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Abstract

The occurrence of protein synthesis errors (mistranslation) above the typical mean mis-

translation level of 10−4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous

yeast studies have shown that mistranslation affects fitness and deregulates genes related

to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid pro-

files. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a

global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were

extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass

spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desa-

turation and membrane fluidity changes were screened to identify putative alterations in lipid

profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There

were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic

acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride,

and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative

content of lipid species with saturated FA increased in detriment of those with unsaturated

fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity

changes were not observed. These data expand current knowledge of mistranslation biol-

ogy and highlight its putative roles in human diseases.

Introduction

Protein synthesis is highly accurate but, similarly to DNA replication and transcription, it is

not an error free biological process [1]. Under typical physiological conditions both
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prokaryotic and eukaryotic cells mistranslate mRNAs with error rates that range from 10−3 to

10−4 [2], leading to the misincorporation of amino acids into proteins. These errors are readily

dealt with by the mechanisms of protein quality control (e.g. molecular chaperones, protea-

some and autophagy) [3,4] and normally do not cause significant damage to the cell. However,

defects in the translational machinery that increase the level of error cause loss of fitness or

even disease. For example, mutations in the human mitochondrial transfer RNA (tRNA) genes

can lead to severe encephalomyopathies, such as myoclonic epilepsy and ragged-red fiber

(MERRF) [5–8] and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like epi-

sodes (MELAS) disease [8,9], among others [10,11] (Mitomap database). Alterations in genes

that code for either mitochondrial or cytoplasmic aminoacyl-tRNA synthetases are also associ-

ated with disease [12,13]. Indeed, different mutations in the alanyl-RS gene can cause infantile

mitochondrial cardiomyopathy [14], Charcot-Marie-Tooth disease type 2 [15], and the sticky

syndrome in mice [16]. Faulty tRNA modification by the pseudouridine synthase Pus1p causes

myopathy, lactic acidosis, and sideroblastic anemia (MLASA1) [17]. Mutations in ribosomal

proteins have also been linked to anemia, and other pathologies [18].

Studies in yeast and bacteria showed that mistranslation produces antagonistic phenotypes

[19–25]; in the cases where mistranslation is regulated it can be beneficial (for a review see

[26]), but codon misreading in yeast decreases growth rate, alters cell morphology, increases

reactive oxygen species (ROS) production, induces the petite phenotype, proteotoxic stress

and gene expression deregulation, among other phenotypes [19–21,23,24,27–30]. The molecu-

lar nature of such phenotypic diversity is unknown.

Transcriptome analyses of yeast cells engineered to mistranslate at high level revealed that

genes related to lipid metabolism were deregulated, e.g. fatty acid (FA) biosynthesis

[21,24,29,31], but whether such deregulation alters lipid profiles is not yet clear. This is rele-

vant to understand the mistranslation phenotype because lipids play many cellular roles

beyond the classical role as structural membrane building blocks. They control membrane flu-

idity and permeability, participate in signaling cascades, e.g. apoptosis [32–34], and take part

in the energetic metabolism, i.e. triacylglycerols (TG) and steryl esters [35]. They are important

for correct protein function [36–41], protein-protein interaction [42–46], and act as proton

sinks [47] in mitochondria. Importantly, cell membranes are remodeled in response to differ-

ent stimuli [48], and constitutive perturbations in lipid homeostasis are relevant in the context

of human pathologies, e.g. Stargardt-like macular degeneration [49–53] and Barth syndromes

[54,55], among others [56].

To clarify the consequences of protein synthesis errors in lipid metabolism, yeast strains

were constructed to express a recombinant Ser-tRNA that decodes Ala and Gly codons on a

proteome wide scale [21]. The profiles of phospholipid (PL) and TG molecular species, and FA

were then evaluated. Mistranslation induced significant alterations in several lipid species. We

then investigated the occurrence of lipid peroxidation, assessed ROS levels, antioxidant

enzyme activity, desaturation and membrane fluidity changes in an attempt to better under-

stand our experimental observations.

Materials and methods

Strains and growth conditions

The Saccharomyces cerevisiae SY991 strain (EUROSCARF acc. no. Y40001; genotype: MATa

ura3Δ0 his3Δ1 leu2Δ0 trp1Δ63 ade2Δ0 lys2Δ0 ADE8) was transformed with one of the follow-

ing plasmids: pRS315 (control strain), pUA268 or pUA269 [21]. In brief, pUA plasmids are

derived from pRS315 and contain a genomic DNA fragment of 150bp coding the C. albicans
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tRNATGA
Ser gene, which anticodon was mutated to TGC (alanine) or TCC (glycine), corre-

sponding to pUA268 and pUA269, respectively.

Transformations were performed using the LiAc/SS carrier DNA/PEG method [57] with

minor alterations. Briefly, cells were grown overnight in YPD or selective medium, at 30˚C

and 180 rpm. A volume of 1 mL of cell suspension was pelleted at 8000 rpm and the superna-

tant was discarded. 1 to 3 μg of plasmid DNA were added to the transformation mix. After

incubation and transformation mix removal, 200 μL of sterile water or selective medium were

added to the transformed cells and plated onto appropriate selective media. Clones containing

both plasmids were grown in minimal medium (0.67% yeast nitrogen base, 2% glucose, 0.2%

drop-out mix). Plasmid inserts were verified by colony PCR and consecutive fragment

sequencing.

Mistranslating strains were then characterized by determining growth rates as follows:

cell cultures grown in 50 mL Erlenmeyer flasks were inoculated into new media to an initial

OD600 = 0.02. Cell growth was monitored by measuring OD600 at several time points. Each

growth rate corresponds to maximum growth of yeast cells in logarithmic phase and was cal-

culated for each mistranslating strain by comparison to the control strain. Additionally,

β-galactosidase protein activity and quantity, and tRNA expression were determined accord-

ing to S1 and S2 Protocols.

Protein isolation and quantification

Cell suspensions were spun down, washed twice and resuspended in phosphate-buffered saline

(PBS) containing 0.2 mM phenylmethylsulfonyl fluoride (PMSF) to inhibit protease activity.

For western blot analyses, other protease inhibitors (Complete, Mini, EDTA-free protease

cocktail inhibitor tablets, Boehringer Mannheim) were also added. Cells were lysed with 0.5

mm glass beads in a homogenizer (Precellys). The extract was clarified by centrifugation at

4˚C for 15 min at 13000 rpm. Protein concentration was determined by either the Bradford

[58] or the BCA (Thermo scientific kit) methods, using bovine serum albumin (BSA) stan-

dards (Sigma).

Detection of amino acid misincorporation

Tryptic digestion of protein samples was performed according to [59], with a few modifica-

tions. A protein band was manually excised from the gel and transferred to a microtube. The

gel piece was washed once with 25 mM ammonium bicarbonate, three times with 25 mM

ammonium bicarbonate in 50% acetonitrile (VWR Chemicals) and once with acetonitrile.

Cysteine residues were reduced with 10 mM DTT and alkylated with 55 mM iodoacetamide.

The gel piece was again washed as mentioned above, dried in a SpeedVac (Thermo Savant),

and rehydrated in digestion buffer containing 12.5 μg/mL sequence grade modified porcine

trypsin (Promega) in 50 mM ammonium bicarbonate. After 30 min, the supernatant was

removed and discarded, 50 μL of 50 mM ammonium bicarbonate were added, and the sample

was incubated overnight at 37˚C. Extraction of tryptic peptides was performed by the addition

of 5% formic acid (Fluka) once, followed by 5% formic acid and 50% ACN twice. Tryptic pep-

tides were lyophilized in a SpeedVac (Thermo Savant) and resuspended in a 1% formic acid

solution. The samples were analyzed with a QExactive Orbitrap (Thermo Fisher Scientific,

Bremen) through the EASY-spray nano ESI source (Thermo Fisher Scientific, Bremen) cou-

pled to an Ultimate 3000 (Dionex, Sunnyvale, CA) HPLC system. The trap column (100 μm I.

