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We show the advantages of modular and hierarchical design in obtaining fault-tolerant software. Modularity enables the
identification of faulty software units simplifying key operations, like software removal and replacement. We describe three
approaches to repair faulty software based on replication, namely, Passive Replication, N-Version Replication, and Active
Replication, based on modular components. We show that the key construct to represent these tactics is the ability to make ad
hoc changes in software topologies. We consider hierarchical mobility as a useful operation to introduce new software units for
replacing faulty ones. For illustration purposes, we use connecton, a hierarchical, modular, and self-modifying software specification
formalism, and its implementation in the Desmos framework.

1. Introduction

Replication is commonly used as the basis for enabling fault
tolerance. In this technique, critical software modules are
replicated, and, upon fault detection, the erroneous units are
removed and service is provided by the remaining correct
modules. There are several tactics for supporting replication
that differ in themanner service is kept active upon a fault.We
consider here Passive Replication, Active Replication [1], and
N-Version programming [2] approaches. The development of
fault-tolerant software depends on the ability to identify and
remove the faulty code.

Modular and hierarchical software enables the develop-
ment of software units with well-defined input and output
interfaces [3]. Due to these characteristics, modular software
units are easy to identify and, if required, to replace. In
this paper we exploit the ability of modular software to be
used as a framework for representing resilient software. We
note that object-oriented programming does not support full
modularity, as defined in this work, since objects only provide
input interface missing output interfaces.

The ability to repair a network of software units is enabled
by the capability to support structural changes in the software
topology [4]. In particular, the basic operation required to

achieve software repair is the ability to remove a faulty unit
and eventually to replace it by a nonfaulty instance.

We have developed connectons [3], a modular and hier-
archical approach to software development that is based on
the request-reply principles of object-oriented programming.
These characteristics make connectons compatible with the
current approaches of object-oriented software design while
improving this design with modular constructs.

Connectons support the basic primitives for replacing
faulty software units and to make ad hoc changes in software
topologies. In particular, connectons can represent hierarchi-
cal mobility [5], a useful construct to replace or to update
software units during runtime. Desmos, a Smalltalk imple-
mentation of connectons, provides full support for modular
and hierarchical software with dynamic topology.

Common fault-tolerance techniques based on replication
are described in Desmos providing the proof of concept for
modular and hierarchical development of resilient software.
A more general discussion on software fault tolerance and
reliability can be found in [6–8].

The paper is organized as follows. Section 2 provides a
formal definition of basic and ensemble connectons. Desmos,
the Smalltalk implementation of connectons, is described in
Section 3. Section 4 provides the realization of the Passive
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Replication tactic using connectons. Active Replication is
described in Section 5. N-Version Replication using com-
ponent mobility is discussed in Section 6. A comparison
of these approaches and a description of related work are
presented in Section 7. Conclusions and futurework are given
in Section 8.

2. Connectons

Connectons define two types of software units: basic and
ensemble connectons. Basic connectons provide the actual
method invocation, whereas ensembles are a composition
of connectons and provide message passing. In component
composition, basic and ensemble connectons can be used
indistinctly. Connectons support a modular and hierarchi-
cal type of software construction. Ensemble definition is
dynamic, enabling the definition of self-modifying software
topologies. We refer here to software units as connectons,
while the connections between connectons are referred to as
links or channels.

2.1. Basic Connecton. Each connecton has its own descrip-
tion, referred to as the connecton model. Let ̂𝐵 be the set of
names of basic connectons. The connecton model associated
with 𝜒 ∈ ̂𝐵 is given by

𝑀𝜒 = (𝑖𝑛𝐺𝑎𝑡𝑒𝑠, {𝑖𝑛𝑆𝑖𝑔𝑛𝑔} , 𝑆, 𝑠0, {𝑎𝑔} , 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠,

{𝑜𝑢𝑡𝑆𝑖𝑔𝑛𝑘} , {𝑜𝑢𝑡𝐼𝑆𝑖𝑔𝑛𝑘} , {𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘})𝜒
,

