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Based on the results for the minimum weight states obtained in the previous paper (I), an idea
of how to construct the linearly independent basis is proposed for the SU (n) Lipkin model.
This idea starts in setting up m independent SU (2) subalgebras in the cases with n = 2m and
n = 2m + 1 (m = 2, 3, 4, . . .). The original representation is re-formed in terms of the spherical
tensors for the SU (n) generators built under the SU (2) subalgebras. Through this re-formation,
the SU (m) subalgebra can be found. For constructing the linearly independent basis, not only
the SU (2) algebras but also the SU (m) subalgebra play a central role. Some concrete results in
the cases with n = 2, 3, 4, and 5 are presented.
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1. Introduction

This paper, (II), is a continuation of (I) [1] and we will mainly discuss an idea with the aid of
which the linearly independent basis is constructed for the SU (n) Lipkin model. As is well known,
the SU (n) Lipkin model is a classical model for describing certain phenomena observed in nuclei
[2,3]. It is a kind of Lie algebraic model. Therefore, the first task in investigating this model is the
construction of the minimum weight states. By the definition of the minimum weight states, this task
may be performed independently of any Hamiltonian expressed as a function of the generators. In
(I), we proposed an idea of how to construct the minimum weight states for the case with any total
fermion number in n single-particle levels. A certain SU (2) algebra, which we called the auxiliary
SU (2) algebra in (I), plays a central role for the minimum weight states. The raising operator in this
auxiliary algebra is expressed in a form with the nth degree for the fermion creation operators and
the Clifford numbers.
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After determining the minimum weight states, it may be natural to proceed to construct the linearly
independent basis by applying various operators on the minimum weight states, such as the raising
operator in the SU (2) algebra. However, the following should be noted: Generally, it is impossible for
determining the orthogonal sets to prepare a sufficient number of Hermitian operators that commute
with one another. Therefore, in this paper, we will aim to construct a linearly independent basis, and
then, for example, with the aid of the Schmidt method, we are able to obtain the orthogonal sets. In
order to realize this aim, first, we pay attention to the point that, in the SU (n) Lipkin model, we can
define m independent SU (2) subalgebras. Here, m is an integer related to n under the relation n = 2m
(n even) and n = 2m + 1 (n odd), where m = 2, 3, . . .. Then, by adding these SU (2) algebras, we
get the SU (2) algebra. With the use of this SU (2) algebra, we can classify all the generators into
scalars, vectors, and spinors. We can also prove that the set of scalars gives us the SU (m) algebra.
Therefore, the remaining vectors and spinors may be treated in the space given under the SU (2) and
SU (m) algebra. The above may be nothing but the re-formation of the SU (n) Lipkin model.

For a given value of the integer m (m = 2, 3, . . .), we have two Lipkin models: the SU (2m) and
SU (2m+1) algebras. As a general argument, we know that the minimum weight states of the SU (n)

algebra are specified by (n−1) quantum numbers. In these numbers, m quantum numbers are related
to m SU (2) subalgebras, and the remaining ones are (m − 1) for n = 2m and m for n = 2m + 1,
respectively. In these numbers, (m − 1) quantum numbers may be related to the minimum weight
states of the SU (m) algebra. Therefore, in the case of the SU (2m) algebra, the number (n − 1)

is decomposed into m + (m − 1). In the case of the SU (2m + 1) algebra, the number (n − 1) is
decomposed into m + (m − 1) + 1, where one quantum number is excess. We will show that this
extra number is closely related to the spinor operators, because the spinors appear only in the case
with n = 2m + 1. However, these features may be almost impossible to show in the general case; we
will therefore discuss them through the cases with n = 2, 3, 4, and 5. The minimum weight states
of these four cases were presented in (I) under the re-formed version. The cases with n = 4 and 5
correspond to m = 2 and they can be treated quite easily, because of m = 2, i.e., the SU (2) algebra.

After giving m SU (2) algebras in Sect. 2, the spherical tensor operators (scalar, vectors, and spinors)
are defined. In Sect. 3, the Casimir operator as a quadratic form for the generators is diagonalized, and
through this procedure the operators specifying the minimum weight states are introduced. Of course,
the Hamiltonian given in (I) is rewritten in terms of the spherical tensors. In Sect. 4, our scheme
for obtaining the linearly independent basis is presented. Following our scheme, in Sect. 5 the cases
with n = 2, 3, 4, and 5 are treated. In Sect. 6, as a concluding remark, the connection between the
SU (2m) and SU (2m + 1) Lipkin model is discussed. In the appendix, the SU (m) subalgebra in the
SU (n) Lipkin model is presented in detail. Including the results given in (I), various formal aspects
of the Lipkin model are also stressed in (II).

2. The SU (n) generators of the Lipkin model in spherical tensor form

In Sect. 6 of Part I, we gave some examples of the re-formed generators of the Lipkin model.
Following these examples, we will treat the present model under two cases: (i) n even, and (ii) n odd.
In case (i), we introduce the integer m through

n = 2m; n = 2, 4, . . . , i.e., m = 1, 2, . . . . (2.1)

We also treat case (ii) by the integer m, which is given by

n = 2m + 1; n = 3, 5, . . . , i.e., m = 1, 2, . . . . (2.2)

2/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/8/083D

04/2594886 by 00500 U
niversidade de C

oim
bra user on 21 Septem

ber 2023



PTEP 2016, 083D04 Y. Tsue et al.

In (I), we learned that the case with m = 1 corresponds to the SU (2) and SU (3) Lipkin model.
The former is the SU (2) algebra itself and the latter contains one SU (2) subalgebra. On the other
hand, the SU (4) and SU (5) Lipkin models corresponding to the case with m = 2 contain two SU (2)

subalgebras. Extending this aspect, we define m independent SU (2) subalgebras. In the case with
n = 2m, the following is given:

S̃+(m; r) = S̃2m−2r+1
2m−2r , S̃−(m; r) = S̃2m−2r

2m−2r+1,

S̃0(m; r) = 1

2

(̃
S2m−2r+1

2m−2r+1 − S̃2m−2r
2m−2r

)
for r = 1, 2, . . . , m − 1, (2.3a)

S̃+(m; r) = S̃1, S̃−(m; r) = S̃1, S̃0(m; r) = 1

2
S̃1

1 for r = m. (2.3b)

The case with n = 2m + 1 gives us the form

S̃+(m; r) = S̃2m−2r+2
2m−2r+1 , S̃−(m; r) = S̃2m−2r+1

2m−2r+2 ,

S̃0(m; r) = 1

2

(̃
S2m−2r+2

2m−2r+2 − S̃2m−2r+1
2m−2r+1

)
for r = 1, 2, . . . , m − 1, m. (2.4)

We can see that the cases with (m = 1, r = 1) and (m = 2, r = 1, 2) reduce to the form treated in
(I) for the cases with n = 2, 3, 4, and 5. Of course, we have the relation

[ S̃+(m; r), S̃−(m; r′) ] = δrr′ · (2̃S0(m; r)
)
,

[ S̃0(m; r), S̃±(m; r′) ] = δrr′ · (±S̃±(m; r)
)
. (2.5)

In terms of total sum of S̃±,0(m; r) for r, we obtain the SU (2) algebra:

S̃±,0(m) =
m∑

r=1

S̃±,0(m; r). (2.6)

In our re-formation, the SU (2) algebra (2.6) will play a role in classifying all generators in terms of
the spherical tensor representation.

The main task of this section is to express all the generators except the forms (2.3) and (2.4) in
spherical tensor forms. For this task, it may be convenient to introduce two integers r and k:

(i) n even (n = 2m), r = 1, 2, . . . , m − 1, k = r + 1, r + 2, . . . , m, (2.7)

(ii) n odd (n = 2m + 1), r = 1, 2, . . . , m − 1, m, k = r + 1, r + 2, . . . , m. (2.8)

In case (ii), if r = m, k becomes meaningless. In the case with n = 2m, S̃p and S̃p
q (p > q) can be

re-formed to scalars and vectors:

(α)scalars,

R̃0,0(m; r, k) =

⎧⎪⎨⎪⎩
S̃2m−2r+1

2m−2k+1 + S̃2m−2r
2m−2k (k = r + 1, r + 2, . . . , m − 1),

S̃2m−2r+1
1 + S̃2m−2r (k = m),

(2.9)

(β)vectors,

R̃1,+1(m; r, k) =

⎧⎪⎨⎪⎩
−S̃2m−2r+1

2m−2k (k = r + 1, r + 2, . . . , m − 1),

−S̃2m−2r+1 (k = m),
(2.10)
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R̃1,0(m; r, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
2

(̃
S2m−2r+1

2m−2k+1 − S̃2m−2r
2m−2k

)
(k = r + 1, r + 2, . . . , m − 1),

1√
2

(̃
S2m−2r+1

1 − S̃2m−2r
)

(k = m),

(2.11)

R̃1,−1(m; r, k) =

⎧⎪⎨⎪⎩
S̃2m−2r

2m−2k+1 (k = r + 1, r + 2, . . . , m − 1),

S̃2m−2r
1 (k = m).