D. x 2 cm packed with Acclaim PepMap RSLC C18, 5 μm 100 Å) and the EASY-spray analyti-

cal (75 μm I.D. x 75 cm packed with Acclaim PepMap RSLC C18, 2 μm 100 Å) columns were

from Thermo Fisher Scientific. Peptides were trapped at 30 μl/min in 96% solvent A
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(deionized water with 0.1% formic acid). Elution was achieved with the solvent B (formic acid/

acetonitrile, 0.1:80 (V/V)) at 300 nl/min. The 92 min gradient used was as follows: 0–3 min,

96% solvent A; 3–70 min, 4–25% solvent B; 70–90 min, 25–40% solvent B; 90–92 min, 90% sol-

vent B; 90–100 min, 90% solvent B; 101–120 min, 96% solvent A. The mass spectrometer was

operated at 2 kV in the data-dependent acquisition mode. An MS2 method was used with an

FT survey scan from 400 to 1600 m/z (resolution 70,000; AGC target 1E6). The ten most

intense peaks were subjected to HCD fragmentation (resolution 17,500; AGC target 5E4, NCE

28%, max. injection time 100 ms, dynamic exclusion 35 s). Two subsequent LC-MS/MS runs

were performed for each sample using exclusion lists containing all previously identified pep-

tides. Spectra were processed and analyzed using Proteome Discoverer (version 2.2, Thermo),

with MS Amanda and Sequest HT search engines. Uniprot (Swiss-Prot) protein sequence data-

base (version of May 2016) was used for all searches under Saccharomyces cerevisiae. Database

search parameters were as follows: carbamidomethylation of cysteine, alanine or glycine sub-

stitution by serine as a variable modification as well as oxidation of methionine, and the allow-

ance for up to two missed tryptic cleavages. The peptide mass tolerance was 10 ppm, and

fragment ion mass tolerance was 0.02 Da. To achieve a 1% false discovery rate, the Percolator

node was implemented for a decoy database search strategy and peptides were filtered for high

confidence and a minimum length of 6 amino acids, and proteins were filtered for a minimum

number of peptide sequences of 1.

Lipid extraction

Cells grown in a minimum of 200 mL of selective media were collected either in exponential

(O.D.600 0.6–0.8) or PDS phase (O.D.600 ~2.3). Cells were washed with PBS 1x and frozen in

liquid nitrogen. The pellet was resuspended in 150 mM ammonium bicarbonate buffer and

disrupted with 0.5 mm glass beads, by vortexing 1 min. Vortexing was repeated 8–10 times.

The cell suspension was kept on ice between each vortexing cycle. Each extract was transferred

to a new refrigerated Falcon tube, and pelleted at 8,000 rpm, for 5 min. Finally, the pellet was

resuspended in 1 mL of ultra-pure distilled water. Total lipids from all yeast strains were

extracted according to the Bligh and Dyer method [60]. Succinctly, 3.75 mL of chloroform/

methanol 1:2 (V/V) were added to each sample, vortexed, and incubated on ice for a minimum

of 30 min. Then, 1.25 mL of chloroform and 1.25 mL of ultra-pure distilled water were added,

and the mixture was vortexed. Finally, samples were centrifuged at 1500 rpm for 5 min at

room temperature to obtain a clear separation between the upper aqueous phase and the lower

organic phase from which lipids were obtained. After transferring the organic phase to a clean

tube, the extraction was repeated twice. The extracts were dried under a nitrogen flow, dis-

solved in chloroform, and stored at -20˚C in amber glass vials.

Phospholipid quantification

Quantification of the total amount of PL, as well as amounts of each PL class separated by

TLC, was carried out with the phosphorus assay [61]. To quantify the total PL extract, 10 μL of

each sample in duplicate were dried under a nitrogen flow, while quantification of the different

classes separated by TLC, started by scraping the silica off the TLC plates directly to the quanti-

fication tubes. The quantity of phosphorus in the standards ranged from 0.1 to 2 μg. In brief,

650 μL of 65–70% perchloric acid were added to samples and standards, and the former were

then incubated for 1 h at 200˚C. Then, 3.3 mL of distilled water, 500 μL of a saturated ammo-

nium molybdate solution, and 500 μL of a 10% (W/V) ascorbic acid solution were added

sequentially to samples and standards, with intense vortexing in between additions. Finally,

samples and standards were incubated for 5 min at 100˚C in a water bath, and the absorbance
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was measured at 800 nm after cooling to room temperature. The samples containing silica par-

ticles obtained from TLC spots were spun down for 5 min at 4000 rpm before spectrophoto-

metric determination. The relative abundance (%) of each PL class was calculated by relating

the amount of PL in each spot to the total amount of PL in the sample.

Separation of phospholipids classes by thin layer chromatography

PL classes from the total lipid extract were separated by thin layer chromatography (TLC)

using silica gel plates with a concentrating zone 2.5x20 cm (Merck, Darmstadt, Germany).

Prior to separation, plates were treated with 2.3% boric acid in ethanol. The plates with spots

containing 30 μg of sample were developed using a solvent mixture consisting of chloroform/

ethanol/water/triethylamine (30:35:7:35, V/V/V/V). Lipid spots on TLC plates were screened

by exposure to primuline (50 μg/100 mL acetone/water, 80:20, V/V), under a UV lamp (λ =

254 nm). Identification of the different classes of PL was carried out by comparison to PL stan-

dards applied in the TLC plate. Then, each identified class spot was scraped and quantified by

the phosphorus assay. For MS analysis, lipids were extracted from the TLC spots using chloro-

form/methanol (2:1, V/V).

Analysis of fatty acid profiles by gas chromatography

Fatty acid (FA) profiling was evaluated by the analysis of fatty acid methyl esters (FAME),

which were obtained by transesterification [62]. Briefly, 1 mL of hexane was added to 30 μg of

dried phospholipid extract. FAME were obtained by sequentially adding 200 μL of 2 M KOH

in methanol and 2 mL of saturated NaCl solution, followed by intense vortexing in between.

After centrifugation, the organic phase was collected and dried under a nitrogen stream. The

resulting FAME were dissolved in hexane prior to injection and analyzed on a PerkinElmer

Clarus 400 gas chromatograph (Waltham, MA) equipped with a flame ionization detector

(FID) and a DB-1 column with 30 m of length, 0.25 mm of internal diameter, and 0.1 μm of

film thickness (J&W Scientific, Folsom, CA). The temperature of the injector was 250˚C. The

initial oven temperature was 50˚C, the first ramp rate was 25˚C/min to 180˚C, held for 6min,

followed by a second ramp rate of 40˚C/min and the final temperature was 260˚C, held for 3

min. The carrier gas was hydrogen, at a flow rate of 1.7 mL/min. Identification of FAME was

done by comparison of retention times to those of a mixture of lipid standards (Sigma).

Quantification of lipid hydroperoxides using the FOX II assay

Quantification of lipid hydroperoxides was achieved with the FOX II assay with minor alter-

ations [63]. Aliquots of the total lipid extracts and standards were incubated with the FOX II

reagent for 30 min in the dark. Hydrogen peroxide solutions were used as standards, with con-

centrations ranging from 0.01 to 0.4 mM. The solution was prepared as follows: 250 μM

(NH4)2Fe(SO4).6H2O and 25 mM H2SO4 were dissolved in water, mixed with 4 mM 2,6-di-

tert-butyl-p-hydroxytoluene (BHT), 100 μM xylenol orange and methanol. After incubation,

the absorbance of samples and standards was read at 586 nm.

Liquid chromatography—Mass spectrometry conditions for lipid analysis

For the LC-MS studies a hydrophilic interaction liquid chromatography (HILIC) was per-

formed following mass spectrometry analysis. These HILIC-MS and HILIC-MSn studies were

conducted in a HPLC 2690 instrument (Waters Alliance, Milford, USA) equipped with an

Ascentis Si column (15cm × 1mm, 3μm), and kept at room temperature. The HPLC was

coupled to a linear ion trap (LXQ; Thermo Finnigan, San Jose, CA, USA) mass spectrometer.
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Two mobile phases were prepared as follows: mobile phase A (acetonitrile/methanol/H2O;

55:35:10 (V/V/V) with 10 mM ammonium acetate) and mobile phase B (acetonitrile/methanol

60:40 (V/V) with 10 mM ammonium acetate). Initially, 100% mobile phase B was held iso-

cratically for 10 min, followed by a linear increase of mobile phase A to 100% within 10 min,

which was maintained for 25 min. Finally, the mobile phase B was brought back to the initial

elution conditions in 10 min. Aliquots of 25 μg of total phospholipid were diluted in 90 μL

of mobile phase B, filtered, and 10 μL were injected into the column, using a flow rate of

40 μL/min.

