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With the use of two kinds of boson operators, a new boson representation of the su(2)-algebra is
proposed. The basic idea comes from the pseudo su(1, 1)-algebra recently given by the present
authors [Y. Tsue et al., Prog. Theor. Exp. Phys. 2013, 103D04 (2013)]. It forms a striking contrast
to the Schwinger boson representation of the su(2)-algebra, which is also based on two kinds
of bosons. It is proved that this new boson representation obeys the su(2)-algebra in a certain
subspace in the whole boson space constructed by the Schwinger boson representation of the
su(1, 1)-algebra. This representation may be suitable for describing the time dependence of the
system interacting with the external environment in the framework of the thermo field dynamics
formalism, i.e., phase space doubling. Further, several deformations related to the su(2)-algebra
in this boson representation are discussed. On the basis of these deformed algebras, various types
of time evolution of a simple boson system are investigated.
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1. Introduction and summary

It may be hardly necessary to mention, but the su(2)-algebra has made a central contribution to
the development of microscopic study of nuclear structure. The BCS–Bogoliubov theory may be a
typical example of this. We know that the su(2)-algebra may be the simplest and the most popular Lie
algebra in nuclear structure theory. In many cases, Lie algebras have been treated under the name of
boson realizations of Lie algebras. The prototype has been called boson expansion or boson mapping
for many-fermion systems, which is related to the so(2N )-algebra for a space of N single-particle
states [1–3]. With the development of the study of boson expansion, it came to be called the boson
realization of the Lie algebra [4]. The simplest case is the boson realization of the su(2)-algebra,
which is called the Holstein–Primakoff representation [5]. The three generators are expressed in
terms of one kind of boson operator for a given value of the magnitude of the su(2)-spin, which
determines the irreducible representation. Of course, it is positive-definite. We also know another
boson representation of the su(2)-algebra, i.e., the Schwinger boson representation [7]. The explicit
form will be given in the relations (3.1) and (3.2). It consists of two kinds of boson operators. Unlike
the Holstein–Primakoff representation, the magnitude of the su(2)-spin is expressed in terms of an
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operator, i.e., half of the sum of two boson number operators, which can be seen in the relation (3.2b).
Clearly, it is a positive-definite operator. On the other hand, we know the boson representation of the
su(1, 1)-algebra, also initiated by Schwinger [7]. This representation is also constructed in terms of
two kinds of boson operators. The explicit form will be presented in the relations (2.1) and (2.3). In
contrast with the case of the su(2)-algebra, in this representation, the quantum numbers specifying
the irreducible representation are the eigenvalues of an operator that is related to half of the difference
between the two boson number operators, which can be seen in the relation (2.3b). Therefore, this
operator is not positive-definite. By analogy with the magnitude of the su(2)-spin, we will call the
positive eigenvalue the magnitude of the su(1, 1)-spin.

The Schwinger boson representation of the su(1, 1)-algebra may be not familiar to the field of
nuclear structure theory mainly treating zero temperature. An advantage of the Schwinger boson rep-
resentation of the su(1,1)-algebra, in which two-kind of bosons are introduced, is to be able to describe
the damping and amplification of an isolated harmonic oscillator induced classical-mechanically by
the velocity-dependent force quantum-mechanically in conservative form [8–10]. In the background
of this description, there exists the idea of the thermo field dynamics formalism based on phase space
doubling [11,12]. We should note the following: The above-mentioned isolated oscillator is of one
dimension and the Schwinger boson representation is constructed in 2D space, because of the use
of two kinds of bosons. Therefore, the idea of phase space doubling is conjectured to be useful in
the present problem. The original intrinsic oscillator is isolated and it is expressed in terms of one
kind of boson; the external environment is expressed in terms of another kind of boson, in which the
frequency is the same as that of the original one. The interaction between both systems is naturally
introduced.

If we follow the idea of phase space doubling, the total Hamiltonian for the present system, Ĥ , can
be expressed in the form

Ĥ = Ĥ0 + V̂i , (1.1a)

Ĥ0 = Ĥintr − Ĥextr. (1.1b)

Here, Ĥintr and Ĥextr denote the Hamiltonians of the intrinsic and external environment systems,
respectively. Both Hamiltonians are of harmonic oscillator type with the same frequencies. The part
V̂i denotes the interaction between both systems. It should be noted that Ĥ is not the total energy
operator but the operator for the time evolution of the system. As for V̂i , a certain linear combination
of the raising and lowering operators of the su(1, 1)-algebra in the Schwinger boson representa-
tion was adopted in Refs. [8–10]. Further, we notice that Ĥ0 is a constant of motion, because Ĥ0 is
related to the magnitude of the su(1, 1)-spin. In Refs. [9,10], the Hamiltonian (1.1) was treated in
the framework of the time-dependent variational method. Of course, under careful consideration of
the magnitude of the su(1, 1)-spin as a constant of motion in the su(1, 1)-algebra, the trial state is
constructed. Therefore, the expectation value of Ĥ0 does not depend on time, but the expectation
value of Ĥintr does. With the use of V̂i mentioned above, the expectation value becomes a decreas-
ing or increasing function of time. The former and latter show damped and amplified oscillations,
respectively. Some variations of the above-mentioned idea were discussed in Ref. [10].