(2.12)

In the case with n = 2m + 1, spinors appear:

(γ ) scalars,

R̃0,0(m; r, k) = S̃2m−2r+2
2m−2k+2 + S̃2m−2r+1

2m−2k+1

(
r = 1, 2, . . . , m − 1
k = r + 1, r + 2, . . . , m

)
, (2.13)

(δ) spinors,

R̃
1
2 ,+ 1

2 (m; r) = S̃2m−2r+2, R̃
1
2 ,− 1

2 (m; r) = S̃2m−2r+1 (r = 1, 2, . . . , m), (2.14)

(ε) vectors,

R̃1,+1(m; r, k) = −S̃2m−2r+2
2m−2k+1, (2.15)

R̃1,0(m; r, k) = 1√
2

(̃
S2m−2r+2

2m−2k+2 − S̃2m−2r+1
2m−2k+1

)
, (2.16)

R̃1,−1(m; r, k) = S̃2m−2r+1
2m−2k+2

(
r = 1, 2, . . . , m − 1,
k = r + 1, r + 2, . . . , m

)
. (2.17)

The forms (2.13)–(2.17) are also for S̃p and S̃p
q (p > q). The expressions (β) and (ε) give us scalars

in the form

�̃0,0(m; r, k) =
∑

ν=±1,0

(−)νR̃1,ν(m; r, k )̃R1,−ν(m; r, k). (2.18)

The Hermitian conjugate of R̃μ,ν(m; r, k) is denoted as(̃
Rμ,ν(m; r, k)

)∗ = R̃μ,ν(m; r, k). (2.19)

For now, the type S̃p
p is re-formed as follows:

(i) n = 2m,

P̃0(m; r) =

⎧⎪⎨⎪⎩
1

2

(̃
S2m−2r+1

2m−2r+1 + S̃2m−2r
2m−2r

)
(r = 1, 2, . . . , m − 1),

1

2
S̃1

1 (r = m),
(2.20)

(ii) n = 2m + 1,

P̃0(m; r) = 1

2

(̃
S2m−2r+2

2m−2r+2 + S̃2m−2r+1
2m−2r+1

)
(r = 1, 2, . . . , m − 1, m). (2.21)

The operators P̃0(m; r) should be compared with S̃0(m; r). It is noted that we have the relation
P̃0(m; m) = S̃0(m; m) in case (i) and P̃0(m; r) (r = 1, 2, . . . , m − 1, m) are not scalars, but in case
(ii), P̃0(m; r) (r = 1, 2, . . . , m − 1, m) are scalars. We will return to this point.
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The total number of S̃p(n) (p = 1, 2, . . . , n − 1) and S̃p
q (n) (p > q = 1, 2, . . . , n − 2) is equal to

(n − 1) + (n2 − 1) − (n − 1)

2
= 1

2
n(n − 1). (2.22)

On the other hand, the total number of S̃+(m; r), R̃0,0(m; r, k), and R̃1,ν(m; r, k) (ν = ±1, 0) in the
case with n = 2m is equal to

m +
m−1∑
r=1

(m − r) + 3
m−1∑
r=1

(m − r) = m(2m − 1) = 1

2
n(n − 1). (2.23)

In the case with n = 2m + 1, the total number of S̃+(m; r), R̃0,0(m; r, k), R̃
1
2 ,ν(m; r) (ν = ±1/2),

and R̃1,ν(m; r, k) (ν = ±1, 0) is equal to the relation (2.22):

m +
m−1∑
r=1

(m − r) + 2m + 3
m−1∑
r=1

(m − r) = m(2m + 1) = 1

2
n(n − 1). (2.24)

The total number of S̃p
p (n) (p = 1, 2, . . . , n − 1) is equal to (n − 1). In the case with n = 2m, the

total number of S̃0(m; r) and P̃0(m; r) is equal to

m + m = 2m = n. (2.25)

We have the difference n − (n − 1) = 1. The reason why we have this difference comes from the
double counting for (1/2)̃S1

1 . Later, we will show that this double counting does not give us any
trouble. In the case with n = 2m + 1, the total number of S̃0(m; r) and P̃0(m; r) is equal to

m + m = 2m = n − 1. (2.26)

Thus, we re-formed the SU (n) generators in the Lipkin model in the form of the spherical tensor
representation for the SU (2) algebra (̃S±,0(m)).

Finally, we give a comment. We presented a possible re-formation of the original representation
of the SU (n) Lipkin model. Concerning the SU (2) subalgebra, it starts in the expressions (2.3) and
(2.4). However, it must be noted that these forms are not unique. If the indices i = 1, 2, . . . , n − 1
are changed from the forms (2.3) and (2.4), we obtain various forms. For example, in the case with
n = 2m = 4, S̃±,0(m; r) in the relation (2.3) can be expressed as

S̃+(2; 1) = S̃3
2 , S̃−(2; 1) = S̃2

3 , S̃0(2; 1) = 1

2

(̃
S3

3 − S̃2
2

)
, (2.27a)

S̃+(2; 2) = S̃1, S̃−(2; 2) = S̃1, S̃0(2; 2) = 1

2
S̃1

1 . (2.27b)

For the form (2.27), we exchange the indices i = 1 and 2, and then they become

S̃+(2; 1) = S̃3
1 , S̃−(2; 1) = S̃1

3 , S̃0(2; 1) = 1

2

(̃
S3

3 − S̃1
1

)
, (2.28a)

S̃+(2; 2) = S̃2, S̃−(2; 2) = S̃2, S̃0(2; 2) = 1

2
S̃2

2 . (2.28b)

The form (2.28) also obeys the SU (2) algebra.
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3. The Casimir operator in the present representation and its diagonalization

In this section, we will discuss the Casimir operator, 	̃SU (n), shown in (I), relation (2.4):

	̃SU (n) = 1

2

⎡⎢⎣n−1∑
p=1

[
S̃p, S̃p

]
+ +

n−1∑
p=2

p−1∑
q=1

[
S̃p

q , S̃q
p

]
+ +

n−1∑
p=1

(̃
Sp

p

)2 − 1

n

⎛⎝n−1∑
p=1

S̃p
p

⎞⎠2
⎤⎥⎦ . (3.1)

Here, [ Ã, B̃ ]+ = ÃB̃ + B̃Ã. We can see in the form (3.1) that 	̃SU (n), which is of quadratic form
with respect to the SU (n) generators, is not diagonal. Then, we will consider the diagonalization.
The operator 	̃SU (n) can be rewritten as

	̃SU (n) =
m∑

r=1

S̃(m; r)2 + �̃m + �̃
(2)

m , (3.2)

S̃(m; r)2 = 1

2

[
S̃+(m; r), S̃−(m; r)

]
+ + S̃0(m; r)2. (3.3)

The part S̃(m; r)2 denotes the Casimir operator of the SU (2) subalgebra (̃S±,0(m; r)), and �̃m is
given separately in the cases with n = 2m and 2m + 1:

(i) n = 2m,

�̃m = 1

2

m−1∑
r=1

m∑
k=r+1

([
R̃0,0(m; r, k), R̃0,0(m; r, k)

]
+

+
∑

ν=±1,0

[
R̃1,ν(m; r, k), R̃1,ν(m; r, k)

]
+

)
, (3.4a)

(ii) n = 2m + 1,

�̃m = 1

2

m−1∑
r=1

m∑
k=r+1

([
R̃0,0(m; r, k), R̃0,0(m; r, k)

]
+

+
∑

ν=±1,0

[
R̃1,ν(m; r, k), R̃1,ν(m; r, k)

]
+

)

+ 1

2

m∑
r=1

∑
ν=±1/2

[
R̃

1
2 ,ν(m; r), R̃ 1

2 ,ν(m; r)
]
+ . (3.4b)

The part �̃
(2)

m is expressed as

�̃
(2)

m =
m∑

r=1

(
P̃0(m; r)

)2 − 2

n

(
m∑

r=1

P̃0(m; r)

)2

. (3.5)

The operators �̃m and �̃
(2)

m are quadratic. However, �̃m is diagonalized, but �̃
(2)

m is not diagonalized.
The above is our re-formation of 	̃SU (n).

