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Abstract
Adifferent type of Casimir-type interaction is theoretically predicted: a single-interface torque at a
junction of an anisotropicmaterial and a vacuumor anothermaterial system. The torque acts to
reorient the polarizablemicroscopic units of the involvedmaterials near the interface, and thus to
change the internal structure of thematerials. The single-interface torque depends on the zero-point
energy of the interface localized and extendedmodes. Our theory demonstrates that the single-
interface torque is essential to understand theCasimir physics ofmaterial systemswith anisotropic
elements andmay influence the orientation of the director of nematic liquid crystals.

1. Introduction

Casimir–Lifshitz interactions [1–3] are themost paradigmatic example of quantum effects on themacro scale,
and result from the confinement of the quantum-mechanical zero-point fluctuations of the electromagnetic
field. Until recently, the study of quantum fluctuation-induced electromagnetic interactions was only of pure
theoretical interest. Nevertheless, with the rapid development ofmicro- and nano-electromechanical systems
(MEMS andNEMS) and its great impact in different areas [4, 5], the research of Casimir–Lifshitz interactions
has become of great practical importance as well. If, on one hand, Casimir interaction phenomenamay lead to
potentially undesired effects such as ‘stiction’ [6, 7], on the other hand, theymay open new and exciting
possibilities in the field ofmicro and nanomechanics [4, 8–11].

The study of Casimir–Lifshitz phenomenawas pioneered byCasimir formore than 60 years ago [1]. In his
seminal work, Casimir showed that as a result of the electromagnetic field quantum fluctuations, two parallel
perfectly conducting plates standing in a vacuummay experience an attractive force pushing the plates toward
each other. FollowingCasimir’s prediction, Lifshitz, Dzyaloshinskii, and Pitaevskii extended the theory to the
more general case of realistic isotropic dielectric plates, including non-idealmetals [2, 3]. Some years later, this
theorywas further generalized to anisotropic dielectric plates [12, 13]. Interestingly, it was shown that the
anisotropymay lead to the emergence of qualitatively different phenomena. It was demonstrated that a pair of
parallel anisotropic uniaxial plates—with in-plane optical anisotropy andmisaligned optical axes—separated by
an isotropic dielectric,may experience amechanical torque, designated as Casimir torque, that spontaneously
forces the rotation of the plates towards theminimumenergy position. TheCasimir torque in this kind of
systemswas further investigated in [14–18]. In particular, numerical calculations of the torquewere provided in
[14–16, 18], and possible experiments tomeasure theCasimir torquewere proposed in [14, 16–18].

With the emergence ofmetamaterials and their intriguing electromagnetic properties, the study of the
Casimir–Lifshitz interactions has also been extended to systemswith complex structural nanoscopic unities [19–
27]. In particular, in a recent work [28]we studied theCasimir interaction torque in nanowirematerials and
demonstrated that it is distinctively different from the torques studied hitherto in other systems (e.g.,
birefringent parallel plates [14]). On one hand, it was proven that the Casimir interaction torque in nanowire
structures has an unusual scaling law. Specifically, the torque generated due to the coupling between two
interfaces decays as d1 at large distances (d is the distance between the two interfaces), which differsmarkedly
from the characteristic d1 3 decay in usual configurationswherein the two interfaces are separated by an
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isotropic background [28]. On the other hand, it was argued that the torque has an additional and dominant
contribution, designated by single-interface Casimir torque, which is an interfacial effect and does not vanish
evenwhen the two interfaces are infinitely far apart. The study of [28]was howevermainly qualitative, and no
detailed quantitative analysis of the single-interface torquewas provided. The objective of this work is to study in
depth this effect and unveil the physicalmechanisms associatedwith this nontrivial Casimir-type interaction.

Even though the analysis in [28]was focused on nanowirematerials, the single-interface torque emerges at
any interface involving at least an anisotropicmaterial with optical axes out of the interface plane. In these
conditions, the zero-point energy of the systemdepends on the relative orientation of thematerial optical axes.
Thus, rather than considering the particular case ofmetallic nanowire systems, herewe theoretically investigate
the single-interface Casimir torque in general conditions, treating the relevant anisotropicmaterials as
continuousmedia. It is important tomention that the closely related problemof the role of van derWaals forces
in the anchoring of a nematicfluid has been previously discussed by other authors relying either on
phenomenological parameters or assuming a particularmaterial dispersion and the limit of aweak anisotropy
[29–31]. In contrast, our theory is completely general and the formalism is fully original.

2.Microscopic theory

2.1. Zero-point energy
Weare interested inCasimir-type interactions between different anisotropicmaterials at zero-temperature.
Even though at a later stage the relevantmedia will bemodeled as continuous anisotropic uniaxial dielectrics, in
afirst step it is convenient to visualize eachmaterial as a periodic arrangement of inclusions embedded in a
vacuum (figure 1) and develop the theory relying on such amicroscopicmodel. The inclusionsmay be pictured
as either spherical or ellipsoidal depending if thematerial response is isotropic or anisotropic. For eachmaterial
region the optical axis is assumed to be in the yoz plane andwe define a a= +aˆ ˆ ˆu u usin cosy z as the unit
vector oriented along the optical axis. The angle a determines the orientation of the inclusions in the pertinent
material region.

The zero-point energy eC of the system can be calculatedwith the help of the argument principle [32–35]. In
this section, we consider a generic double-interface configuration (figure 1(b)) and revisit the usual derivation of
the zero-temperature Casimir energy [32–35].We start by noting that if aw =( )D dk, , , 0 represents the
characteristic equation of the photonicmodeswith transverse wave vector = ( )k kk , ,x y the argument
principle implies that:

å åw w
p

w
w- =

¶w∳ ( )   D

D2 2

1

2 i 2
d , 1

m
m

Z

m
m
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k k, ,

where p= ( ) h 2 is the reduced Planck constant,a a a a= ( ), ,1 2 3 are the angles that define the orientation of
the inclusions in eachmaterial region (seefigure 1(b) (ii)), w m

Z
k, represents a generic zero ofD inside the closed

contourC and w m
P
k, represents a generic pole ofD.When themiddle region is a vacuum—as assumed in this

section—the angle a2 has nomeaning and can be ignored. Yet, wewill keep it in the formulas because at a later
stagewewill consider the general casewhere themiddle region is an anisotropicmaterial.