However, we must point out that the su(1, 1)-algebra in the Schwinger boson representation cannot
be applied directly to the many-fermion system. The reason for this is very simple: We cannot find
the su(1, 1)-algebra in the many-fermion system. In response to this situation, the present authors
proposed an idea [13]. Hereafter, Ref. [13] will be referred to as (A). The orthogonal set constructed
under the Schwinger boson representation of the su(1, 1)-algebra forms an infinite-dimensional
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space for a given value of the magnitude of the su(1, 1)-spin. However, the orthogonal set for a
many-fermion system is of finite dimensions for a given value of the magnitude of the su(2)-spin.
Then, a possible idea is to define, in the infinite-dimensional space, a certain subspace that is in
one-to-one correspondence with the fermion space. Further, we require that any matrix element of
the raising and lowering operators in this subspace does not change the form from that given in
this algebra. If restricted to this subspace, the algebra becomes deformed from the su(1, 1)-algebra.
In Ref. [13], we call it the pseudo su(1, 1)-algebra. Three generators are expressed in terms of the
original su(1, 1)-generators with a certain parameter that is closely related to the dimensions of the
subspace. Then, we can connect the pseudo su(1, 1)-algebra with the su(2)-algebra, which governs,
e.g., the Cooper pair. The above idea suggests to us that the many-fermion system can be treated by
the pseudo su(1, 1)-algebra and, in (A), we described a simple fermion system based on the thermo
field dynamics formalism. As a result, the periodical dependence of the energy of the intrinsic system
on time was shown. This result is in contrast to that in the su(1, 1)-algebra. For the time-dependent
variational method adopted in (A), we prepare a trial state that contains one complex parameter for
the variation and the normalization constant of the trial state must be given. However, in the case
of the pseudo su(1, 1)-algebra, the explicit form of the normalization constant is too complicated to
treat it practically. It is shown in (A).

The main aim of this paper is to present a new boson representation of the su(2)-algebra that may
be suitable for the application of the idea of phase space doubling. As has already been mentioned, the
Schwinger representation is powerless for the use of phase space doubling. In contrast to the case of
the Schwinger boson representation, the operator for the magnitude of the su(2)-spin in the present
case is expressed in terms of the form related to the difference between two boson number operators.
Using an idea similar to that for constructing the pseudo su(1, 1)-algebra, we can express the su(2)-
generators as functions of the three su(1, 1)-generators and a certain parameter. If the value of this
parameter is appropriately chosen, the present representation is reduced to the boson realization of
the su(2)-algebra governing, e.g., the Cooper pair. Of course, these generators are available in the
subspace leading to the pseudo su(1, 1)-algebra. We intend to apply the present representation to
the Hamiltonian (1.1) in the same manner as in (A). The interaction term V̂i must be appropriately
chosen. Therefore, we prepare a certain trial state for the time-dependent variation so as to calculate
the normalization constant easily. Expecting various results, we give several types of deformations
from the new boson representation of the su(2)-algebra. As has already been mentioned, the algebra
discussed in this paper is applied to the Hamiltonian (1.1). As for V̂i , we adopt a certain linear
combination of the raising and lowering operators of the algebra obtained by each deformation and
we can show that the expectation value of the intrinsic Hamiltonian, Ĥintr, changes periodically with
time. Depending on the choice of deformation, the features of the change show various shapes. In
classical mechanics, we know one problem: elastic collision of a simply oscillating light particle with
a sufficiently heavy one on a horizontal straight line. We can show that the problem discussed in this
paper reduces to the same as the above.

After recapitulating, in Sect. 2, the pseudo su(1, 1)-algebra presented in (A) with some new
aspects, a new boson representation of the su(2)-algebra is proposed in Sect. 3. It is based on
the Schwinger boson representation of the su(1, 1)-algebra. Section 4 is devoted to the investiga-
tion of various deformations from the new boson representation. The normalization constant in the
orthogonal set obtained in each deformation is easily calculated with a rather simple approxima-
tion. In Sects. 5 and 6, the time evolution is investigated for the boson system characterized by
the Hamiltonian (1.1). Depending on the chosen deformation, the change of energy of the intrinsic
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system with time is periodic, but the behaviors are different from one another. In Sect. 7, it is shown
that the new boson representation of the su(2)-algebra constructed in this paper certainly satisfies the
su(2)-algebra in the subspace leading to the pseudo su(1, 1)-algebra. The subspace is explicitly pre-
sented and, in this subspace, the raising and lowering operators for the magnitude of the su(2)-spin
are discussed. In Sect. 8, the connections of the new boson representation developed in this paper
to the other boson representations are discussed. In the last section, two problems are treated. One
is related to the algebras in the space orthogonal to the subspace (2.8). The other is concerned with
another example of tm : tm = 3t − 1.

