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Abstract

A different type of Casimir-type interaction is theoretically predicted: a single-interface torque ata
junction of an anisotropic material and a vacuum or another material system. The torque acts to
reorient the polarizable microscopic units of the involved materials near the interface, and thus to
change the internal structure of the materials. The single-interface torque depends on the zero-point
energy of the interface localized and extended modes. Our theory demonstrates that the single-
interface torque is essential to understand the Casimir physics of material systems with anisotropic
elements and may influence the orientation of the director of nematic liquid crystals.

1. Introduction

Casimir-Lifshitz interactions [ 1-3] are the most paradigmatic example of quantum effects on the macro scale,
and result from the confinement of the quantum-mechanical zero-point fluctuations of the electromagnetic
field. Until recently, the study of quantum fluctuation-induced electromagnetic interactions was only of pure
theoretical interest. Nevertheless, with the rapid development of micro- and nano-electromechanical systems
(MEMS and NEMS) and its great impact in different areas [4, 5], the research of Casimir—Lifshitz interactions
has become of great practical importance as well. If, on one hand, Casimir interaction phenomena may lead to
potentially undesired effects such as ‘stiction’ [6, 7], on the other hand, they may open new and exciting
possibilities in the field of micro and nanomechanics [4, 8—11].

The study of Casimir-Lifshitz phenomena was pioneered by Casimir for more than 60 years ago [1]. In his
seminal work, Casimir showed that as a result of the electromagnetic field quantum fluctuations, two parallel
perfectly conducting plates standing in a vacuum may experience an attractive force pushing the plates toward
each other. Following Casimir’s prediction, Lifshitz, Dzyaloshinskii, and Pitaevskii extended the theory to the
more general case of realistic isotropic dielectric plates, including non-ideal metals [2, 3]. Some years later, this
theory was further generalized to anisotropic dielectric plates [12, 13]. Interestingly, it was shown that the
anisotropy may lead to the emergence of qualitatively different phenomena. It was demonstrated that a pair of
parallel anisotropic uniaxial plates—with in-plane optical anisotropy and misaligned optical axes—separated by
an isotropic dielectric, may experience a mechanical torque, designated as Casimir torque, that spontaneously
forces the rotation of the plates towards the minimum energy position. The Casimir torque in this kind of
systems was further investigated in [ 14—18]. In particular, numerical calculations of the torque were provided in
[14-16, 18], and possible experiments to measure the Casimir torque were proposed in [14, 16—18].

With the emergence of metamaterials and their intriguing electromagnetic properties, the study of the
Casimir-Lifshitz interactions has also been extended to systems with complex structural nanoscopic unities [ 19—
27]. In particular, in a recent work [28] we studied the Casimir interaction torque in nanowire materials and
demonstrated that it is distinctively different from the torques studied hitherto in other systems (e.g.,
birefringent parallel plates [14]). On one hand, it was proven that the Casimir interaction torque in nanowire
structures has an unusual scaling law. Specifically, the torque generated due to the coupling between two
interfaces decays as 1 /d atlarge distances (d is the distance between the two interfaces), which differs markedly
from the characteristic 1/d*> decay in usual configurations wherein the two interfaces are separated by an
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Figure 1. Sketch of the system under study. (a) Single-interface configuration: anisotropic dielectric-vacuum interface. (b) Double-
interface configuration: anisotropic dielectric —vacuum—anisotropic dielectric II. The thickness of the vacuum region is d.

isotropic background [28]. On the other hand, it was argued that the torque has an additional and dominant
contribution, designated by single-interface Casimir torque, which is an interfacial effect and does not vanish
even when the two interfaces are infinitely far apart. The study of [28] was however mainly qualitative, and no
detailed quantitative analysis of the single-interface torque was provided. The objective of this work is to study in
depth this effect and unveil the physical mechanisms associated with this nontrivial Casimir-type interaction.

Even though the analysis in [28] was focused on nanowire materials, the single-interface torque emerges at
any interface involving at least an anisotropic material with optical axes out of the interface plane. In these
conditions, the zero-point energy of the system depends on the relative orientation of the material optical axes.
Thus, rather than considering the particular case of metallic nanowire systems, here we theoretically investigate
the single-interface Casimir torque in general conditions, treating the relevant anisotropic materials as
continuous media. It is important to mention that the closely related problem of the role of van der Waals forces
in the anchoring of a nematic fluid has been previously discussed by other authors relying either on
phenomenological parameters or assuming a particular material dispersion and the limit of a weak anisotropy
[29-31]. In contrast, our theory is completely general and the formalism is fully original.

2. Microscopic theory

2.1. Zero-point energy

We are interested in Casimir-type interactions between different anisotropic materials at zero-temperature.
Even though at a later stage the relevant media will be modeled as continuous anisotropic uniaxial dielectrics, in
afirst step it is convenient to visualize each material as a periodic arrangement of inclusions embedded in a
vacuum (figure 1) and develop the theory relying on such a microscopic model. The inclusions may be pictured
as either spherical or ellipsoidal depending if the material response is isotropic or anisotropic. For each material
region the optical axis is assumed to be in the yoz plane and we define @i, = sin afi, + cos o, as the unit
vector oriented along the optical axis. The angle & determines the orientation of the inclusions in the pertinent
material region.

The zero-point energy ¢ of the system can be calculated with the help of the argument principle [32-35]. In
this section, we consider a generic double-interface configuration (figure 1(b)) and revisit the usual derivation of
the zero-temperature Casimir energy [32-35]. We start by noting that if D (w, k), o, d) = 0 represents the
characteristic equation of the photonic modes with transverse wave vector k;; = (ky, k), the argument

principle implies that:
Lgledby, M
2riJc 2 D

Z_ Wim™ Z ,m

where i = h/(27) is the reduced Planck constant, & = (o, oy, 3) are the angles that define the orientation of
the inclusions in each material region (see figure 1(b) (i), wf’ .. Tepresents a generic zero of D inside the closed
contour Cand wy,,, represents a generic pole of D. When the middle region is a vacuum—as assumed in this
section—the angle o, has no meaning and can be ignored. Yet, we will keep it in the formulas because at a later
stage we will consider the general case where the middle region is an anisotropic material.