The operator �̃
(2)

m can be diagonalized as follows:

�̃
(2)

m =
m−1∑
r=1

(
Q̃0(m; r)

)2 +
(

n − 2m

n

) (
Q̃0(m; m)

)2
, (3.6)
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i.e.,

(i) n = 2m, �̃
(2)

m=1 = 0, �̃
(2)

m≥2 =
m−1∑
r=1

(
Q̃0(m; r)

)2
, (3.7a)

(ii) n = 2m + 1, �̃
(2)

m=1 = 1

3

(
Q̃0(1; 1)

)2
,

�̃
(2)

m≥2 =
m−1∑
r=1

(
Q̃0(m; r)

)2 + 1

2m + 1

(
Q̃0(m; m)

)2
. (3.7b)

It should be noted that the second term on the right-hand side of the relation (3.6) disappears in the
case with n = 2m. The operator Q̃0(m; r) is obtained from P̃0(m; r) by the orthogonal transformation

Q̃0(m; r) =
m∑

r′=1

Cr,r′(m)P̃0(m; r′), (3.8a)

conversely,

P̃0(m; r) =
m∑

r′=1

Cr′,r(m)Q̃0(m; r′). (3.8b)

Here, (Cr′,r(m)) denotes an orthogonal matrix:

Cr′=m,r(m) = 1√
m

,
m∑

r′′=1

Cr,r′′(m)Cr′,r′′(m) =
m∑

r′′=1

Cr′′,r(m)Cr′′,r′(m) = δr,r′ . (3.9)

In this paper, we will adopt the following form for Cr′,r(m):

Cr′,r(m) =
〈

m − 1

2
, r − m + 1

2
,

m − 1

2
, −

(
r − m + 1

2

) ∣∣∣∣m − r′, 0
〉
(−)r−r′

. (3.10)

Here, Cr′,r(m) except for the phase factor (−)r−r′
denotes the Clebsch–Gordan coefficient of type

〈j1, m1, j1, −m|j2, 0〉, and it is given as

Cr′,r(m) = (−)m−r′ (√
Dm,r′

)−1
Er′,r(m), (3.10a)

Dm,r′ =
∏m−r′

μ=0 (m + μ)(m − μ)

m(2(m − r′) + 1)
, (3.10b)

Er′,r(m) =
∑

s

(−)s (r − 1 + s)!(2m − r′ − r − s)!
s!(m − r − s)!(m − r′ − s)!(r′ + r − m − 1 + s)! , (3.10c)

Fr′,r(m) = (−)m−r′ (
Dm,r′

)−1 Er′,r(m). (3.10d)

Later, Fr′,r(m) will be used. For example, we have

Cr′=m,r(m) = 1√
m

, Dm,r′=m = m, Er′=m,r(m) = 1, (3.11a)

Cr′=m−1,r(m) = −
√

3

m(m + 1)(m − 1)
(2r − (m + 1)),
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Dm,r′=m−1 = m(m + 1)(m − 1)

3
, Er′=m−1,r(m) = 2r − (m + 1). (3.11b)

The relations (3.8) and (3.9) lead us to the expression (3.6).We note that Q̃0(m; r) for r = 1, 2, . . . , m−
1 are scalar in the case with n = 2m (this will be shown later). In the case with n = 2m, Q̃0(m; m)

disappears in �̃
(2)

m , because of the factor (n − 2m) in the relation (3.6). In this case, in spite of the
relation P̃0(m; m) = S̃0(m; m), we have treated these two as if they are independent of each other. As
was already mentioned in the relation (2.25), the total number of P̃0(m; r), i.e., Q̃0(m; r), becomes
equal to that of S̃0(m; r). Originally, the total number of S̃p

p (n) is equal to n − 1, i.e., 2m − 1, and
in this number the integer m is fixed as the total number of S̃0(m; r). Therefore, the total number of
Q̃0(m; r) should be reduced to m − 1. We can see in the relation (3.7a) that Q̃0(m; m) disappears; in
other words, only Q̃0(m; r) (r = 1, 2, . . . , m − 1) appear. The case with n = 2m + 1 does not contain
such a problem, because of n = 2m + 1, i.e., n − 1 = 2m.

Now, let us derive the formulae for obtaining the eigenvalues of 	̃SU (n). To do this, we must rewrite
(1/2)·[ S̃+(m; r), S̃−(m; r) ]+ and other terms of the anti-commutators to the forms S̃+(m; r)̃S−(m; r)
and others. As a result, the linear terms for the generators appear. The part

∑m
r=1 S̃(m; r)2 shown in

the relation (3.3) is simple:

the linear term = −
m∑

r=1

S̃0(m; r). (3.12)

The linear terms coming from the relation (3.4), which we denote as �̃
(1)

m , can be expressed in the
form

�̃
(1)

m = 2
m∑

r=1

(
2r −

(n

2
+ 1

))
P̃0(m; r)

= 2
m∑

r=1

(2r − (m + 1)) P̃0(m; r) − (n − 2m)

m∑
r=1

P̃0(m; r). (3.13)

With the use of the relations (3.8) and (3.11), �̃
(1)

m can be expressed as

�̃
(1)

m = −2
√

Dm,m−1Q̃0(m, m − 1) − (n − 2m)
√

mQ̃0(m; m). (3.14)

We can see that in the case with n = 2m, Q̃0(m; m) also disappears in �̃
(1)

m .

The sum �̃
(2)

m + �̃
(1)

m (= �̃
(0)

m ) can be expressed in the following form:

�̃
(0)

m =
m−1∑
r=1

Q̃0(m; r)
(

Q̃0(m; r) − 2
√

Dm,rδr,m−1

)
+

(
n − 2m

n

)
Q̃0(m; m)

(
Q̃0(m; m) − n

√
m
)
. (3.15)

By changing the scale of Q̃0(m; r), we can eliminate the irrational numbers contained in Q̃0(m; r):

�̃
(0)

m = 1

4

m−1∑
r=1

Dm,rR̃0(m; r)
(̃
R0(m; r) − 4δr,m−1

)
+ (n − 2m) · 1

nm
R̃0(m; m)

(̃
R0(m; m) − nm

)
, (3.16)
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R̃0(m; r) = 2
(√

Dm,r

)−1
Q̃0(m; r)

= 2
m∑

r′=1

Fr,r′(m)P̃0(m; r′) (r = 1, 2, . . . , m − 1), (3.17a)

R̃0(m; m) = √
mQ̃0(m; m) =

m∑
r′=1

P̃0(m; r′). (3.17b)

The linear terms indicate the quantum fluctuations. We see that the fluctuations appear only at the
points r = m and m−1. If the orthogonal matrix (3.10) is not adopted, they may spread over various
points of r. In the case with n = 2m, P̃0(m; r) (r = 1, 2, . . . , m − 1, m) is not scalar. But, it can
be easily proved that Q̃0(m; r), i.e., R̃0(m; r) (r = 1, 2, . . . , m − 1) is scalar, and we see that, in
�̃

(0)

m , R̃0(m; m) in the case with n = 2m disappears. Using the results in (I), we can calculate the
eigenvalues of R̃0(m; r) for a given minimum weight state.

Let us show that Q̃0(m; r) for r = 1, 2, . . . , m − 1 in the case with n = 2m is scalar. For example,
we have

[ S̃+(m), P̃0(m; r) ] = −S̃1 (r = 1, 2, . . . , m − 1, m). (3.18)

Then, the relation (3.18) with (3.9) and (3.11a) lead us to

[ S̃+(m), Q̃0(m; r) ] =
m∑

r′=1

Cr,r′(m)[ S̃+(m), P̃0(m) ]

= −
(

m∑
r′=1

Cr,r′(m)

)
S̃1 = −δr,m

√
m S̃1. (3.19)

In the case with n = 2m + 1 for r = 1, 2, . . . , m − 1, m, we have

[ S̃+(m), P̃0(m; r) ] = 0, i.e., [ S̃+(m), Q̃0(m; r) ] = 0. (3.20)

Other cases with S̃−(m) and S̃0(m) are also in the same situation as the above.
Further, for r = 1, 2, . . . , m − 1 in the case with n = 2m, the following relation is derived:

Q̃0(m; r) =
m−1∑
r′=1

Cr,r′(m)P̃0(m; r′), (3.21a)

conversely,

P̃0(m; r) − 1

m

m−1∑
r′=1

P̃0(m; r′) =
m−1∑
r′=1

Cr′,r(m)Q̃0(m; r′). (3.21b)

