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Abstract
Presumably, intensity-modulated proton radiotherapy (IMPT) is themost powerful formof proton
radiotherapy. In the current state of the art, IMPTbeam configurations (i.e. the number of beams and
their directions) are, in general, chosen subjectively based on prior experience and practicality. Beam
configuration optimization (BCO) for IMPT could, in theory, significantly enhance IMPT’s
therapeutic potential. However, BCO is complex and highly computer resource-intensive. Some
algorithms for BCOhave been developed for intensity-modulated photon therapy (IMRT). They are
rarely used clinicallymainly because the large number of beams typically employed in IMRT renders
BCOessentially unnecessary.Moreover, in the newer formof IMRT, volumetricmodulated arc
therapy, there are no individual static beams. BCO is of greater importance for IMPTbecause it
typically employs a very small number of beams (2-4) and, when the number of beams is small, BCO is
critical for improving plan quality. However, the unique properties and requirements of protons,
particularly in IMPT,make BCOchallenging. Protons aremore sensitive than photons to anatomic
changes, exhibit variable relative biological effectiveness along their paths, and, as recently discovered,
may spare the immune system. Such factorsmust be considered in IMPTBCO, though doing so
wouldmake BCOmore resource intensive andmake itmore challenging to extend BCOalgorithms
developed for IMRT to IMPT. A limited amount of research in IMPTBCOhas been conducted;
however, considerable additional work is needed for its further development tomake it truly effective
and computationally practical. This article aims to provide a review of existing BCOalgorithms,most
of whichwere developed for IMRT, and addresses important requirements specific to BCO for IMPT
optimization that necessitate themodification of existing approaches or the development of new
effective and efficient ones.

1. Introduction

Intensity-modulated proton therapy (IMPT), ostensibly themost powerful formof proton radiotherapy, was
first introduced in the late 1990s by Lomax (1999). It has becomewidely available and the dominantmode of
proton therapy over the last decade (Kooy andGrassberger 2015,Mohan andGrosshans 2017). IMPT employs
multiple proton beams incident from judiciously selected directions. Each beam is composed of a large number
of narrowpencil beams (i.e. ‘beamlets’) having a sequence of appropriate energies. These beamlets are delivered
usingmagnetic scanning technology. The intensities of the beamlets of all beams are optimized simultaneously
using sophisticatedmathematical algorithms to produce dose distributions that optimally balance target
coverage and the sparing of organs at risk (OARs). In contrast with photon intensity-modulated radiation
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therapy (IMRT), IMPThas an extra degree of freedom, that of energy, which allows it to achieve significantly
superior therapeutically effective dose distributions.

There aremultiple forms of IMPT (Lomax 1999). In its two-dimensional form, single-field uniformdose
IMPT, also called single-field optimized IMPT, or SFO (Zhu et al 2010), the intensities of the beamlets of each
beamare individually optimized to deliver a uniformdose to the target andminimize dose outside the target;
however, the role of other beams is ignored in the process. This technique is the simplest but cannot achieve the
optimality of other approaches. In the distal edge tracking formof IMPT, spots (the terminal ends of beamlets)
are placed at the distal edge of the target volume. This technique has the drawback of producing dose
distributions that are highly sensitive to sources of uncertainties such as interfractional and intrafractional
changes in anatomy. In the three-dimensionalmode of IMPT, spots of beams incident from various directions
are typically arranged uniformly in the target volume, and their intensities are optimized simultaneously. 3D-
IMPThas been shown to have several advantages over the other techniquesmentioned and is currently themost
prevalent approach. 3D-IMPT is the focus of this article, and, for brevity, wewill simply call it IMPThereafter.

In the current practice of IMPTplanning, the number of beams and their angles (i.e. beam configurations)
are chosen subjectively based on prior trial-and-error experience and practical considerations (e.g. efficiency of
quality assurance and treatment delivery). The number of IMPTbeams is usually 2 or 3 and rarelymore than 4 or
5.Occasionally, for some disease sites, non-coplanar beams are also used. The optimal choice of beam
configuration can have profound impact on the quality of dose distributions and on patients’ outcomes.

Primarily because of the high dose gradients at the end of the range of protons, proton therapy ismore
sensitive than photon therapy to variations in anatomy,which can introduce significant uncertainty in the dose
delivered compared towhat is seen on the treatment plan (Lomax 2008a, 2008b,Mohan and Sahoo 2015,
Mohan andGrosshans 2017,Mohan et al 2017). IMPT is particularly sensitive to uncertainties, since the highly
heterogeneous dose distributions of each constituent beam,when combined, fit like a 3D jigsaw puzzle to
produce the desired uniformdose distribution in the target volumewhilemaximally sparing normal tissues. In
the face of uncertainties, this fitmay be lost,meaning that the dose distributions delivered to both the target and
normal tissuesmay be quite different fromwhat was planned. To address this problem, in the current practice of
proton therapy, the directionsmost affected by anatomic changes are avoided; however, thismay lead to
directions thatmay be suboptimal clinically. For prostate cancer, for instance, 2 lateral parallel opposed proton
beams aremost commonly used. They are not necessarily optimal from a dosimetric or clinical perspective, but
they avoid paths thatmay be affected by stomach and bladder filling orweight gain or loss over the course of
radiotherapy. To render IMPT resilient in the face of uncertainties, techniques have been developed for robust
optimization (RO) of IMPTplans and for the robustness evaluation of proton dose distributions
(Lomax 2008a, 2008b, Albertini et al 2010, 2011, Liu et al 2012a, 2012b, Casiraghi et al 2013, Liu et al 2013, 2016,
Placidi et al 2017, Zaghian et al 2017, Ge et al 2019). The choice of beam configuration can affect the robustness
of dose distributions, and beam configuration optimization (BCO) criteria should consider robustness.