Generalizing the approach of [35] to three-dimensional geometries, it follows that for a periodic system the
characteristic function D may be chosen of the form
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D(w, ky, o, d) = det[l — Re(w, ky, o, o) - Mp(w, ky, iz, d)-

2)
Re(w, kyp a2, @) - My, kyp s )], (

where 1 is a unit matrix, Ry g are the reflection matrices for the left and right interfaces, and Mg p are the
propagation matrices for the forward waves (travelling along the 4z direction in region 2) and the backward
waves (travelling along the —z direction in region 2) (see figure 1(b)). The associated basis of functions is formed
by the vacuum plane wave modes (both propagating and evanescent) with transverse wave vector of the form
k| + G (Gisageneric transverse reciprocal lattice vector) which can be used to expand a generic wave with the
Bloch property in the transverse (x and y) coordinates [35]. The matrices Ry g and Mg g have infinite dimension,
and the transverse wave vector must be restricted to the 1st Brillouin zone (BZ) [23, 35].

Summing both members of equation (1) over all possible wave vectors, it is possible to write

) T S LAY dk.dk, ¢ 2 % 4, 3
Ak%‘jz om Akzmz o = i @m)2 Mz YJe2 D @)

where A = L, X L, isthe cross-sectional area of the cavity parallel to the xoy plane. As usual, Cis taken asa
contour oriented counter-clockwise that consists of the imaginary frequency axis, and of a semi-circle with
infinite radius in the semi-plane Re {w} > 0. Assuming that the material response ceases when w — oot
follows that D (w, kj, o, d)becomesindependent of both dand av when w — 00, and thus the integral over the
semi-circle is a constant independent of the system configuration and may be dropped. Moreover, noting that
the first term in the left-hand side of equation (3) is the zero-point energy per unit of area, we can write:

1 1f 5 11 =i fiw 8,D
e (d @) — =S p L f/ dkxdkf WOy, 4
oo () Akzmz T o @Mz i 2 D @

After integration by parts, the right-hand side of this formula reduces to the familiar Casimir interaction
energy defined as:

dccim N

T/a T/a +00

[k [ dk, [ dg log D ke kyy o, d), 5
A 473 Jo —n/a o $log DS g ) ©)
where ¢ is the imaginary frequency (w = i£) and a is the lattice period. We used the fact that

BZ = [—n/a, w/a] X [—m/a, w/a] and that D is an even function of k, because the system has the parity

symmetry x — —x. Thus, we have proven that:

(@ @) = e (dy @) + %kzmgwim. ©
One crucial point is that the poles wy, ,, of D must be independent of d. This is why the second term in the
right-hand side of equation (6) can be disregarded in the calculation of the Casimir force. In our formulation the
poles wﬁ,m correspond to the poles of the reflection coefficients Ry and Ry associated with the two individual
material interfaces, which are evidently independent of d but which depend on . This property shows that the

second term in the right-hand side of equation (6) can be decomposed as:

1 h 1 1
= :_w{(),m = —ec2(an, @) + —ec 3 (an, a3), ?)
AL22 A A

where £¢ 15 (a1, ap) (6c23 (i, 3)) represents Zk m—wf)m with the summation range restricted to the poles of

R (RR). Asis well-known, the poles of the reflection coefficients correspond to the guided modes supported by
the individual interfaces. Thus, the left-hand side of equation (7) has a clear physical meaning: it is the zero-point
energy associated with the edge modes supported by the two uncoupled interfaces. In other words, ¢ ;, and
£c,23 in equation (7) correspond to the zero-point energies of the guided modes supported by each interface. One
important observation is that the spatial domain is required to be electromagnetically closed. Hence, the cavity
should be terminated with some type of opaque boundary, for example with periodic boundary conditions or a
perfectly electric conducting wall placed at z = £o00. Thus, strictly speaking the poles of Ry and Rg do notneed
to be associated with waves localized at the interfaces, and may be associated with spatially extended modes.

In summary, it was formally demonstrated that when the materials response ceases for w — 00 the zero-
point energy of the double-interface configuration (figure 1(b)) can be written as (apart from an irrelevant
constant independent of the system configuration):

ec,ot (d, @) = becine (d, @) + ec12(qu, ) + €c23 (g, 3). ®

The first term dec iy corresponds to the usual Casimir interaction energy due to the coupling between the
two interfaces, whereas the other two terms are associated with the single-interface Casimir energies determined
by the orientation of the optical axes. These single-interface components are due to the anisotropy of the
materials because the energy of the system depends on the angles o« = («v;, o, a3) that dictate the orientation of
the inclusions. Even though the single-interface terms ¢ ;, and ec »; are distance independent, and therefore do
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not contribute to the usual Casimir force, they can contribute to the Casimir torque. This will be discussed in
detail in the next subsection.

2.2. Casimir torque
Next, we derive the Casimir torque acting on the considered materials, and highlight the differences compared
to the torques induced in conventional systems with in-plane anisotropy.
The total Casimir torque acting on the ith body (i = 1, 2, 3) in the double-interface configuration is
Mé’?tot = —0¢c 1ot/ Ocvj, and hence from equation (8) it is given by:

@O — pMD (@) (i)
MCl,tot - Cl,int + MCI,IZ + MCI,ZS
_ dbecint _ dec12 _ Ozc3

9
8041' 80(,' a()éi ( )

In systems where the interaction is mediated by an isotropic material and when the optical axes of the
materials 1 and 3 are parallel to the interface, e 1, and £¢ ,3 are evidently independent of «v;, and hence it is
possible to identify the zero-point energy e¢ o with the interaction energy dec inr. Thus, in such a scenario the
Casimir torque is simply given by MY\, = MY, = —06ec,int/Oc; [13], where M), is designated here by
interaction torque. However, in a system where the optical axes of the relevant media are out of plane with
respect to the interface this cannot be done. Indeed, in these conditions there are two additional contributions to

the Casimir torque, namely M), and M. These two terms are designated here by single-interface torques
and are independent of d. Clearly, when d — oo the interaction torque vanishes MY, = 0and

limg_. oM = MY, + M. For example, for the 1st body one has limy_. ..M, = M}, and for the 3rd
body one has limy_,..ME),, = ME);. Hence, M{'}, and M), have a clear physical meaning: they are the
individual torques induced at the interfaces 1-2 and 2-3, respectively, by the quantum fluctuations of the
electromagnetic field. Indeed, it is physically evident that even for a single-interface configuration (figure 1(a))
there must be a preferred orientation for the optical axis of the medium, and hence some associated zero-point
energy.