Here, P̃0(m; r) is defined as

P̃0(m; r) = P̃0(m; r) − P̃0(m; m) = 1

2

(̃
S2m−2r+1

2m−2r+1 + S̃2m−2r
2m−2r − S̃1

1

)
. (3.22)

Therefore, in place of using Q̃0(m; r), it may be permitted to also use P̃0(m; r). In parallel to the case
with n = 2m, we also use P̃0(m; r) in the case with n = 2m + 1:

P̃0(m; r) = P̃0(m; r) = 1

2

(̃
S2m−2r+2

2m−2r+2 + S̃2m−2r+1
2m−2r+1

)
(r = 1, 2, . . . , m − 1, m). (3.23)
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However, the relation (3.21) does not hold in the case with n = 2m + 1.
In (I), we showed an example of the Hamiltonian:

H̃ (n) = H̃0(n) + H̃1(n). (3.24)

The term H̃0(n) is the Hamiltonian of individual levels with energies εp:

H̃0(n) =
n−1∑
p=0

εpÑp(n) =
n−1∑
p=1

εpS̃p
p (n), (3.25a)

n−1∑
p=0

εp = 0, ε0 ≤ ε1 ≤ · · · ≤ εn−1. (3.25b)

The part H̃1(n) is the interaction term:

H̃1(n) = −G
n−1∑
p=1

[(̃
Sp(n)

)2 + (̃
Sp(n)

)2
]

(G : coupling constant). (3.26)

We can rewrite H̃ (n) in our new representation. The part H̃0(n) can be rewritten in the form given
below. In the case with n = 2m, the relations (2.3) and (2.26) give us

S̃2m−2r+1
2m−2r+1 = P̃0(m; r) + S̃0(m; r), S̃2m−2r

2m−2r = P̃0(m; r) − S̃0(m; r)

(r = 1, 2, . . . , m − 1), (3.27a)

S̃1
1 = P̃0(m; m) + S̃0(m; m)

(
r = m, P̃0(m; m) = S̃0(m; m)

)
. (3.27b)

Then, H̃0(n) can be expressed in the form

H̃0(n) =
m∑

r=1

(ε2m−2r+1 + ε2m−2r)P̃0(m; r) +
m∑

r=1

(ε2m−2r+1 − ε2m−2r )̃S0(m; r)

=
m−1∑
r=1

(ε2m−2r+1 + ε2m−2r)P̃0(m; r) +
m∑

r=1

(ε2m−2r+1 − ε2m−2r )̃S0(m; r). (3.28)

For the above rewriting, the relation (3.25b) is used. In the case with n = 2m + 1, we have

S̃2m−2r+2
2m−2r+2 = P̃0(m; r) + S̃0(m; r), S̃2m−2r+1

2m−2r+1 = P̃0(m; r) − S̃0(m; r)

(r = 1, 2, . . . , m − 1, m). (3.29)

Then, we obtain

H̃0(n) =
m∑

r=1

(ε2m−2r+2 + ε2m−2r+1)P̃0(m; r) +
m∑

r=1

(ε2m−2r+2 − ε2m−2r+1)̃S0(m; r). (3.30)

The term H̃1(n) is rather simple. In the case with n = 2m, we have

S̃2m−2r+1 = −R̃1,1(m; r, m),

S̃2m−2r = 1√
2

(̃
R0,0(m; r, m) − R̃1,0(m; r, m)

)
(r = 1, 2, . . . , m − 1),

S̃+(m; m) = S̃1. (3.31)
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In the case with n = 2m + 1, we obtain

S̃2m−2r+2 = R̃
1
2 , 1

2 (m; r),

S̃2m−2r+1 = R̃
1
2 ,− 1

2 (m; r) (r = 1, 2, . . . , m − 1, m). (3.32)

Then, we have

n−1∑
p=1

(̃
Sp)2 =

m−1∑
r=1

[(̃
R1,1(m; r, m)

)2 + 1

2

(̃
R0,0(m; r, m) − R̃1,0(m; r, m)

)2
]

+ (̃
S+(m; m)

)2
(the case with n = 2m), (3.33)

n−1∑
p=1

(̃
Sp)2 =

m∑
r=1

[(
R̃

1
2 , 1

2 (m; r)
)2 +

(
R̃

1
2 ,− 1

2 (m; r)
)2

]
(the case with n = 2m + 1). (3.34)

The part H̃1(n) can be given by substituting the relations (3.33) and (3.34) and their Hermitian
conjugate into the relation (3.26).

4. A possible scheme for constructing the linearly independent basis

In (I), we investigated the structure of the minimum weight states of the SU (n) Lipkin model. In
Sect. 6 of (I), we sketched the minimum weight states in the representation developed in the present
paper (II) for the cases with n = 2, 3, 4, and 5. Although our final aim of this section is to present
our idea for constructing the linearly independent basis, the first task is to generalize the above four
cases to the case with arbitrary n.

Let the eigenvalues of S̃0(m; r) and R̃0(m; r) for the minimum weight state be denoted as −σ r and
−ρr , respectively. Here, S̃0(m; r) is given in the relation (2.3) for the case with n = 2m and (2.4) for
the case with n = 2m + 1:

(i) n = 2m,

S̃0(m; r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

(̃
S2m−2r+1

2m−2r+1 − S̃2m−2r
2m−2r

)
(r = 1, 2, . . . , m − 1),

1

2
S̃1

1 (r = m),

(4.1a)

(ii) n = 2m + 1,

S̃0(m; r) = 1

2

(̃
S2m−2r+2

2m−2r+2 − S̃2m−2r+1
2m−2r+1

)
(r = 1, 2, . . . , m − 1, m). (4.1b)

On the other hand, the relations (3.17) and (3.21) with (3.10) give us the operators R̃0(m; r):

(i) n = 2m,

R̃0(m; r) = 2
m−1∑
r′=1

Fr,r′(m) · P̃0(m; r′) (r = 1, 2, . . . , m − 1), (4.2a)
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(ii) n = 2m + 1,

R̃0(m; r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

m∑
r′=1

Fr,r′(m)P̃0(m; r′) (r = 1, 2, . . . , m − 1),

m∑
r′=1

P̃0(m; r′) (r = m).

(4.2b)

Here, P̃0(m; r) is shown in the relations (3.22) and (3.23). We notice that there exists a difference
between the case with n = 2m and with n = 2m + 1. For σ r , the superscript r is in the range
r = 1, 2, . . . , m − 1, m, for both cases. However, for ρr , the range of r in the case with n = 2m is
r = 1, 2, . . . , m − 1, and in the case with n = 2m + 1, r = 1, 2, . . . , m − 1, m. The reason has already
been mentioned, and is also given in the appendix. Then, the minimum weight state |min(n)〉 can be
expressed formally in the form

|min(n)〉 =
{

|N ; 	ρ, 	σ 〉 (n = 2m),
|N ; 	ρ, ρm, 	σ 〉 (n = 2m + 1).

(4.3)

Here, we adopt the abbreviations

	ρ = ρ1, ρ2, . . . , ρm−1, 	σ = σ 1, σ 2, . . . , σm−1, σm. (4.4)

As is clear from the relation (4.2), it may be enough to obtain the eigenvalues of P̃0(m; r) (r =
1, 2, . . . , m − 1 or m). Then, we can calculate 	ρ and ρm. We can treat S̃+(m; r) in terms of operating
S̃+(m; 	σ 0), which is defined in the following, on |min(n)〉:

S̃+(m; 	σ 0) =
m∏

r=1

(̃
S+(m; r)

)σ 0(r)
, (4.5)

i.e.,

|N ; 	ρ, 	σ 0〉 = S̃+(m; 	σ 0)|N ; 	ρ, 	σ 〉 (n = 2m), (4.6a)

|N ; 	ρ, ρm, 	σ 0〉 = S̃+(m; 	σ 0)|N ; 	ρ, ρm, 	σ 〉 (n = 2m + 1), (4.6b)

	σ 0 = σ 0(1), σ 0(2), . . . , σ 0(m). (4.7)

Since [ S̃+(m; r), S̃+(m; r′) ] = 0, the ordering of S̃+(m; r) in S̃+(m; 	σ 0) is arbitrary. In the notation
familiar to the SU (2) algebra, σ 0(r) is expressed as

σ 0(r) = σ r + σ r
0 . (4.8)

Of course, with the use of the angular momentum coupling rule, we are able to obtain the eigenstate
of (̃S±,0(m)).