In the current practice of proton therapy, the relative biological effectiveness (RBE) of protons relative to
photons is generally assumed to be a constant of 1.1. In reality, the RBE is a complex function of linear energy
transfer (LET), dose, tissue and/or cell type, and endpoint (Mohan et al 2017,Mohan andGrosshans 2017).
Unforeseen toxicities and suboptimal response to proton therapy, compared to expectations, have been
observed (Peeler et al 2016,Mohan et al 2017, 2018,Haas-Kogan et al 2018), whichmay in part be attributable to
the assumption of a constant value for protonRBE. Such outcomes are prompting the development of new
variable RBEmodels and an increasing acceptance of their use in IMPToptimization. Rørvik et al (2018)
reviewed eleven published phenomenological RBEmodels that includemultiple physical and biological factors
influencing RBE, concluding that differentmodels lead to considerably different results for the RBE estimations
andRBE-weighted doses. Some in the field have preferred to use LET as a surrogate for RBE in optimization
criteria (Deng et al 2021,Unkelbach et al 2016, Cao et al 2018). In either case, the RBE at the distal edges of
proton beams can be significantly higher than 1.1.Without specialmeasures, high-RBE regions, which are often
in normal tissues distal to the target to ensure adequacy of target coverage, can contribute to normal tissue
injury. The choice of beam configuration is often influenced by the need tominimize biologically effective dose
(or LET in high-dose regions) in normal tissues. Alternatively, IMPToptimization andBCOcriteriamay
incorporate LET or variable RBE tomitigate toxicity in regions distal to the target.

Recently, another potential benefit of proton therapy has emerged, that of sparing the immune system. Such
sparing is presumably attributable to the compactness of proton therapy dose distributions, i.e. the significantly
smaller low and intermediate ‘dose bath’. Conventional radiotherapy, for instancewith IMRT (or its newer
cousin, volumetricmodulated arc therapy), produces a large dose bath and can greatly deplete circulating
lymphocytes, immune cells that are highly sensitive to radiation. This can lead to severe lymphopenia, which has
been shown to be strongly associatedwith poor outcomes (Yovino andGrossman 2012, Tang et al 2014,
Grossman et al 2015,Wild et al 2015). The smaller dose bath of protons spares lymphocytes, which canmitigate
immune suppression and lead to superior outcomes compared to IMRT (Shiraishi et al 2018, Ebrahimi et al
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2019, vanRossum et al 2020,Mohan et al 2021). IMPTmay be able to spare lymphocytes to a greater degree
compared to passively scattered proton therapy (Routman et al 2019, Kim et al 2021).Moreover, it has been
hypothesized that IMPT,when optimized based on criteria that include sparing of circulating lymphocytes and
immuneOARs, can further spare lymphocytes without compromising target coverage or exceeding
conventional normal tissue dose constraints. Beam configurations can play an important role in such
optimization because, for instance, using shorter paths to the targetmay reduce the dose bath, and the choice of
anglesmay affect sparing of immuneOARs (e.g. bonemarrow, thymus, lymphnodes, spleen, heart).

Thus, BCO,which is critical for achieving themost clinically effective dose distributions,must take into
consideration LETor variable RBE, the sensitivity of dose distributions to uncertainties, and the sparing of the
immune system. In each of these aspects, IMPT significantly differs from IMRT. In addition, typical IMRTplans
may have amuch larger number of beams—anywhere from5 to 11 beams, often spaced equiangularly. Thismay
mean that the optimality of IMRTdose distributions is less dependent on beam configurations. On the other
hand, the number of adjustable variables available in IMPT is at least an order ofmagnitude greater because of
the additional dimension of energy. Therefore, in principle, the number of beams required for IMPT can be
much smaller. Another consideration specific to IMPT,which does not apply to IMRT, is the limit on the
minimummonitor units (MUs)per spot owing to the inability of the beammonitoring system to detect
extremely low values.

In short, BCO techniques developed for IMRTmay not be directly extensible to IMPT.However,
considering the special requirements of proton therapy listed in the previous paragraphs and detailed
throughout this article, itmakes sense here to briefly revisit previously developed beam angle optimization
techniques, even though the overwhelmingmajority have been applied to IMRTonly. In fact, searching
MEDLINE/PubMed for the terms ‘BCO’ or ‘Beam angle optimization’ in conjunctionwith ‘IMRT’ yielded 130
publications in the past 10 years (2011–2021), while the corresponding searchwith ‘IMPT’ yielded only 22 even
without any time limit. Scrutinizing each of these 22 articles closely, the list of IMPT articles that actually focus
on beamangle optimization reduces to just 5 articles (Cao et al 2012, 2015, Gu et al 2018, 2019, 2021). Note that
beam angles strategically selected as done byKirk et al (2017) or comparison of different beam angle
configurations as done by Feng et al (2020) or by van de Schoot et al (2016) cannot be considered beam angle
optimization. The goal of our report is not to carry out a systematic review of either BCOor IMPT, but rather
present authors’ experience and reflections shedding light on the challenges, opportunities and potential
research directions onBCO for IMPT.

The paper is organized as follow. In sections 2 and 3 below, currently available intensity distribution (i.e.
fluencemap) optimization andBCOapproaches are reviewed, and their limitations atmeeting the unique
requirements of IMPT are discussed. Section 4 summarizes the current state of the art and defines a research
roadmap for the future. (Note thatwe use the terms ‘fluencemap optimization’ [FMO] and intensity
distribution optimization interchangeably in this review).