To determine the single-interface energy ec ;. and torque Mc;, we adapt the ideas of our previous work
[28], and consider the scenario where the vacuum gap in the double-interface configuration (figure 1(b)) is
vanishingly small (i.e., d = 0T). For clarity, let us consider a twin-interface scenario wherein the inclusions in
region 1 and 3 are identical and oy = 3. Thelimit d = 0% is understood here as the situation for which the
regions 1 and 3 are merged to form a periodic (crystalline) structure, i.e. a bulk material. In this limit, the total
Casimir energy may still depend on the orientation of the particles because even for a bulk crystal not all the
directions of space are equivalent due to the granularity of the structure. Let us denote My, as the torque acting
on the bulk crystal which depends on a; = «3. Note that My, is expected to be proportional to the volume of
the bulk crystal. Calculating the d — 0 limit of both members of equation (8) and the derivative with respect to
o = o itisseen that

1o}
Mish = - da [decint(d = 07, i, a2, 1) + ec12(u, ) + £¢,23 (2, Q)] (10)
1
0 . .
From here, one finds that M(% + Mg%3 — élll)lk = 8—[5€C’im (d = 0%, oy, o, ay)]. But for a twin-material
ap

interface with oy = i itisevident that ec 1, (o, ) = €c23 (n, ) = €4 and hence
MY, = ME), = Mélgl Therefore, it follows that the single-interface Casimir torque is such that:

1 1 86(;‘
ME); — 3 b = _EMC,intId:W =- 8021 , (11a)
1
€Csi = —55€C,im,121|d:o+, (11b)

where dec int, 121 15 a short-hand notation for dec int (d = 07, oy, a, ). Evidently, e, ; is defined apart from
the sum of an irrelevant constant. The above formulas give the single-interface energy and torque in terms of the
interaction energy 0ec ¢ Of a twin 1-2—1 configuration which can be calculated using equation (5). This
derivation shows that the single-interface torque in general has a volumetric component M;}), /2 and a surface
correction (the right hand side of equation (11a)). The factor 1/2 is because M}, represents the torque acting

. 1 .
on half of the crystalline structure. Thus, Mélzl — —M{!) corresponds to the additional stress due to the

asymmetry created by the interface, and consistent with this it is proportional to the area of the interface.

Even though the described theory is completely rigorous, the granularity of the crystal does not allow for a
simple analytical treatment. To circumvent this issue, in the next section we consider the continuum
approximation.
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3. Macroscopic theory

3.1. Continuum approximation
Itis possible to considerably simplify the problem using an effective medium approximation wherein each
material region is seen as a uniaxial anisotropic dielectric with permittivity:

g = gl iy + 50,0, + a0 lala, (12)

where @i, = cos ;li, — sin ;1 isa unit vector in the yoz plane perpendicular to the optical axis ({i,). In the
isotropic case (spherical inclusions) one has &, = ¢,,, whereas in the anisotropic case (elongated elliptical
inclusions) & # €qa-

In the continuum limit, for each fixed k), the electromagnetic fields in the vacuum region can be expanded
simply in terms of the usual plane wave modes, similar to [28]. Hence, in this case the matrices Ry r and Mg p in
equation (2) become 2 x 2 matrices and can be determined using standard analytical methods [28] (see also
appendix A). Indeed, within the effective medium framework the wave propagation is described by an ordinary
wave (transverse electric—TE—mode) and an extraordinary wave (transverse magnetic—TM—mode) [28].

At this point, it is important to discuss the validity of the continuum approximation. Typically, effective
medium methods are valid for interactions such that k;ja < 1and wa/c < 1.Inthe microscopic picture dec,int
must be calculated in the limit d = 0" for which the structure becomes periodic (a crystal). In this limit the
distance between adjacent layers of inclusions is nonzero, but is as small as d = a, i.e., on the order of the lattice
constant. Thus, it is possible to estimate that the modes relevant for the Casimir interaction satisfy kjja < 1and
wa/c < 1, which s precisely the rough limit of validity of effective medium theories, beyond which the
continuum approximation is inapplicable. Due to this reason, it follows that the effective medium framework is
only approximately satisfactory, and in particular it may not yield quantitatively precise results. Yet, the effective
medium theory enables a simple analysis of the problem, and it is reasonable to expect that it provides at least a
qualitatively correct description of the relevant physics.

Another important aspect is that in the continuum limit the torque in a bulk material must vanish
(Myuix = 0) because any orientation of the optical axis is energetically equivalent when there is no underlying
granularity. Hence, in the continuum limit equation (11) becomes:

MSZi = __8 EC,s.in (13a)
o 80&1
EC.si. A T/a T/a 400 .
—_ = —— dk, dk d€ log D|g—o+ (S, k), oy, @), 13b
" oyl j:ﬂ/a yj; § log Dg—o+ (i€, kyp, a1, ) (13b)
Dlg—o+ Q& kyjp o, ) = det[1 — R (&, ky, ay, ) - Rr@E, kyp, a5 )], (13¢)

so that the single-interface torque is only due to surface effects. We used the fact that in the limit d = 0% the
propagation matrices Mg g become identical to the unit matrix. It is implicit that the double-interface structure
corresponds to a twin-material configuration (1-2—1).