Next, we consider some problems related to the quantum number ρr . We notice that R̃0,0(m; r, k)

defined in the relations (2.9) and (2.13) and their Hermitian conjugates R̃0,0(m; r, k) and R̃0(m; r)
introduced in the relation (3.17a) form the SU (m) algebras for the cases with n = 2m and n = 2m+1.
The detail is given in the appendix. First, we show that the state (4.6) is the minimum weight state
of the SU (m) algebra. For this, the following relations for the cases with n = 2m and 2m + 1 are
useful:

[ R̃0,0(m; r, k), S̃+(m; r′) ] = (δrr′ − δkr′ )̃R1,−1(m; r, k), (4.9a)

12/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/8/083D

04/2594886 by 00500 U
niversidade de C

oim
bra user on 21 Septem

ber 2023



PTEP 2016, 083D04 Y. Tsue et al.

[ R̃1,−1(m; r, k), S̃+(m; r′) ] = 0, (4.9b)

R̃1,−1(m; r, k)|min(n)〉 = 0, R̃0,0(m; r, k)|min(n)〉 = 0. (4.9c)

The relation (4.9) leads us to

R̃0,0(m; r, k)|N ; 	ρ, 	σ 0〉 = 0, (4.10a)

R̃0,0(m; r, k)|N ; 	ρ, ρm, 	σ 0〉 = 0. (4.10b)

Further, we have

[ R̃0(m; r), S̃+(m; r′) ] = 0, R̃0(m; r)|min(n)〉 = −ρr|min(n)〉. (4.11)

Then, we obtain

R̃0(m; r)|N ; 	ρ, 	σ 0〉 = −ρr|N ; 	ρ, 	σ 0〉, (4.12a)

R̃0(m; r)|N ; 	ρ, ρm, 	σ 0〉 = −ρr|N ; 	ρ, ρm, 	σ 0〉. (4.12b)

The relations (4.10) and (4.12) tell us that the state (4.6) is the minimum weight state of the SU (m)

algebra.
Since we get the minimum weight states of the present SU (m) algebra, we will consider R̃0,0(m; r, k)

operated on these states. First, we define the following raising operator:

R̃0,0(m; 	λ0) =
m−1∏
r=1

⎡⎣ m∏
k=r+1

(̃
R0,0(m; r, k)

)λ0(r,k)

⎤⎦ , (4.13)

	λ0 = λ0(1, 2), λ0(1, 3), . . . , λ0(1, m), λ0(2, 3), λ0(2, 4), . . . , λ0(2, m), . . . , λ0(m − 1, m).

(4.14)

It should be noted that, since the operators R̃0,0(m; r, k) are not mutually commuted, the ordering
of their product is fixed beforehand. The total number of 	λ0 is equal to m(m − 1)/2. Operating
R̃0,0(m; 	λ0) on the minimum weight states (4.6), we define the states

|N ; 	λ0, 	ρ, 	σ 0〉 = R̃0,0(m; 	λ0)|N ; 	ρ, 	σ 0〉, (4.15a)

|N ; 	λ0, 	ρ, ρm, 	σ 0〉 = R̃0,0(m; 	λ0)|N ; 	ρ, ρm, 	σ 0〉. (4.15b)

The states (4.15) are the eigenstates of R̃0(m; r) given in the relation (4.2). After lengthy calculation,
we can derive the commutation relation

[
R̃0(m; r), R̃0,0(m; r′, k ′)

] =

⎧⎪⎨⎪⎩
(
Fr,r′(m) − Fr,k ′(m)

)
R̃0,0(m; r′, k ′) (4.16a)

(r = 1, 2, . . . , m − 1),
0 (r = m). (4.16b)

The relation (4.16) is only applicable to the case with n = 2m + 1. With the use of the relation
(4.16), we can show that the states (4.15) are the eigenstates of R̃0(m; r), the eigenvalues of which
we denote ρr

0 (r = 1, 2, . . . , m − 1, m):

ρr
0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m−1∑
r′=1

⎛⎝ m∑
k ′=r′+1

(
Fr,r′(m) − Fr,k ′(m)

)
λ(m′; k ′)

⎞⎠ − ρr (4.17a)

(r = 1, 2, . . . , m − 1),
−ρm (r = m). (4.17b)
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In a form similar to that given in the relation (4.4), we will use the notation 	ρ0:

	ρ0 = ρ1
0 , ρ2

0 , . . . , ρm−1
0 . (4.18)

Let us pick up two states specified by 	λ0(1) and 	λ0(2) with 	λ0(1) 
= 	λ0(2). If these two give us 	ρ 0(1)

and 	ρ 0(2), respectively, with 	ρ 0(1) 
= 	ρ 0(2), these two states are orthogonal to each other. But,
if 	ρ 0(1) = 	ρ 0(2), they are not always orthogonal. However, they are linearly independent of each
other, because the states (4.15) are specified by 	λ0, the number of which is m(m − 1)/2. It is equal
to the total of the quantum numbers characterizing the SU (m) algebra except the minimum weight
states. In such cases, we must adopt some idea, for example the Schmidt method, for constructing
the orthogonal set.

We must, further, investigate the role of the vectors and the spinors for constructing the linearly
independent basis. These are defined in the relations (2.10)–(2.12) and (2.14)–(2.17). A simple idea
for this task is to construct the raising operators by appropriate products of the vectors and the
spinors, which are similar to the forms (4.5) and (4.13). With the help of this procedure, we can
construct the linearly independent basis, which may be justified in the relations (2.23) and (2.24).
However, for this task, we have a problem to be reconsidered. As was already mentioned, our present
system contains two subalgebras, i.e., the SU (2) and SU (m) algebras. In our form, the vectors and
the spinors are introduced as the tensor operators in the SU (2) algebra. Up to now, we have not
considered the relation between the tensors and the SU (m) algebra. Therefore, not only from the
side of the SU (2) algebra, but also from the side of the SU (m) algebra, it should be reconsidered.
But, this consideration may be impossible to perform for the general case with arbitrary m. In the
next section, some concrete results for the cases with n = 2, 3, 4, and 5 will be presented. Then, we
will return to this point.

5. Some simple examples and discussion

In Sect. 6 of (I), we showed the minimum weight states of the cases with n = 2, 3, 4, and 5. In this
section, mainly for the above cases, we will show the results obtained in this paper. First, we will
treat the SU (2) Lipkin model, i.e., n = 2 and m = 1. In this case, only one case with r = 1 appears
and the index k is unnecessary. Three generators are given by

S̃+(1; 1) = S̃1 (= S̃+), S̃−(1; 1) = S̃1 (= S̃−), S̃0(1; 1) = 1

2
S̃1

1 (= S̃0). (5.1)

The orthogonal set {|ss0〉} is given in the relation

|ss0〉 =
√

(s − s0)!
(2s)!(s + s0)!

(̃
S+

)s+s0 |s〉. (5.2)

Hereafter, we will omit the total fermion number N and the notations used in Sect. 6 of (I) will be
adopted, for example, S̃±,0 in the relation (5.1).

Next, we will discuss the SU (3) Lipkin model, i.e., n = 3 and m = 1. In this case, the case with
r = 1 also appears and k is unnecessary. The eight generators are shown in the form

S̃+(1; 1) = S̃2
1 (= S̃+), S̃−(1; 1) = S̃1

2 (= S̃−), S̃0(1; 1) = 1

2

(̃
S2

2 − S̃1
1

)
(= S̃0), (5.3a)

R̃
1
2 ,+ 1

2 (1; 1) = S̃2 (= R̃
1
2 ,+ 1

2 ), R̃
1
2 ,− 1

2 (1; 1) = S̃1 (= R̃
1
2 ,− 1

2 ),

R̃ 1
2 ,+ 1

2
(1; 1) = S̃2 (= R̃ 1

2 ,+ 1
2
), R̃ 1

2 ,− 1
2
(1; 1) = S̃1 (= R̃ 1

2 ,− 1
2
), (5.3b)
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P̃0(1; 1) = 1

2

(̃
S2

2 + S̃1
1

)
(= R̃0). (5.3c)

The minimum weight state |ρ, σ 〉 obeys

S̃−|ρ, σ 〉 = R̃ 1
2 ,± 1

2
|ρ, σ 〉 = 0, S̃0|ρ, σ 〉 = −σ |ρ, σ 〉, R̃0|ρ, σ 〉 = −ρ|ρ, σ 〉. (5.4)

Therefore, we have the state with the eigenvalue (σ , σ0) in the form

|ρ, σσ0〉 =
√

(σ − σ0)!
(2σ)!(σ + σ0)!