The LXQ was operated in both positive (electrospray voltage +5 kV) and negative (electro-

spray voltage -4.7 kV) modes, at 275˚C capillary temperature and a sheath gas flow of 8 U.

Normalized collision energy (CE) was 27 (arbitrary units) for MS/MS. Data acquisition was

carried out on an Xcalibur data system (V2.0). Relative quantification of individual phospho-

lipid species was achieved by determination of the ratio between the area of reconstructed ion

chromatogram of a given m/z value against the sum of the reconstructed areas considered for

each class.

Fractionation of lipid extracts by SPE

Total extracts were dissolved in n-hexane, chloroform and methanol (95:3:2) and fractionated

by solid phase extraction (SPE) using Discovery DSC-NH2 SPE tubes (Supelco) and a Visiprep

SPE vacuum manifold (Supelco). The SPE columns were activated with n-hexane and the neu-

tral lipids were first eluted with chloroform, followed by elution of free fatty acids through the

addition of diethyl ether and acetic acid [98:2(V/V)]. PL elution was then achieved by the addi-

tion of methanol and chloroform in different proportions [first, 6:1 (V/V) and then 1:1(V/V)].

The extracts were dried under nitrogen. The PL content was determined by the phosphorus

method and this fraction was used for the fluorescence polarization study.

Preparation of liposomes for fluorescence polarization

The lipid extracts dissolved in a chloroform/methanol [1:1(V/V)] mixture were evaporated to

dryness under a stream of N2. The resulting film was hydrated with HBS (10 mM HEPES, 100

mM NaCl, pH 7.4) to obtain a phospholipid concentration of 100 μM. The lipid was dispersed

at 55˚C to form multilamellar vesicles.

Incorporation of a fluidity probe and fluorescence polarization

measurements

The fluidity probe 1,6-diphenyl-1,3,5-hexatriene (DPH) in dimethylformamide (DMF) was

injected into liposome suspensions to obtain a lipid/probe molar ratio of 400/1 and then the

mixtures were incubated at 55˚C for 1 h in the dark. The fluorometric measurements were per-

formed with a Perkin Elmer LS 55B fluorescence spectrophotometer (Perkin Elmer, U.S.A),

equipped with polarization filters and a thermostated cell holder. The excitation was set at 336

nm and the emission at 450 nm (4 and 5 nm band pass). Light scattering from unlabeled lipo-

some suspensions with equivalent volumes of DMF (blanks) had negligible effects on measure-

ments. The degree of fluorescence polarization (P) was calculated according Shinitzky and

Barenholz [64], from the equation P = (Ik-I?G)/(Ik+I?G), where Ik and I? are the intensities of

the light emitted with its polarization plane parallel and perpendicular to the plane of the exci-

tation light, respectively. G is the correction factor for the optical system, given by the ratio of

vertically to the horizontally polarized emission components when the excitation light is polar-

ized in the horizontal direction.
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Total RNA extraction

A volume of 50 mL of exponentially growing yeast cells or in early PDS phase were harvested

by centrifugation, supernatants removed and the pellets were stored at -80˚C. Total RNA was

isolated using the acidic hot phenol method. Cell pellets were resuspended in acid phenol/

chloroform [Sigma, 5:1 (V/V), pH 4.7] and TES-buffer (10 mM Tris pH 7.5, 10 mM EDTA,

0.5% SDS), vortexed and incubated at 65˚C during 1 h, with vortexing every 10 min. Samples

were centrifuged for 20 min at 13,000 rpm at 4˚C and the water-phase was transferred to new

microtubes containing phenol/chloroform [5:1 (V/V), pH 4.7]. The last step was repeated.

Samples were vortexed and centrifuged for 10 min at 13,000 rpm at 4˚C and the water-phase

was transferred to new microtubes containing chloroform/isoamyl alcohol [Sigma, 25:1(V/

V)]. Tubes were vortexed and centrifuged for 10 min at 13,000 rpm at 4˚C. The water phase

was transferred to new tubes containing 35 μL sodium acetate (3 M, pH 5.2) and 800 μL 100%

ice cold ethanol. RNA was precipitated overnight at -30˚C. After precipitation, tubes were cen-

trifuged for 5 min at 13,000 rpm at room temperature. Then, the supernatant was removed,

the pellets were washed with 80% ice cold ethanol, and centrifuged for 1 min at 13,000 rpm.

Dried RNA pellets were resuspended in milliQ water and stored at -80˚C.

Reverse transcription

The RNA was first treated with DNAse I (amplification grade, Invitrogen), followed by phenol

extraction. Briefly, deionized water and phenol/chloroform/isoamyl alcohol [25:24:1 (V/V)], at

4˚C, were added to the treated samples and these were vortexed and centrifuged at 12,000

rpm, at 4˚C, for 10 min. The water phase was transferred to a new microtube and chloroform

was added. Again, the samples were vortexed and centrifuged. The water phase was transferred

to new microtubes containing sodium acetate (3M, pH 5.2) and 100% ice cold ethanol and left

at -80˚C overnight. The pellet was washed with 80% ice cold ethanol and centrifuged at 8,000

rpm, at 4˚C, for 10 min. The dried pellet was resuspended in deionized water. The synthesis of

cDNA was accomplished by mixing 0.5 μg of RNA, 1 μL oligo dT12-18 primer (0.5 μg/μL, Invi-

trogen), 1 μL 10 mM dNTP mix (Thermo Scientific) and deionized water up to 12 μL. The mix

was then incubated at 65˚C, for 5 min, left 1 min on ice and spun down. Next, 1 μL of RNAse

out, 2 μL 0.1 M DTT and 4 μL 5x first strand buffer were added and the mix was incubated at

42˚C, for 2 min. Then, 1 μL SuperScript II reverse transcriptase (200 U/μL, Invitrogen) was

added to each sample and incubated again for 50 min. Enzyme inactivation was achieved at

70˚C, for 15 min. Finally, 1 μL of RNAse H (2500 U, Nzytech) was added and samples were

incubated at 37˚C, for 20 min. The negative controls were treated in the same way except that

1μL of deionized water was added instead of reverse transcriptase.

RT-qPCR

Real time qPCR was performed in a 7500 system (Applied Biosystems). The reaction mix con-

sisted of 10 μL of KAPA SYBR FAST Universal 2X qPCR Master Mix, 0.4 μL of each primer

(10 pM final concentration), 6.8 μL of deionized H2O, and 2 μL of a 2-fold dilution of the

cDNA. The primer sequences used were as follows: for OLE1, 5'-TGCCAATGTGGGACAAAC
AA (F), 5'-ACCACCTGGATGTTCAGAGA (R); for ACT1, 5’-AAGTGTGATGTCGATGTCCG
(F), 5’-CCACCAATCCAGACGGAGTA (R). The thermocycling program consisted of a holding

stage at 95˚C for 3 min, followed by 40 cycles of 15 seconds at 95˚C and 1 min at 60˚C. The rel-

ative expression ratio was calculated according to the mathematical model established by Pfaffl

[65]: R = [Etarget]^[ΔCttarget(control-sample)] / [Eref]^[ΔCtref(control-sample)].
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Quantification of total intracellular reactive oxygen species (ROS)

ROS levels were determined with dihydroethidium (DHE, Sigma) and dihydrorhodamine 123

(DHR123, Sigma), separately. For both dyes, 5x106 cells were washed and resuspended in PBS.

Then, A) DHE was added to a final concentration of 10 μg/mL and the cell suspension was

incubated in the dark for 10 min, at 30˚C. The cells were pelleted by centrifugation, washed

twice with PBS and analyzed by flow cytometry (Coulter Epics XL, Beckman Coulter, Hialeah,

FL, USA) with excitation/emission settings of 488/�670nm (FL-3 channel), B) DHR123 was

added to a final concentration of 15 μg/mL and the cell suspension was incubated in the dark

for 1 h, at 30˚C. The cells were pelleted by centrifugation, washed and resuspended in PBS and

analyzed with excitation/emission settings of 488/525 nm (FL-1 channel). For all samples, a

minimum of 10,000 events were counted. Data were acquired with the SYSTEM II software

version 3.0 (Coulter Electronics, Hialeah, FL, USA) and analyzed with FlowJo software (Tree

Star Inc., Ashland, OR-USA).