2. BCOalgorithms

BCO,which involves beam angle optimization aswell as the determination of the optimal number of beams, is a
highly nonconvexmathematical problem. The space of solutions can be extremely large and full of ‘localminima
traps’, which canmake it very difficult tofind the globally optimal solution. This section discusses commonly
used criteria and algorithmic approaches for FMOandBCO.

2.1.Optimization criteria
Themathematical optimization is based on specified criteria to guide the search for the optimal solution. These
criteria are specified by an objective function, amathematical formulation of the treatment planning directives.
The optimization algorithm repeatedly computes the value of the objective function, i.e. the score, during the
iterative search process. The goal is tominimize the score, which, effectively, represents how far the solution is
from the directives.

A simple example of an objective function is the sumof variances of dose in each of the structures of interest
(tumor or a critical normal tissue). Each variance term is assigned an appropriate weight depending on the
relative clinical importance of the structure. If the requirement is to constrain only a subvolume of a structure to
within a specified dose limit, i.e. to impose a dose-volume constraint, only a subset of points in the structure
volume violating the constraint are considered in computing the score. The goal is to bring the required number
of such points into compliance. A given structuremay havemultiple dose-volume constraints. Examples of
additional objective functions, including their IMPT-specific extensions (e.g. for biological andRO) are
described in appendix A.
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Owing to the so-called ‘curse of dimensionality’ (Chen et al 2015), the complexity of the search space in
terms of its size and the number of localminima increases exponentially with increasing number of degrees of
freedom. In general, for BCO, this complexity depends partly on the optimization criteria and partly on the
number of beams aswell as the extent of the search domain. The optimization processmay inadvertently get
trapped in one of the localminima thatmay be significantly inferior to the globally optimal solution. In theory,
the best optimization algorithmwould be expected to converge to a high-quality solution, avoiding the local
minima traps. The challenges of exploring the BCO search space are illustrated infigure 1 for a simple prostate
cancer case with a 2-beam coplanar configuration. Thefigure depicts the score value for all possible pairs of
beams comprising the searchable surface. Even for only 2 beams, there is a large number of valleys, i.e. local
minima traps.

2.2.Optimization algorithms
2.2.1. Optimization of the number of beams
Most of BCOapproaches assume that the number of beams is decided a priori, consideringmainly the disease
location and existingOARs.More beams can improveOAR sparingwhilst guaranteeing a proper tumor
coverage, at the cost of increasing total treatment delivery time and even increased leakage radiation due to the
MUs increase. Thismeans that a larger number of beams should only be considered if it leads to a better dose
distribution. The optimization of the number of beams can be done in a variety of ways. One is brute-force:
simply find the best beam configuration for a different number of beams, and then compare these optimal
treatment plans and choose the one that is considered as the best. One example of such strategy can be found in
Liu et al (2006). Another possibility is to integrate the optimization of the beamdirectionswith the decision on
the optimal number of beams by considering a greedy and sequential choice of beams.One beam is chosen at a
time, until a newly added beamdoes not improve the plan quality. This strategy has been adopted for IMRT
BCO (Breedveld et al 2012, Bangert andUnkelbach 2016). This approach significantly reduces the number of
beam combinations to be explored (Bangert et al 2013). However, being a ‘greedy’ approach by adding the beam
that, at that point, contributesmost to scoreminimization, a near-optimal beam configurationmay bemissed
since the search space is truncatedwhenever the direction of the newly added beam isfixed.Metaheuristics are a
possible alternative for the simultaneous optimization of the directions and the number of beams (Schreibmann
et al 2004). It is possible to represent a treatment plan by two different vectors: one vector that represents beam
intensities and another binary vector, with one element for each possible beam, that is equal to one if that beam is
used and equal to zero otherwise (Lee et al 2006).Machine learning based approaches can also be used to
determine an optimal number of beams, assuming an informative dataset is available, since this problem can be
interpreted as a classification problem (Dias et al 2013).

Proton arc therapy (PAT)has already been proposed as the next step in proton therapy, similar to the
evolution of IMRT toVMAT. If this is the case, it could be thought that BCOwould not be important for proton
therapy anymore. Actually, as happenswithVMAT, BCOcan still be used for definingVMAT control points and
trajectories in order to achieve efficient delivery whilemaintaining dosimetric benefits (Carrasqueira et al 2021),

Figure 1.BCO search surface illustratingmany localminima traps for a prostate cancer case using a coplanar 2-beam configuration.
Finding the globalminimum is a difficult task because each of these valleys corresponds to a localminimumwhere a BCOalgorithm
may get trapped.
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so it is expected that a similar thingwill happenwith PAT. The benefits of PATover IMPT are still to be
determined. It is possible that the radiobiological aspects of PAT could lead to an improved therapeutic index
(Carabe-Fernandez et al 2020, Li et al 2021).

2.2.2. Optimization of beamdirections
Most published BCOalgorithmswere developed for IMRT. The fact that IMPTBCOneeds fewer beams than
does IMRT is an advantage from the computational point of view. Thismeans that some algorithmic approaches
thatwere found to lead to unreasonably high computational times for IMRTmay be acceptable for IMPT.
However, simple exhaustive searches of all possible beam angle combinations (Wang et al 2004) are still expected
to lead to unacceptably large computation times. In any case, despite the differences in requirements for photons
and protons, the BCOalgorithms used for photons can serve as an important starting point for protons.