(1)

where 𝑖𝑛𝐺𝑎𝑡𝑒𝑠 is the set of connecton input gates, 𝑖𝑛𝑆𝑖𝑔𝑛𝑔 is
the input-output signature of every gate 𝑔 in 𝑖𝑛𝐺𝑎𝑡𝑒𝑠, 𝑆 is the
set of connecton states, 𝑠0 is the connecton initial state, 𝑎𝑔 is
an action for every gate 𝑔 belonging to set 𝑖𝑛𝐺𝑎𝑡𝑒𝑠, 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠
is the set of connecton output gates, 𝑜𝑢𝑡𝑆𝑖𝑔𝑛𝑘 is the output-
to-input signature of every gate 𝑘 in 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠, 𝑜𝑢𝑡𝐼𝑆𝑖𝑔𝑛𝑘 is
intermediate signature of every output gate 𝑘 ∈ 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠,
and 𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 is the output function of every gate 𝑘 in
𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠.

An input signature is a 2-tuple containing the range set
of the incoming parameters and the range set of outgoing
parameters. For example, if input gate 𝑔 receives real values
R and responds by sending integer values I, then its input
signature is given by 𝑖𝑛𝑆𝑖𝑔𝑛𝑔 = (R, I).

The function 𝑎𝑔 on input gate 𝑔 of signature (𝐼𝑔, 𝑂𝑔) is
expressed by

𝑎𝑔 : 𝑆 × 𝐼𝑔 󴁄󴀼 𝑆 ×𝑂𝑔. (2)

An action corresponds to a method in the object paradigm.
Action 𝑎𝑔 receives input values from (𝑆 × 𝐼𝑔), produces a
change in the connecton state, and returns a value from 𝑂𝑔.
As a side effect, an action on a connecton can trigger other
actions on the connectons linked to it. Actions are considered
here as stochastic functions. Although actions define partially
a deterministic behavior, their overall behavior is generally
stochastic since it depends on the results produced by the
external connectons.These values are usually unknown, since
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Figure 1: Position connecton.

they depend on the specific topology a connecton is part of
and on the links that are established by the topology.

An output signature is a 2-tuple containing the range
set of the outgoing parameters and the range set of incom-
ing parameters. Output functions convert the set of values
received by an output gate. These functions are useful when
several channels are linked to an output gate and, in general,
to convert values without creating special connectons.

The output function 𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 on output gate 𝑘 of
intermediate signature 𝐷𝑘 and output signature (𝑂𝑘, 𝐼𝑘) is
expressed by

𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 : 𝐷𝑘

∗
󳨀→ 𝐼𝑘, (3)

where𝐷𝑘
∗ is a sequence of values from set𝐷𝑘.

Given an output gate 𝑘 with output signature (𝑂𝑘, 𝐼𝑘),
we use the following definitions to simplify the specification,
when the output function 𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 and the intermediate
input signature𝐷𝑘 are omitted:

𝐷𝑘 = 𝐼𝑘

𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 ([]) = ⌀

𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 ([⌀ | 𝑡]) = 𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 (𝑡)

𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 ([ℎ | ]) = ℎ,

(4)

where⌀ represents the absence of value and [] represents the
empty list.

2.1.1. Position Connecton. To illustrate an example of
a basic connecton, we employ the Position entity
represented in Figure 1. This connecton has three input
gates: time:ax:, x:, and state:, corresponding to
actions defined in the connecton. Position has also the
output gate backup: corresponding to the backup services
the connecton can request to the exterior. Position receives
piecewise constant acceleration values and computes the
current position 𝑥 by double integrating the input signal.
For simplicity we describe here one-dimension positions. 2D
coordinates are used in the next sections.

Position state keeps the time of the last update (𝑡𝑖𝑚𝑒),
position (𝑥), velocity (V𝑥), and acceleration (𝑎𝑥) values. This
connecton is described by

𝑀Position = ({state :, time : ax :, x :},

{(R4
, 0), (R2

, 0), (R,R)},
R4
, (𝑡𝑖𝑚𝑒 = 0, 𝑥 = 0, V𝑥 = 0, 𝑎𝑥 = 0),

{𝑎𝑐𝑡𝑖𝑜𝑛state:, 𝑎𝑐𝑡𝑖𝑜𝑛time:ax:, 𝑎𝑐𝑡𝑖𝑜𝑛x:},
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{backup :}, {(R4
, 0)}

)

The state is set by action:

𝑎𝑐𝑡𝑖𝑜𝑛state:(𝑠)

𝑡𝑖𝑚𝑒, 𝑥, V𝑥, 𝑎𝑥 ← 𝑠

State variables are updated when the acceleration changes
by the action:

𝑎𝑐𝑡𝑖𝑜𝑛time:ax:(𝑡, 𝑎)

𝛿 ← 𝑡 − 𝑡𝑖𝑚𝑒

𝑥 ← 𝑥 + V𝑥𝛿 + (𝑎𝑥/2)𝛿
2

V𝑥 ← V𝑥 + 𝑎𝑥𝛿
𝑎𝑥 ← 𝑎

𝑡𝑖𝑚𝑒 ← 𝑡

𝑜𝑢𝑡 backup : ⟨𝑡𝑖𝑚𝑒, 𝑥, V𝑥, 𝑎𝑥⟩

This action sends the current state to the outside through
gate backup:, so it can be stored in other connectons for
backup purposes. The current position at time 𝑡 is computed
by

𝑎𝑐𝑡𝑖𝑜𝑛x:(𝑡)

𝛿 ← 𝑡 − 𝑡𝑖𝑚𝑒

↑ 𝑥 + V𝑥𝛿 + (𝑎𝑥/2)𝛿
2

This action does not change the state variables and thus the
current state is not to be saved.

2.2. Ensemble Connecton. Hierarchical composition of sys-
tems has been used as a powerful heuristic to manage
complex systems. We consider that connectons can be hier-
archically composed, being the resultant connecton indis-
tinguishable from the basic connecton of the last section.
This ability permits handling in a homogeneous form both
basic and aggregated components. A connecton ensemble
(network) is a complex connecton built by the composition
of other connectons. Let ̂𝐸 be the set of names corresponding
to connecton ensembles, constrained to ̂𝐸∩ ̂𝐵 = 0.Themodel
of the ensemble connecton 𝜒 ∈ ̂

𝐸 is defined by

𝑀𝜒 = (𝑖𝑛𝐺𝑎𝑡𝑒𝑠, {𝑖𝑛𝑆𝑖𝑔𝑛𝑔} , {𝑖𝑛𝐼𝑆𝑖𝑔𝑛𝑔} ,

{𝑖𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑔} , 𝜀,𝑀𝜀, 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠, {𝑜𝑢𝑡𝑆𝑖𝑔𝑛𝑘} ,

{𝑜𝑢𝑡𝐼𝑆𝑖𝑔𝑛𝑘} , {𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘})𝜒
,

(5)

where 𝑖𝑛𝐺𝑎𝑡𝑒𝑠 is the set of the ensemble input gates, 𝑖𝑛𝑆𝑖𝑔𝑛𝑔
is the input-output signature of every gate 𝑔 ∈ 𝑖𝑛𝐺𝑎𝑡𝑒𝑠,
𝑖𝑛𝐼𝑆𝑖𝑔𝑛𝑔 is the intermediate signature of every input gate
𝑔 ∈ 𝑖𝑛𝐺𝑎𝑡𝑒𝑠, 𝑖𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑔 is the input function of every
gate 𝑔 ∈ 𝑖𝑛𝐺𝑎𝑡𝑒𝑠, 𝜀 ∈ 𝜀 is the ensemble executive, 𝑀𝜀 is
the model of the ensemble executive, 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠 is the set of
the ensemble output gates, 𝑜𝑢𝑡𝑆𝑖𝑔𝑛𝑘 is the output-to-input

signature of every gate 𝑘 ∈ 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠, 𝑜𝑢𝑡𝐼𝑆𝑖𝑔𝑛𝑘 is the
intermediate signature of every output gate 𝑘 ∈ 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠,
and 𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘 is the output function of every gate 𝑘 ∈

𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠 with 𝜀 representing the set of all names associated
with ensemble executives, constrained to 𝜀 ∩ ̂𝐵 = 𝜀 ∩ ̂