Enzymatic activity

For all enzyme activities, yeast cells in post diauxic shift phase were harvested by centrifugation

for 5 min at 4000 rpm. Cells were then resuspended in 36 mM potassium phosphate, pH 7.8

(SOD) or 50 mM sodium potassium phosphate, pH 7.0 (catalase) containing protease inhibi-

tors (complete, mini, EDTA-free protease cocktail inhibitor tablets; Boehringer Mannheim).

Total protein extracts were obtained by mechanical disruption through vortexing of the cell

suspension in the presence of zirconium beads for 5 min. Short pulses of 30 s were applied fol-

lowed by 30 sec incubation on ice. Cell debris was removed by centrifugation at 13000 rpm for

15 min and protein content was determined by the Lowry method, and bovine serum albumin

used as a standard. To determine cytosolic and mitochondrial superoxide dismutase activity,

25 μg of total protein were loaded into 10% native PAGE gels, at 4˚C. After electrophoresis, the

gels were incubated in 2.5 mM nitro blue tetrazolium solution for 20 min, followed by incuba-

tion in a development solution (36 mM potassium phosphate, pH 7.8, 28 mM TEMED, 86 μM

riboflavin) for 15 min. Finally, the gels were exposed to a 60 W light until the bands were visi-

ble. To determine cytosolic catalase activity, 80 μg of total protein were loaded into a 7.5%

native PAGE gel, at 4˚C. After electrophoresis, the gel was incubated in 2.5 mM horseradish

peroxidase solution for 45 min, followed by addition of 5mM H2O2 and further incubated for

10 min. After washing, the gel was incubated with 50 μg/mL 3,3’-diaminobenzidine (Sigma)

until the bands were visible. Band intensities were quantified by densitometry. Coomassie blue

staining was used as loading control.

Results

Ser misincorporation at Ala and Gly sites

The occurrence of mistranslation was assessed in the two yeast strains carrying the heterolo-

gous Ser-tRNA expected to recognize the GCA Ala codon in one strain and the GGA Gly

codon in the other. The presence of the tRNAs was verified by northern blot (S1 Fig) and the

insertion of Ser at Ala and Gly sites was verified by mass spectrometry (MS) (Table 1, S1 and

S3 Tables, S10 Fig). Additionally, the impact of mistranslation on the activity and quantity of

the bacterial beta-galactosidase was assessed through the determination of enzymatic activity

in the presence of its substrate and western blot, respectively (S2 Fig). There was reduction of

beta-galactosidase activity in both mistranslating strains relative to the control, despite the

unaltered protein quantity.
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Evaluation of alterations in the fatty acid profiles

The effects of mistranslation on the fatty acid (FA) profiles were assessed by analyzing fatty

acid methyl esters by gas chromatography (GC). The relative content of FA determined for the

two strains misincorporating Ser at Ala and Gly codon sites, and the control strain, was com-

pared within each growth phase (logarithmic and post-diauxic shift, PDS). In total, 14 FA were

identified in all three strains: C10:0, C12:0, C12:1, C14:0, C14:1, C16:0, C16:1, C18:0, 9c-C18:1,

C18:1 (comparison to fatty acid methyl esters standards suggests a possible trans isomer),

C20:0, C22:0, C24:0, C26:0. This composition in FA is typical of S. cerevisiae but FA profiles

have been recognized to differ from strain to strain and also with different growth conditions

[66,67]. Palmitoleic acid (C16:1) was the most abundant FA in all strains in both logarithmic

and PDS phases. The second most abundant ones were palmitic acid (C16:0) in exponential

phase and oleic acid (9c-C18:1) in PDS phase. All strains presented a lower amount of C18 FA

in logarithmic phase than in PDS phase (Table 2).

The FA profiles in logarithmic phase revealed differences between the control and the mis-

translating strains. The relative amount of C16:1 decreased slightly but significantly in both

engineered strains when compared to the control strain. Inversely, an increase in C16:0 relative

abundance was observed. In PDS phase similar alterations were observed. Additionally, 9c-

C18:1 was more abundant in both mistranslating strains in PDS phase and C18:0 relative con-

tent was higher exclusively in cells misincorporating Ser at Ala codons compared to the control

strain (Table 2).

The comparison of the sums of saturated fatty acids (SFA) and mono unsaturated fatty

acids (MUFA) showed a reduction trend of MUFA in both mistranslating strains that was sta-

tistically significant for the strain mistranslating Ser at Ala codons (Table 2). Overall, the

induction of Ser misincorporation at Ala and Gly sites led to alterations in FA profiles, with

higher saturation levels to which C16:0 and C18:0 FA contributed the most.

Phospholipid and triacylglycerol profiles

To further evaluate how codon mistranslation affects the lipidome, phospholipid (PL) classes

were separated by thin layer chromatography (TLC). Phospholipid identification was achieved

by comparison with PL standards and the sphingolipids mannosyl-inositolphosphoceramides

(MIPC) and inositolphosphoceramides (IPC) were further confirmed by electrospray (ESI)-

MSn analysis (S2 Table). PL classes were quantified by the phosphorus assay. The relative

abundance of PL classes was determined for both growth phases (Fig 1) and the identified clas-

ses were the following: lyso-phosphatidylcholine (LPC), IPC and MIPC, phosphatidylcholine

Table 1. Serine misincorporation counts identified by MS in peptides containing Ala and Gly sites. �codons

decoded by the mutant tRNAs; NA, not applicable.

Ser misincorporation count

Control Ser-tRNAAla Ser-tRNAGly

Ala GCA� 4 12 NA

GCG� 0 1 NA

GCT 49 42 NA

GCC 23 19 NA

Gly GGA� 1 NA 4

GGG 1 NA 2

GGT 26 NA 41

GGC 3 NA 3

https://doi.org/10.1371/journal.pone.0202402.t001
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(PC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE),

phosphatidic acid (PA) and cardiolipin (CL). All the classes were thoroughly identified in

yeast elsewhere [68]. In log phase, the relative PL class content was the following: PC (26–

27%); PA/ PE/ PG eluted together (27–29%); LPC/ IPC/ MIPC (10–14%); PI (13–19%); PS (8–

11%); CL (7–11%). In PDS phase, the relative PL class content was the following: PC (45–

49%); PA/ PE/ PG (20–22%); LPC/ IPC/ MIPC (9–11%); PI (6–10%); PS (5–7%); CL (8–9%).

PC was the most abundant PL in both growth phases. In general, LPC/ IPC/ MIPC, PI, and PS

classes showed higher abundance in log phase than in PDS phase.

The variation in CL and PS contents in log phase showed an increasing trend in the Ala-to-

Ser relative to the control strain, but there were no statistical differences between control and

mistranslating strains in any PL class, in neither growth phase. Among the recombinant

strains, only a difference in PI was registered in logarithmic phase. Altogether these observa-

tions suggest that the bulk of PL classes profile was not significantly affected by the induction

of mistranslation.

The LC-MSn analysis allowed the identification and relative quantification, at the molecular

level, of the profiles of the PL classes PC, PE, PG, PA, PI, PS and CL, as well as lyso-PL, namely

LPC and LPE, and triacylglycerols (TG). The sphingolipids IPC and MIPC were also

Table 2. FA relative abundances are altered in the mistranslating strains.

Logarithmic

Control Ser-tRNAAla Ser-tRNAGly

FA mean S.D. mean S.D. mean S.D.

C12:0 0.92 ± 0.11 0.48 ±0.01 0.62 ±0.12

C14:1 0.51 ± 0.05 0.43 ±0.01 0.34 ±0.01

C14:0 2.88 ± 0.25 2.58 ±0.04 2.02 ±0.07

C16:1 48.42 ± 0.27 45.52��� ±0.27 46.67 ±0.69

C16:0 21.91 ± 0.55 23.55� ±0.08 23.70� ±0.62

C18:1n9c 20.42 ± 0.70 21.62 ±0.15 21.43 ±0.06

C18:1 0.69 ± 0.03 0.58 ±0.04 0.51 ±0.02

C18:0 4.25 ± 0.38 5.23 ±0.04 4.70 ±0.04

∑SatFA 29.96 ±0.58 31.85 ±0.15 31.05 ±0.63

∑MUFA 70.04 68.15 68.95

Post-Diauxic Shift

Control Ser-tRNAAla Ser-tRNAGly

FA Av. S.D. Av. S.D. Av. S.D.