Generalizing the approach of [35] to three-dimensional geometries, it follows that for a periodic system the
characteristic functionDmay be chosen of the form

Figure 1. Sketch of the systemunder study. (a) Single-interface configuration: anisotropic dielectric-vacuum interface. (b)Double-
interface configuration: anisotropic dielectric I—vacuum—anisotropic dielectric II. The thickness of the vacuum region is d.
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where 1 is a unitmatrix, RL,R are the reflectionmatrices for the left and right interfaces, and MF,B are the
propagationmatrices for the forwardwaves (travelling along the+z direction in region 2) and the backward
waves (travelling along the-z direction in region 2) (see figure 1(b)). The associated basis of functions is formed
by the vacuumplanewavemodes (both propagating and evanescent)with transverse wave vector of the form

+k G (G is a generic transverse reciprocal lattice vector)which can be used to expand a generic wavewith the
Bloch property in the transverse (x and y) coordinates [35]. Thematrices RL,R and MF,B have infinite dimension,
and the transverse wave vectormust be restricted to the 1st Brillouin zone (BZ) [23, 35].

Summing bothmembers of equation (1) over all possible wave vectors, it is possible towrite
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where = ´A L Lx y is the cross-sectional area of the cavity parallel to the xoy plane. As usual,C is taken as a
contour oriented counter-clockwise that consists of the imaginary frequency axis, and of a semi-circle with
infinite radius in the semi-plane w >{ }Re 0.Assuming that thematerial response ceases when w  ¥ it
follows that aw( )D dk, , , becomes independent of both d andαwhen w  ¥, and thus the integral over the
semi-circle is a constant independent of the system configuration andmay be dropped.Moreover, noting that
thefirst term in the left-hand side of equation (3) is the zero-point energy per unit of area, we canwrite:
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After integration by parts, the right-hand side of this formula reduces to the familiar Casimir interaction
energy defined as:

/
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where x is the imaginary frequency w x=( )i and a is the lattice period.We used the fact that
p p p p= - ´ -[ ] [ ]a a a aBZ , , and thatD is an even function of kx because the systemhas the parity

symmetry  -x x.Thus, we have proven that:
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One crucial point is that the poles w m
P
k, ofDmust be independent of d. This is why the second term in the

right-hand side of equation (6) can be disregarded in the calculation of theCasimir force. In our formulation the
poles w m

P
k, correspond to the poles of the reflection coefficients RL and RR associatedwith the two individual

material interfaces, which are evidently independent of d butwhich depend ona.This property shows that the
second term in the right-hand side of equation (6) can be decomposed as:
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where e a a( ),C,12 1 2 e a a( ( )),C,23 2 3 representså w

2m m

P
k k, , with the summation range restricted to the poles of

RL ( )R .R As is well-known, the poles of the reflection coefficients correspond to the guidedmodes supported by
the individual interfaces. Thus, the left-hand side of equation (7) has a clear physicalmeaning: it is the zero-point
energy associatedwith the edgemodes supported by the two uncoupled interfaces. In otherwords, eC,12 and
eC,23 in equation (7) correspond to the zero-point energies of the guidedmodes supported by each interface. One
important observation is that the spatial domain is required to be electromagnetically closed.Hence, the cavity
should be terminatedwith some type of opaque boundary, for examplewith periodic boundary conditions or a
perfectly electric conductingwall placed at = ¥z .Thus, strictly speaking the poles of RL and RR do not need
to be associatedwithwaves localized at the interfaces, andmay be associatedwith spatially extendedmodes.

In summary, it was formally demonstrated thatwhen thematerials response ceases for w  ¥ the zero-
point energy of the double-interface configuration (figure 1(b)) can bewritten as (apart from an irrelevant
constant independent of the system configuration):

a ae de e a a e a a= + +( ) ( ) ( ) ( ) ( )d d, , , , . 8C,tot C,int C,12 1 2 C,23 2 3

Thefirst term deC,int corresponds to the usual Casimir interaction energy due to the coupling between the
two interfaces, whereas the other two terms are associatedwith the single-interface Casimir energies determined
by the orientation of the optical axes. These single-interface components are due to the anisotropy of the
materials because the energy of the systemdepends on the anglesa a a a= ( ), ,1 2 3 that dictate the orientation of
the inclusions. Even though the single-interface terms eC,12 and eC,23 are distance independent, and therefore do
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not contribute to the usual Casimir force, they can contribute to theCasimir torque. This will be discussed in
detail in the next subsection.

2.2. Casimir torque
Next, we derive theCasimir torque acting on the consideredmaterials, and highlight the differences compared
to the torques induced in conventional systemswith in-plane anisotropy.

The total Casimir torque acting on the ith body (i=1, 2, 3) in the double-interface configuration is
e a= -¶ ¶( )M ,i

iC,tot C,tot and hence from equation (8) it is given by:

de
a

e
a

e
a

= + +

=-
¶
¶

-
¶
¶

-
¶
¶
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( ) ( ) ( ) ( )M M M M

. 9

i i i i

i i i

C,tot C,int C,12 C,23

C,int C,12 C,23

In systemswhere the interaction ismediated by an isotropicmaterial andwhen the optical axes of the
materials 1 and 3 are parallel to the interface, eC,12 and eC,23 are evidently independent of a ,i and hence it is
possible to identify the zero-point energy eC,tot with the interaction energy de .C,int Thus, in such a scenario the

Casimir torque is simply given by de a= = -¶ ¶( ) ( )M Mi i
iC,tot C,int C,int [13], where ( )M i

C,int is designated here by
interaction torque. However, in a systemwhere the optical axes of the relevantmedia are out of plane with
respect to the interface this cannot be done. Indeed, in these conditions there are two additional contributions to
theCasimir torque, namely ( )M i

C,12 and
( )M .i
C,23 These two terms are designated here by single-interface torques

and are independent of d. Clearly, when  ¥d the interaction torque vanishes =( )M 0i
C,int and

= +¥
( ) ( ) ( )M M Mlim .d
i i i

C,tot C,12 C,23 For example, for the 1st body one has =¥
( ) ( )M Mlimd C,tot
1

C,12
1 and for the 3rd

body one has =¥
( ) ( )M Mlim .d C,tot
3

C,23
3 Hence, ( )MC,12

1 and ( )MC,23
3 have a clear physicalmeaning: they are the

individual torques induced at the interfaces 1–2 and 2–3, respectively, by the quantumfluctuations of the
electromagnetic field. Indeed, it is physically evident that even for a single-interface configuration (figure 1(a))
theremust be a preferred orientation for the optical axis of themedium, and hence some associated zero-point
energy.