Note that in the continuum limit we let d to be precisely zero in the calculation of the single-interface torque,
but the transverse momentum is still restricted to the 1st BZ as in the periodic case. The justification for this is (i)
the effective medium theory breaks down for kjja > 1, (ii) the wave vector cut-off k. ~ 7/a effectively
mimics the fact that in the microscopic model the distance between the inclusions does not reach zero, but has a
minimum on the order of d = a. Thus, only modes with kja < 1can effectively contribute to the single-
interface Casimir torque.

It should be mentioned that without a wave vector cut-off (i.e., with ky.x = 00) the integral in
equation (13b) would diverge because infinitely many photonic channels would contribute to the interaction.
This result is unphysical because in the microscopic formalism the distance between adjacent planes of
inclusions always exceeds d ~ a,and hence in the microscopic theory Oec,int remains finite in the limit d = 0%,
The wave vector cut-off in the continuum approximation is essential so that the macroscopic theory can have the
same features as the microscopic theory and predict a finite single-interface torque. It can be checked that the
integral (13b) converges for d = 0" provided the effective dielectric response of the materials ceases for
sufficiently high frequencies, i.e. that the dielectric permittivity of all relevant materials (equation (12))
approaches the vacuum permittivity when w — oo. This condition is always satisfied for realistic materials
because the electric dipoles cannot follow very rapid oscillations of the electric field. In this situation the
reflection matrices R; (i) vanish when ¢ — o0, and it can be checked that this implies that dec i is finite.

In summary, the single-interface torque is originated by interactions of polarizable particles that are nearly in
contact (d ~ a) and hence an effective medium description of the problem depends critically on the high-
frequency (both spatial and temporal) response of the materials. The precise knowledge of the effective dielectric
function for w — o0 and the precise wave vector cut-off ky,,, are critical to make quantitative predictions.
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Figure 2. Sketch of the double-interface configuration when the middle region is an arbitrary anisotropic dielectric and the relevant
materials are regarded as a continuum. The gray dashed lines represent the optical axes of the materials. The zero-point energy of the
system is calculated from the reflection Ry g and transfer My p matrices.

3.2. Generalization
So far it was assumed that the middle layer (region 2 in figure 1(b)) s free-space, so that M'}; corresponds to the
single-interface torque when the material 1 is adjacent to a vacuum. However, within the effective medium
description there is no difficulty in generalizing the theory to the case wherein the middle layer is an arbitrary
anisotropic dielectric (figure 2).

A straightforward analysis analogous to that reported in section 2, but using as a starting point the
macroscopic framework with the physical cut-off k., ~ 7/a, shows that equation (13) remains valid when the
middle region is an arbitrary dielectric. As before, Mélgl = ———¢c,s.i is understood as the single-interface

aq
torque acting on medium 1 for an interface between medium 1 and medium 2. However, when the second

material is not isotropic the torque on medium 2 is typically nonzero, and can be calculated
using M), = ———eqi.
’ day

Itis important to prove that the theory is self-consistent. Indeed, e ;. in equation (13) is calculated by
considering a twin configuration of the type 1-2—1 with thickness of the middle layer d = 0*. However, in the
macroscopic formulation there is no reason to regard the medium 1 as special as compared to medium 2.
Indeed, one could alternatively calculate ec ;; based on a 2—1-2 twin configuration where the middle layer has
d = 0%. Does this alternative calculation method yield the same Casimir energy (ecsi.,121 = €csi.212)? The
answer is affirmative. Indeed, we prove in appendices A and B (see equation (B3)) that the characteristic
equations in the two scenarios are identical D, (w, k, k,) = D513 (w, ki, k,) and consequently the single-
interface Casimir energy is independent of the calculation method.

One can still imagine a different way to determine the torque for an interface of two materials. Let us now
label the relevant materials as ‘1’ and ‘3’ and suppose that we want to calculate the torque on the material 1 for the
single 1-3 interface (M{!), |5). Asalready discussed, one option is to use equation (13) for a twin-material

. . 0 . S
configuration 1-3-1 (or alternatively 3—1-3): Mélzl 3= 8—EC’ s.i,131- Alternatively, one can consider instead
o

a generic configuration 1-2-3 in the limit where the middle layer (region 2, which can be taken as an arbitrary

material) has thickness d = 0. Using equation (9) and noting that in the limit d = 0+ the torque M) should

be coincident (independent of the material in region 2) with M{"; |;itis found that:

0
Mél,ﬁ,i,,ls — ——decint123ld=0t — ——€c12 — ——¢€c23
Oy Oy 0oy
(14)
= — ——becinm123ld=0* — ——€Csi,121-
aal in 80[1 s.i
The indices ‘123’ and ‘121’ identify the configuration used to evaluate the interaction energy and the single-
interface energy, respectively. Does the above formula give the same resultas M), |, = — 0%6(;, si,131¢ Wewill
5., )

not attempt to give a direct proof of this property but in the next section it is shown with numerical simulations
that the answer is affirmative. This result demonstrates that the theory is fully self-consistent, and that the
calculated torque is, indeed, independent of the considered limit process.