At the simplest level of BCOmethods is the seminal work ofGoitein et al (1983) on beam’s eye view (BEV),
which is used to select the best beamdirections considering the anatomical relationships between the target
volume and critical normal structures. BEVhas been a popular approach to address BCO considering geometric
criteria only (Lu et al 1997, Pugachev andXing 2001); however, it ignores dosimetric requirements. On the other
hand, optimal beamdirections based on dosimetric criteria are generally counter-intuitive (Stein et al 1997).
Nevertheless, an automated BEV approach can complement advanced dosimetric-based BCOapproaches by
limiting the search space to regions thatminimize the overlap of sensitive structures with the target, reduce the
effects of anatomy changes, and shorten the beampaths.

It is important to note that different beam configurations can lead to very different optimumbeamlet
intensities and dose distributions. The best results are expectedwhen both FMOandBCOare performed
together. Typically, BCO approaches require reoptimization of fluencemaps and recomputation of the dose
distributions for each beam configuration tested, which adds immensely to the computational burden,
especially when attempting to achieve a global optimum in the presence ofmany localminima traps. Global
optimization algorithms, well established in other scientific areas, have been proposed for BCO. Examples
include simulated annealing (Djajaputra et al 2003,Dias et al 2015), neural networks (Rowbottom et al 1999),
genetic algorithms (Li et al 2004,Dias et al 2014), particle swarmoptimization (Li et al 2005), integer
programming algorithms (Lee et al 2003), and response surface algorithms (Aleman et al 2009). Although such
global strategies can reduce the probability of being trapped in localminima, the globally optimal solution
cannot usually be guaranteed in a clinically acceptable computational time (Lim et al 2014b).

Local optimization algorithms have also been proposed for BCO, including neighborhood search, i.e.
searching around the best solution found so far (Aleman et al 2008,Mišić et al 2010, Lim andCao 2012); cluster
analysis, i.e. grouping of beam ensembles (Bangert andOelfke 2010); and gradient search, i.e. using objective
function derivatives to guide the search (Craft 2007). These algorithms need less computational time, but the
quality of their solutions is very sensitive to the initial beam configuration (Lim andCao 2012). Hybrid
approaches combining global and localmethods have also been proposed inwhich a global strategy is used to
identify one or a small number of initial configurations for further optimizationwith a local strategy, thereby
achieving a high-quality, though not necessarily globally optimal, solution in acceptable computational times.
Lim et al (2014b), for instance, proposed a 2-phase hybrid approach inwhich a good feasible solution is quickly
found in the first phase by using a global strategy, which then serves as the starting point for a neighborhood
search tofind a locally optimal solution. Pattern searchmethods also combine global and local features (Rocha
et al 2013a, 2016, 2019). Pattern searchmethods are organized around 2 steps. In the first search step, any global
strategymay be used to explore the entire search space, providing a global perspective. In the second step, an
improvement of the solution found so far is assured by following specific defined and promising search
directions (Alberto et al 2004). Different global search strategies have been applied as components of pattern
searchmethods (Rocha et al 2013a, 2013b).

BCO search space can be explored in a continuous or discretizedmanner. In the latter, only discretized beam
directions are considered. Even for a small space of such beams (e.g. 36), the BCO combinatorial formulation
would lead to a large, computationally demanding optimization problem (Bangert et al 2012).

The time for computation of dose distributions plays an important role in choosing the optimization
approach.Unfortunately, computational times are not always reported in the published literature, or the time
for pre-calculation of dose distributions is not included in the total computational time. Thismakes
comparisons of the reported computational performances of the different algorithms difficult or biased (Haas
et al 1998, Rowbottom et al 1999, Li et al 2004, Rocha et al 2013a,Dias et al 2015). Computational times can also
be influenced by the criteria used. For instance, optimization based on anatomical criteria to choose the initial
configurationwould lead to shorter computation times. On the other hand,multicriteria optimizationmethods
(Breedveld et al 2012) (see next section) can be extremely demanding. Even the choice of the radiotherapy
treatment planning system (TPS) or the resolution of the planningCT scans influences computational
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performance. Table B1 in appendix B shows different BCOapproachesmentioned, including a qualitative
comparison of their computational performances, acknowledging the aforementioned limitations.

Recently,machine learning approaches have been proposed for BCO.One approach considers the use of
neural networks to rapidly calculate good approximations of dose distributions (Dias et al 2014, Sadeghnejad
Barkousaraie et al 2020). Themain advantage of this approach is the attractive computation time.However, the
validity of such an approachwould need to be tested againstmethods that employ accurate dose computation
techniques.

Asmentioned above, although theoretically BCOalgorithms previously developed for IMRT can be adapted
for IMPT, doing so is not straightforward. For instance, the robustness of IMPTdose distributions, which plays a
crucial role in the choice of beam configurations,must be considered. In some of the proposed algorithms,
FMO, BCO, andROare integrated (Cao et al 2012, Gu et al 2019). Robustness can also be handledwithin the
FMOportion of the BCO loop (Taasti et al 2020). Thismeans that anymainstream global optimization
algorithm, e.g. genetic algorithms,may continue to be used in FMOandBCO (Seo et al 2020). Another challenge
is that LETor variable RBE also need to be explicitly incorporated in the BCO. This has recently been addressed
in a publication byGu et al (2021). One topic that has not been adequately addressed is the simultaneous
optimization of beamorientations and spot patterns, instead of in two levels. This is due to the computational
complexity of the problemdespite recent efforts to develop computationally efficient algorithms (Gu et al 2018,
Sadeghnejad Barkousaraie et al 2020).

We should note that some current commercial TPSs offer rudimentary BCO tools. An example is the Plan
GeometryOptimizer, also called BeamAngleOptimizer, of Varian’s Eclipse TPS, which iteratively optimizes
gantry angles, with presumed benefits over themanual selection of beams (Srivastava et al 2011). However, the
scarcity of published results on BCOperformance from solutions provided by commercial TPSs is an indication
that they are notwidely used in clinical practice, either because they are still time consuming or because they
have not yet convinced practitioners of their benefits. To the best of our knowledge, commercial TPSs offer no
effective BCO solution for IMPT.