To determine the single-interface energy eC,s.i. and torque M ,C,s.i. we adapt the ideas of our previouswork
[28], and consider the scenariowhere the vacuumgap in the double-interface configuration (figure 1(b)) is
vanishingly small (i.e., = + )d 0 . For clarity, let us consider a twin-interface scenario wherein the inclusions in
region 1 and 3 are identical and a a= .1 3 The limit = +d 0 is understood here as the situation forwhich the
regions 1 and 3 aremerged to form a periodic (crystalline) structure, i.e. a bulkmaterial. In this limit, the total
Casimir energymay still depend on the orientation of the particles because even for a bulk crystal not all the
directions of space are equivalent due to the granularity of the structure. Let us denote Mbulk as the torque acting
on the bulk crystal which depends on a a= .1 3 Note that Mbulk is expected to be proportional to the volume of
the bulk crystal. Calculating the d 0 limit of bothmembers of equation (8) and the derivative with respect to
a a=1 3 it is seen that

a
de a a a e a a e a a= -

¶
¶

= + ++[ ( ) ( ) ( )] ( )( )M d 0 , , , , , . 10bulk
1

1
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1 Therefore, it follows that the single-interface Casimir torque is such that:

e
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, 11dC,s.i.

1
bulk
1

C,int 0
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1

e de= - = +∣ ( )b
1

2
, 11dC,s.i. C,int,121 0

where deC,int,121 is a short-hand notation for de a a a= +( )d 0 , , , .C,int 1 2 1 Evidently, eC,s.i. is defined apart from
the sumof an irrelevant constant. The above formulas give the single-interface energy and torque in terms of the
interaction energy deC,int of a twin 1–2–1 configurationwhich can be calculated using equation (5). This
derivation shows that the single-interface torque in general has a volumetric component /( )M 2bulk

1 and a surface

correction (the right hand side of equation (11a)). The factor /1 2 is because ( )MC,s.i.
1 represents the torque acting

on half of the crystalline structure. Thus, -( ) ( )M M
1

2C,s.i.
1

bulk
1 corresponds to the additional stress due to the

asymmetry created by the interface, and consistent with this it is proportional to the area of the interface.
Even though the described theory is completely rigorous, the granularity of the crystal does not allow for a

simple analytical treatment. To circumvent this issue, in the next sectionwe consider the continuum
approximation.

4

New J. Phys. 18 (2016) 103030 TAMorgado andMGSilveirinha



3.Macroscopic theory

3.1. Continuumapproximation
It is possible to considerably simplify the problemusing an effectivemedium approximationwherein each
material region is seen as a uniaxial anisotropic dielectric with permittivity:

e e e e= + + aa a aˆ ˆ ˆ ˆ ˆ ˆ ( )u u u u u u , 12t x x t p p

where a a= -ˆ ˆ ˆu u ucos sinp i y i z is a unit vector in the yoz plane perpendicular to the optical axis a( ˆ )u . In the
isotropic case (spherical inclusions) one has e e= aa,t whereas in the anisotropic case (elongated elliptical
inclusions) e e¹ aat .

In the continuum limit, for eachfixed k the electromagnetic fields in the vacuum region can be expanded
simply in terms of the usual planewavemodes, similar to [28]. Hence, in this case thematrices RL,R and MF,B in
equation (2) become 2×2matrices and can be determined using standard analyticalmethods [28] (see also
appendix A). Indeed, within the effectivemedium framework thewave propagation is described by an ordinary
wave (transverse electric—TE—mode) and an extraordinary wave (transversemagnetic—TM—mode) [28].

At this point, it is important to discuss the validity of the continuumapproximation. Typically, effective
mediummethods are valid for interactions such that <k a 1and w <a c 1. In themicroscopic picture deC,int

must be calculated in the limit = +d 0 for which the structure becomes periodic (a crystal). In this limit the
distance between adjacent layers of inclusions is nonzero, but is as small as »d̃ a, i.e., on the order of the lattice
constant. Thus, it is possible to estimate that themodes relevant for theCasimir interaction satisfy <k a 1and
w <a c 1,which is precisely the rough limit of validity of effectivemedium theories, beyondwhich the
continuumapproximation is inapplicable. Due to this reason, it follows that the effectivemedium framework is
only approximately satisfactory, and in particular itmay not yield quantitatively precise results. Yet, the effective
medium theory enables a simple analysis of the problem, and it is reasonable to expect that it provides at least a
qualitatively correct description of the relevant physics.

Another important aspect is that in the continuum limit the torque in a bulkmaterialmust vanish
=( )M 0bulk because any orientation of the optical axis is energetically equivalent when there is no underlying

granularity. Hence, in the continuum limit equation (11) becomes:

a
e= -

¶
¶

( )( )M a, 13C,s.i.
1

1
C,s.i.

/

/
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3 0 0
0 1 2

x a a x a a x a a= - ⋅= +∣ ( ) [ ( ) ( )] ( )∣∣ ∣∣ ∣∣D ck 1 R k R ki , , , det i , , , i , , , , 13d 0 1 2 L 1 2 R 2 1

so that the single-interface torque is only due to surface effects.We used the fact that in the limit = +d 0 the
propagationmatrices MF,B become identical to the unitmatrix. It is implicit that the double-interface structure
corresponds to a twin-material configuration (1–2–1).

Note that in the continuum limit we let d to be precisely zero in the calculation of the single-interface torque,
but the transversemomentum is still restricted to the 1st BZ as in the periodic case. The justification for this is (i)
the effectivemedium theory breaks down for >k a 1, (ii) thewave vector cut-off p~k amax effectively
mimics the fact that in themicroscopicmodel the distance between the inclusions does not reach zero, but has a
minimumon the order of =d̃ a.Thus, onlymodeswith <k a 1can effectively contribute to the single-
interface Casimir torque.