𝐸 = 0.
Thedefault signatures and input/output functions defined

in Section 2.1 are used to simplify the ensemble specification.
The connecton ensemble has the same type of interface

of a basic connecton making it possible to use ensembles
as components of other ensembles, enabling the hierarchical
composition of connectons. The ensemble structure is man-
aged by a special connecton termed here ensemble executive 𝜖.
The executive keeps a list of the connectons that compose the
ensemble. It also keeps the set of the channels existing among
connectons.This information is not static and can be changed
by executive actions. The model of the ensemble executive is
an augmented connecton model defined by

𝑀𝜀𝜒
= (𝑖𝑛𝐺𝑎𝑡𝑒𝑠, {𝑖𝑛𝑆𝑖𝑔𝑛𝑔} , 𝑆, 𝑠0, {𝑎𝑔} , 𝜎, ̂Σ, 𝑜𝑢𝑡𝐺𝑎𝑡𝑒𝑠,

{𝑜𝑢𝑡𝑆𝑖𝑔𝑛𝑘} , {𝑜𝑢𝑡𝐼𝑆𝑖𝑔𝑛𝑘} , {𝑜𝑢𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘})𝜀𝜒

.

(6)

Function 𝜎 maps the executive state into an ensemble
structure. The structure function 𝜎 is expressed by

𝜎 : 𝑆 󳨀→

̂

Σ. (7)

Each structure Σ ∈ ̂Σ is given by

Σ = (𝐶, {𝑀𝑐} , 𝐿, Ξ) , (8)

where 𝐶 is the set of connectons, 𝑀𝑐 is the model of each
connecton 𝑐 ∈ 𝐶, 𝐿 is a set of channels, and Ξ is the order
function.

Given that the current ensemble structure is a function
of the executive state, any change in this state can cause a
structural change in the ensemble. A channel in 𝐿 is a 3-tuple
defined by

((𝑖, 𝑔𝑖) , (𝑗, 𝑔𝑗) , (dF, rF)) , (9)

where 𝑖 is the name of the source connecton, 𝑔𝑖 is a gate of the
𝑖 connecton, 𝑗 is the receiver connecton, 𝑔𝑗 is a gate of 𝑗, dF
is the channel direct filter, and rF is the channel reverse filter.

Filters transform both the values sent and received by a
connecton. For example, if a connecton works with values
in m⋅s−1 and needs to communicate with another connecton
operating in km⋅h−1, then filtering capabilities provide a
solution to make this conversion without the creation of
additional connectons. In this case, the direct filter would be
given by dF(𝑥) = 3.6𝑥, and the reverse filter would be given
by rF(𝑥) = 𝑥/3.6 to make the conversions m⋅s−1 󴀘󴀯 km⋅h−1.
If omitted, filters are considered to be the identity function.

Ξ : 𝐿

+
→ 𝐿

+ is the order function, where 𝐿+ is the set of
all sets of channels (excluding the empty set).

The order function establishes the order of the outside
calls when several channels are linked from the same output
gate. For simplicity, when omitted, a nondeterministic order
is assumed.

The initial structure of the ensemble Σ0 is given by Σ0 =
𝜎(𝑠0,𝜖).
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Figure 2: Block diagram of the PositionTest ensemble.

2.2.1. Example: Testing Position. To illustrate the definition
of an ensemble, we build a connecton to test the Position
connecton of Section 2.2. The ensemble is depicted in
Figure 2 and it is defined by

𝑀PositionTest = ({x} , {(0,R)} , 𝜖,𝑀𝜖) , (10)

where

𝑀𝜖 = ({x} , {(0,R)} , {𝑠0, 𝑠1, . . .} , 𝑠0, {𝑎𝑐𝑡𝑖𝑜𝑛x} ,

{time : ax :, x :} , {(R2
, 0) , (R,R)} , 𝜎, ̂Σ) .

(11)

The ensemble has a single static structure given by

𝜎 (𝑠0) = 𝜎 (𝑠1) = ⋅ ⋅ ⋅ = (𝐶, {𝑀𝑐} , 𝐿) , (12)

where

𝐶 = {Position}

{𝑀𝑐} = {𝑀Position}

𝐿 = {((PositionTest, x), (PositionTest𝜖, x)),

((PositionTest𝜖, time : ax :),
(Position, time : ax :))

((PositionTest𝜖, x :), (Position, x :))

}

The connecton ensemble, represented in Figure 2, is com-
posed of one Position connecton, linked to the executive
PositionTest𝜖.The ensemble has the input gate x to access
the value of the current position. The executive requests the
position through the call x: 𝑡𝑖𝑚𝑒, where 𝑡𝑖𝑚𝑒 represents the
current time.