2. Recapitulation of pseudo su(1, 1)-algebra in the Schwinger boson representation
given in (A)

Our preliminary task is to recapitulate the Schwinger boson representation of the su(1, 1)-algebra
in a form suitable for later discussion. The details can be seen in Refs. [7–10]. It starts with the
following three operators:

T̂+ = â∗b̂∗, T̂− = b̂â, T̂0 = 1
2

(
â∗â + b̂∗b̂ + 1

)
. (2.1)

Here,
(
â, â∗) and

(
b̂, b̂∗) denote two kinds of boson operators. The operators T̂±,0 form the

su(1, 1)-algebra:

T̂ ∗
− = T̂+, T̂ ∗

0 = T̂0, (2.2a)[
T̂+, T̂−

]
= −2T̂0,

[
T̂0, T̂±

]
= ±T̂±. (2.2b)

The Casimir operator T̂
2
, together with its properties, is given by

T̂
2 = T̂ 2

0 − 1
2

(
T̂−T̂+ + T̂+T̂−

)
= T̂

(
T̂ − 1

)
, (2.3a)

T̂ = 1
2

(
− â∗â + b̂∗b̂ + 1

)
,

[
T̂ , T̂±,0

]
= 0. (2.3b)

The eigenstate of T̂ and T̂0 with its eigenvalue t and t0, respectively, is obtained in the form

|t, t0〉 = 1√
(t0 − t)!(t0 + t − 1)!

(
â∗
)t0−t(

b̂∗
)t0+t−1|0〉, (normalized)

â|0〉 = b̂|0〉 = 0. (2.4)

Since t0 − t = 0, 1, 2, 3, . . . and t0 + t − 1 = 0, 1, 2, 3, . . ., |t, t0〉 is treated separately in the
following two cases:

(i) t = 1/2, 1, 3/2, . . . , ∞, t0 = t, t + 1, t + 2, . . . , ∞ for a given t, (2.5a)

(ii) t = 0, −1/2, −1, . . . , −∞, t0 = −t + 1, −t + 2, −t + 3, . . . , ∞ for a given t. (2.5b)

It is noted that, in this paper, we mainly treat case (i). In Sect. 7, we will mention case (ii) briefly in
connection with case (i). The state |t, t0〉 can be rewritten in the form

|t, t0〉 = s
1√

(t0 − t)!(t0 + t − 1)!

(
T̂+
)t0−t |t〉, (|t, t0 = t〉 = |t〉) (2.6a)

i.e. |n; t〉 = 1√
n!(2t − 1 + n)!

(
T̂+
)n |t〉. (2.6b)

Here, |t〉 denotes the minimum weight state:

|t〉 =
(

b̂∗
)2t−1|0〉, T̂−|t〉 = 0, T̂0|t〉 = T̂ |t〉 = t |t〉. (2.7)
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By n time operations of the raising operator T̂+ on |t〉, |n; t〉 is obtained. It should be noted that this
operation is permitted until infinite time; in other words, a maximum weight state does not exist.
Clearly, the states in (2.6) form an orthogonal set with infinite dimensions.

Recently, a possible form of the pseudo su(1, 1)-algebra was presented by the present authors in
Ref. [13], which is referred to as (A). It aims to demonstrate a deformation of the Cooper pair obeying
the su(2)-algebra in a many-fermion system. In (A), one type of possible deformation of the su(1, 1)-
algebra in the Schwinger boson representation was treated; we called it the pseudo su(1, 1)-algebra.
In this paper, this algebra is formulated in a manner slightly modified from that given in (A). The
basic scheme of the pseudo su(1, 1)-algebra is to construct it in the subspace of the space (2.5a):

t = 1/2, 1, 3/2, . . . , μ − 1/2, μ, t0 = t, t + 1, t + 2, . . . , tm − 1, tm for a given t. (2.8)

Here, μ and tm denote integer or half-integer, where tm is a function of t . Depending on the model
under investigation, the value of μ and the functional form of tm are chosen appropriately. Later, we
will show a possible idea for the determination of μ and tm .

Let T̂±,0 denote three generators of the pseudo su(1, 1)-algebra. The role of T̂±,0 is the same as that
of T̂±,0. One time operation of T̂+ makes the eigenvalue of T̂0 increase by one in the state specified
by the quantum number (t, t0). In this algebra, there exist not only a minimum but also a maximum
weight state. Further, the following is required for a given t : the minimum and maximum weight
states are identical to |t, t〉(= |t〉) and |t, tm〉, respectively, and successive operation of T̂+ on |t〉
reduces to the state (2.6). The above requirement is formulated as follows:

T̂−|t, t〉 = 0, T̂0|t, t〉 = t |t, t〉, (2.9a)

T̂+|t, tm〉 = 0, T̂0|t, tm〉 = tm |t, tm〉, (2.9b)(
T̂+
)t0−t |t〉 =

(
T̂+
)t0−t |t〉. (2.9c)

As has already been mentioned, the eigenvalue of T̂0 increases one by one from t to tm and, then,
T̂0 may be permitted to be of the form

T̂0 = T̂0 + f
(

T̂
)
. (2.10)

The reason for this is very simple. The eigenvalue of T̂0 increases one by one and f
(
T̂
)

does not
make the eigenvalue of T̂0 change. Then, by operating T̂0 on the states |t, t〉 and |t, tm〉, the following
relation is obtained:

t + f (t) = t, tm + f (t) = tm, i.e., f (t) = 0. (2.11)

Therefore, T̂0 is equal to T̂0:

T̂0 = T̂0. (2.12a)

If one notices the relation T̂−|t〉 = 0 and
√

tm − T̂0 ·
(√

tm − T̂0 + ε

)−1

|t, tm〉 = √
0/

√
ε|t, tm〉 →

0 (ε → 0), the requirement (2.9) suggests the following form for T̂±:

T̂+ = T̂+ ·
√

tm − T̂0 ·
(√

tm − T̂0 + ε

)−1

, T̂− =
(√

tm − T̂0 + ε

)−1

·
√

tm − T̂0 · T̂−.