It should bementioned that without awave vector cut-off (i.e., with = ¥)kmax the integral in
equation (13b)would diverge because infinitelymany photonic channels would contribute to the interaction.
This result is unphysical because in themicroscopic formalism the distance between adjacent planes of
inclusions always exceeds »d̃ a, and hence in themicroscopic theory deC,int remainsfinite in the limit = +d 0 .
Thewave vector cut-off in the continuumapproximation is essential so that themacroscopic theory can have the
same features as themicroscopic theory and predict afinite single-interface torque. It can be checked that the
integral (13b) converges for = +d 0 provided the effective dielectric response of thematerials ceases for
sufficiently high frequencies, i.e. that the dielectric permittivity of all relevantmaterials (equation (12))
approaches the vacuumpermittivity when w  ¥.This condition is always satisfied for realisticmaterials
because the electric dipoles cannot follow very rapid oscillations of the electric field. In this situation the
reflectionmatrices x( )R ii vanishwhen x  ¥, and it can be checked that this implies that deC,int isfinite.

In summary, the single-interface torque is originated by interactions of polarizable particles that are nearly in
contact ( »˜ )d a and hence an effectivemediumdescription of the problemdepends critically on the high-
frequency (both spatial and temporal) response of thematerials. The precise knowledge of the effective dielectric
function for w  ¥ and the precise wave vector cut-off kmax are critical tomake quantitative predictions.
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3.2. Generalization
So far it was assumed that themiddle layer (region 2 infigure 1(b)) is free-space, so that ( )MC,s.i.

1 corresponds to the
single-interface torquewhen thematerial 1 is adjacent to a vacuum.However, within the effectivemedium
description there is no difficulty in generalizing the theory to the case wherein themiddle layer is an arbitrary
anisotropic dielectric (figure 2).

A straightforward analysis analogous to that reported in section 2, but using as a starting point the
macroscopic frameworkwith the physical cut-off p~k a,max shows that equation (13) remains validwhen the

middle region is an arbitrary dielectric. As before,
a

e= -
¶
¶

( )MC,s.i.
1

1
C,s.i. is understood as the single-interface

torque acting onmedium1 for an interface betweenmedium1 andmedium 2.However, when the second
material is not isotropic the torque onmedium2 is typically nonzero, and can be calculated

using
a

e= -
¶
¶

( )MC,s.i.
2

2
C,s.i..

It is important to prove that the theory is self-consistent. Indeed, eC,s.i. in equation (13) is calculated by
considering a twin configuration of the type 1–2–1with thickness of themiddle layer = +d 0 .However, in the
macroscopic formulation there is no reason to regard themedium1 as special as compared tomedium 2.
Indeed, one could alternatively calculate eC,s.i. based on a 2–1–2 twin configurationwhere themiddle layer has
= +d 0 .Does this alternative calculationmethod yield the sameCasimir energy e e=( ) ?C,s.i.,121 C,s.i.,212 The

answer is affirmative. Indeed, we prove in appendices A andB (see equation (B3)) that the characteristic
equations in the two scenarios are identical w w=( ) ( )D k k D k k, , , ,x y x y121 212 and consequently the single-
interface Casimir energy is independent of the calculationmethod.

One can still imagine a different way to determine the torque for an interface of twomaterials. Let us now
label the relevantmaterials as ‘1’ and ‘3’ and suppose that wewant to calculate the torque on thematerial 1 for the
single 1–3 interface ( )( )M .C,s.i.,13

1 As already discussed, one option is to use equation (13) for a twin-material

configuration 1–3–1 (or alternatively 3–1–3):
a

e= -
¶
¶

( )M .C,s.i.,13
1

1
C,s.i.,131 Alternatively, one can consider instead

a generic configuration 1–2–3 in the limit where themiddle layer (region 2, which can be taken as an arbitrary
material)has thickness = +d 0 .Using equation (9) and noting that in the limit = +d 0 the torque ( )MC,tot

1 should

be coincident (independent of thematerial in region 2)with ( )MC,s.i.,13
1 it is found that:

a
de

a
e

a
e

a
de

a
e

= -
¶
¶

-
¶
¶

-
¶
¶

= -
¶
¶

-
¶
¶

=

=

+

+

∣

∣
( )

( )M

.
14

d

d

C,s.i.,13
1

1
C,int,123 0

1
C,12

1
C,23

1
C,int,123 0

1
C,s.i.,121

The indices ‘123’ and ‘121’ identify the configuration used to evaluate the interaction energy and the single-

interface energy, respectively. Does the above formula give the same result as e= -
a
¶
¶

( )M ?C,s.i.,13
1

C,s.i.,131
1

Wewill

not attempt to give a direct proof of this property but in the next section it is shownwith numerical simulations
that the answer is affirmative. This result demonstrates that the theory is fully self-consistent, and that the
calculated torque is, indeed, independent of the considered limit process.

4.Numerical examples

In order to characterize the single-interface energy and torque, next we carry out extensive numerical
simulations based on equations (9) and (13). It is assumed that the anisotropicmaterials have e = 1t and
e e=aa Lorentz such that eLorentz follows the Lorentz dispersionmodel

Figure 2. Sketch of the double-interface configurationwhen themiddle region is an arbitrary anisotropic dielectric and the relevant
materials are regarded as a continuum. The gray dashed lines represent the optical axes of thematerials. The zero-point energy of the
system is calculated from the reflection RL,R and transfer MF,B matrices.
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e
w

w w w
= -

- + G
( )1

i
, 15Lorentz

e
2

2
0
2

where w0 is the resonant frequency, we determines the strength of the electric resonance, and G is the damping
factor related tomaterial loss. For simplicity, the resonance frequency is taken equal to w p =( )2 95.49 THz0

for all thematerials. The parameter we ismaterial dependent. For convenience, we introduce the anisotropy
ratio c e e= aa ,t which by definition is evaluated in the static limit (w = )0 . In the simulations it was assumed
that w =a c 0.10 (where a is the lattice period and c is the speed of light in vacuum) and wG = 0.05 .0 In case of
isotropicmaterials one has e e e= =aat Lorentz.

4.1. Single-interface configurations
To beginwith, we study the single-interface Casimir interactions at the junction of an anisotropic and an
isotropicmaterial (figure 1(a)).

In thefirst example (figure 3), we consider a vacuum-anisotropic dielectric interface. The curves (i) of
figures 3(a) and (b) show the calculated single-interface energy and the torque acting on the anisotropicmaterial.
As seen, the energy has aminimumwhen the optical axes of the anisotropic particles are parallel to the interface
plane a =  ( )90 .2 Such a configuration ensures that the dipoles in the last atomic layer (in the yoz plane) are
aligned, which is a physically reasonable result. Thus, the quantumfluctuations lead to an internal surface stress
that tends to orient the ‘elliptical-type’ inclusions parallel to the interface. The configuration a =  902

corresponds to the stable equilibriumposition. As to the single-interface torque, one can see from figure 3(b)
(curve (i)) that it varies approximately as a( )sin 2 ,2 somewhat analogous to the typical angle-dependence of the
interaction torque but here the optical axis is not parallel to the interface [14].