The executive updates at a regular interval the current
value of acceleration 𝑎𝑥 through gate time:ax:. This value
is integrated by connecton Position that computes current
position and velocity as described in the last section. Output
gate backup: is not linked and messages sent through this
gate are just ignored.

2.3. Kinds of Structural Changes. Software ensembles can
undergo arbitrary structural changes. These changes include
the ability to add and remove connectons and the capability
to modify the channels among connectons. The kinds of

structural changes are illustratedwith ensemble connecton D
represented in Figure 3. The ensemble D is initially empty
except for the executive D𝜖 as depicted in Figure 3(a). The
executive D𝜖 creates connecton A and adds channels between
the ensembles D and A and between A and D, as repre-
sented in Figure 3(b). The next change involves the addition
of connecton B, the creation of a channel from B to D, the
deletion of the channel from A to D, and the creation of
a channel from A to B, as depicted in Figure 3(c). Finally,
connecton A is deleted and a channel is created from D
to B, as represented in Figure 3(d). We note that since
connectons support hierarchical software units, A and B can
be either basic or ensemble connectons. Due to the reflective
capabilities of the executive, structural decisions can bemade
taking into account the current ensemble structure.This gives
the possibility of making changes based, for example, on the
number of connectons or channels currently present in the
ensemble. Another form of topology adaptation involves the
transmission of a connecton between two ensembles [5] and
is termed here hierarchical mobility.

3. The Desmos Software System

The Desmos software system provides an implementation
of connectons in the Smalltalk language. Smalltalk proved
to be an excellent prototyping language offering many
constructs not commonly provided by mainstream object-
oriented languages, for example, block closures, used in filter
implementation.

3.1. Desmos Organization. In the Desmos software
system, connecton models are hierarchically organized.
Desmos::Model is the root model for all connecton
models. Model Executive is the base connecton model
of all ensemble executives. This model implements all
basic operations that support changes in connecton
network structure. Operations include adding and deleting
connectons and channels. Every specific domain ensemble
executive must be a submodel of the Executive model.
Figure 4 represents a partial view of the Desmos hierarchy,
as described above. All the submodels of the mode
Executive can inherit the structure of the parent model.
The Executive model provides just an empty connecton
ensemble and all the primitive operations that can be used to
manage the ensemble structure.

3.2. Desmos Support for Structural Changes. The following
methods are defined in the Desmos system to change the
ensemble connecton structure during the execution of a
program:

(i) add: aName model: aModel adds to the ensemble
a connecton named aName and associates it with model
aModel.
(ii) add: aConnecton name: aName adds aConnecton

to the ensemble and names it aName.
(iii) remove: aName removes a connecton named

aName from the ensemble. All channels from and to the
removed connecton are removed.
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Figure 3: Structural changes.
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Executive

LocationA

LocationNV

LocationP

Position

PositionA

PositionNV

PositionP

· · ·

Figure 4: Desmos hierarchy.

(iv) link: aName gate: aGate to: bName gate:
bGate creates a channel between two connectons.
(v) link: aName gate: aGate to: bName gate:

bGate filter: dFilter filter: rFilter creates
channel and filters between two connectons.

(vi) unlink: aName gate: aGate from: bName
gate: bGate deletes a channel between two connectons.

A connecton is referenced by its name. Names are assigned to
connecton instances in the structure definition of the ensem-
ble connecton. Connectons provide a uniform framework
for defining component behavior and architectural changes.
Executive methods responsible for the structural adaptations
are intuitive to use due to the explicit representation of
structure in the formalism.

4. Passive Replication

Fault tolerance has been subjected to intense research in
the last decades and several tactics have been developed to
achieve resilient software.These approaches are mainly based
on replication and on the ability to detect and to remove faulty
software modules. We consider first Passive Replication (PR).
Other solutions are presented in next sections.