C12:0 0.82 ±0.09 0.66 ±0.01 0.55 ±0.10

C14:1 0.39 ±0.02 0.36 ±0.01 0.29 ±0.02

C14:0 1.82 ±0.02 1.90 ±0.05 1.45 ±0.11

C16:1 45.07 ±0.30 40.31��� ±0.25 41.08��� ±0.41

C16:0 19.98 ±0.49 21.76�� ±0.29 21.78�� ±0.79

C18:1n9c 24.88 ±0.46 27.01��� ±0.59 27.38��� ±0.75

C18:1 1.28 ±0.05 0.92 ±0.06 0.93 ±0.08

C18:0 5.76 ±0.05 7.08� ±0.16 6.54 ±0.27

∑SatFA 28.38 ±0.53 31.40�� ±0.44 30.32 ±0.71

∑MUFA 71.62 68.60�� 69.68

FA profiles of control and mistranslating strains during logarithmic (log) and post-diauxic shift phases (PDS). Data are normalized to total peak area and presented as

mean ± standard error (S.D.) of 3 biological replicates, except for log phase Ser-tRNAGly (2n). Two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple

comparison test were performed (���P<0.001; ��P<0.01; �P<0.05). (end of legend)

https://doi.org/10.1371/journal.pone.0202402.t002
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Fig 1. Phospholipid (PL) classes profiles are not affected in mistranslating strains. Relative abundance of

phospholipid classes in logarithmic (A) and post-diauxic shift (B) phases. Phospholipids were fractionated by TLC and

their identification was achieved by comparison with PL standards. MIPC and IPC were confirmed by direct infusion-

ESI-MSn analysis. Phospholipid classes were quantified by the phosphorus assay. Data were normalized against the

sum of all values and are presented as mean ± standard deviation of three biological replicates. Statistical analysis was

performed by two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison test (�P<0.05).

https://doi.org/10.1371/journal.pone.0202402.g001
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identified. The identified species are in accordance with previous studies [68–70]. A list of all

the identified species can be found in S2 Table.

In PA, PE, PS and PC classes there were mainly five abundant species comprised of: 1) PL

32:2 (16:1/16:1), 2) PL 32:1 (16:1/16:0), 3) PL 34:2 (16:1/18:1), and 4&5) PL 34:1, assigned as

both (18:1/16:0) and (18:0/16:1). In the PI class, the most abundant species had one mono

unsaturated fatty acid (MUFA) (PI 32:1, PI 34:1, PI 36:1). The most abundant LPC species

were LPC 16:1, 16:0, 18:1 and 18:0. Finally, the LPE and SP species showed low abundance and

the signal to noise ratio did not allow the quantification of individual peaks.

In log phase the alterations in the PL molecular species profiles, when compared to the con-

trol strain, were mostly observed in the Ala-to-Ser strain, namely in molecular species of PA,

PE, LPC, PI and PS (Fig 2 and S3 Fig). This strain showed decreased relative content of PA

(32:2), PE (32:2), LPC (16:1), PI (32:1), PS (32:2) and PS (34:2), and an increase of PA (34:1),

PE (34:1), PI (34:1), PI (36:1), and PS (34:1) molecular species (Fig 2, Table 3). In the Gly-to-

Ser strain only the PI profile was significantly disturbed when compared to the control strain,

showing a reduction of the relative content of PI (32:1) and a trend similar to the Ala-to-Ser

strain regarding PI (34:1 and 36:1) (Fig 2, Table 3). There were no significant alterations

regarding PC (S3 Fig, Table 3) and PG (not shown) profiles in the mistranslating strains.

There were significant differences between the mistranslating strains in eight molecular spe-

cies: PA (32:1, 34:1), PE (32:2, 34:1), LPC (16:1) and PS (32:2, 34:2 and 34:1) (Fig 2).

In the PDS phase the alterations in the PL molecular species profiles were again mostly

observed in the Ala-to-Ser strain, relative to the control strain (Fig 3 and S4 Fig). The signifi-

cantly altered profiles belong to PA, PC, LPC and PE classes. This strain showed a decreased

relative content of PA (32:2), PC (32:2), LPC (16:0) and PE (32:1), and an increase of PE (34:1)

molecular species only (Fig 3, Table 3). The Gly-to-Ser strain showed a significant reduction in

the relative content of PC (32:2) and PE (32:1) (Fig 3, Table 3). The LPC profile variation was

similar to that observed in the Ala-to-Ser strain though not statistically significant, and thus

showed a reduction of the relative content of LPC (16:0). There were no significant alterations

in the mistranslating strains regarding the PG (not shown), PI (S4 Fig) and PS profiles (Fig 3)

relative to the control strain. Again, there were significant differences between the mistranslat-

ing strains regarding five molecular species PA (34:1), PE (32:2, 34:1) and PS (34:2, 34:1)

(Fig 3).

Overall, for PA, PC and PS classes, the trend in the mistranslating strains relative to the con-

trol strain–mainly in the one misincorporating Ser at Ala sites–, was for lower relative content

of species with 2 MUFA (e.g. PS 18:1/16:1), and higher relative content of species with 1

MUFA and 1 saturated FA (SFA) (e.g. PS 18:1/16:0 and PA 18:0/16:1) (Table 3). To some

extent, such observations agree with the variations observed in the FA profiles. The same trend

was seen for PE in exponential phase but not in PDS phase, where a decrease was observed for

one of the species containing 1 MUFA and 1 SFA (Fig 3, Table 3).

The profiles of TG species in the total lipid extracts were also analyzed by LC-MSn. The

most abundant TG species had either 3 C16 or 2 C16 and 1 C18 fatty acyl chains (Fig 4 and S5

Fig), as identified elsewhere [68–70]. Both in log and PDS phases, the profiles of the Gly-to-Ser

strain varied the most relative to the control strain. The Ala-to-Ser strain showed log and PDS

profiles variation similar to the other mistranslating strain but the differences were not always

significant. The distribution of TG species in log phase (Fig 4A, Table 3) clearly showed a sig-

nificant decrease of the relative content of TG (48:3) (mostly TG 16:1/16:1/16:1, but we also

identified TG 14:1/16:1/18:1) and TG (50:3) (18:1/16:1/16:1), and an increase of TG (48:1) and

(50:1) in the Ala-to-Ser strain relative to the control. In the Gly-to-Ser strain there was a

decrease of TG (46:2), (48:3), (50:3) and (52:3) species, and an increase of TG (44:1), (48:1) and

(50:1) species. In this strain, only one TG species bearing 2 unsaturated FA chains was
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significantly altered (46:2). The mistranslating strains were also statistically different from one

another regarding the species TG (44:2), (48:1), (50:3), (50:1), and (52:3).

In PDS phase the lipid species distribution was similar, though a small shift towards the spe-

cies with longer FA chains was observed (Fig 4 B and S5 Fig). Again, TG species with a total of

Fig 2. Differences in phospholipid (PL) molecular species profiles in logarithmic phase. Relative amounts of the molecular species that showed significant

differences within each PL class–PA (A), PE (B), LPC (C), PI (D) and PS (E)–identified after comparison of the phospholipidomes from the mistranslating and

control strains, and among each other, analyzed by HPLC-MS in negative mode (A, B, D, E) and positive mode (C. PL molecular species are identified as C:N (carbon

number:number of double bonds). Data were normalized against the sum of all the reconstructed areas considered for each class and presented as mean ± standard

deviation of three biological replicates. Statistical analysis was performed by two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison

test (���P<0.001 ��P<0.01; �P<0.05). For the profile of all molecular species in each PL class see S3 Fig.

https://doi.org/10.1371/journal.pone.0202402.g002
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48 and 50 carbons were the most abundant, with TG (50:2) surpassing 15%. The alterations in

the Ala-to-Ser strain were less evident, with only a significant decrease (~2%) in the relative

content of TG (48:3) species. Regarding the Gly-to-Ser strain, TG species (48:3) and (50:3)

were decreased while TG (44:1) and (50:1) showed an increment (Fig 5B). These results can

also relate to the FA profile of Gly-to-Ser strain. Overall, there was an increase in the percent-

age of TG with 2 SFA and 1 MUFA and a decrease in TG with 3 MUFA.