4. Numerical examples

In order to characterize the single-interface energy and torque, next we carry out extensive numerical
simulations based on equations (9) and (13). It is assumed that the anisotropic materials have ¢, = 1and
€aa = ELorentz SUch that £ gpent, follows the Lorentz dispersion model
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Figure 3. Normalized single-interface energy (a) and torque (b) at the junction between an isotropic dielectric (region 1) and an
anisotropic dielectric (region 2), as a function of the angle «,. (i) Region 1: vacuum; Region 2: anisotropic material with anisotropy
ratio xy = 5 (we/wo = 2); (ii) Region 1: isotropic material with relative static permittivity £,—9 = 2 (w. = wy); Region 2: anisotropic
material with anisotropy ratio x = 5 (we/wo = 2)); (iii) Similar to (ii) but the anisotropic material has the anisotropy ratio y = 10
(we/wo = 3).

wZ

— €
ELorentz 1 w2 — w% +iwl > (15)
where wy is the resonant frequency, w, determines the strength of the electric resonance, and I is the damping
factor related to material loss. For simplicity, the resonance frequency is taken equal to wy/(27) = 95.49 THz
for all the materials. The parameter w, is material dependent. For convenience, we introduce the anisotropy
ratio Y = €,/ ¢, which by definition is evaluated in the static limit (w = 0). In the simulations it was assumed
that wga/c = 0.1 (where ais thelattice period and cis the speed of light in vacuum) and I' = 0.05wj. In case of
isotropic materials one has €, = €40 = ELorentz-

4.1. Single-interface configurations
To begin with, we study the single-interface Casimir interactions at the junction of an anisotropic and an
isotropic material (figure 1(a)).

In the first example (figure 3), we consider a vacuum-anisotropic dielectric interface. The curves (i) of
figures 3(a) and (b) show the calculated single-interface energy and the torque acting on the anisotropic material.
As seen, the energy has a minimum when the optical axes of the anisotropic particles are parallel to the interface
plane (o, = £90°). Such a configuration ensures that the dipoles in the last atomic layer (in the yoz plane) are
aligned, which is a physically reasonable result. Thus, the quantum fluctuations lead to an internal surface stress
that tends to orient the ‘elliptical-type’ inclusions parallel to the interface. The configuration a;, = +90°
corresponds to the stable equilibrium position. As to the single-interface torque, one can see from figure 3(b)
(curve (7)) that it varies approximately as sin (2c,), somewhat analogous to the typical angle-dependence of the
interaction torque but here the optical axis is not parallel to the interface [14].

Interestingly, if the vacuum half-space is replaced by a dielectric material with a sufficiently large permittivity
—roughly, the permittivity of the dielectric needs to exceed the transverse permittivity ¢; of the anisotropic
material—the preferential orientation of the anisotropic particles is no longer parallel to the interface. For
example, for a dielectric with static permittivity €,—o = 2 one can see that when the anisotropy ratiois y = 5
(curves (i) in figure 3) the preferred orientation is ct; = +43°, whereas for Y = 10 (curves (iii)) it is
a, = £67°. This effect can be understood noting that the electric dipoles in the isotropic region (which on
average are expected to be randomly oriented in the bulk region) tend to attract the dipoles in the anisotropic
material, leading in this way to a shift of the equilibrium position towards the normal direction It is interesting to
note that our findings are consistent with the general conclusions of [31], wherein it was found that in the limit of
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Figure 4. Normalized single-interface energy (a) and torque (b) acting on the material 2 at the junction between two identical
anisotropic semi-infinite material regions (with anisotropy ratio y = 10), as a function of the angle ; for a fixed a;. The anisotropic
materials are characterized by the following parameters: ¢, = 1, we/wo = 3. (i) oy = 15°% (i) oy = 45°; (i) oy = 75°.

weak anisotropy large refractive index solids favor a homeotropic alignment (dipoles perpendicular to the
interface) whereas small refractive-index materials favor a planar alignment.

Next, we study a configuration wherein the two juxtaposed semi-infinite materials are anisotropic. The two
anisotropic materials have the same anisotropy ratio Y = 10 but optical axes with different orientations. To
begin with, we consider a scenario wherein the particles of the medium 1 have a fixed orientation oy, whereas the
inclusions of medium 2 are free to conjointly rotate in the yoz plane.

Figure 4 shows the single-interface energy and torque acting on the material 2 as a function of «; for three
different values of a: (i) oy = 15°, (i1) oy = 45°, and (i) oy = 75°. As seen, because of the reduced symmetry
of the system, the single-interface energy is not an even function of o, different from the results of the previous
example (figure 3). Figure 4(a) confirms that when o, = «, i.e. when the optical axes of the two materials are
aligned, the single-interface energy ec ;. vanishes, consistent with the fact that in such a situation the system
becomes equivalent to a bulk medium. In particular, the configuration with o, = o corresponds to alocal
energy minimum. Somewhat surprisingly, figure 4(a) shows that the system has another energy minimum
which occurs approximately (but not exactly) at o, ~ —ay. Indeed, for o, &~ —a the system zero-point energy
has a global minimum (considering o fixed). The two energy minima correspond to positions wherein the
single-interface Casimir torque vanishes (figure 4(b)), and hence the system has two equilibrium positions. The
single-interface torque induced in the region 2 acts to rotate the ‘inclusions’ towards the closest equilibrium
point.

In order to further characterize this system, next it is supposed that the two particle sets are free to rotate
around the x-axis. Figure 5(a) shows a density plot of the single-interface energy as a function of the two
orientation angles o and «. It can be checked that because the two materials are identical (apart from the
orientation of the optical axes) the single-interface energy has the symmetries: e s (1, ) = ecsi (2, 1)
and ec s (o, @) = 0. The plot confirms that the system has a local energy minimum whenever o, = a.
However, consistent with figure 4, the global energy minimum does not occur along the line a, = «, but rather
alongtheline a, = —ay. The detailed variation of the single-interface Casimir energy as a function of
0, = —q isshown in figure 5(b). Interestingly, the Casimir energy is negative along this line, and hence has a
lower value than along the line o, = oy where it vanishes. The global energy minimum is reached at
a1 = —ap = £50° (see figure 5(b)). Thus, if both sets of particles are free to rotate then the system tends to
evolve to a configuration where the optical axes of the two sets of particles become approximately perpendicular
to each other. It is important to underline that this conclusion assumes that (i) the torque in the bulk region
vanishes (Mpyx = 0) so that all the orientations of the inclusions are equivalent in the bulk region, and (i7) all the
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Figure 5. (a) Normalized single-interface energy ec s;a*/(Afc) as a function of the orientation angles ¢y and ;. The white dots
represent the two global energy minima. (b) Normalized single-interface energy ec ;a4 /(Ahc) along theline ay = —a, (black dashed
line in (a)).
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Figure 6. Normalized single-interface energy ec s;a®/(Afic) for an interface between two different anisotropic semi-infinite material
regions (region 1 with anisotropy ratio y = 5 and region 2 with anisotropy ratio y = 10), as a function of the angles a; and ;. The
anisotropic material 1 is described by the parameters &; = 1, and w./wy = 2 whereas the anisotropic material 2 is described by the
parameters &; = 1, and we/wy = 3. The white dots represent the two global energy minima.

dipoles in the same material region are constrained to be aligned. The physical interpretation of these results is
discussed in the next subsection.