(̃
S+

)σ+σ0 |ρ, σ 〉. (5.5)

With the use of the state (5.5), we define the following state:

|j, ss0; ρσ 〉 =
∑
j0σ0

〈jj0σσ0|ss0〉̃Rj,j0 |ρ, σσ0〉, (5.6)

R̃j,j0 =
√

(2j)!
(j + j0)!(j − j0)!

(
R̃

1
2 ,+ 1

2

)j+j0 (
R̃

1
2 ,− 1

2

)j−j0
. (5.7)

Here, R̃j,j0 denotes the tensor operator with rank j, i.e., j = 1/2, 1, 3/2, . . . and j0 = −j, −j +
1, . . . , j − 1, j. It is easily verified that |j, ss0; ρσ 〉 satisfies

R̃0|j, ss0; ρσ 〉 = (3j − ρ)|j, ss0; ρσ 〉, (5.8a)

S̃
2|j, ss0; ρσ 〉 = s(s + 1)|j, ss0; ρσ 〉, (5.8b)

S̃0|j, ss0; ρσ 〉 = s0|j, ss0; ρσ 〉, (5.8c)

	̃su(3)|j, ss0; ρσ 〉 =
(

σ(σ + 1) + 1

3
ρ(ρ + 3)

)
|j, ss0; ρσ 〉. (5.8d)

Therefore, we can learn that the set {|j, ss0; ρσ 〉} is orthogonal and, as is well known, this set is
specified by five quantum numbers characterizing the SU (3) algebra.

Our third concern is related to the SU (4) Lipkin model, i.e., n = 4 and m = 2. For r = 1 and 2,
the SU (2) subalgebras can be expressed as

S̃+(2; 1) = S̃3
2 (= S̃+(1)), S̃−(2; 1) = S̃2

3 (= S̃−(1)), S̃0(2; 1) = 1

2

(̃
S3

3 − S̃2
2

)
(= S̃0(1)),

(5.9a)

S̃+(2; 2) = S̃1 (= S̃+(2)), S̃−(2; 2) = S̃1 (= S̃−(2)), S̃0(2; 2) = 1

2
S̃1

1 (= S̃0(2)). (5.9b)

The addition can be denoted as

S̃±,0 = S̃±,0(1) + S̃±,0(2). (5.10)

The scalar and the vector operators, which appear in the case with (r = 1, k = 2), are written down
as

R̃0,0(2; 1, 2) = S̃3
1 + S̃2 (= R̃+), R̃0,0(2; 1, 2) = S̃1

3 + S̃2 (= R̃−), (5.11)

R̃1,+1(2; 1, 2) = −S̃3 (= R̃1,+1), R̃1,+1(2; 1, 2) = −S̃3 (= R̃1,+1), (5.12)

R̃1,0(2; 1, 2) = 1√
2

(̃
S3

1 − S̃2) (= R̃1,0), R̃1,0(2; 1, 2) = 1√
2

(̃
S1

3 − S̃2
)

(= R̃1,0), (5.13)
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R̃1,−1(2; 1, 2) = S̃2
1 (= R̃1,−1), R̃1,−1(2; 1, 2) = S̃1

2 (= R̃1,−1). (5.14)

The operator P̃0(2; 1) can be expressed as

P̃0(2; 1) = 1

2

(̃
S3

3 + S̃2
2 − S̃1

1

)
(= R̃0). (5.15)

The above are 15 generators of the SU (4) algebra. In Sect. 4, we mentioned that the scalar operators
form the SU (m) algebra, in which the present case is given by the SU (2) algebra (̃R±,0). Of course,
we have [

any of R̃±,0, any of S̃±,0
] = 0. (5.16)

Then, as the Hermitian operators commuting with the Casimir operator 	̃SU (4), we can choose (̃S
2
, S̃0)

and (R̃
2
, R̃0). By putting σ0 = −σ in the state (6.13) of (I), we obtain the state |ρ, σ 1, σ 2, σσ0 = −σ 〉

and, then, the eigenstate for R̃
2
, R̃0, S̃

2
, and S̃0:

|ρρ0, σ 1, σ 2, σσ0〉 =
√

(ρ − ρ0)!
(2ρ)!(ρ + ρ0)!

√
(σ − σ0)!

(2σ)!(σ + σ0)!
× (̃

R+
)ρ+ρ0 (̃S+

)σ+σ0 |ρ, σ 1, σ 2, σσ0 = −σ 〉. (5.17)

The present case is the simplest: m = 1. Therefore, the state (5.17) is easily obtained.
Now, we must discuss the vector operators (5.12)–(5.14). As was already mentioned, there exist

two SU (2) algebras satisfying the relation (5.16). We started the present form in the SU (2) algebra
(̃S±,0). However, at the present stage, we have no reason to give the treatment for (̃S±,0) priority over
that for (̃R±,0). In other words, we must treat these two on an equal footing. Although the vector
operators (5.12)–(5.14) are given for (̃S±,0), they satisfy the relation[

R̃+, R̃1,ν ] = 0,
[

R̃0, R̃1,ν ] = νR̃1,ν (ν = ±1, 0). (5.18)

Then, by calculating [̃R−, R̃1,ν] and [̃R−, [̃R−, R̃1,ν]], we can present the vector operators for (̃R±,0):

R̃1,1;1,1 = −S̃3 (= R̃1,1), R̃1,1;1,0 = 1√
2

(̃
S3

2 − S̃1) (
= 1√

2

(̃
S+(1) − S̃+(2)

))
,

R̃1,1;1,−1 = S̃1
2 (= R̃1,−1), (5.19)

R̃1,0;1,1 = 1√
2

(̃
S3

1 − S̃2) (= R̃1,0),

R̃1,0;1,0 = − 1√
2

(̃
S3

3 − S̃2
2 − S̃1

1

) (= − (̃
S0(1) − S̃0(2)

))
,

R̃1,0;1,−1 = 1√
2

(̃
S1

3 − S̃2
)

(= R̃1,0), (5.20)

R̃1,−1;1,1 = S̃2
1 (= R̃1,−1), R̃1,−1;1,0 = − 1√

2

(̃
S2

3 − S̃1
) (

= − 1√
2

(̃
S−(1) − S̃−(2)

))
,

R̃1,−1;1,−1 = −S̃3 (= R̃1,1). (5.21)

Here, R̃1,μ;1,ν (μ, ν = ±1, 0) denotes the tensor operator with (1, μ) for (̃S±,0) and (1, ν) for (̃R±,0).
The operator R̃1,μ;1,ν satisfies (̃

R1,μ;1,ν)∗ = (−)μ+νR̃1,−μ;1,−ν . (5.22)
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Therefore, we have∑
μν

(−)1−μ(−)1−νR̃1,μ;1,νR̃1,−μ;1,−ν =
∑
μν

R̃1,μ;1,νR̃1,μ;1,ν =
∑
μν

R̃1,μ;1,νR̃1,μ;1,ν

= 2	̃SU (4) − S̃
2 − R̃

2
. (5.23)

Here, we used the relations (5.19)–(5.21).
In order to obtain the linearly independent basis for the orthogonal set for the SU (4) algebra, the

basis should be expressed in terms of nine parameters (if possible, quantum numbers) including
(ρ, σ 1, σ 2). In the state |ρρ0, σ 1, σ 2, σσ0〉 given in the relation (5.17), six quantum numbers appear.
Therefore, the linearly independent basis may be obtained by applying a certain operator expressed
in terms of three parameters on the state (5.17). To search for this operator, it may be important to
treat (̃R±,0) on an equal footing with (̃S±,0). First, we note the relation[

S̃+,
(−S̃3)l

]
=

[
R̃+,

(−S̃3)l
]

= 0, (5.24a)[
S̃0,

(−S̃3)l
]

=
[

R̃0,
(−S̃3)l

]
= l

(−S̃3)l
(l = 0, 1, 2, . . .). (5.24b)

The relation (5.24) suggests that we can construct the tensor operator with rank l which is common
to (̃S±,0) and (̃R±,0), and if we denote it as R̃l,l0;l,λ0 , it can be given in the form

R̃l,l0;l,λ0 =
√

(l + l0)!(l − l0)!
(2l)!

√
(l + λ0)!(l − λ0)!