3. IMPT-Specific considerations of relevance to BCO

Both FMOandBCO for IMPThave some special considerations attributable to the unique characteristics of
protons. These are discussed in the subsections below.

3.1. Robust optimization
There are a set of treatment-related uncertainties that should be explicitly consideredwhen planning a
treatment. In conventional radiotherapy, important uncertainties come from interfractional and intrafractional
anatomy changes, or setup variations. In proton therapy, proton range uncertainties are also a reality. These
different sources of uncertainty can be responsible for severe heterogeneity, degradation, andmisalignment of
dose contributions fromoften highlymodulated beams. In conventional radiotherapy, these treatment-related
uncertainties are usually incorporated intomargins assigned to clinical target volumes to define the planning
target volumes.However, the planning target volume concept has several limitations for proton therapy,
especially for IMPT. For instance, proton range uncertainties cannot be adequately addressed bymargins alone.
It is possible to generate treatment plans that are resilient in the face of such factors by using RO techniques
(Unkelbach et al 2018). Implicitly, RO reduces gradients in dose distributions, rendering them less sensitive to
sources of uncertainties.

Several different approaches for ROhave been proposed.Most of themhave focused onminimizing the
impact of systematic or interfractional range uncertainties and setup errors on IMPTdose distributions, i.e. 3D
RO.More recently,methods incorporating temporal effects (e.g. intrafractional respiratorymotion) have also
been studiedwith 4DRO. Regardless of the RO approach, the key point is that the beam configuration can
significantly affect the robustness of dose distributions. For instance, beams that pass through anatomies that are
likely to changewill lead to less robust dose distributions. Directions of such beamswill be avoided byBCO that
incorporates robustness in its optimization criteria.We note that an alternative to the use of BCO to avoid
passage through structuresmore likely to change is the use of adaptive strategies such that treatment plans could
bemodified on a nearly daily basis to accommodate interfractional changes. However, such strategiesmay be
highly resource intensive and cannot account for the impact of intrafractional uncertainties.Many efforts have
already been done in this direction (Albertini et al 2020, Paganetti et al 2021).

RO, especially 4DRO,may increase the computational burden significantly. Robustness criteriamay be
integrated into BCO, or, alternatively, BCOmay be performed first andRO then performed for the resulting
optimized beam configuration. The latter is likely to be computationallymore efficient. However, whether such
a sequential optimization approach is dosimetrically equivalent to simultaneous optimization is unknown and
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needs to be investigated. Another question that needs to be answered is about the interaction betweenBCOand
RO. If RO reduces dose gradients, does it render local neighborhood search unnecessary due to the fact that dose
distributionswill become insensitive to small changes in beam angles?

The following paragraphs briefly summarize some of the commonRO approaches.Apriori, it would seem
that the relation between BCOand any of the approaches would be the same; however, this needs to be
confirmedwith future research.

3.1.1. Deterministic RO
Treatment uncertainties can be formulated in a deterministic fashion for RO.Oneway is tominimize the score
for theworst-case scenario among a set of uncertainty scenarios. An example is a set of 9 independent scenarios
obtained by 6 shifts along+/− orthogonal axes,maximumandminimumof proton range, and 1 nominal
scenario. In this approach, FMOandBCOwould aim tominimize the score of theworst among the 9 scenarios
in each iteration (Liu et al 2012b). Several variations of theworst-case approach have been evaluated.
Fredriksson andBokrantz (2014) concluded that nomethod outperformed the others under all conditions,
whereas Casiraghi et al (2013) found that, in general, theworst-case scenario approach is likely to underestimate
themaximumdose error in voxels near density heterogeneities.

3.1.2. Probabilistic RO
In probabilistic RO, each uncertainty component, e.g. proton range or patient position, is considered as a
randomvariable and assigned a probability distribution. The robustness is incorporated into the objective
function using the expected value of the voxel dose. An example of probabilistic approach is a study by
Unkelbach et al (2009), which used a stochastic gradient descent algorithm to solve probabilistic RO.Voxel
sampling and scenario sampling techniques were used to estimate the gradient of the objective function during
optimization iterations.

3.1.3.Minimization ofmaximum (or worst-case) regret
Another possibility, already successfully tested in otherfields, is the use of relative robustness. Instead of focusing
on theworst-case only, the solution is obtained byminimizing the ‘maximum regret’, considering the entire set
of scenarios. Regret is defined, for each scenario, as the difference between the score of the solution in the current
search iteration and the score of the optimal solution based only on that scenario. In afirst stage, the optimal
solution for each scenario s, i.e. theminimum score ( *Ss ), is calculated independently, i.e. ignoring other
scenarios. Here the asterisk denotes the optimum.As each scenario has different characteristics, the optimal
solution, in general, will be scenario dependent. In otherwords, for n scenarios, therewill be n different optimal
solutionswith different optimal score values *Ss . The objective is to calculate a single solution thatminimizes the
worst regret. Regret, as defined above, for scenario swould then be the difference between (Ss), the score during
the iterative optimization, and its optimal solution score ( *Ss ) for scenario s. The process ofminimization of
regret iteratively computes - *( )S Ss s differences tofind the solution that reduces themaximum regret to a
minimumvalue. Implicitly, thismeans that the final solutionwill not necessarily be optimal for any one of the
scenarios but is expected to be awell-behaved solution that is balanced among all scenarios. An example of
minimizing the ‘maximum regret’ is provided in appendix C.