In PR, one component (the primary) handles all the com-
munication with the service requesters. When the primary
updates its state, it backs up the state variables in the passive
replicas. Fault tolerance is achieved by removing the primary
replica when it becomes faulty and by promoting a backup
replica to play the role of the primary. PR requires the state of
the primary to be stored in all backup replicas so they can be
used in case of failure.

We consider a 2D variant of Position connecton
described in Section 2.1 and used here in replication to
achieve resilience. For illustration purposes, we use the
connecton ensemble represented in Figure 5(a) and defined
in Desmos by Listing 1. Fault detection uses heartbeat
messages sent at regular intervals. Reverse filters are used in
the ensemble definition since the executive needs not only to
receive the heartbeats from connectons A, B, and C but also
to associate a name to each received value.The namesmissing
are considered to correspond to faulty connectons.

Connecton A plays the role of the primary replica and B
and C play the role of backup replicas. External requests
for position are sent to the executive gate xy. The executive
determines the current time and sends a request for position
through gate xy: that is only handled by the primary.
Connecton A computes the position at the current time and
returns it to the executive.When the acceleration changes, the
executive sends the new value through gate time:ax:xy:.
The primary computes a new position and updates state
variables. It then sends the new state through gate backup:
so it can be stored in the passive replicas. As stated above,
replicas are removed by the executive when they fail to send
the heartbeat signal.

There are twodistinct failure cases that need to be handled
differently. A fault detected in a backup replica is handled by
simply removing that replica. The removal of a faulty backup
unit is defined by Listing 2. Since the removal operation also
deletes all channels to and from the removed connecton, there
is only a single command in this action.
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Figure 5: Passive Replication topology management.

The removal of the primary replica needs to be handled
differently since we need to promote one of the backups to
become the primary. These changes in topology are defined
by Listing 3 where the new primary and the remaining
replicas are sent as parameters.

Once the faulty primary is removed, the executive is
linked to the new primary through gates time:ax:ay
and xy:. The new primary gate backup: is then linked to
the state: gates of the remaining backup replicas.

5. Active Replication

We consider now the Active Replication tactic to achieve
fault tolerance. In this approach, several components are
simultaneously active and can give an answer to any request.
However, only the first answer, in the case of nonmalicious
replicas, is taken into account, the others being ignored [9].
Contrarily to the Passive Replication, all replicas perform
the same computations, this approach becoming more CPU
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(1) LocationP>>structure
(2) super structure.

(3) self link: #Network gate: #xy to: #Executive gate: #xy.

(4) self add: #A model: PositionP.

(5) self add: #B model: PositionP.

(6) self add: #C model: PositionP.

(7) self link: #Executive gate: #time:ax:ay: to: #A gate: #time:ax:ay:.

(8) self link: #Executive gate: #xy: to: #A gate: #xy:.

(9) self link: #A gate: #backup: to: #B gate: #state:.

(10) self link: #A gate: #backup: to: #C gate: #state:.

(11) self link: #A gate: #beat to: #Executive gate: #beat: dFilter: [|#Source].

(12) self link: #B gate: #beat to: #Executive gate: #beat: dFilter: [|#Source].

(13) self link: #C gate: #beat to: #Executive gate: #beat: dFilter: [|#Source].

Listing 1: Desmos definition of the initial topology for Passive Replication.

(1) Location>>removeBackup: aName

(2) self remove: aName.

Listing 2: Removal of a faulty backup connecton.

intensive. This strategy is heavily dependent on the ability to
establish group communication in a deterministic manner,
since results are dependent on the order requests are made
[9]. Connectons select function can be used to establish the
order of group communication.This function is implemented
implicitly in Desmos that follows the order in which channels
are declared in the structure definition.

The ensemble of Figure 6(a) represents an initial soft-
ware topology for the Active Replication. Connectons A, B,
and C play the same role in the active approach. Requests
for position are sent to all the connectons in a deterministic
order. This approach requires the asynchronous handling of
replies since only one answer is required, since we consider
here only the case of nonmalicious replicas.Thus, connectons
do not give a direct answer but only answer an (id)entifier
that is used to match callbacks that are sent through
gate reply:id:. Callbacks are handled asynchronously, and
the first reply to arrive to the executive is considered to be the
answer. Later callbacks are ignored.

Fault detection is based on heartbeat, like in the previous
section. Since all connectons are identical, their removal
is described by Listing 4, since no further distinction is
required.