(2.12b)
Here, as has already been shown, ε denotes a positive infinitesimal parameter. With the use of the
commutation relation (2.2b), the arrangement of the operators can be changed.

5/43

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/4/043D

01/1522923 by 00500 U
niversidade de C

oim
bra user on 09 O

ctober 2023



PTEP 2015, 043D01 Y. Tsue et al.

It has already been mentioned that tm is a function of t , i.e., tm = Fm(t). Depending on the problem
under investigation, the form of Fm(t) is fixed. If one intends to apply the present algebra to the
investigation of such a state as a boson coherent state, the present one must be formulated in the
operator form, i.e., quanta such as t0, t , and tm do not appear. Then, it may be permissible to define
an operator T̂m = Fm

(
T̂
)

and, if T̂ is replaced with t in Fm
(
T̂
)
, T̂m becomes Fm(t) = tm . Therefore,

T̂±,0 can be expressed as

T̂+ = T̂+ ·
√

T̂m − T̂0 ·
(√

T̂m − T̂0 + ε

)−1

,

T̂− =
(√

T̂m − T̂0 + ε

)−1

·
√

T̂m − T̂0 · T̂−,

T̂0 = T̂0. (2.13)

The operators T̂±,0 satisfy

T̂ ∗
− = T̂+, T̂ ∗

0 = T̂0,

[
T̂+, T̂−

]
= −2T̂0 + ε

(
T̂0 + T̂

)(
T̂0 − T̂ + 1

)
T̂m − T̂0 + ε

, (2.14a)[
T̂0, T̂±

]
= ±T̂±. (2.14b)

The operator T̂ 2
corresponding to the Casimir operator T̂

2
is obtained in the form

T̂ 2 = T̂ 2
0 − 1

2

(
T̂−T̂+ + T̂+T̂−

)
= T̂

(
T̂ − 1

)
+ 1

2ε

(
T̂0 + T̂

)(
T̂0 − T̂ + 1

)
T̂m − T̂0 + ε

, T̂ = T̂ . (2.15)

If, in the second terms on the right-hand sides of the relations (2.14a) and (2.15) the limiting process
T̂m → ∞ proceeds to replace T̂0 and T̂ with the eigenvalues t0 and t , the above algebra reduces to
the su(1, 1)-algebra. This can be seen in the form of the generators (2.12) directly. For example,
in the case T̂m = Cm + 1 − T̂ , T̂m → ∞ if Cm → ∞. Of course, Cm is a parameter. This formula
may be understood in the following manner: In the state (2.9c) for a given t , the created bosons
consist of 2(tm − t) (= 2(Fm(t) − t)) bosons in the a–b pair type and (2t − 1) bosons in the single
b-boson type. In the present scheme, creation of a boson in the single a-boson type is forbidden. In
the case t = 1/2, the created bosons are all in the a–b pair type, i.e., the number of created bosons is
2 (Fm(1/2) − 1/2). The above consideration suggests the following aspect: In the state (2.9c), there
exist (2t − 1) vacancies and, if (2t − 1) a-bosons occupy these vacancies, all the created bosons
come to be in the a–b pair type. On the basis of the above argument, we require that, independent
of the value of t , the number of created bosons is limited in the present system. Then, the following
relation may be acceptable:

2(Fm(t) − t) + 2(2t − 1) = 2
(
Fm

(1
2

)− 1
2

)
(= 2Cm),

i.e., tm = Cm + 1 − t. (2.16a)

Since tm = Fm(t) is decreasing for t , there exists a certain point t = tc satisfying Fm(tc) = tc and,
thus, tc is nothing but μ (tc = μ). This argument gives us

μ = 1
2(Cm + 1). (2.16b)
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With the aid of the su(1, 1)- and pseudo su(1, 1)-algebras in the Schwinger boson representation,
the role of the phase space doubling mentioned qualitatively in Sect. 1 can be understood more
quantitatively. From the relations (2.1) and (2.3b), the following expression for b̂∗b̂ is derived:

b̂∗b̂ = T̂0 + T̂ − 1. (2.17a)

Let a time-dependent state vector, which is the eigenstate of T̂ with the eigenvalue t , exist. This is that
of the superposition of the orthogonal set (2.4) or (2.6) from t0 = t to t → ∞. Then, the expectation
value of b̂∗b̂ at the time τ is expressed as〈

b̂∗b̂
〉
τ

= t0(τ ) + t − 1, t0(τ ) =
〈
T̂0

〉
τ
, t0(0) > t. (2.17b)

The damped and amplified harmonic oscillator can be understood by investigating the behavior of
t0(τ ), which is determined by the Hamiltonian adopted in the model under investigation. If t0(τ )

is monotonically decreasing (t0(0) > t0(τ ) > t), t0(τ ) → t (τ → ∞). Then,
〈
Ĥintr