A similar trend is observed when the two anisotropic materials are different. Figure 6 shows the single-
interface Casimir energy for a system formed by an anisotropic material with anisotropy ratio y = 5 (region 1)
and a material with anisotropy ratio y = 10 (region 2). Now the global energy minima occur for
(ay, o) &~ +(15°, —57°), and similar to the previous example the configurations with a; = a, are not the
most energetically favorable.

To conclude this subsection, we note that for any system with the generic geometry considered here the
single-interface Casimir energy has the following symmetries:

ecsi(ar, o) = ecsi(an + m, ) = ecsi(u, a + ), (16a)
ecsi(an, ap) = ecsi(—ay, —ay). (16b)

The first property is trivial and is a simple consequence that the system is unchanged if the optical axis of the
uniaxial dielectrics is rotated by 180°. The second property is a consequence of the fact that the zero-point energy
is unaffected by a transformation of the type y — —y. These properties imply that the torques must vanish
(Mélzl = Mézgl = 0) when either (o, @) = (0°, 0°) (both optical axes perpendicular to the interface) or
(o, o) = (90°, 90°) (both optical axes parallel to the interface), consistent with the numerical simulations of
the previous examples (see figure 4(b)).
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Figure 7. Torque acting on the anisotropic material as a function of the angle o for different systems. (i) single-interface torque for an
anisotropic dielectric—isotropic dielectric interface (Mc,3), (i) single-interface torque for the anisotropic dielectric—air interface
(Mc,12), and (iif)—(v ) total torque (M, tor. = Mc,12 + Mg, ine) for an anisotropic dielectric — air — isotropic dielectric system for
different values of the air thickness d. (iii) d = 0.01a; (iv) d = 0.1a; (v) d = 10a. The anisotropic material has the parameters:

& = 1, we/wy = 3, x = 10. Theisotropic dielectric (¢, = &,,) has static permittivity €,,—o = 2 and has w. = wy.
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Figure 8. Normalized total Casimir energy ec 1o1.a°/(Afic) (ector. = €c,12 + €c23 + 8€c,ine) in an anisotropic dielectric—anisotropic
dielectric—air system, as a function of the orientation angles a; and c,. The anisotropic materials are identical and have ¢; = 1,
X = 10 (we/wp = 3). The thickness of the anisotropic middle regionis d = 4a.

4.2. Double-interface configurations

Itis interesting to extend the previous analysis to double-interface configurations (figure 1(b)). In the first
example, we consider an anisotropic dielectric-air-isotropic dielectric system. Figure 7 shows the single-
interface torque and the total torque acting on the anisotropic material as a function of ¢ for different values of
the air gap thickness (d). The total Casimir torque (Mc or. = Mc,12 + Mc,int) varies considerably with the
distance, since it depends not only on the single-interface torque Mc 1, (which is distance independent), but also
on the interaction torque. The interaction torque M jn; = —08ec ine/ Oy is computed using equation (5).

Importantly, figure 7 confirms that when d tends to zero, the total Casimir torque approaches the value of
the single-interface torque associated with an anisotropic dielectric-isotropic dielectric interface (see curves (i)
and (7ii)), as it should. Note that different from the twin-interface configurations, in systems wherein & = &; the
total Casimir energy of the system does not vanish when the gap d s closed, but instead it converges to the value
of the single-interface energy ec 13. This property confirms that the torque computed with equation (14) is
coincident with the torque given by Mélgl 3= — aac,s,i., 131, ensuring that the theory is self-consistent. On
the other hand, as d — oo the total torque approache; Mc, 15, 1.e. the torque for a single anisotropic dielectric—
air interface (see curves (ii) and (v )).

In the second example, we consider an anisotropic dielectric-anisotropic dielectric-air configuration. We
assume that apart from the orientation of the optical axes the two anisotropic materials are identical and have the
anisotropy ratio y = 10. Figure 8 depicts the total Casimir energy (e tor. = €c,12 + €c,23 + 0€c,int) asa
function of the two orientation angles «;; and o,. The density plot shows that the global energy minimum is
reached when oy = +a, = £90°, i.e., when the particles in both anisotropic material layers are parallel to the
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Figure 9. Sketch of a possible experiment (inspired by [18, 30]): a rubbed polymer layer—liquid crystal—high-index isotropic
dielectric system. The molecules of the liquid crystal near to the interface (z = 0) are anchored by the rubbed polymer and tend to be
aligned along the direction parallel to the interface. On the other hand, the isotropic dielectric generates a single-interface Casimir
torque at the interface (z = r) that acts to rotate the liquid crystal molecules towards some equilibrium position. The equilibrium
configuration is determined by the Casimir torque and by an elastic restoring torque.

interfaces. Therefore, the air region serves to anchor the anisotropic particles of both anisotropic material
regions.

As previously seen (figure 5), for a single-interface configuration formed solely by the two anisotropic
materials, i.e., in the absence of the air layer, the global energy minimum is not attained when the two dipole sets
are aligned. Indeed, the simulations of figure 5 suggest that if all the individual particles are free to rotate
independently (a case which cannot be studied using our analytical framework) then the most energetically
favorable configuration is not reached when the particles are all aligned along the same direction, but likely when
they are ‘randomly’ oriented. In other words, in a bulk material there is no ‘anchor’ to fix a preferred alignment
direction and hence unconstrained particles tend to be oriented in a ‘random’ fashion. In contrast, the presence
of the air region promotes the direction parallel to the interface as the most favorable from an energetic point
of view.