Interestingly, if the vacuumhalf-space is replaced by a dielectricmaterial with a sufficiently large permittivity
—roughly, the permittivity of the dielectric needs to exceed the transverse permittivity et of the anisotropic
material—the preferential orientation of the anisotropic particles is no longer parallel to the interface. For
example, for a dielectric with static permittivity e =w= 20 one can see thatwhen the anisotropy ratio is c = 5
(curves (ii) infigure 3) the preferred orientation is a =  43 ,2 whereas for c = 10 (curves (iii)) it is
a =  67 .2 This effect can be understood noting that the electric dipoles in the isotropic region (which on
average are expected to be randomly oriented in the bulk region) tend to attract the dipoles in the anisotropic
material, leading in this way to a shift of the equilibriumposition towards the normal direction It is interesting to
note that ourfindings are consistent with the general conclusions of [31], wherein it was found that in the limit of

Figure 3.Normalized single-interface energy (a) and torque (b) at the junction between an isotropic dielectric (region 1) and an
anisotropic dielectric (region 2), as a function of the angle a .2 (i)Region 1: vacuum; Region 2: anisotropicmaterial with anisotropy
ratio c = 5 w w =( )2 ;e 0 (ii)Region 1: isotropicmaterial with relative static permittivity e =w= 20 w w=( );e 0 Region 2: anisotropic
material with anisotropy ratio c = 5 w w =( ))2 ;e 0 (iii) Similar to (ii) but the anisotropicmaterial has the anisotropy ratio c = 10
w w =( )3e 0 .
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weak anisotropy large refractive index solids favor a homeotropic alignment (dipoles perpendicular to the
interface)whereas small refractive-indexmaterials favor a planar alignment.

Next, we study a configurationwherein the two juxtaposed semi-infinitematerials are anisotropic. The two
anisotropicmaterials have the same anisotropy ratio c = 10 but optical axes with different orientations. To
beginwith, we consider a scenario wherein the particles of themedium1have afixed orientation a ,1 whereas the
inclusions ofmedium 2 are free to conjointly rotate in the yoz plane.

Figure 4 shows the single-interface energy and torque acting on thematerial 2 as a function of a2 for three
different values of a :1 (i) a = 15 ,1 (ii) a = 45 ,1 and (iii) a = 75 .1 As seen, because of the reduced symmetry
of the system, the single-interface energy is not an even function of a2 different from the results of the previous
example (figure 3). Figure 4(a) confirms that when a a= ,2 1 i.e. when the optical axes of the twomaterials are
aligned, the single-interface energy eC,s.i. vanishes, consistent with the fact that in such a situation the system
becomes equivalent to a bulkmedium. In particular, the configurationwith a a=2 1 corresponds to a local
energyminimum. Somewhat surprisingly, figure 4(a) shows that the systemhas another energyminimum
which occurs approximately (but not exactly) at a a» - .2 1 Indeed, for a a» -2 1 the system zero-point energy
has a globalminimum (considering a1fixed). The two energyminima correspond to positionswherein the
single-interface Casimir torque vanishes (figure 4(b)), and hence the systemhas two equilibriumpositions. The
single-interface torque induced in the region 2 acts to rotate the ‘inclusions’ towards the closest equilibrium
point.

In order to further characterize this system, next it is supposed that the two particle sets are free to rotate
around the x-axis. Figure 5(a) shows a density plot of the single-interface energy as a function of the two
orientation angles a1 and a .2 It can be checked that because the twomaterials are identical (apart from the
orientation of the optical axes) the single-interface energy has the symmetries: e a a e a a=( ) ( ), ,C,s.i. 1 2 C,s.i. 2 1

and e a a =( ), 0.C,s.i. The plot confirms that the systemhas a local energyminimumwhenever a a= .2 1

However, consistent withfigure 4, the global energyminimumdoes not occur along the line a a= ,2 1 but rather
along the line a a= - .2 1 The detailed variation of the single-interface Casimir energy as a function of
a a= -2 1 is shown infigure 5(b). Interestingly, the Casimir energy is negative along this line, and hence has a
lower value than along the line a a=2 1where it vanishes. The global energyminimum is reached at
a a= - =  501 2 (see figure 5(b)). Thus, if both sets of particles are free to rotate then the system tends to
evolve to a configurationwhere the optical axes of the two sets of particles become approximately perpendicular
to each other. It is important to underline that this conclusion assumes that (i) the torque in the bulk region
vanishes =( )M 0bulk so that all the orientations of the inclusions are equivalent in the bulk region, and (ii) all the

M
A

i

ii

iii

a
A c

i

iii

ii

Figure 4.Normalized single-interface energy (a) and torque (b) acting on thematerial 2 at the junction between two identical
anisotropic semi-infinitematerial regions (with anisotropy ratio c = )10 , as a function of the angle a2 for afixed a .1 The anisotropic
materials are characterized by the following parameters: e = 1,t /w w = 3.e 0 (i) a = 15 ;1 (ii) a = 45 ;1 (iii) a = 751 .

8

New J. Phys. 18 (2016) 103030 TAMorgado andMGSilveirinha



dipoles in the samematerial region are constrained to be aligned. The physical interpretation of these results is
discussed in the next subsection.

A similar trend is observedwhen the two anisotropicmaterials are different. Figure 6 shows the single-
interface Casimir energy for a system formed by an anisotropicmaterial with anisotropy ratio c = 5 (region 1)
and amaterial with anisotropy ratio c = 10 (region 2). Now the global energyminima occur for
a a »   - ( ) ( ), 15 , 57 ,1 2 and similar to the previous example the configurations with a a=1 2 are not the
most energetically favorable.