Oxidative damage is not responsible for the lipidome alterations in the

mistranslating strains

Since amino acid misincorporation was previously shown to lead to oxidative damage (e.g.

ROS, protein oxidation) [21,30,71,72], the decreased MUFA relative content in the FA and PL

species profiles in the mistranslating strains led us to hypothesize that such observations could

be due to FA oxidation. In pursuit for clarification we analyzed the levels of lipid hydroperox-

ides, which are the primary products of lipid oxidation. We observed the same variation trend

in logarithmic (S6 Fig) and PDS growth phases (Fig 5A): the strain misincorporating Ser at Ala

codons had a slightly higher level of lipid hydroperoxides, when compared to the control

strain, while the Gly-to-Ser mistranslating strain showed a lower level. However, there were no

statistically significant differences when compared to the control strain.

Earlier observations made in strains mistranslating Ala and Gly codons [21] led to the

hypothesis that total ROS levels would be mostly unchanged in both strains. Additionally, an

increase of the superoxide anion alone could be observed in a strain mistranslating Gly codons,

possibly accompanied by an intensification in antioxidant defense activity (transcriptomic

data). Thus, we quantified total ROS and the superoxide anion levels in the respiratory phase,

in which ROS production was expected to be higher due to oxidative phosphorylation. We

Table 3. Summary of the changes observed in PL and TG molecular species in each mistranslating strain.

Log PDS

Ser-tRNAAla Ser-tRNAGly Ser-tRNAAla Ser-tRNAGly

PA 32:2

➔

=

➔

=

PA 34:1 ➔ = = =

PE 32:2

➔

= = =

PE 32:1 = =

➔ ➔

PE 34:1 ➔ = ➔ =

PS 32:2

➔

= = =

PS 34:2

➔

= = =

PS 34:1 ➔ = = =

PC 32:2 = =

➔ ➔

LPC 16:1

➔

=

➔

=

PI 32:1

➔ ➔

= =

PI 34:1 ➔ = = =

PI 36:1 ➔ = = =

TG 44:1 = ➔ = ➔

TG 46:2 =

➔

= =

TG 48:3

➔ ➔

➔

➔

TG 48:1 ➔ ➔ = =

TG 50:3

➔ ➔

=

➔

TG 50:1 ➔ ➔ = ➔

TG 52:3 =

➔

= =

https://doi.org/10.1371/journal.pone.0202402.t003
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also verified whether the activities of the antioxidant enzymes catalase (cytosolic) and superox-

ide dismutase (SOD; cytosolic and mitochondrial isoforms) were elevated. Total ROS levels

were decreased in both strains (Fig 5B). Surprisingly, decreased levels of the superoxide anion

Fig 3. Differences in PL molecular species profile in PDS phase. Relative amounts of the molecular species that showed significant differences

within each PL class–PA (A), PC (B), LPC (C), PE (D) and PS (E)–identified after comparison of phospholipidomes from the mistranslating and the

control strains, and among each other, analyzed by HPLC-MS in negative mode (A, D, E) and positive mode (A, C). PL molecular species are

identified as C:N (carbon number:number of double bonds). Data were normalized against the sum of all the reconstructed areas considered for each

class and presented as mean ± standard deviation of three biological replicates. Statistical analysis was performed by two-way analysis of variance

(ANOVA) followed by Bonferroni’s multiple comparison test (���P<0.001 ��P<0.01; �P<0.05). For the profile of all molecular species in each PL

class see S4 Fig.

https://doi.org/10.1371/journal.pone.0202402.g003
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were also observed in the Gly-to-Ser strain, while no significant changes were seen for the

other recombinant strain (Fig 5B). Additionally, the activities of all three antioxidant enzymes

tested were unchanged when compared to the control (Fig 5C). These results suggest that

these strains are not subjected to damaging oxidation levels. Instead, mistranslation likely

caused an adjustment in lipid metabolism as suggested by the above mentioned transcrip-

tomics studies [21,24,29,31].

Fig 4. Differences in TG molecular species profile in logarithmic and PDS growth phases. Distribution of the relevant molecular species of TG in logarithmic (A)

and post-diauxic shift phase (B) was altered. Data is normalized against the sum of the reconstructed areas considered for each phase and presented as

mean ± standard deviation of three biological replicates. Statistical analysis was performed by two-way analysis of variance (ANOVA) followed by Bonferroni’s

multiple comparison test (���P<0.001 ��P<0.01; �P<0.05). For the profile of all TG molecular species see S5 Fig.

https://doi.org/10.1371/journal.pone.0202402.g004
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OLE1 transcripts are altered in Gly-to-Ser background

The reduction of MUFA relative abundance and the apparent absence of oxidative damage led

us to hypothesize that the desaturation process could be altered in the mistranslating strains.

In S. cerevisiae, desaturation of the bond between carbons 9 and 10 of the palmitic and stearic

acids is carried out by the Δ9 fatty acid desaturase (Ole1p). This enzyme is thus essential to cell

homeostasis, namely for membrane adaptation to different stimuli such as carbon source, tem-

perature, exogenous FA supplementation, metal ions and oxygen levels. Hence, OLE1 expres-

sion is tightly regulated [67]. We analyzed the transcripts of this gene in both growth phases,

seeking to shed light on our observations. In logarithmic phase, mRNA-OLE1 levels were simi-

lar for all strains, but in PDS phase the strain mistranslating Gly codons up-regulated OLE1
expression by 1.5-fold whereas the Ala-to-Ser strain showed a similar trend (Fig 6A). Thus, it

is possible that Ole1p is counteracting lipid homeostasis disturbance, leading to less changes in

Fig 5. Assessment of oxidative stress markers in PDS phase. (A) Quantification of lipid hydroperoxides was achieved by performing the FOX II assay. Data were

normalized against the averaged values of the control strain and are presented as mean ± standard deviation of duplicates of 3 biological replicates. (B) Total intracellular

ROS and the superoxide anion alone were measured by flow cytometry using the DHR123 and DHE probes, respectively. Data are expressed as median

values ± standard deviation of three biological replicates. (C) Enzymatic activities of cytosolic catalase and superoxide dismutase (SOD), and mitochondrial SOD were

determined in situ after native-PAGE. Data are expressed as mean values ± standard deviation of three biological replicates assessed in two independent experiments.

Statistical significance in all experiments was determined by one-way ANOVA, followed by Bonferroni’s multiple comparison test (�P<0.05; ��P<0.01; ���P<0.001).

https://doi.org/10.1371/journal.pone.0202402.g005

mRNA mistranslation affects the yeast lipidome

PLOS ONE | https://doi.org/10.1371/journal.pone.0202402 August 27, 2018 17 / 28

https://doi.org/10.1371/journal.pone.0202402.g005
https://doi.org/10.1371/journal.pone.0202402


the PL species profiles. Consistently, changes in lipid composition in the PDS phase did not

promote alterations in membrane fluidity, as assessed by fluorescence polarization of DPH in

liposomes prepared from the phospholipid extracts of both S. cerevisiae strains (Fig 6B and

S7 Fig).

Discussion

Different types of protein synthesis errors produce distinct phenotypic

outcomes.

We show here that Ala-to-Ser and Gly-to-Ser misincorporations (Table 1 and S1 Table), have

modest effects on fitness (S8 Fig), despite the observed reduction of protein activity (S2 Fig).