(2l)!
(

⇀

R−
)l−λ0

(
⇀

S −
)l−l0 (−S̃3)l

. (5.25)

Here, we used the notations for Õ and Ã in the form(
⇀

O

)n

Ã = [
Õ, . . . ,

[
Õ,

[
Õ︸ ︷︷ ︸

n

, Ã
]]

. . .
]
. (5.26)

Then, operating R̃l,l0;l,λ0 on the state |ρρ0, σ 1, σ 2, σσ0〉, we have

|lλ0, ll0, ρρ0, σ 1, σ 2, σσ0〉 = R̃l,l0;l,λ0 |ρρ0, σ 1, σ 2, σσ0〉. (5.27)

Certainly, R̃l,l0;l,λ0 is expressed in terms of three parameters. With the use of the Clebsch–Gordan
coefficients, we obtain the eigenstate of S̃

2
, S̃0, R̃

2
, R̃0, and 	̃su(4):

|l, rr0, ss0, σ ; ρσ 1σ 2〉 =
∑
λ0ρ0

∑
l0σ0

〈lλ0ρρ0|rr0〉〈ll0σσ0|ss0〉|lλ0, ll0, ρρ0, σ 1, σ 2, σσ0〉,

l = |r − ρ|, . . . , (r + ρ) and |s − σ |, . . . , (s + σ). (5.28)

The eigenvalues are given by s(s + 1), s0, r(r + 1), r0, and σ 1(σ 1 + 1) + σ 2(σ 2 + 1) + ρ(ρ + 4)/2,
respectively. Except for l, the eight parameters are the quantum numbers. Of course, σ = |σ 1 −
σ 2|, . . . , (σ 1 +σ 2). Therefore, the set composed of the states (5.28) may be the linearly independent
basis for the SU (4) Lipkin model.

Finally, we will discuss the case with n = 5, i.e., m = 2. This case also contains two SU (2)

algebras:

S̃+(2; 1) = S̃4
3 (= S̃+(1)), S̃−(2; 1) = S̃3

4 (= S̃−(1)), S̃0(2; 1) = 1

2

(̃
S4

4 − S̃3
3

)
(= S̃0(1)),

(5.29a)
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S̃+(2; 2) = S̃2
1 (= S̃+(2)), S̃−(2; 2) = S̃1

2 (= S̃−(2)), S̃0(2; 2) = 1

2

(̃
S2

2 − S̃1
1

)
(= S̃0(2)).

(5.29b)

Then, the addition of the two is expressed as

S̃±,0 = S̃±,0(1) + S̃±,0(2). (5.30)

The scalar operators are as follows:

R̃0,0(2; 1, 2) = S̃4
2 + S̃3

1 (= R̃+), R̃0,0(2; 1, 2) = S̃2
4 + S̃1

3 (= R̃−). (5.31)

In the present case, two spinors appear:

R̃
1
2 ,+ 1

2 (2; 1) = S̃4 (= R̃
1
2 ,+ 1

2 (1)), R̃
1
2 ,− 1

2 (2; 1) = S̃3 (= R̃
1
2 ,− 1

2 (1)),

R̃ 1
2 ,+ 1

2
(2; 1) = S̃4 (= R̃ 1

2 ,+ 1
2
(1)), R̃ 1

2 ,− 1
2
(2; 1) = S̃3 (= R̃ 1

2 ,− 1
2
(1)), (5.32a)

R̃
1
2 ,+ 1

2 (2; 2) = S̃2 (= R̃
1
2 ,+ 1

2 (2)), R̃
1
2 ,− 1

2 (2; 2) = S̃1 (= R̃
1
2 ,− 1

2 (2)),

R̃ 1
2 ,+ 1

2
(2; 2) = S̃2 (= R̃ 1

2 ,+ 1
2
(2)), R̃ 1

2 ,− 1
2
(2; 2) = S̃1 (= R̃ 1

2 ,− 1
2
(2)). (5.32b)

The vector operators are given as

R̃1,+1(2; 1, 2) = −S̃4
1 (= R̃1,+1), R̃1,+1(2; 1, 2) = −S̃1

4 (= R̃1,+1), (5.33)

R̃1,+0(2; 1, 2) = 1√
2

(̃
S4

2 − S̃3
1

)
, R̃1,0(2; 1, 2) = 1√

2

(̃
S2

4 − S̃1
3

)
, (5.34)

R̃1,−1(2; 1, 2) = S̃3
2 (= R̃1,−1), R̃1,−1(2; 1, 2) = S̃2

3 (= R̃1,−1). (5.35)

The operators P̃0(2; 1) and P̃0(2; 2) can be expressed as

P̃0(2; 1) = 1

2

(̃
S4

4 + S̃3
3

)
, P̃0(2; 2) = 1

2

(̃
S2

2 + S̃1
1

)
, (5.36)

i.e.,

R̃0(1) = P̃0(2; 1) − P̃0(2; 2) = 1

2

(̃
S4

4 + S̃3
3 − S̃2

2 − S̃1
1

)
(= R̃0), (5.37a)

R̃0(2) = P̃0(2; 1) + P̃0(2; 2) = 1

2

(̃
S4

4 + S̃3
3 + S̃2

2 + S̃1
1

)
. (5.37b)

With the use of the above relations, we will show the results for the case with n = 5 simply in
comparative argument with the case with n = 4.

In (I), the minimum weight state in the present case is given by |ρ1, ρ2, σ 1, σ 2〉, where ρ1, ρ2,
σ 1, and σ 2 denote the eigenvalues of R̃0(1) (= R̃0), R̃2(2), S̃0(1), and S̃0(2), respectively. The set
(̃R±,0) also forms the SU (2) algebra obeying the same relation as that given in the relation (5.16),
and there also exists one set of the vector for (̃S±,0). Therefore, the treatment for these two may be
similar to the case with n = 4. The difference between these two can be found in the appearance of
the Hermitian operator R̃0(2) and two sets of spinors. Under the same idea as in the case with n = 4,
we introduce R̃

1
2 ,μ; 1

2 ,ν :

R̃
1
2 ,+ 1

2 ; 1
2 ,+ 1

2 = S̃4, R̃
1
2 ,− 1

2 ; 1
2 ,+ 1

2 = S̃3, R̃
1
2 ,+ 1

2 ; 1
2 ,− 1

2 = S̃2, R̃
1
2 ,− 1

2 ; 1
2 ,− 1

2 = S̃1. (5.38)
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Then, we can define the following scalar operator for (̃S±,0) and (̃R±,0):

R̃0,0;0,0 = 1

2

∑
μν

(−)
1
2 −μ(−)

1
2 −νR̃

1
2 ,μ; 1

2 ,νR̃
1
2 ,−μ; 1

2 ,−ν = S̃4S̃1 − S̃3S̃2. (5.39)

The above should be compared with the relation (5.23). Further, we have the operator R̃j,j0;j,κ0 :

R̃j,j0;j,κ0 =
√

(j + j0)!(j − j0)!
(2j)! ·

√
(j + κ0)!(j − κ0)!

(2j)!
(

⇀

R−
)j−κ0

(
⇀

S −
)j−j0 (̃

S4)2j

(
j = 0,

1

2
, 1,

3

2
, . . .

)
. (5.40)

The operators (5.39) and (5.40) satisfy[
R̃0(2),

(̃
R0,0;0,0)n0 R̃j,j0;j,κ0

]
= 5(n0 + j)

(̃
R0,0;0,0)n0 R̃j,j0;j,κ0 . (5.41)

In this connection, we have[
R̃0(2), R̃l,l0;l,λ0

]
= [

R̃0(2), R̃+
] = [

R̃0(2) , S̃+(1)
] = [

R̃0(2), S̃+(2)
] = 0. (5.42)

Of course, R̃l,l0;l,λ0 is obtained by replacing (−S̃3) with S̃4 in the relation (5.25).
The above operators give us the following state:

|ll0λ0, n0jj0κ0, ρ1ρ1
0 , ρ2, σ 1σ 1

0 , σ 2σ 2
0 〉

=
(

R̃l,l0;l,λ0
) [(̃

R0,0;0,0)n0 R̃j,j0;j,κ0
] (̃

R+
)ρ1+ρ1

0
(̃
S+(1)

)σ 1+σ 1
0
(̃
S+(2)

)σ 2+σ 2
0 |ρ1, ρ2, σ 1, σ 2〉.

(5.43)

We can see that the state (5.43) is expressed in terms of 14 parameters including ρ1, ρ2, σ 1, and σ 2.
By using the angular momentum coupling rule, the state (5.43) can be rewritten to the form with the
eigenvalues of S̃

2
, S̃0, R̃

2
, and R̃0, which is similar to the state (5.28). Of course, the states (5.43)

form the linearly independent basis for the SU (5) Lipkin model. The relations (5.41) and (5.42)
teach us that the state (5.43) is the eigenstate of R̃0(2) with the eigenvalue 5(n0 + j)−ρ2. The above
is an outline of our idea for the SU (5) Lipkin model.