To conclude this subsection, we note that for any systemwith the generic geometry considered here the
single-interface Casimir energy has the following symmetries:

e a a e a p a e a a p= + = +( ) ( ) ( ) ( )a, , , , 16C,s.i. 1 2 C,s.i. 1 2 C,s.i. 1 2

e a a e a a= - -( ) ( ) ( )b, , . 16C,s.i. 1 2 C,s.i. 1 2

Thefirst property is trivial and is a simple consequence that the system is unchanged if the optical axis of the
uniaxial dielectrics is rotated by 180°. The second property is a consequence of the fact that the zero-point energy
is unaffected by a transformation of the type  -y y.These properties imply that the torquesmust vanish

= =( )( ) ( )M M 0C,s.i.
1

C,s.i.
2 when either a a =  ( ) ( ), 0 , 01 2 (both optical axes perpendicular to the interface) or

a a =  ( ) ( ), 90 , 901 2 (both optical axes parallel to the interface), consistent with the numerical simulations of
the previous examples (see figure 4(b)).

Figure 5. (a)Normalized single-interface energy e ( )a A cC,s.i.
3 as a function of the orientation angles a1 and a .2 Thewhite dots

represent the two global energyminima. (b)Normalized single-interface energy e ( )a A cC,s.i.
3 along the line a a= -1 2 (black dashed

line in (a)).

Figure 6.Normalized single-interface energy e ( )a A cC,s.i.
3 for an interface between two different anisotropic semi-infinitematerial

regions (region 1with anisotropy ratio c = 5 and region 2with anisotropy ratio c = )10 , as a function of the angles a1 and a .2 The
anisotropicmaterial 1 is described by the parameters e = 1,t and w w = 2e 0 whereas the anisotropicmaterial 2 is described by the
parameters e = 1,t and w w = 3.e 0 Thewhite dots represent the two global energyminima.
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4.2.Double-interface configurations
It is interesting to extend the previous analysis to double-interface configurations (figure 1(b)). In thefirst
example, we consider an anisotropic dielectric-air-isotropic dielectric system. Figure 7 shows the single-
interface torque and the total torque acting on the anisotropicmaterial as a function of a1 for different values of
the air gap thickness (d). The total Casimir torque = +( )M M MC,tot. C,12 C,int varies considerably with the
distance, since it depends not only on the single-interface torque MC,12 (which is distance independent), but also
on the interaction torque. The interaction torque de a= -¶ ¶MC,int C,int 1 is computed using equation (5).

Importantly, figure 7 confirms thatwhen d tends to zero, the total Casimir torque approaches the value of
the single-interface torque associatedwith an anisotropic dielectric-isotropic dielectric interface (see curves (i)
and (iii)), as it should.Note that different from the twin-interface configurations, in systemswherein e e¹1 3 the
total Casimir energy of the systemdoes not vanishwhen the gap d is closed, but instead it converges to the value
of the single-interface energy e .C,13 This property confirms that the torque computedwith equation (14) is

coincident with the torque given by
a

e= -
¶
¶

( )M ,C,s.i.,13
1

1
C,s.i.,131 ensuring that the theory is self-consistent. On

the other hand, as  ¥d the total torque approaches M ,C,12 i.e. the torque for a single anisotropic dielectric–
air interface (see curves (ii) and (v )).

In the second example, we consider an anisotropic dielectric-anisotropic dielectric-air configuration.We
assume that apart from the orientation of the optical axes the two anisotropicmaterials are identical and have the
anisotropy ratio c = 10. Figure 8 depicts the total Casimir energy e e e de= + +( )C,tot. C,12 C,23 C,int as a
function of the two orientation angles a1 and a .2 The density plot shows that the global energyminimum is
reachedwhen a a=  =  90 ,1 2 i.e., when the particles in both anisotropicmaterial layers are parallel to the

Figure 7.Torque acting on the anisotropicmaterial as a function of the angle a1 for different systems. (i) single-interface torque for an
anisotropic dielectric—isotropic dielectric interface ( )M ,C,13 (ii) single-interface torque for the anisotropic dielectric−air interface
( )M ,C,12 and (iii)–(v ) total torque = +( )M M MC,tot. C,12 C,int for an anisotropic dielectric− air− isotropic dielectric system for
different values of the air thickness d. (iii) =d a0.01 ; (iv ) =d a0.1 ; (v ) =d a10 . The anisotropicmaterial has the parameters:
e = 1,t w w = 3,e 0 c = 10.The isotropic dielectric e e=( )t zz has static permittivity e =w= 20 and has w w=e 0.

Figure 8.Normalized total Casimir energy e ( )a A cC,tot.
3 e e e de= + +( )C,tot. C,12 C,23 C,int in an anisotropic dielectric−anisotropic

dielectric−air system, as a function of the orientation angles a1 and a .2 The anisotropicmaterials are identical and have e = 1,t

c = 10 w w =( )3 .e 0 The thickness of the anisotropicmiddle region is =d a4 .
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interfaces. Therefore, the air region serves to anchor the anisotropic particles of both anisotropicmaterial
regions.

As previously seen (figure 5), for a single-interface configuration formed solely by the two anisotropic
materials, i.e., in the absence of the air layer, the global energyminimum is not attainedwhen the twodipole sets
are aligned. Indeed, the simulations offigure 5 suggest that if all the individual particles are free to rotate
independently (a case which cannot be studied using our analytical framework) then themost energetically
favorable configuration is not reachedwhen the particles are all aligned along the same direction, but likely when
they are ‘randomly’ oriented. In other words, in a bulkmaterial there is no ‘anchor’ tofix a preferred alignment
direction and hence unconstrained particles tend to be oriented in a ‘random’ fashion. In contrast, the presence
of the air region promotes the direction parallel to the interface as themost favorable from an energetic point
of view.

5.Nematicfluids

In a realistic system theCasimir torquewill compete with other elastic-type forces that determine the
equilibriumposition of the ‘dipoles’. Inspired by the recent study of [18], which investigates theCasimir torque
when the optical axes of the relevantmaterials are parallel to the interface, herewe suggest that the single-
interface Casimir torquemay have sizeable effects in liquid crystal systems.

The configuration offigure 9 depicts an interface between a nematic liquid crystal (e.g., 5CB) [18, 36] and a
high-index isotropic (or anisotropic)material (e.g., TiO2) [37, 38]. A liquid crystal is formed by elongated
molecules with an anisotropic shape. In the nematic phase there is a long range orientational order such that the
molecules tend to be aligned along some locally preferred direction called the ‘director’ [39]. Thus, from an
optical point of view a nematic crystal behaves as a uniaxialmaterial. As seen in section 4.1, a dielectric semi-
space generally tends to pull the anisotropic particles towards the direction normal to the interface. Consistent
with this property, our calculations infigure 10 show that the equilibriumposition for a 5CB-TiO2 single-
interface is a » 0 .Note that the static relative permittivity of TiO2 is extremely large on the order of 85 [37].
Thematerial response of 5CB [18, 36] and of TiO2 [37, 38]wasmodeled using experimental data available from
the literature. For simplicity the intrinsic anisotropy of TiO2was neglected. The lattice constant was taken equal
to the larger (average) intermolecular distance in the twomaterials =( )a 2 nm [40, 41].