5.Nematic fluids

In arealistic system the Casimir torque will compete with other elastic-type forces that determine the
equilibrium position of the ‘dipoles’. Inspired by the recent study of [ 18], which investigates the Casimir torque
when the optical axes of the relevant materials are parallel to the interface, here we suggest that the single-
interface Casimir torque may have sizeable effects in liquid crystal systems.

The configuration of figure 9 depicts an interface between a nematic liquid crystal (e.g., 5CB) [18, 36] and a
high-index isotropic (or anisotropic) material (e.g., TiO,) [37, 38]. A liquid crystal is formed by elongated
molecules with an anisotropic shape. In the nematic phase there is along range orientational order such that the
molecules tend to be aligned along some locally preferred direction called the ‘director’ [39]. Thus, from an
optical point of view a nematic crystal behaves as a uniaxial material. As seen in section 4.1, a dielectric semi-
space generally tends to pull the anisotropic particles towards the direction normal to the interface. Consistent
with this property, our calculations in figure 10 show that the equilibrium position for a 5CB-TiO, single-
interface is o &~ 0°. Note that the static relative permittivity of TiO, is extremely large on the order of 85 [37].
The material response of 5CB [18, 36] and of TiO, [37, 38] was modeled using experimental data available from
the literature. For simplicity the intrinsic anisotropy of TiO, was neglected. The lattice constant was taken equal
to thelarger (average) intermolecular distance in the two materials (¢ = 2 nm) [40, 41].

In a possible experiment, the director of the liquid crystal can be anchored by a rubbed polymer layer
[18,42,43], such that the preferred molecular orientation is parallel to the interface (o & 7/2) (see figure 9).
Our theory suggests that the Casimir torque at the boundary of the opposite interface (with TiO,) causes the
director of the liquid crystal to be continuously rotated through the bulk region (see figure 9). Similar to [18] (see

also [30]), itis shown in appendix C that the elastic restoring torque per unit of area due to the director bending

js —<I3tic ~ _ Aq=.Here, K is an elastic constant, tis the thickness of the liquid crystal layer and

t
Aa = a, — 7/2 determines the total rotation angle of the director across the layer. In the equilibrium, the

elastic + M C

Casimir torque on the liquid crystal per unit of area (M/A) will be such that = 0.From here,

weget —Aa— + Mc(ae) = 0, whose solution (a.) determines the orientation of the director at the high-

index dielectric interface. For the liquid crystal 5CB, the elastic constants may be estimated as K; ~ K3 ~ 7 pN
[44—-46]. If the thickness of the liquid crystal is 10 m this gives a restoring torque (per unit of area) on the order
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Figure 10. Normalized single-interface energy (solid blue line) and torque (dashed green line) at the junction between the nematic
liquid crystal 5CB and the high-index dielectric TiO,, as a function of the angle a.

of Masiic/A ~ — Aa x 7 x 1077 N m~L, Since from figure 10 the estimated peak single interface torque is as
large as ~107> N m™! (at room temperature the torque is expected to be somewhat smaller) it follows that at the
equilibrium |A«| ~ 7/2.In other words, the single-interface torque appears to be sufficiently strong to bend
the director in the full angular range (o« = 90° — « = 0°). In general the angle a, depends on the liquid crystal
thickness, and for increasingly smaller values of t the alignment is expected to become planar. In principle, the
bending can be detected with an optical experiment, e.g., illuminating the structure with alinearly polarized
wave and measuring the scattered fields [47]. As a final remark, we note that the physical mechanisms that
determine the anchoring of a nematic fluid may depend on other factors not considered by our simple model
(e.g., on the corrugation of the surface or on surface corrections of the Frank free energy), and that in a realistic
scenario these will also play some role.

6. Conclusion

We studied the zero-temperature single-interface Casimir torque at the junction between different isotropic and
anisotropic materials using both microscopic and macroscopic formulations. The single-interface torque arises
due to the quantum fluctuations associated with interface-type (both localized and extended) modes. These
quantum fluctuations originate internal material stresses that act to change the internal configuration of the
materials, i.e. to rotate the particles. The single-interface torque is different from the more familiar Casimir
interaction torque, which is determined by the interaction of two rigid bodies separated by an isotropic material.
Relying on a microscopic theory, it was proven that, in general, the single-interface torque may have a ‘bulk’
(volumetric) contribution and a surface contribution. The surface component can be written in terms of the
interaction energy of the system for a twin-material configuration. It was shown that the single-interface torque
can be as well computed using the continuum approximation. However, since the single-interface torque is
determined by interactions of polarizable particles that are nearly in contact the use of effective medium
methods is only approximately satisfactory and requires a physical wave vector cut-off.

Our numerical results obtained with the continuum approximation demonstrate that in isotropic-
anisotropic material systems the isotropic region acts as an anchor, imposing a preferential orientation for the
particles of the anisotropic material. In particular, when the isotropic region is the vacuum the global energy
minimum is reached when the dipoles are parallel to the interface. For conventional dielectrics with sufficiently
large permittivity the energy minimum moves towards the normal direction. On the other hand, in anisotropic-
anisotropic material systems the global energy minimum does not correspond to a configuration with aligned
dipoles, and in some cases—most remarkably when the two materials are identical—it is reached when they are
approximately perpendicular. This property suggests that if all the dipoles are unconstrained and free to rotate
then the configuration associated with the global energy minimum may correspond to some amorphous (non-
periodic) structure with the dipoles oriented in a ‘random’ fashion.