Through the above arguments, we can learn some characteristic features of the Lipkin model.
Classification of the model into two cases with n = 2m and 2m+1 may be essential for understanding
the features demonstrated by the model. The number of SU (2) subalgebras is equal to m for both
cases and, further, they contain the SU (m) subalgebra. In the case with n = 2m + 1, there exists the
degree of freedom related to R̃0(m) and its eigenvalues are influenced by the spinors, which do not
exist in the case with n = 2m.

6. Concluding remarks

In these two papers, we have discussed formal aspects of the SU (n) Lipkin model in rather general
form. In (I), we were mainly concerned with the determination of the minimum weight states. In
(II), after re-forming the model in the frame of spherical tensor representation, we re-formulated
the model by classifying it into two cases: n = 2m and 2m + 1. In particular, in Sect. 5, we gave
some concrete results for the cases with n = 2, 3, 4, and 5, for which, in (I), we discussed only the
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Fig. 1. The single-particle level schemes depicted schematically in the case of the SU (2m) Lipkin model (left)
and the SU (2m + 1) Lipkin model (right).

minimum weight states. As a concluding remark, we will show the connection between the SU (2m)

and SU (2m + 1) Lipkin models directly.
Concerning the single-particle level schemes, we regard these two as the models illustrated in Fig. 1.

Let the single-particle level specified by the integer l (l = 0, 1, 2, . . . , 2m − 1) in the SU (2m) Lipkin
model be shifted to the integer (l + 1) in the SU (2m + 1) Lipkin model. This situation resembles
that of the level schemes of two supersymmetric partner potentials V1(x) = W 2(x)−W ′(x)/

√
2 and

V2(x) = W 2(x)+W ′(x)/
√

2 with unit mass in one-dimensional supersymmetric quantum mechanics
(see, for example, [4]). The investigation of the relation between the Lipkin models with SU (2m) and
SU (2m+1) algebraic structures and supersymmetric quantum mechanics may be one for interesting
future studies if the relation exists.

The zeroth level cannot have any counterpart in the SU (2m) Lipkin model. As a possible candidate,
the following correspondence may be permitted:

S̃p −→ S̃p+1
1 , S̃p −→ S̃1

p+1, S̃p
q −→ S̃p+1

q+1 − δpqS̃1
1 (p, q = 1, 2, . . . , 2m − 1). (6.1)

The set { S̃p+1
1 , S̃1

p+1, S̃p+1
q+1 } forms the SU (2m) algebra and it becomes the U (2m) algebra, if∑2m

p=1 S̃p
p is included. Further, if the operators S̃p and S̃p (p = 1, 2, . . . , 2m) are included, it becomes

the SU (2m + 1) algebra. In fact, the total number of generators is given by

[(2m)2 − 1] + 1 + 2 · (2m) = (2m + 1)2 − 1. (6.2)
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Under the correspondence (6.1), 	̃SU (2m) given in the relation (3.1) leads us to

	̃SU (2m) −→ 1

2

⎡⎢⎣ 2m∑
p=2

p−1∑
q=1

[
S̃p

q , S̃q
p

]
+ +

2m∑
p=1

(̃
Sp

p

)2 − 1

2m

⎛⎝ 2m∑
p=1

S̃p
p

⎞⎠2
⎤⎥⎦ . (6.3)

Adding the operators S̃p, S̃p, and
∑2m

p=1 S̃p
p to the form (6.3) in terms of

∑2m
p=1[ S̃p, S̃p ]+/2 and

(1/(2m(2m + 1))(
∑2m

p=1 S̃p
p )2/2, we obtain 	̃SU (2m+1).

As the SU (m) subalgebra, we treated the simplest case, m = 2. In the near future, we will report
some results in the cases with m > 2. It may be interesting to investigate how the cases with m = 3
and 4 relate to the Lipkin models with n = 3 and 4, which were discussed in this paper.
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Appendix. The SU (m) algebra in the SU (n) Lipkin model

The aim of this appendix is to show that, as a subalgebra, the SU (n) Lipkin model contains the
SU (m) algebra. The discussion starts in the case with n = 2m. We define the following set of
operators specified by p and q (p, q = 1, 2, . . . , m − 1):

R̃p(m) = S̃2m−2p+1
1 + S̃2m−2p, R̃p(m) = S̃1

2m−2p+1 + S̃2m−2p, (A.1a)

R̃p
q(m) = S̃2m−2p+1

2m−2q+1 + S̃2m−2p
2m−2q − δpqS̃1

1 . (A.1b)

The above set obeys the commutation relation

[ R̃p(m), R̃q(m) ] = R̃p
q(m), (A.2a)

[ R̃p
q(m), R̃r(m) ] = δqrR̃p(m) + δpqR̃r(m), (A.2b)

[ R̃p
q(m), R̃s

r(m) ] = δqsR̃
p
r (m) − δprR̃s

q(m). (A.2c)

If R̃ and m in the relation (A.2) read S̃ and n in the relation (2.3) in (I), respectively, we can see
that the set (A.1) obeys the SU (m) algebra. Of course, the total number of generators is equal to
(m − 1)2 + 2(m − 1) = m2 − 1.

In the case with p < q, let p and q in the relation (A.1a) read r and k , respectively, (r = 1, 2, . . . , m−
1, k = r +1, r +2, . . . , m−1). Then, R̃p

q(m) becomes R̃0,0(m; r, k) given in the relation (2.9) for the
case with k = r +1, r +2, . . . , m−1. Further, we can regard R̃p(m) as R̃0,0(m; r, m). In the case with
p > q, if p and q are exchanged with each other, we have the Hermitian conjugate of R̃0,0(m; r, k),
i.e., R̃0,0(m; r, k). In the case with p = q, p reads r, and then R̃p

p(m) reduces to 2P̃0(m; r) given in
the relation (3.22). Of course, P̃0(m; r) is essentially equivalent to R̃0(m; r). Thus, in the case with
n = 2m, we have the SU (m) subalgebra in the SU (n) Lipkin model.

Next, we discuss the case with n = 2m+1. First, we define the following set of operators specified
by p and q (p, q = 1, 2, . . . , m):

R̃p
q(m) = S̃2m−2p+2

2m−2q+2 + S̃2m−2p+1
2m−2q+1 . (A.3)
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We have the commutation relation

[ R̃p
q(m), R̃s

r(m) ] = δqsR̃
p
r (m) − δprR̃s

q(m). (A.4)

The relation (A.4) tells us that the set {̃Rp
q(m)} obeys the well-known U (m) algebra. In order to get

the SU (m) algebra, we define the following operator:

R
p
q(m) = R̃p

q(m) − δpq
1

m

m∑
r=1

R̃r
r(m). (A.5)

The set (A.5) satisfies

[ R
p
q(m), R

s
r(m) ] = δqsR

p
r (m) − δprR

s
q(m), (A.6a)

m∑
p=1

R
p
p(m) = 0. (A.6b)

The relation (A.6b) tells us that, in the type R
p
p(m), we can choose (m − 1) independent operators.

Therefore, the set {Rp
q(m)} obeys the SU (m) algebra. Of course, the total number of generators is

equal to m2 − 1.
In the case with p < q, if p and q read r and k , respectively, R

p
q(m) (= R̃p

q(m)) becomes R̃0,0(m; r, k).
In the case with p > q, if p and q are exchanged each other, we obtain the Hermitian conjugate
of R̃0,0(m; r, k), i.e., R̃0,0(m; r, k). In the case with p = q, p reads r and then R

p
p(m) reduces to

2(P̃0(m; r) − (1/m) · ∑m
r′=1 P̃0(m; r′)). With the use of Cr,r′(m) given in the relation (3.10), the

relation (A.5) gives us

m∑
r′=1

Cr,r′(m)R
r′
r′(m) = 2

(
1 − δr,m

)
Q̃0(m; r). (A.7)

Therefore, we have

Q̃0(m; r) = 1

2

m∑
r′=1

Cr,r′(m)R
r′
r′(m) for r = 1, 2, . . . , m − 1. (A.8)

For Q̃0(m; m) = (
√

m)−1 ∑m
r=1 R̃r

r(m), the following relation is derived:

[ R̃p
q(m), Q̃0(m; m) ] = 0 for any p and q. (A.9)

The operator Q̃0(m; r) is essentially equivalent to R̃0(m; r). The operator Q̃0(m; m) plays a role
similar to the total fermion number Ñ (n) in the SU (n) Lipkin model. Thus, we know that the case
with n = 2m + 1 contains the SU (m) algebra in the SU (n) Lipkin model.
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