The software topology becomes represented by
Figure 6(b) after the removal of the faulty connecton B.

6. N-Version Replication

We consider now N-Version as a means of achieving
resilience. N-Version uses different versions of software units
with the same functional requirements [2] to obtainN-results
for the same call. These results are then compared, and

modules that have produced values considered to be wrong
are treated as faulty and removed. A topology for N-Version
is represented in Figure 7(a). The executive broadcasts the
request for position to connectons A, B, and C and waits for
all the answers.

We consider hierarchical mobility [5], as a useful con-
struct to replace faulty units. The Executive obtains the
current position from all the PositionNV software units
and tests if the returned values are within some toler-
ance limit. In case there are discrepancies, it finds and
removes the faulty unit and sends it through gate fault:.
A new unit arrives through gate update:name: bringing
a replacement. Actually, any connecton compatible with
the PositionNV model can be received. Given the hier-
archical nature of connectons, an ensemble connecton can
be used to replace a basic connecton, or vice versa. If we
take, for example, software unit B as faulty, the ensemble
becomes represented by Figure 7(b) after the removal of B.
The removal of a faulty unit is defined by Listing 5.

The remove: operation (Line 3) returns a software unit
that can be handled as a regular object. This data is then
sent through output gate fault: (Line 4), enabling hier-
archical mobility. When a PositionNV replacement unit
arrives, it is linked to the executive LocationNV𝜖 by the
action update:name: defined in Listing 6.

The executive LocationNV𝜖 uses its output gate state
to retrieve the current state of the remaining connectons
so the arriving one can be initialized. Since state infor-
mation has a fixed format, it becomes crucial that the
replacing mobile connecton understands that format. This
is easy to achieve since state is known at the design time
of the (mobile) connectons used to support fault toler-
ance. The ensemble of Figure 7(c) represents the correction
achieved by PositionNV::K used to replace the faulty
connecton PositionNV::B previously removed.

As shown in this example, updates can use hierarchical
mobility to introduce new versions of the software units.
These updates do not require the detection of faults and
can be motivated by the release of a more recent version
of software. Hierarchical mobility provides, thus, a unifying
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Figure 6: Active Replication topology management.

construct to represent both software update and fault han-
dling.

7. Comparison of the Replication
Approaches and Related Work

We have presented a possible realization of three common
replication approaches to fault-tolerance software. For sim-
plicity, only one fault detection method was used in each

tactic. Most common methods include exception handling,
heartbeat (considered here), voting (used in the N-Version),
and ping/echo [10]. These methods can be merged, and
different implementations can require handling them in
combination. We have considered the executive to perform
most of the work. However, executive, functionally, can be
broken in separate connectons. Some of the error handling
could be used in a separate connecton, for example, so it could
be reused in the different tactics.
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Figure 7: N-Version software topology management.
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(1) Location>>removePrimary: aName newPrimary: bName backups: aList

(2) self remove: aName.

(3) self link: #Executive gate: #time:ax:ay: to: bName gate: #time:ax:ay:.

(4) self link: #Executive gate: #xy: to: bName gate: #xy:.

(5) aList do: [:b|

(6) self link: bName gate: #backup: to: b gate: #state:.

(7) ].

Listing 3: Removal of the faulty primary backup.

(1) Location>>removeActive: aName

(2) self remove: aName.

Listing 4: Removal of the faulty connecton B.

We do not foresee, however, advantages in the systematic
partition of components into normal and abnormal subcom-
ponents [11, 12], since this decision seems to be domain
dependent. In our case, faults (represented by the absence
of the heartbeat message) are signaled to the executive that
controls the structure, and no local treatment is required. In
case of exceptions that can be handled locally, we consider
that local methods can be a better choice, since they can
use the local state in error correction. If handled by the
abnormal component, faults would require the transmission
of the local state. Requests dealing with faults that cannot
be treated locally can be sent through an output gate to any
external component that can handle it.The requirement for a
mandatory abnormal component seems thus excessive.

We consider connectons as units of software reuse, and
unless we have the evidence that a particular abnormal
connecton can be used in different contexts, there is mostly
no point in developing it.