In a possible experiment, the director of the liquid crystal can be anchored by a rubbed polymer layer
[18, 42, 43], such that the preferredmolecular orientation is parallel to the interface a p»( )2 (see figure 9).
Our theory suggests that the Casimir torque at the boundary of the opposite interface (with TiO2) causes the
director of the liquid crystal to be continuously rotated through the bulk region (see figure 9). Similar to [18] (see
also [30]), it is shown in appendix C that the elastic restoring torque per unit of area due to the director bending

is a» -D
M

A

K

t
.elastic Here, K is an elastic constant, t is the thickness of the liquid crystal layer and

a a pD = - 2e determines the total rotation angle of the director across the layer. In the equilibrium, the

Casimir torque on the liquid crystal per unit of area ( )M AC will be such that + =
M

A

M

A
0.elastic C Fromhere,

we get a
a

-D + =
( )K

t

M

A
0,C e whose solution (a )e determines the orientation of the director at the high-

index dielectric interface. For the liquid crystal 5CB, the elastic constantsmay be estimated as ~ ~K K 7 pN1 3

[44–46]. If the thickness of the liquid crystal is m10 m this gives a restoring torque (per unit of area) on the order

Figure 9. Sketch of a possible experiment (inspired by [18, 30]): a rubbed polymer layer—liquid crystal—high-index isotropic
dielectric system. Themolecules of the liquid crystal near to the interface =( )z 0 are anchored by the rubbed polymer and tend to be
aligned along the direction parallel to the interface. On the other hand, the isotropic dielectric generates a single-interface Casimir
torque at the interface =( )z t that acts to rotate the liquid crystalmolecules towards some equilibriumposition. The equilibrium
configuration is determined by theCasimir torque and by an elastic restoring torque.

11

New J. Phys. 18 (2016) 103030 TAMorgado andMGSilveirinha



of a- D ´ ´ - -~M A 7 10 N m .elastic
7 1 Since fromfigure 10 the estimated peak single interface torque is as

large as - -~10 N m5 1 (at room temperature the torque is expected to be somewhat smaller) it follows that at the
equilibrium a pD∣ ∣ ~ 2. In other words, the single-interface torque appears to be sufficiently strong to bend
the director in the full angular range a a=   = ( )90 0 . In general the angle ae depends on the liquid crystal
thickness, and for increasingly smaller values of t the alignment is expected to become planar. In principle, the
bending can be detectedwith an optical experiment, e.g., illuminating the structure with a linearly polarized
wave andmeasuring the scattered fields [47]. As afinal remark, we note that the physicalmechanisms that
determine the anchoring of a nematicfluidmay depend on other factors not considered by our simplemodel
(e.g., on the corrugation of the surface or on surface corrections of the Frank free energy), and that in a realistic
scenario these will also play some role.

6. Conclusion

We studied the zero-temperature single-interface Casimir torque at the junction between different isotropic and
anisotropicmaterials using bothmicroscopic andmacroscopic formulations. The single-interface torque arises
due to the quantumfluctuations associatedwith interface-type (both localized and extended)modes. These
quantumfluctuations originate internalmaterial stresses that act to change the internal configuration of the
materials, i.e. to rotate the particles. The single-interface torque is different from themore familiar Casimir
interaction torque, which is determined by the interaction of two rigid bodies separated by an isotropicmaterial.
Relying on amicroscopic theory, it was proven that, in general, the single-interface torquemay have a ‘bulk’
(volumetric) contribution and a surface contribution. The surface component can bewritten in terms of the
interaction energy of the system for a twin-material configuration. It was shown that the single-interface torque
can be as well computed using the continuum approximation. However, since the single-interface torque is
determined by interactions of polarizable particles that are nearly in contact the use of effectivemedium
methods is only approximately satisfactory and requires a physical wave vector cut-off.

Our numerical results obtainedwith the continuum approximation demonstrate that in isotropic-
anisotropicmaterial systems the isotropic region acts as an anchor, imposing a preferential orientation for the
particles of the anisotropicmaterial. In particular, when the isotropic region is the vacuum the global energy
minimum is reachedwhen the dipoles are parallel to the interface. For conventional dielectrics with sufficiently
large permittivity the energyminimummoves towards the normal direction. On the other hand, in anisotropic-
anisotropicmaterial systems the global energyminimumdoes not correspond to a configurationwith aligned
dipoles, and in some cases—most remarkably when the twomaterials are identical—it is reachedwhen they are
approximately perpendicular. This property suggests that if all the dipoles are unconstrained and free to rotate
then the configuration associatedwith the global energyminimummay correspond to some amorphous (non-
periodic) structure with the dipoles oriented in a ‘random’ fashion.

In future work, it will be relevant to calculate the single-interface torquewith the rigorousmicroscopic
model to assess the accuracy of the continuumapproximation. It appears possible to investigate experimentally
the role of the quantum fluctuations on the anchoring of nematic fluids.

Figure 10.Normalized single-interface energy (solid blue line) and torque (dashed green line) at the junction between the nematic
liquid crystal 5CB and the high-index dielectric TiO2, as a function of the angle a.
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AppendixA. Properties of the reflectionmatrices

In this appendix, we derive some useful properties of the reflectionmatrices RL and RR for two anisotropic
dielectric semi-spacesmodeled as a continuum.Without loss of generality, it is supposed that the interface is
normal to the z-direction.

To beginwith, we define the transverse fields as:

= ⋅ =
-

=
-( ) ( )

⎛
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Let us introduce admittancematrices Y such that for planewaves propagating along the+z and –z directions
one has:

⋅ = ⋅ ⋅ = - ⋅+ + + - - - ( )J H Y E J H Y E, . A2T T T T

In general, Y depend on the consideredmaterial, on the orientation of the optical axis, on the frequency w, and
on the transverse wave vector k .