〉
τ

=
〈
ωb̂∗b̂

〉
τ

decreases from the value ω(t0(τ ) + t − 1) to ω(2t − 1) at the limit τ → ∞. This corresponds
to the damped oscillator. On the other hand, if t0(τ ) is monotonically increasing (t0(0) < t0(τ )),

t0(τ ) → ∞ (τ → ∞). Then,
〈
ωb̂∗b̂

〉
τ

increases from the value ω(t0(0) + t − 1) to ∞ at the time

τ → ∞. This case corresponds to the amplified oscillation.
It may be interesting to investigate the pseudo su(1, 1)-algebra in relation to the boson realization

of a many-fermion system. In (A), a possible deformation of the Cooper pair in the frame of this
algebra was discussed. Let a time-dependent state, which is the eigenstate of T̂ with the eigenvalue
t , exist. In this case, the state is that of a superposition of the eigenstates of T̂0, the eigenvalues of
which change from t0 = t to t0 = tm . Therefore, the expectation value of b̂∗b̂ for this state at the time
τ is given in the relation (2.17), but t0(τ ) should obey the inequality

t ≤ t0(τ ) ≤ tm . (2.18)

Since, e.g.,
〈
b̂∗b̂

〉
τ

changes in the range (2.18),
〈
b̂∗b̂

〉
τ

can change periodically in the range

2t − 1 ≤
〈
b̂∗b̂

〉
τ

≤ tm + t − 1. (2.19)

Of course, it depends on the Hamiltonian. In (A), an example of the periodical change was shown. In
conclusion, in order to make the idea of phase space doubling effective in the su(1, 1)- and pseudo
su(1, 1)-algebras, the operator

(
b̂∗b̂ − â∗â

)
, i.e., T̂ , should be a constant of motion.

3. A new boson realization of a many-fermion system obeying the su(2)-algebra in
terms of the su(1, 1)-algebra

In (A), the pseudo su(1, 1)-algebra in the fermion space was discussed in terms of a possible defor-
mation of the Cooper pair obeying the su(2)-algebra. In this paper, the pseudo su(1, 1)-algebra is
treated from the side of the su(2)-algebra in the frame of the boson space constructed by two kinds
of bosons

(
â, â∗) and

(
b̂, b̂∗). One popular boson representation of the su(2)-algebra is presented

by Schwinger [7]:

Ŝ+ = â∗b̂, Ŝ− = b̂∗â, Ŝ0 = 1
2

(
â∗â − b̂∗b̂

)
. (3.1)

Here, Ŝ±,0 denote the generators. The Casimir operator Ŝ
2

is given by

Ŝ
2 = Ŝ2

0 + 1
2

(
Ŝ− Ŝ+ + Ŝ+ Ŝ−

)
= Ŝ

(
Ŝ + 1

)
, (3.2a)

Ŝ = 1
2

(
â∗â + b̂∗b̂

)
,

[
Ŝ, Ŝ±,0

]
= 0. (3.2b)
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We note the relation

Ŝ = T̂0 − 1
2 , Ŝ0 = −T̂ + 1

2 . (3.3)

Since Ŝ is not related to T̂ , the form (3.1) may not be suitable for treating the Hamiltonian (1.1)
based on phase space doubling, even if it is expressed in terms of su(2)-generators. Rather, it may be
better to apply this representation to the problem of the energy transfer between the b- and a-boson
systems.

This suggests to us that, in order to obtain an su(2)-algebra in the boson representation for phase
space doubling, it may be necessary to connect the operator Ŝ with T̂ directly. With this aim, the
same idea as in the pseudo su(1, 1)-algebra (2.9) is adopted:

Ŝ−|t, t〉 = 0, Ŝ0|t, t〉 = −s|t, t〉, (3.4a)

Ŝ+|t, tm〉 = 0, Ŝ0|t, tm〉 = s|t, tm〉, (3.4b)(
Ŝ+
)t0−t |t〉 =

√
(2t − 1)!

(t0 + t − 1)!
· (tm − t)!

(tm − t0)!

(
T̂+
)t0−t |t〉, (3.4c)

since the eigenvalue of Ŝ0 increases one by one from −s to s and, then, Ŝ0 may be permitted to set
up the relation

Ŝ0 = T̂0 + f
(
T̂
)
. (3.5)

The above is the same as the case of the pseudo su(1, 1)-algebra. Operating Ŝ0 on the states |t, t〉
and |t, tm〉, the following relation is obtained:

t + f (t) = −s, tm + f (t) = s. (3.6)

The relation (3.6) leads us to f (t) = −(tm + t)/2 and s = (tm − t)/2. Therefore, Ŝ0 can be
expressed as

Ŝ0 = T̂0 − 1
2

(
T̂m + T̂

)
. (3.7a)

Later, we discuss s = (tm − t)/2. If one notices the relations T̂−|t〉 = 0 and
√

T̂m − T̂0|t, tm〉 = 0,

the requirement (3.4) suggests the following form for Ŝ±:

Ŝ+ = T̂+ ·
√

T̂m − T̂0 ·
(√

T̂0 + T̂ + ε

)−1

, Ŝ− =
(√

T̂0 + T̂ + ε

)−1

·
√

T̂m − T̂0 · T̂−. (3.7b)

In the space obeying the relation (3.4), the operators Ŝ±,0 satisfy

Ŝ∗
− = Ŝ+, Ŝ∗

0 = Ŝ0, (3.8a)[
Ŝ+, Ŝ−

]
= 2Ŝ0,

[
Ŝ0, Ŝ±

]
= ±Ŝ±. (3.8b)

The proof of the relation (3.8b) will be shown in Sect. 7. Certainly, Ŝ±,0 form the su(2)-algebra.