3.1.4.Multicriteria optimization
It is particularly useful to use RO as a part ofmulticriteria optimizationmethods.Multicriteria optimization,
which is normally used to interactively trade off dosimetric requirements among volumes of interest (tumor and
normal tissues), may also be used to trade off robustness versus dosimetric requirements. Chen et al (2012), for
instance, incorporated robustness into amulticriteria optimization framework and developed an efficient
approach to generate Pareto surface plans for treatment planners to choose themost desired one. Kamal Sayed
et al (2020) take advantage of the fact that, for the same beam configuration, different scalarization parameters
for thefluence optimizationwill lead to different Pareto points and present a bilevel optimizationmodel that
builds a Pareto frontwith contributions fromdifferent beam configurations.However, it is not a priori obvious
howmulticriteria optimization andRO could jointly be integratedwith BCO, a topic that needs further research.

3.1.5. 4D robust optimization
Respiratorymotion in thoracic or liver cancer patients can lead to a rangemismatch. In addition, interplay
between dynamic beamlet delivery and intrafractional respiratorymotionmay seriously affect the quality of
dose distributions requiring 4DROmethods (Liu et al 2016). Approaches tominimize the impact of
intrafractionalmotion on dose distributions and robustness include definition of a range-adapted internal target
volume, breath-hold, gating, tumor tracking, and 4D treatment planning. Engwall et al (2018) describe a 4DRO
approach that includes the time structures of the delivery and organmotion to generate plans that are robust
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against interplay effects. The authors assume that the delivery is synchronizedwith the patients breathing. The
assumption of perfect synchronization can be, however, difficult to achieve clinically. Liu et al (2016) combined
4D treatment planningwith RO to create a robust 4D optimizationmethod for 9 uncertainty scenarios for each
of the 10 respiratory phases without the requirement of perfect synchronization. Another study using a similar
approach also reported promising advantages of 4DROcompared to conventional optimization and 3DRO (Ge
et al 2019). On the other hand, Knopf et al (2022) present a review of RO approaches that consider breathing
motion represented by a set of scenarios viamultiple image sets, and conclude that the clinical necessity of 4D
ROhas not yet been demonstrated.While 4DRO reduces the sensitivity of dose distributions to respiratory
motion, the relationship between respiratorymotion and beam configurations is not yet totally clear, other than
that BCOmay avoid directions that aremost affected bymotion.However, Liu et al (2016) concluded that the
explicitmodeling of respiratorymotion resulted in a treatment planwhere the beams that played themajor role
where the ones parallel to the tumormotion direction. Similarly, Feng et al (2020) conclude that the SI oblique
posterior beams are better than the RL oblique posterior beams for the distal esophageal carcinoma treatments.
In any case, developing 4DROBCOmethods should lead to an automatic choice of the best directions whenever
respiratorymotion amplitudes are significant.

3.2. LET andRBE-weighted dose optimization
Currently, IMPToptimization (i.e. FMO) is based on biologically effective dose distributions assuming afixed
RBEof 1.1 for protons. However, asmentioned above, the RBE is a complex nonlinear function of dose, LET,
tissue, cell type, and other factors, and it is increasingly acknowledged that the traditional assumption offixed
protonRBEneeds to be abandoned. IMPToptimization techniques based on criteria that employ variable RBE-
weighted dose (DvRBE), computedwith one of themany availablemodels (Wilkens andOelfke 2004,McNamara
et al 2015, Stewart et al 2018) have been reported. However, there are concerns about uncertainties in the
predictions of thesemodels. Therefore, an alternative has been proposed inwhich terms based on LET,
assuming it to be a surrogate for biological effect, are incorporated in the optimization criteria. LET, being a
physical quantity, can be calculated accurately (Wilkens andOelfke 2003, Grassberger and Paganetti 2011).
However, there is an ongoing debate about the use of current RBEmodels versus LET in optimizing and
evaluating proton therapy plans.

During the iterative FMOprocess, beamlet intensities changewith each iteration, resulting in corresponding
changes in dose and LET values. InDvRBE-based optimization, biologically effective dose in each iteration is
calculated using one of themodels. In LET-based optimization, the LET is used directly or the RBE-weighted
dose is assumed to be a simple function of dose and LET, for instanceDvRBE=Dphysical(1+ λ× LET), whereλ is
an empirically determined parameter. An example of a LET-based approach is a 2-stepmethod inwhich an
initial IMPTplan based on physical (or assuming RBE= 1.1) dose is optimized (Unkelbach et al 2016). Then,
a prioritized optimization scheme, inwhich physical dose objectives are constrained to values close to those of
the initial plan, is used to optimize LET. Liu et al (2020) describe a somewhat different LET-guided RO approach,
where LET and physical dose distributions are simultaneously taken into consideration in the objective function
value. Their approachwas tested for head-and-neck cancer. Other approaches incorporating LET into IMPT
optimization criteria have also shown promising results (WanChanTseung et al 2016, An et al 2017, Cao et al
2018, Traneus andOden 2019).

An important goal of LET or RBE-weighted dose distribution optimization is to divert high-LET protons
away fromhigh-dose normal tissue regions into the tumor target. The relevance of these techniques to BCO is
that certain beam configurationsmaymake achievement of this goalmore likely because RBE increases as a
function of depth and is highest near the end of the proton range. Therefore, beamdirections sought by the BCO
would be those thatminimize the exposure of critical normal tissues with distal edges of the beamlets.

Figure 2 is an example comparing 2 different beam configurations for an esophageal cancer case. The IMPT
planwith a 2-beam configuration, both posterior obliques, would be appropriate to achieve sufficient target
coveragewith good sparing of normal tissues if RBE= 1.1 is assumed.However, this beam configurationwould
result in high LET, and therefore high variable RBE-weighted dose, in regions located beyond the distal edge of
the beams. By adding 2 lateral beams, the 4-beam configuration plan shows reduced dose-averaged LET. In this
example, beam configurationswere not optimized. It simply emphasizes the importance of BCO in that
different beam configurations can lead to significantly different LET distribution in normal tissues.