Let us consider a twin-interface configuration of the type 1–2–1. Imposing the continuity of ET and ⋅J HT at
the interfaces it is easily found that for right and left incidence the electric field reflection coefficients are:

= + ⋅ - = + ⋅ -- + - + + + - - - -( ) ( ) ( ) ( ) ( )R Y Y Y Y R Y Y Y Y, . A3R,121 2 1
1

2 1 L,121 2 1
1

2 1

When ¹- +Y Y2 2 the order of thematrices in the product cannot be changed.
Formedia invariant under inversion (transformation  -r r also known as the parity symmetry), e.g.,

standard anisotropic dielectrics, the admittancematrices are necessarily linked as:

= - -+ -( ) ( ) ( ) ( )k k k kY Y, , , parity symmetry . A4x y x y

This implies that the two reflectionmatrices satisfy:

w w= - -( ) ( ) ( )k k k kR R, , , , . A5x y x yR,121 L,121

Next, we use the fact that anisotropic dielectrics are reciprocalmaterials [48]. In the absence of current
sources, the reciprocity theorem establishes that two arbitrary solutions ofMaxwell’s equations, ¢ ¢( )E H, and
 ( )E H, , in some domainwith boundary ¶D satisfy [48]:

¢ ´  -  ´ ¢ ⋅ =
¶

∮ ( ) ˆ ( )sE H E H n d 0. A6
D

Here, n̂ is a unit vector normal to the surface. Let us suppose that ¢ ¢( )E H, and  ( )E H, correspond to plane
waves propagating along the+z direction in a bulk anisotropic dielectric. The transverse wave vectors of the two
field distributions are supposed to satisfy ¢ = -  =k k k with = ( )k kk , , 0x y so that the integral over the side
walls (normal to the z-direction) in equation (A6) vanishes.Thus, equation (A6) can be satisfied only if:

¢ ´  -  ´ ¢ ⋅ =( ) ˆ ( )E H E H z 0. A7

This is the same as ¢ ⋅ ⋅  =  ⋅ ⋅ ¢E J H E J HT T T T and hence it follows that
¢ ⋅ - ⋅  =  ⋅ ⋅ ¢+ +[ ( )] [ ( )]E Y k E E Y k ET T T T for arbitrary transverse fields ¢E ,T E .T Thus, we have shown that the

reciprocity property implies that:

Tw w- =+ +( ) [ ( )] ( ) ( )∣∣ ∣∣Y k Y k, , , by reciprocity . A8

where the superscript ‘T’ stands formatrix transposition. Using now equation (A4), we conclude that the
reciprocity and the parity symmetry impose that:

Tw w=- +( ) [ ( )] ( ) ( )∣∣ ∣∣Y k Y k, , by reciprocity and parity . A9

Appendix B. Properties of the characteristic functionD

Here, we derive some useful properties of the characteristic functionD (equation (2)) in the limit = +d 0 .The
relevantmaterials are treated as an electromagnetic continuum. In the limit = +d 0 the propagationmatrices
MF,B are identical to the unitmatrix and hence it is possible towrite:
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w w w= - ⋅( ) ( ( ) ( )) ( )D k k k k k k1 R R, , det , , , , . B1x y x y x y121 L,121 R,121

The subscripts identify the relevantmaterial configuration ‘1–2–1’. The thickness of themedium 2 is
infinitesimally small = +( )d 0 .The reflectionmatrices are defined as in appendix A.

Thefirst property is a consequence of the parity symmetry discussed in appendix A.Using the identity
- ⋅ = - ⋅( ) ( )1 A B 1 B Adet det (which holds for genericmatrices )A B, and equation (A4) it follows that:

w w= - -( ) ( ) ( )D k k D k k, , , , . B2x y x y121 121

The second property follows from reciprocity of thematerials and establishes that:

w w=( ) ( ) ( )D k k D k k, , , , . B3x y x y121 212

In the above = - ⋅( )D 1 R Rdet212 L,212 R,212 represents the characteristic equation for a 2–1–2 configuration
wherein themedium 1has infinitesimal thickness. To demonstrate the second property, we use the fact that for a
genericmatrix =( ) ( )A Adet det T towrite:

= - ⋅

= - - ⋅ + ⋅ - ⋅ +- - + - - + + - + -

( )
( ( ) ( ) ( ) ( ) ) ( )

D 1 R R

1 Y Y Y Y Y Y Y Y

det

det . B4

121 R,121
T

L,121
T

2 1 2 1
1

2 1 2 1
1

The last identity is a consequence of equations (A3) and (A9). Using again the property
- ⋅ = - ⋅( ) ( )1 A B 1 B Adet det it follows that:

w = - + ⋅ - ⋅ + ⋅ -
= - ⋅

- + - - - + - - + +( ) ( ( ) ( ) ( ) ( ))
( ) ( )

D k k 1 Y Y Y Y Y Y Y Y

1 R R

, , det

det . B5

x y121 2 1
1

2 1 2 1
1

2 1

L,212 R,212

This result proves the desired result (equation (B3)).

AppendixC. The restoring elastic torque

The restoring elastic torque in the liquid crystal can be determined using the Frank free energy density [49]:

=  ⋅ + ⋅  ´ + ´  ´∣ ˆ ∣ ∣ ˆ ˆ ∣ ∣ ˆ ˆ ∣ ( )F K K Kn n n n n
1

2

1

2

1

2
, C1d 1

2
2

2
3

2

where Ki are some elastic constants that depend on thematerial and n̂ is a unit vector that determines the
orientation of the director. In our problem, one has a a= +ˆ ( ) ˆ ( ) ˆz zn y zsin cos (figure 9) and hence:

a a a a= + ( )F K K
1

2
sin

1

2
cos . C2d 1

2 2
3

2 2 

Supposing for simplicity that » ºK K K1 3 (which is usually a reasonable approximation) [44–46] it is found
that

a= ( )F K
1

2
. C3d

2

Proceeding as in [18], using calculus of variations it is simple to check that the Frank energy per unit of area

ò=E F zdelastic
0

t

d isminimizedwhen a varies linearly with z:

a
p

a» + D ( )z

t2
. C4

Here, =z 0 is the interface of the liquid crystal with the rubbed polymer layer, =z t is the interface with the
isotropicmaterial (seefigure 9), and aD determines the total rotation angle. Thus, it follows that the elastic

(surface) restoring torque per unit of area is
a

a= -
¶
¶D

= -D
M

A

E K

t
elastic elastic .
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