The Casimir operator Ŝ2
can be expressed as

Ŝ2 = Ŝ
(
Ŝ + 1

)
, Ŝ = 1

2

(
T̂m − T̂

)
. (3.8c)

8/43

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/4/043D

01/1522923 by 00500 U
niversidade de C

oim
bra user on 09 O

ctober 2023



PTEP 2015, 043D01 Y. Tsue et al.

The operator Ŝ is given from the form s = (tm − t)/2 obtained in the relation (3.6). If T̂m =
Cm + 1 − T̂ , Ŝ±,0 and Ŝ can be expressed as follows:

Ŝ+ = â∗b̂∗ ·
√

Cm − b̂∗b̂ ·
(√

b̂∗b̂ + 1 + ε

)−1

, (3.9a)

Ŝ− =
(√

b̂∗b̂ + 1 + ε

)−1

·
√

Cm − b̂∗b̂ · b̂â, (3.9b)

Ŝ0 = 1
2

(
â∗â + b̂∗b̂

)
− 1

2Cm, (3.9c)

Ŝ = 1
2

(
â∗â − b̂∗b̂

)
+ 1

2Cm . (3.10)

The above is a new boson representation of the su(2)-algebra. The expressions (3.7) and (3.8c) hold
in the subspace (2.8) of the space (2.5a). A detailed explanation will be given in Sect. 7. The form
(3.10) suggests that the present representation may be suitable for phase space doubling, because b̂∗b̂
and â∗â appear in the relation between the subtraction of the b- and a-boson numbers.

We have developed a new boson representation of the su(2)-algebra. Such boson representations
have played the role of describing various gross properties of many-fermion systems. In these studies,
investigation of the behaviors of individual fermions is of secondary importance. These have been
called the boson realization of the Lie algebraic approach to many-fermion problems. The su(2)-
pairing model is a typical example. In this model, three quantities occupy the central part of the gross
properties, i.e., the total number of single-particle states 4�0 (if following (A), conventionally 2�),
the total fermion number N , and the seniority number ν. Therefore, in order to complete the present
new boson representation in relation to the su(2)-pairing model, it may be inevitable to connect t ,
t0, and tm with ν, N , and �0.

First, the form S̃0 = (1/2)Ñ − �0 in the relation (A.3.1) is taken up in terms of the eigenvalue
s0 and N :

s0 = 1
2 N − �0. (3.11a)

In the case s0 = −s, −s = Nmin/2 − �0 and Nmin = ν, and then, the following relation is derived:

s = �0 − 1
2ν. (3.11b)

Further, in the case s0 = s, s = Nmax/2 − �0 = �0 − ν/2, and then, Nmax = 4�0 − ν. Noticing the

relation
[

Ñ , S̃+
]

= 2S̃+, N can be given as

N = ν, ν + 2, . . . , 4�0 − ν (= ν + 2(2�0 − ν)). (3.12)

Since s ≥ 0, ν is given as

ν = 0, 1, 2, . . . , 2�0. (3.13)

On the other hand, the relations (3.7a) and (3.8c) lead us to

s0 = t0 − 1
2

(
tm + t

)
, (3.14a)

s = 1
2

(
tm − t

)
. (3.14b)

Equating the relations (3.11) and (3.14) with each other, the following is obtained:

2t − 1 = ν + 1
2 ((2t0 − 1) − N ) , (3.15a)

2tm − 1 = (4�0 − ν) + 1
2 ((2t0 − 1) − N ) . (3.15b)
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Discussion of the relations (3.15a) and (3.15b) starts in a postulate mentioned below. The boson
vacuum |0〉 = |t = 1/2, t0 = 1/2〉 corresponds to the fermion vacuum |0) = |ν = 0, N = 0). This
postulate suggests that the relations (2.8) and (2.13) give us

2t − 1 = ν. (3.16a)

The relations (3.15a) and (3.15b) lead us to

2t0 − 1 = N , (3.16b)

i.e.,

2tm − 1 = 4�0 − ν. (3.16c)

Since 2tm − 1 = 4�0 − (2t − 1), the following relation is obtained:

tm = (2�0 + 1) − t. (3.17)

The relations (3.14b) and (3.17) give

s = (
�0 + 1

2

)− t. (3.18a)

The maximum values of t and ν are μ and 2�0, respectively, and the relations (3.13) and (3.15a)
give us

2μ − 1 = 2�0, i.e., μ = �0 + 1
2 . (3.18b)

The above argument presents us with the operator form of the su(2)-algebra. First, the seniority
and the total fermion number operator ν̂ and N̂ , respectively, are introduced in the form