3.3.Maximizing the sparing of the immune system
The large, low-radiation ‘dose bath’ in traditional photon-based therapy can deplete highly radiosensitive
circulating lymphocytes, resulting in lymphopenia, a common side effect of conventional radiotherapy (Yovino
andGrossman 2012, Tang et al 2014, Grossman et al 2015,Wild et al 2015). Severe lymphopenia (grade 3 or
higher) has been associatedwith adverse treatment-related outcomes. Recently, it has been demonstrated that
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proton therapy, owing to its compact dose distributions (smaller dose bath), has the potential to significantly
mitigate lymphopenia and improve survival. Research is ongoing to determine predictors of severe
lymphopenia, to develop predictivemodels, and to use thesemodels to define dosimetric constraints on
immuneOARs and the dose bath. Such constraints, alongwith standard constraints on normal tissues,may be
incorporated into FMOandBCO for potential improvement in outcomes.

The relevance of BCO to sparing of the immune system is that, in general, specific beam configurationsmay
be preferable for sparing the immune system, specifically for reducing the dose bath. For instance, beamswith
shorter distances to the target and plans employing a smaller number of beamswould bemore effective in
reducing the dose bath; however, thismust be balanced against sparing of critical normal tissues and ensuring
target coverage.

3.4. Treatment deliverability constraints
Typically, there is a threshold of theminimumnumber ofMUs per beamlet for a scanning proton beam system,
which ensures detectability of beamlets by themonitoring system. Postprocessing procedures are usually
performed on optimized plans to enforce deliverableMUconstraints. If small spot spacings are required to
increase target dose homogeneity or to lower theOARdose, such a proceduremay cause a significant dose
distribution deviation between the optimized and postprocessed deliverable plans (Zhu et al 2010). The
feasibility of enforcingMUconstraints within optimization has been studied using constrained linear
programming (Cao et al 2013) and quadratic programming approaches (Shan et al 2018). However, it is still
unclear how these approaches affect plan quality if different planning criteria (e.g. robustness and LET/RBE) are
used or different tumor sites are tested. Similarly, it is not clear what role deliverability constraints would play in
BCO. In general, a smaller number of beamswouldminimize the impact of constraints onminimumMUsper
spot. An alternative would be tominimize the number of spots as a part of FMOandBCO.Another approach,
that should be investigated in the future,may be tofirst proceedwith FMOandBCOoptimization, ignoring
deliverability constraints, and then performFMOagain, this time taking deliverability constraints into account.

Figure 2.Comparison of dose and LET (calculated using dose-averaged LET) distributions between 2-beam (left column) and 4-beam
(right column) IMPTplans for an esophageal cancer patient. Both planswere optimized using conventional IMPToptimizer to
achieve similar physical dose distributions (first row). However, the 4-beamplans reduced the LEThotspots in normal tissues
including heart, liver, and stomach (second row). Dose and LETwere calculated by an in-houseMonte Carlo simulation system.
White arrows indicate beamdirections.
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4. Summary and future directions for BCO

Over the last few decades, radiation oncology has seen considerable advances that offer an increased range of
treatment options to patients with cancer.Motivated by the advantageous dosimetric characteristics of proton
beams, the clinical use of proton therapy, especially IMPT, has been increasing rapidly. IMPThas specific
features thatmake approaches developed for IMRTnot directly transferable to IMPT. In the context of the
present report, BCO approaches for IMPTwill require considerable further research and development to
address the numerous issues and unanswered questions raised above.

One such issue is the higher sensitivity of IMPTdose distributions to unavoidable uncertainties. As discussed
in section 3.1, several RO approaches have been developed for IMPT.However, their integration into BCO is
challenging, in part due to their very high computational burden.Multiple strategies to achieve clinically
practicalmethods are possible but need to be investigated and compared. For instance, it is not clearwhether
FMOandBCO,when integratedwith RO, should be performed simultaneously, or whether it would be
sufficient tofirst performFMOandBCO followed byRObased on the optimal beam configuration. The latter
approachmay be computationallymuchmore practical. The extremely high computational resource
requirement of comprehensive FMOandBCOcould also be addressed by the use of graphics processing units
and high-performance clusters.

Similarly, challenges related to integration of LET or RBE-weighted dose, immune sparingwith IMPT, and
incorporation of treatment delivery constraints in BCO remain to be addressed.Moreover, an important
question that needs to be answered is whether BCO can lead to significantly superior biologically effective and
robust dose distributions. In other words, canwemake BCOand FMO, integratedwith all the factors considered
in section 3—namely robustness, LET (orDvRBE), sparing of the immune system, and adhering to delivery
constraints—produce treatment plans that are clinicallymore effective than those achievedwithout BCO?

There is now a growing interest in applyingmachine learning and artificial intelligence techniques to
radiation treatment planning (Jarrett et al 2019, Vandewinckele et al 2020). It is quite conceivable thatmachine
learningwill be highly useful in defining optimal treatment objectives and expected outcomes for each patient.
However, it is not so clearwhatmachine learning can achieve for treatment plan optimization, or specifically for
BCO.Machine learning techniques can certainly be used to accelerate proton dose computations for FMOand
BCO. In principle,machine learning techniques could also be used to identify optimal beam configurations, at
least for an initial guess or the definition of a smaller search space, to befine-tuned by BCO.However, a large
training dataset of optimal beam configurationswould be required, which is not currently available. One can
foresee that, over time, the use of IMPT incorporating BCOwould lead to the collection of sufficiently large
datasets of high-quality plans appropriate formachine learning and artificial intelligence applications.

