (35)

Vp=aP; (36)
Vi = 4/3P; (37)

The results obtained when sue a procedure is applied to the
title triatomic systems are reported in Figures 2 and 3. Note
that the MC simulation has been performed at selected tem-
peratures, ranging from & 100-5000 K, the number of
sampling points being £0 Figures 2 and 3 also present a

Figure 1. Transformation between the Cartesian (see the text) and comparison between the MC simulation result (obtained by

spherical polar coordinate systems: (&4,Q5Qs) — (r,0r.¢x), (b)
(Q7.Q8.Qe) — (ROrr).

atom B, and Q7, Qs, Qo) represents the position of atom A
relative to the center of mass of the diatomic BC. In this
coordinate system, the classical Hamiltonian for internal motion
assumes the form

1&, 12
H=—SP+
2Uci=

PP+ V(Q Q) (32)

A,BCI=

while the boundary condition is defined BY(Qa, ..., Qq, P4,

., Pg) = E4. Because we want to compare the results of our
simulation with those obtained by solving th® Zyjuantum
problem, we then freeze the diatomic distanegits equilibrium
value ¢°? = 2.281&, andr’™ = 2.214).

solving the classical phase space integral) and the QSM internal
partition functions, which we discuss in the next paragraph.
To obtain the QSM results, we have adopted a quantum
reduced-dimensionality approach, and considered the distance
in the diatomic fixed at its equilibrium geometry. This should
be a good assumption since we are focusing on vdW molecules,
for which we have considered realistic double many-body
expansiof-32 (DMBE) potential energy surface described
elsewheré:23 The 2D problem has then been solved by using
the coupled-channels approach as implemented in the BOUND
computer code of Hutsot:3>Specifically, the coupled equations
have been propagated for the Ar@olecule betweeRni, =
2.6 A andRnax = 14.0 A with a step size oflR = 0.05 A,
while for the rotational constant of Ove have used. =
1.44563 cm.3% The total number of calculated vibratioral
rotational levels and maximum total angular momentum have
been found to be 1380 antl= 36, respectively. In turn, for

When adopting the crude and improved MC methods, the ArcN, we have used the results reported elsewhesing the

efficiency obtained is in both cases very small (0.0001%) which

same methodology. The vibratiorabtational partition func-

makes their error bars unacceptable. For this reason, we foCUsjons were then calculated by carrying out the summation in eq
on the results obtained by using Barker's algorithm, since the 10 with j replaced by the total angular momentum quantum
other methods are unlike to be of practical interest for systems nymperJ of the complex which is obtained by couplii/ 0

of high dimensionality. However, prior to discussing the results,
we need to introduce some further technical details.

(the total angular momentum quantum number of the diatomic
molecule; note that for ©the Bose-Einstein statistics forbids

First, as in the diatomic case, we adopt spherical polar gyen rotational states) arjtiM,O(the end-over-end rotations

coordinates for both position and momenta to perform the

of the complex}’ Clearly, the plots in Figures 2 and 3 show

sampling (see Figure 1). The sampling in configuration space that an excellent agreement is obtained for both systems. In

for the Jacobi coordinatR is performed using eq 24, while the
other Jacobi coordinatels fixed at its equilibrium value. Since
the boundary condition is defined as usualHiyg,p) = Eq and
the range for the variable has been fixed (s in our case held

fact, for both ArCN and Ar@, the bottom parts of Figures 2
and 3 indicate that the deviations between the MC simulation
and the exact QSM results are always smaller then 1%.

as a constant value), we may follow the general recipe described, conclusions

in the previous subsection. Specifically, the sampling of phase

space involves the following steps: 1. Rix at its equilibrum
value Pr = 90° for ArO,, andfr = 100° for ArCN), P, = 0,
and Pgr = 0. With r fixed at its equilibrium value, apply the
boundary condition to calculatnax andRnyin, and then sample
R. 2. Using theR value obtained from the previous step d@hd
= Pr = 0, apply the boundary condition to obtafig, . and
Or.,, from which 6r is then sampled. 3. From ¥(R, 6g) and
Pr = 0, obtain P/ = 2u(Eq — V)]¥2 and sampleP,. 4.
CalculatePp™ from PR = [2u(Eq — V — PZ/2u)]Y2, and then
samplePgr. 5. Determine the weight factors as

w, = Vo Vo Ve Vi (33)
where

Vo = dar’ (34)

The modeling of chemical reactions requires a detailed
knowledge of the relevant partition functions over a wide range
of temperatures. In particular, the reliability of the calculated
properties for reactions such as those in egs 2 and 3 depends
critically on the accuracy of the equilibrium constant for
formation of the intermediate species involved in the RC
mechanism. Since the evaluation @f; is nontrivial and the
usual approximations (such as H®R, and related models)
breakdown in the case of vdW molecules, the classical MC
simulation approach suggested in the present work looks
promising. Indeed, in all cases the exact but more cumbersome
QSM calculations agree typically with the classical simulation
results within a few tenths of a percent or so.

We have also examined the efficiency in several variants of
the MC approach, and concluded that Barker’s algorithm is to
be recommended. It provides a general methodology to solve
multidimensional integrals and may find a wide application in
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Figure 2. Top panels (a) and (b)Qin: as a function of temperature
for the ArQ, vdW molecule. The solid line represents the exact-quantum
result, while the dots indicate the MC simulation results with errors

bars. Bottom parts c and d: relative error in percent between the QSM

and MC simulation results.
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Figure 3. As in Figure 2 but for the ArCN vdWmolecule.
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