This is in agreement with previous publications in which the expression and translational

activity of the recombinant Ser-tRNA have been deeply characterized [20–22,27,29]. The

chemical and physical characteristics of each amino acid–e.g. polarity–, their localization

within protein structure, and eventual post-translational modifications certainly contribute to

the toxicity differences observed in yeast. For instance, Ser-to-Leu mistranslation, the best

studied case in S. cerevisiae, leads to higher toxicity likely due to the major chemical differences

between Leu (hydrophobic) and Ser (polar) [21,29,30]. Curiously, the Ala-to-Ser mistransla-

tion had more severe effects in C. albicans (e.g. growth rate) [31] than in S. cerevisiae. The sub-

stitution of Gly residues by Ser can compromise protein structure due to steric constraints,

such as in Gly-rich loops [73–77]. Gly appears to be the only amino acid susceptible to myris-

toylation [78] but similarly to Ser, it is mostly localized in coil regions and can be equally posi-

tioned closer to either the core or the surface of proteins [79]. Conversely, Ala localizes mainly

to α-helixes but is also found in coil regions [79]. More importantly, it is hydrophobic and its

substitution by a polar amino acid like Ser could destabilize hydrophobic regions. Given the

previous data from our lab regarding different amino acid substitutions, it is likely that the

chemical/structural differences between the amino acids are the main drivers of the observed

effects. Additionally, in human cell lines mistranslation was not associated with genome-wide

Fig 6. Membrane fluidity is not altered in PDS phase despite the upregulation of the Δ9 fatty acid desaturase-coding gene. (A) Quantitative real-time PCR analysis

of expression levels of OLE1 gene in logarithmic and PDS phases were assessed. Target/reference ratios were calculated using the mathematical model determined by

Pfaffl (2001) [65]. Actin was used as the reference gene. Data are expressed as mean values ± standard deviation of three biological replicates. Statistical analysis was

performed by one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test (��P<0.01). (B) Membrane fluidity was qualitatively assessed

through determination of the thermograms of fluorescence polarization of DPH in liposomes prepared with the PL extracts of S. cerevisiae strains. Liposomes were

prepared with PL extracts and incubated with DPH. The depicted graph represents 1n and is illustrative of the observations in two biological replicates.

https://doi.org/10.1371/journal.pone.0202402.g006
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codon frequencies but mainly with the nature of the substitution [80]. Therefore, the type of

mistranslation is an important factor that determines the impact on proteome disruption, pro-

teotoxic stress intensity, levels of stress response induction and ultimately phenotypic

outcomes.

The yeast lipidome is altered by protein synthesis errors

At the lipidome level, our results show that mistranslation affects mainly FA and lipid molecu-

lar species, without significantly disturbing overall PL class distribution (Fig 1) or total PL con-

tent (S9 Fig, see text). The PL/protein ratios were decreased by 30% in PDS phase, in both

mistranslating strains, mostly due to decreased protein content. It is possible that protein syn-

thesis rate decreased and/or protein degradation increased in response to accumulation of

mistranslated proteins. Indeed, reduced protein synthesis is a common response to stress,

namely oxidative, osmotic and heat stress, and also to proteotoxic stress induced by mistrans-

lation [21,29,31,80–82]. However, recent studies show that misincorporated amino acids can

either increase or decrease protein synthesis rate [21].

The yeast fatty acid composition varies according to genetic background and growth condi-

tions [66,67], and to our knowledge the FA of the strains used here have not yet been studied.

The main alterations in FA distribution in the mistranslating strains were more prominent in

PDS phase than in log phase whereas the PL and TG molecular species analyzed showed

greater changes in the log phase. In the latter, yeast cells increase the production of PL than

into neutral lipids, such as TG, whose content only increases at the end of this growth phase

[70]. We found interesting that TG species distribution was mainly altered in log phase, during

which their content is expected to be low. It is estimated that translation can consume up to

50% of the cellular energy [83]. Therefore, since we are perturbing the proteome it is likely that

these cells in fact spend more energy and need to mobilize TG. In the Ala-to-Ser strain, PL and

TG species distribution was affected, in particular a shift from species carrying mono unsatu-

rated fatty acids (MUFA) to those carrying saturated fatty acids (SFA) was observed, mostly in

log phase. Since there was no exogenous FA supplementation, FA synthesis will rely on the FA

de novo synthesis pathway [84]. If this process is affected, then it is likely that downstream syn-

thesis processes are also altered.

The Ala-to-Ser strain showed most of the lipid alterations detected in this study. Alterations

in PL species distribution were more prominent than in the Gly-to-Ser mistranslating strain,

whereas TG species distribution was less affected. In the Ala-to-Ser strain, there was a general

increment in 34:1-containing PL species, mainly comprised of C16 and C18 FA, which

included PA (34:1). PL synthesis is an intertwined process, in which PA is a starting point via

the CDP-DG pathway. Additionally, PA is also a precursor of DG, which in turn is needed for

TG synthesis, and also PE and PC synthesis via the Kennedy pathway [85] (Fig 7). Therefore,

PL that derive from PA may have a comparable FA composition. In a similar way, PA-derived

DG species may originate the observed alterations in TG species profiles.

In the case of the Gly-to-Ser strain, since there was no alteration in the PA profiles, the

changes in TG profiles may be due to downstream enzymatic activity, either related to synthe-

sis or turnover.

A significant variation of LPC species distribution was also only observed in the Ala-to-Ser

strain. The decrease of LPC (16:1) is in line with the other lipidome-related observations (Figs

2 and 3, Table 3). A previous transcriptomics study showed that expression of PLB1, which

codes for an enzyme involved in the remodelling of PC and PE, was upregulated in a similar

misincorporation model [31]. Our observations regarding LPC and PE suggest an altered PL

remodelling activity in the Ala-to-Ser strain.
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Since PI-derivatives have been implicated in several signal transduction pathways [86], the

changes in PI molecular species distribution, mostly noted in the Ala-to-Ser strain, may affect

signal transduction. Interestingly, it is now known that the acyl composition of PA species

influences the activation of the mammalian PI4P5-kinase [87], which converts PI-4-P into

PI-4,5-P2.

Gly/Ala mistranslation does not cause oxidative stress

Mistranslation was previously linked to increased reactive oxygen species (ROS) levels, protein

oxidation and up-regulation of the antioxidant response [21,25,29,30,72,88]. Thus, we hypoth-

esized that the observed deviations in PL and FA profiles and the decreased FA unsaturation

could have resulted from oxidative damage. We measured lipid peroxidation, but the trans-

formed strains did not significantly differ from the control strain. However, the detected

hydroperoxides are unstable, and can be further oxidized or fragmented [89]. It is curious that

the results were similar in both growth phases: the detected lipid hydroperoxides slightly

Fig 7. Phospholipid synthesis pathways in S. cerevisiae. This simplified scheme shows the biosynthesis routes of the PL analyzed in this study. The

dashed and solid lines represent the Kennedy and the CDP-DG pathways, respectively. Cho, Choline. Etn, Ethanolamine; Ino, Inositol.

https://doi.org/10.1371/journal.pone.0202402.g007
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increased in the Ala-to-Ser strain and slightly decreased in the Gly-to-Ser strain relative to the

control strain. Indeed, these opposite trends between the mistranslating strains were statisti-

cally significant in log phase (S6 Fig). This indicates that each type of amino acid misincor-

poration is differently dealt with by the cell, which is in line with a previous phenotypic

screening carried out in our laboratory [21]. Given these results, we verified if ROS levels and

antioxidant enzyme activity were altered. Surprisingly, both mitochondria-specific superoxide

anion and ‘total’ ROS were decreased in the Gly-to-Ser strain by 19% and 36%, respectively,

relative to the control strain, and the levels of the latter were also decreased by 13% in the Ala-

to-Ser strain (Fig 5B). Conversely, induction of Gly-to-Ser mistranslation in another yeast

strain and in a zebrafish model of mistranslation increased ROS levels [21,72]. Regarding Ala-

to-Ser misincorporation, a reduction in ROS levels was also observed in another yeast strain

[21]. However, induction of Ala-to-Ser mistranslation in a zebrafish model has shown an

increment in catalase activity which hinted at increased oxidative stress [72].

The decrease in ROS levels, particularly in the Gly-to-Ser strain, is consistent with the lower

lipid peroxidation levels observed in this strain compared to the control strain. The observa-

tion that the activities of the antioxidant defense enzymes (Fig 5C) were unaltered points to

undisturbed redox homeostasis and indicates that it is unlikely that the detected changes in

ROS levels are related to upregulation of antioxidant enzymatic activity.

Mistranslation upregulates the OLE1 gene

We also hypothesized that the desaturation of FA, part of the FA synthesis process, could be

altered by mistranslation. In yeast the Δ-9 fatty acid desaturase (Ole1p) is the only known

enzyme able to generate MUFA from SFA. Since there is no evidence of post-translational

modifications of Ole1p, such as the need for activation, and regulation of its expression occurs

mainly at the transcriptional level with a contribution of mRNA stability [67], an increment in

mRNA expression should reflect a direct demand for this enzyme. In fact, it was seen else-

where that overexpression of this gene upregulated transcript levels by 40% [90] and resulted

In accumulation of total MUFA, mainly C18:1, in detriment to SFA [90–92].