Tactics can be used in combination taking advantage
of hierarchical composition. A unit used in N-Version can
be implemented, for example, using the Active Replication
approach. Since ensembles hide their internal structure, it
will be transparent for the N-Version approach in which
some or all of the units are implemented as a combination
of connectons developed using different tactics.

The initial Position connecton described in Section 2.1
has suffered several changes so it could be used by the dif-
ferent tactics and fault detection mechanisms. This situation
seems to indicate that it may be difficult to keep models and
fault tolerance orthogonal. In our case, the nonfunctional
requirement of resilience has become part of the models.The
use of structural inheritance [3] can be employed tominimize
the impact of transforming a base model into the several
versions required by the different tactics for fault-tolerance
detection and recovery.

Hierarchicalmobility can be used as an effective construct
to replace software units or to make their update in any
of the tactics described. This can be particularly useful for
preventing future crashes. Bugs can be detected in some of the

currently running components. After correction, these new
versions can be put into production before they manifest in
many other systems. This strategy is nowadays common and
is used, for example, in the online update of antivirus and
operating systems. Hierarchical mobility, however, provides
a finer grain control over the components that need to be
replaced.

Hierarchical and modular principles have been used in
many fields as a powerful heuristic for handling complex
problems. One of the first formal descriptions of modular
decomposition has been made in the area of General Systems
Theory [13]. The decomposition of software in modules has
latter been advocated in software engineering [14]. In this
work, however, the hierarchical decomposition of software
has not been introduced and the term hierarchy is simply
used as synonymous of layered (software). We have extended
General Systems Theory with dynamic topologies [15]. This
work, however, could not be directly applied to software
engineering since it is based on general systems asynchronous
and unidirectional messages, making the specifications of
software systems cumbersome.

Software architectures have been developed to overcome
the limitations of the object-oriented paradigm. Software
components, as opposed to software objects, are intended to
be built independently from the interconnections they may
be part of, enabling a stronger form of reuse. A large variety
of architecture definition languages have been developed but
many are façades providing little support for developing a
complete implementation of components and their intercon-
nections [16–18].

We have developed a system able to represent dynamic
structure hierarchical and modular software that is fully
compatible with the object-oriented style [3]. Other exe-
cutable software architectures have also been proposed [19,
20], but they exhibit strong limitations, which makes these
approaches incapable of providing the solutions presented
here for replacing faulty software. In particular, ArchJava [19]
requires an exact match of the gates so they can be connected.
Additionally, links in ArchJava provide no filtering capabil-
ities. ArchJava has limited capabilities to change software
structure featuring no explicit operators to remove compo-
nents or links. To the best of our knowledge, connecton is the
only framework supporting hierarchical mobility [21–23].

8. Conclusions and Future Work

In this paper we propose an approach to fault-tolerant
software based on modular software units. Connecton and its
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(1) Location>>fault: aName

(2) |faulty|

(3) faulty:= self remove: aName. “Removes connecton aName and all its channels”
(4) out fault: faulty. “Sends faulty as a mobile connecton through the output gate fault:”

Listing 5: Removal of a faulty connecton.

(1) Location>>update: aPosition name: aName

(2) aPosition state: (out state).

(3) self add: aPosition name: aName. “Adds a mobile connecton”
(4) self link: #Executive gate: #time:ax:ay: to: aName gate: #time:ax:ay:.

(5) self link: #Executive gate: #xy: to: aName gate: #xy:.

(6) self link: #Executive gate: #state to: aName gate: #state rFilter: [:state|state % #Source].

Listing 6: Updating the faulty connecton.

implementation in Desmos support the basic operators that
enable dynamic changes in software topology. Most common
fault-tolerant software approaches involve replication and the
ability to remove faulty software. These basic constructs map
easily into software topologies that, like connectons, support
ad hoc changes in their structure. In particular, we have
shown that Passive Replication, Active Replication, and N-
Version programming can be easily modeled as dynamic
structure software topologies. Hierarchical mobility has also
been shown as an effective construct to update faulty soft-
ware modules during runtime. Connectons are currently
supported in a Java version [24]. Connectons/Java will be
employed in the development of fault-tolerant software appli-
cations for real-world systems. Future work will also address
the representation of the Active Replication approach in the
presence of malicious replicas.
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