ν̂ = 2T̂ − 1 = −â∗â + b̂∗b̂, (3.19a)

N̂ = 2T̂0 − 1 = â∗â + b̂∗b̂. (3.19b)

Further, T̂m is given as

T̂m = (2�0 + 1) − T̂ = 2�0 + 1
2 + 1

2

(
â∗â − b̂∗b̂

)
. (3.20)

The operators Ŝ±,0 and Ŝ can be expressed as

Ŝ+ = T̂+ ·
√

(2�0 + 1) −
(

T̂0 + T̂
)

·
(√

T̂0 + T̂ + ε

)−1

= â∗b̂∗ ·
√

2�0 − b̂∗b̂ ·
(√

b̂∗b̂ + 1 + ε

)−1

, (3.21a)

Ŝ− =
(√

T̂0 + T̂ + ε

)−1

·
√

(2�0 + 1) −
(

T̂0 + T̂
)

· T̂−

=
(√

b̂∗b̂ + 1 + ε

)−1

·
√

2�0 − b̂∗b̂ · b̂â, (3.21b)

Ŝ0 = T̂0 − (
�0 + 1

2

) = 1
2

(
â∗â + b̂∗b̂

)
− �0, (3.21c)

Ŝ = (
�0 + 1

2

)− T̂ = 1
2

(
â∗â − b̂∗b̂

)
+ �0. (3.22)

The above corresponds to the case Cm = 2�0 in the relations (3.7) and (3.9). Needless to say,
the expressions (3.21) and (3.22) hold in the subspace (2.8) of the space (2.5a). The details will
be discussed in Sect. 7. The expressions (3.21) and (3.22) form the third boson representation of
the su(2)-algebra. Of course, the first and second are the Holstein–Primakoff and Schwinger boson
representations, respectively [5–7].
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4. Various deformations of the su(2)-algebra in the third boson representation

In this section, we will investigate various deformations of the su(2)-algebra developed in Sect. 3.
For this aim, let us rewrite the generators Ŝ± shown in the relation (3.7b) as follows:

Ŝ+ = T̂+ ·
√

T̂m − T̂0 ·
√

1 +
(

T̂0 − T̂
)

·
(√

T̂−T̂+ + ε

)−1

, (4.1a)

Ŝ− =
(√

T̂−T̂+ + ε

)−1

·
√

1 +
(

T̂0 − T̂
)

·
√

T̂m − T̂0 · T̂−. (4.1b)

The operator Ŝ0 is unchanged from the form (3.7a) and T̂−T̂+ is given as

T̂−T̂+ =
(

T̂0 + T̂
) (

T̂0 − T̂ + 1
)

=
(

T̂0 + T̂
) (

1 +
(

T̂0 − T̂
))

. (4.2a)

If T̂0 is replaced with
(

T̂0 − 1
)

, T̂−T̂+ becomes T̂+T̂−:

T̂+T̂− =
(

T̂0 − T̂
) (

T̂0 + T̂ − 1
)

. (4.2b)

With the use of the relation (4.2a), it may be easily verified that the form (4.1) is equivalent to the
relation (3.7b).

The discussion starts in the introduction of the operator R̂± deformed from Ŝ±:

R̂+ = T̂+ ·
√

T̂m − T̂0 ·
√

Q̂ p + p
(

T̂0 − T̂
)

·
(√

T̂−T̂+ + ε

)−1

, (4.3a)

R̂− =
(√

T̂−T̂+ + ε

)−1

·
√

Q̂ p + p
(

T̂0 − T̂
)

·
√

T̂m − T̂0 · T̂−. (4.3b)

Here, Q̂ p is a function of T̂ :

Q̂ p = Q p
(
T̂
)
, Q̂ p|t, t0〉 = Q p(t)|t, t0〉, Q p(t) = qp,t . (4.4)

From the outside, we must fix the concrete form of Q̂ p and, corresponding to the form of Q̂ p, the
deformation is determined. Without loss of generality, the following conditions are added:

p = ±1, 0 and if p = 0, Q̂0 = 1, i.e., q0,t = 1. (4.5)

The operator
(

Q̂ p + p
(

T̂0 − T̂
))

should be positive-definite and it can be shown in the form√
Q̂ p + p

(
T̂0 − T̂

)
|t, t〉 = √

qp,t |t, t〉, (4.6a)√
Q̂ p + p

(
T̂0 − T̂

)
|t, tm〉 =

√
qp,t + p(tm − t)|t, tm〉. (4.6b)

The relation (4.6) leads us to

qp,t ≥ 0, (4.7a)

qp,t + p(tm − t) ≥ 0, i.e., q1,t ≥ −(tm − t), q−1,t ≥ tm − t. (4.7b)

If qp,t = 0,

√
Q̂ p + p

(
T̂0 − T̂

)
|t, t〉 = 0 and, then, R̂+|t, t〉 = 0, which is not interesting, because

of R̂−|t, t〉 = 0. Therefore, in the relation (4.7a), qp,t ≥ 0 should be changed to qp,t > 0. From the
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above argument, qp,t should obey the condition for the positive-definiteness:

q1,t > 0, q−1,t ≥ tm − t. (4.8)

The operators R̂± are reduced to Ŝ±, shown in the relation (4.1):