5. Conclusions

In conclusion, BCO for IMPT ismore critical, but at the same timemore complex, than for IMRT. RO as a part
of BCO is essential to ensure not only that beamdirections are chosen such that regions of significant anatomic
change are avoided, but also that all other IMPT-related uncertainties are considered in FMO. LET and variable
RBEmust also be considered in BCO so that beamdirections that lead to high biologically effective dose in
critical organs are avoided. BCO should also lead to beams thatminimize irradiation of circulating lymphocytes
and immuneOARswhile adhering to standard-of-practice tumor dose and normal critical-structure
constraints.Moreover, BCOmust ensure adherence to deliverability constraints.

Finally, the state of the art of IMPT is continually evolving. For instance, there is ongoing research to develop
personalized, as opposed to population-averaged,models that canmore accurately predict tumor response and
normal tissue toxicities personalized to a given patient’s baseline characteristics and dose distribution patterns.
FMOandBCOplans optimized based on suchmodels should be able to deliver high-quality treatments tailored
to each specific patient’s characteristics and produce predictable outcomes. Another evolving area is that of
improving the efficiency of IMPTplanning. A totally automated IMPTprocedure should be capable of
calculating robust plans in short computation times.However, the high computational burdenwill very likely
necessitate the use of graphics processing units or high-performance computer clusters for routine clinical
implementation.
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AppendixA. Example of objective functions

For dose distribution optimization, the objective function usually consists of aweighted sumof individual
objectives, at least one for each anatomic structure of interest (tumor or normal tissue). Theweights (or
penalties) are used to specify each individual objective’s relative importance. In addition, ‘hard’ or ‘soft’
constraintsmay be imposed, guaranteeing that the calculated solutions are within certain boundaries. Certain
beamdirectionsmay be forbidden, while othersmay be preferred. The BCOproblemmay, for example, be
formulated as

å å å å åa a a=
-

+
-

+
Î Î

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟( ) ( ¯ )

∣ ∣
( ¯ )

∣ ∣
( )f D

D D

T

D D

S
g xmin

x m
T

i T

i l

m n
S

i S

i l

n a
a a

2 2

m

m

n

n

=D Ixsubject to

Î Îx j J a A0, , ; .j a,

The variable xj,a is the intensity of beamlet j frombeam a, and thematrix I is the dose influencematrix containing
dose values in all voxels from all beamlets per unit intensity, which are used to calculate dose distributionD. The
function g(xa) is a function of the beamlet intensities of beam a and used to control the number of beams, e.g. an
L2 normof xa. The parameterα indicates the priority of each objective, whileTm and Sn contain voxels of target
m and normal structure n, respectively.

The objective function should drive the iterative process towards solutions that complywith the planning
directives defined by clinicians, but it does not have to incorporate those exact values. For instance, if achieving
D95 equal to 66 Gy proves to be hard, then the parameters associatedwith this individual objective can be
different from66 Gy (D̄l can take higher values, implicitly increasing the importance of this structure in the
optimization). Such adjustmentsmay also be automated, by dynamically adjusting penalties or dosimetric
objectives so that the clinical directives are fulfilled.Multi-criteria optimization is an alternative to the use of a
single weighted objective function. Different plans are calculated by changing the importance given to each of
the individual objectives, and the principle of ‘Pareto optimality’ is then used to graphically select the preferred
dose distribution.

Appendix B. Supplementary table

Table B1. Summary of different BCOalgorithms.
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AppendixC. Example ofminimization ofmaximumregret

Let us consider 9 different scenarios that consider range and positioning uncertainty. In afirst stage, the optimal
solutions (the optimal treatment plans) for each scenario, considering theminimization of a score, are
calculated.

Scenario 1 2 3 4 5 6 7 8 9

Optimal score value 16, 52 16, 53 16, 52 14, 00 13, 76 13, 91 14, 85 17, 17 15, 56

The optimization algorithmwill try tofind a solution (a treatment plan) such that the difference between the
score of this plan in each of these scenarios and the score of the corresponding optimal solution is as low as
possible. Consider a solution such that, when applied to each one of the 9 scenarios, has the following scores:

Scenario 1 2 3 4 5 6 7 8 9

Score value 33, 64 32, 21 32, 52 33, 31 31, 76 32, 99 31, 89 33, 38 32, 77

Then, the regret in each scenario is equal to:

Scenario 1 2 3 4 5 6 7 8 9

Optimal score value 16, 52 16, 53 16, 52 14, 00 13, 76 13, 91 14, 85 17, 17 15, 56

Score value 33, 64 32, 21 32, 52 33, 31 31, 76 32, 99 31, 89 33, 38 32, 77

Regret 17, 12 15, 68 16 19, 31 18 19, 08 17, 04 16, 21 17, 21

This solutionwould generate aworst-case regret equal to 19, 31.With another solution, the situation is
different:

Scenario 1 2 3 4 5 6 7 8 9

Optimal score value 16, 52 16, 53 16, 52 14, 00 13, 76 13, 91 14, 85 17, 17 15, 56

Score value 31, 63 29, 91 30, 43 30, 78 30, 43 30, 56 30, 06 31, 04 30, 89

Regret 15, 11 13, 38 13, 91 16, 78 16, 67 16, 65 15, 21 13, 87 15, 33

Theworst regret generated by this solution is 16, 78, so this is a better solution than the previous one. The
optimization algorithmwill, iteratively, try tofind solutions thatminimize this worst (maximum) regret.
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