In future work, it will be relevant to calculate the single-interface torque with the rigorous microscopic
model to assess the accuracy of the continuum approximation. It appears possible to investigate experimentally
the role of the quantum fluctuations on the anchoring of nematic fluids.
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Appendix A. Properties of the reflection matrices

In this appendix, we derive some useful properties of the reflection matrices Ry and Ry for two anisotropic
dielectric semi-spaces modeled as a continuum. Without loss of generality, it is supposed that the interface is
normal to the z-direction.

To begin with, we define the transverse fields as:

E, 0 1)\[H:x H,
ET:(Ey)andI-HT:(_l 0)(Hy):( 1{1) (A1)

Let us introduce admittance matrices Y such that for plane waves propagating along the +zand —z directions
one has:

J-Hf =Y*-Ef, J-Hy=-Y -Ep. (A2)

In general, Y* depend on the considered material, on the orientation of the optical axis, on the frequency w, and
on the transverse wave vector k.

Let us consider a twin-interface configuration of the type 1-2—1. Imposing the continuity of Ey and J - Hry at
the interfaces it is easily found that for right and left incidence the electric field reflection coefficients are:

Rpioi= (Y5 + Y- (YT =Y, Ry = (Y3 + Y ' - (Y; — Y)). (A3)

When Y; = Y; the order of the matrices in the product cannot be changed.
For media invariant under inversion (transformation r — —r also known as the parity symmetry), e.g.,
standard anisotropic dielectrics, the admittance matrices are necessarily linked as:

Y*(ky, k) = Y (—ky, —k,), (parity symmetry). (A4)
This implies that the two reflection matrices satisfy:

Ry 121(w, kys k) = Ry 121(w, —ky, —ky). (A5)

Next, we use the fact that anisotropic dielectrics are reciprocal materials [48]. In the absence of current
sources, the reciprocity theorem establishes that two arbitrary solutions of Maxwell’s equations, (E’, H') and
(E”, H"), in some domain with boundary 0D satisfy [48]:

(E' x H' — E" x H') - fids = 0. (A6)
oD
Here, fi is a unit vector normal to the surface. Let us suppose that (E’, H') and (E”, H”) correspond to plane
waves propagating along the 4z direction in a bulk anisotropic dielectric. The transverse wave vectors of the two

field distributions are supposed to satisfy k|/| = —k{| = kwith k;; = (ky, k;, 0) so that the integral over the side
walls (normal to the z-direction) in equation (A6) vanishes. Thus, equation (A6) can be satisfied only if:

(E xH' —E' x H)-%=0. (A7)

This is the sameas Ey. - J - H% = E% - J - H} and hence it follows that
E7 - [Y*(=kp] - Ef = Ef - [Y* (k)] - E/ forarbitrary transverse fields E7, Ef. Thus, we have shown that the
reciprocity property implies that:

Yt (w, —k)) = [Y"(w, kpT, (by reciprocity). (A8)

where the superscript ‘T’ stands for matrix transposition. Using now equation (A4), we conclude that the
reciprocity and the parity symmetry impose that:

Y (w, k) = [YT(w, k||)]T (by reciprocity and parity). (A9)

Appendix B. Properties of the characteristic function D

Here, we derive some useful properties of the characteristic function D (equation (2)) in the limit d = 0%. The
relevant materials are treated as an electromagnetic continuum. In the limit d = 07 the propagation matrices
M j are identical to the unit matrix and hence it is possible to write:
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Dig1 (ws ks ky) = det(1 — Ry 121(w, ki, ky) - Ry 121(w, ke, ky))- (BD)

The subscripts identify the relevant material configuration ‘1-2—1". The thickness of the medium 2 is
infinitesimally small (d = 07). The reflection matrices are defined as in appendix A.

The first property is a consequence of the parity symmetry discussed in appendix A. Using the identity
det(1 — A - B) = det(1 — B - A) (which holds for generic matrices A, B) and equation (A4) it follows that:

Diy (w, kg, ky) = Digi(w, —ky, —ky). (B2)
The second property follows from reciprocity of the materials and establishes that:
D1z (w, ky, ky) = Dy1z (w; ky, ky)- (B3)

In the above D5;; = det(1 — Ry 15 - Rg212) represents the characteristic equation for a 2—1-2 configuration
wherein the medium 1 has infinitesimal thickness. To demonstrate the second property, we use the fact that for a
generic matrix det(A) = det(AT) to write:

Dyy; = det(1 — RE,IZI : RE,IZ])
=det(l = (Y; = Y)) - (Y3 +Y) - (Y2 = Y]) - (Y5 + Y. (B4)

Thelast identity is a consequence of equations (A3) and (A9). Using again the property
det(1 — A - B) = det(1 — B - A) it follows that:

D (w, ky, k) =det(1 — (Y; + YL - (Y, = Y)) - (Y5 + YL - (YT —Y])
=det(1 — Rp212 - Rr212)- (B5)

This result proves the desired result (equation (B3)).

Appendix C. The restoring elastic torque

The restoring elastic torque in the liquid crystal can be determined using the Frank free energy density [49]:
1 1 1
Fd:5K1 |V-ﬁ|2+sz |ﬁ-V><ﬁ|2+EK3 [ x V x 4], (CD)

where K; are some elastic constants that depend on the material and i is a unit vector that determines the
orientation of the director. In our problem, onehas i = sin a(2)¥ + cos a(z)Z (figure 9) and hence:

1 . 1
E = EKldz sin o + EKgo'zz cos® . (C2)

Supposing for simplicity that K; ~ K5 = K (which is usually a reasonable approximation) [44—46] it is found
that

k= %Ko’zz. (C3)

Proceeding as in [18], using calculus of variations it is simple to check that the Frank energy per unit of area

t
Edlastic = f Fjdz is minimized when « varies linearly with z:
0

a~ X + AdZ. (C4)
2 t
Here, z = 0 is the interface of the liquid crystal with the rubbed polymer layer, z = ¢ is the interface with the
isotropic material (see figure 9), and A« determines the total rotation angle. Thus, it follows that the elastic
elastic _ aEelastic

. . . M, K
(surface) restoring torque per unit of area is = = —Aa—.
A 0A« t
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