It was surprising that only the Gly-to-Ser strain upregulated OLE1 expression because its

PL profiles are barely altered in both growth phases. One possible explanation is that the accel-

eration of desaturation by Ole1p contributes to the re-establishment of lipid homeostasis. We

have surveyed fluidity but no such alteration was observed (Fig 6B and S7 Fig). Additionally,

PC species profiles were not at all or were the least altered (Figs 2 and 3, respectively) in our

data set, and this class is a major constituent of cell membranes [93]. These observations were

however true for both strains and not only the Gly-to-Ser. Alternatively, Ole1p may be mis-

translated and degraded since its sequence has GGA and GCA codons, which may lead to mis-

folded Ole1p. It is possible that the Gly codon may be generally less frequent, or less present in

conserved sequences/motifs, than the Ala codon on mRNA molecules that code for proteins

related to synthesis/metabolism of membrane lipids. It should be noted however, that the over-

all changes in the lipid profiles observed here do not necessarily reflect alterations in the mem-

branes of specific cell compartments, in which lipid profiles may vary, e.g. in opposite ways, as

seen in the mitochondrial lipid profiles of our strains (unpublished) and hence we are observ-

ing the averaged profiles of all compartment/organelle profiles.

Conclusion

Our study shows that Ser misincorporation at Gly and Ala sites on a proteome-wide scale dis-

turbs lipid homeostasis. Fatty acid profiles were altered, including C16:0 and C16:1, in both

growth phases and mistranslating strains; PL profiles were mostly altered in the Ala-to-Ser
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strain, whereas TG profiles were mostly changed in the other strain. The OLE1 gene was upre-

gulated in the Gly-to-Ser strain but membrane fluidity alterations were not observed, suggest-

ing that the changes in lipid profiles and gene upregulation were not sufficient to change

fluidity or that Ole1p is counter-acting lipid homeostasis perturbation. Moreover, oxidative

stress did not contribute to the observed effects. Overall, the observations regarding the lipi-

dome suggest that these specific amino acid exchanges are well tolerated by yeast, which is in

line with the reduction in fitness observed. The mechanisms by which mistranslation alters lip-

ids profiles remain to be elucidated. One possibility is that the alterations in lipid composition

may be partly due to accumulation of misfolded proteins in the endoplasmic reticulum and

consequent triggering of the unfolded protein response. This possibility should be clarified in

future studies.

Supporting information

S1 Fig. The mutant tRNACGA
Ser is expressed in the host strains. 25 μg of total RNA were

fractionated on polyacrylamide gel. The mutated tRNACGA
Ser was detected using a γ-32P-ATP-

tRNACGA
Ser probe. Ca corresponds to total RNA purified from C. albicans; EV, empty vector;

Ser, native C. albicans tRNACGA
Ser transformed into S. cerevisiae. Membranes were exposed to

a K-screen and were visualized using a Bio-Rad Molecular Imager FX.

(TIF)

S2 Fig. Mistranslation decreases protein stability. E. coli β-galactosidase (β-gal) was co-

expressed in yeast cells with pRS315, pUA268 and pUA269. β-gal expression (A, B) was veri-

fied by western blot with an anti-β-gal antibody. Alcohol dehydrogenase (ADH) was used as

loading control. The blot image of 1n represents the observations made for the set of biological

replicates (A). β-gal activity (B) was measured prior to protein denaturation by heat. Data rep-

resent the mean ± standard deviation of a minimum of three biological replicates. Statistical

significance was determined by one-way analysis of variance (ANOVA), followed by Bonferro-

ni’s multiple comparison test (�P<0.05, ��P<0.01).

(TIF)

S3 Fig. LC-MS analysis of PL molecular species in positive (as [M+H]+ ions) and negative

mode (as [M-H]- ions) from logarithmic phase. Relative abundances of PA, PE, PS, LPC and

PI molecular species in logarithmic phase are altered. Data is normalized against the sum of

the reconstructed areas considered for each class and presented as mean ± standard deviation

of three biological replicates. Statistical analysis was performed by two-way analysis of variance

(ANOVA) followed by Bonferroni’s multiple comparison test (���P<0.001 ��P<0.01;
�P<0.05).

(TIF)

S4 Fig. LC-MS analysis of PL molecular species in positive (as [M+H]+ ions) and negative

mode (as [M-H]- ions) from post-diauxic shift phase. Relative abundances of PA, PE, PC

and LPC molecular species in post-diauxic shift phase are altered. Data is normalized against

the sum of the reconstructed areas considered for each class and presented as mean ± standard

deviation of three biological replicates. Statistical analysis was performed by two-way analysis

of variance (ANOVA) followed by Bonferroni’s multiple comparison test (���P<0.001
��P<0.01; �P<0.05).

(TIF)

S5 Fig. LC-MS analysis of TG molecular species in positive mode (as [M+NH4]+ ions) from

logarithmic and post-diauxic shift phases. Relative abundances of triacylglycerol molecular
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species in logarithmic (A) and post-diauxic shift phase (B) were altered. Data is normalized

against the sum of the reconstructed areas considered for each phase and presented as

mean ± standard deviation of three biological replicates. Statistical analysis was performed by

two-way analysis of variance (ANOVA) followed by Bonferroni’s multiple comparison test

(���P<0.001 ��P<0.01; �P<0.05).

(TIF)

S6 Fig. Quantification of lipid hydroperoxides. Lipid extracts from logarithmic phase were

assayed with the FOX II assay. Data were normalized against the averaged values of the control

strain and are presented as mean ± standard deviation of duplicates of three biological repli-

cates. Statistical significance in all experiments was determined by one-way analysis of variance

(ANOVA), followed by Bonferroni’s multiple comparison test (�P<0.05).

(TIF)

S7 Fig. Thermograms of fluorescence polarization (P) of DPH. Liposomes were prepared

with PL extracts from PDS (A) and logarithmic (B) phases. Membrane fluidity was qualitatively

assessed in two biological replicates in each condition. Each depicted graph represents 1n.

(TIF)

S8 Fig. Growth curves and relative growth rates. The optical density (A) of yeast cells trans-

formed with pRS315, pUA268 and pUA269 was measured until stationary phase. Growth rates

(B) were determined in the logarithmic phase and normalized to the rate of the control strain.

Data represent the mean ± standard deviation of three biological replicates. Statistical signifi-

cance was determined by one-way analysis of variance (ANOVA), followed by Dunnett’s mul-

tiple comparison test (�P<0.05, ��P<0.01).

(TIF)

S9 Fig. Phospholipid-to-protein ratios are only altered in PDS phase. Total PL were quanti-

fied after lipid extraction and normalized to the previously determined protein concentration

for both logarithmic (A) and post-diauxic shift (B) phases. Data were normalized against the

averaged values of the control strain and presented as mean ± standard deviation of three bio-

logical replicates. Statistical analysis was performed by two-way analysis of variance (ANOVA)

followed by Bonferroni’s multiple comparison test (�P<0.05).

(TIF)

S10 Fig. Examples of spectra obtained for each misincorporating strain. The identified ions

and corresponding amino acids are displayed in the tables below each spectrum. The spectra

on the left represent the peptide with misincorporation, whereas on the right side, the same

peptide is shown unaltered.

(PPTX)

S1 Table. Relative frequencies of Ser misincorporation at Ala and Gly sites.

(DOCX)

S2 Table. Lipid species identified in the LC-MS analysis of the total lipid extracts in posi-

tive and negative modes. The complete list of TG, PC and LPC molecular species identified in

positive mode, and PS, PG, PE, LPE, PI, IPC, MIPC and PA molecular species identified in the

negative mode, in MS and MS/MS spectra, are annotated. Data are presented as m/z values

(ratios of mass to charge) plus the respective sums of carbon atoms (C) and double bonds (N).

In bold are the very low abundant yeast species identified only in the MS spectra, that have

been described elsewhere [68–70].

(DOCX)
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S3 Table. Peptides with Ala!Ser (A) and Gly!Ser (B) misincorporations detected by

LC-MS/MS.

(DOCX)

S1 Protocol. Determination of β-galactosidase activity and quantity.

(PDF)

S2 Protocol. Detection of tRNA by northern blot.

(PDF)
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