If Q̂1 = 1, R̂± = Ŝ±. (4.9)

The products of R̂+ and R̂− are expressed as

R̂+R̂− =
(

T̂m − T̂0 + 1
) (

Q̂ p + p
(

T̂0 − T̂ − 1
))(

1 − ε

T̂+T̂− + ε

)
, (4.10a)

R̂−R̂+ =
(

T̂m − T̂0

) (
Q̂ p + p

(
T̂0 − T̂

))(
1 − ε

T̂−T̂+ + ε

)
. (4.10b)

In the case p = ±1, the relation (4.10) gives us the commutation relation[
R̂+, R̂−

]
= p · 2R̂0 −

(
T̂m − T̂ + 1

)∑
t

|t〉〈t |. (4.11)

Here, R̂0 is defined as

R̂0 = T̂0 − 1
2

(
T̂m + T̂ − pQ̂ p + 1

)
,

[
R̂0, R̂±

]
= ±R̂±. (4.12)

Under the condition (4.9), R̂0 is reduced to Ŝ0:

If Q̂1 = 1, R̂0 = Ŝ0. (4.13)

The operator R̂2
corresponding to the Casimir operator Ŝ2

is expressed in the form

R̂2 = R̂2
0 + p · 1

2

(
R̂−R̂+ + R̂+R̂−

)
= Fp(R̂) + 1

2

(
T̂m − T̂ + 1

) (
Q̂ p − p

)∑
t

|t〉〈t |. (4.14)

Here, R̂ and Fp(R̂) are given as

(i) R̂ = ±1
2

(
T̂m − T̂ + pQ̂ p ∓ 1

)
, Fp(R̂) = R̂

(
R̂ + 1

)
, (4.15a)

(ii) R̂ = ±1
2

(
T̂m − T̂ + pQ̂ p ± 1

)
, Fp(R̂) = R̂

(
R̂ − 1

)
. (4.15b)

Under the condition (4.9), the upper sign of R̂ in (i) is reduced to Ŝ:

If Q̂1 = 1, R̂ = Ŝ and R̂2 = F1(R̂) = Ŝ2 = Ŝ
(
Ŝ + 1

)
. (4.16)

The above argument suggests that R̂ shown in the relation (4.15) can be regarded as an operator that
plays the same role as Ŝ. Then, it may be permitted to require the condition

rt ≥ 0.
(
R̂|t, t0〉 = rt |t, t0〉

)
(4.17)

The above is a formal aspect of the case p = ±1. Later, we will discuss some concrete examples.
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Next, we discuss the case p = 0. Under the condition (4.5), the relation (4.10) is reduced to

R̂+R̂− = T̂m − T̂ + 1 −
(

T̂m − T̂ + 1
)∑

t

|t〉〈t |, (4.18a)

R̂−R̂+ = T̂m − T̂ . (4.18b)

In this case, R̂0 cannot be defined, because of the commutation relation[
R̂+, R̂−

]
= 1 −

(
T̂m − T̂ + 1

)∑
t

|t〉〈t |. (4.19)

However, it should be noticed that T̂0 plays the same role as R̂0 in the case p = ±1:[
T̂0, R̂±

]
= ±R̂±. (4.20)

Of course, R̂2
cannot be defined. The operators R̂± can be expressed as

R̂+ = T̂+ ·
√

T̂m − T̂0 ·
(√

T̂−T̂+ + ε

)−1

, (4.21a)

R̂− =
(√

T̂−T̂+ + ε

)−1

·
√

T̂m − T̂0 · T̂−. (4.21b)

Although R̂± do not form any algebra, R̂+ plays the role of the raising operator for constructing the
orthogonal set. It is easily seen that there exist the relations R̂−|t, t〉 = 0 and R̂+|t, tm〉 = 0 and the
state |t, t0〉 is of the form

(
R̂+

)t0−t |t〉.
As promised, we show concrete examples for the case p = ±1 and examine the following cases:

(i) R̂0|t, t〉 = −R̂|t, t〉 (= −rt |t, t〉), (4.22a)

(ii) R̂0|t, tm〉 = R̂|t, tm〉 (= rt |t, tm〉), (4.22b)

(iii) R̂0|t, t〉 = R̂|t, t〉 (= rt |t, t〉). (4.22c)

These three may be regarded as cases in which traces of the original su(2)- and su(1, 1)-algebras
are left. After rather lengthy consideration, the following results are obtained: In case (i), Q̂1 = 1,
i.e., q1,t = 1, which leads us to

R̂ = 1
2

(
T̂m − T̂

)
, R̂0 = T̂0 − 1

2

(
T̂m + T̂

)
, R̂2 = R̂

(
R̂ + 1

)
. (4.23a)

In case (ii), q1,t > 0, which gives

R̂ = 1
2

(
T̂m − T̂ + Q̂1 − 1

)
, R̂0 = T̂0 − 1

2

(
T̂m + T̂ − Q̂1 + 1

)
,

R̂2 = R̂
(
R̂ + 1

)
− 1

2

(
T̂m − T̂ + 1

) (
Q̂1 − 1

)∑
t

|t〉〈t |. (4.23b)

In case (iii), it is impossible to find any case that satisfies the conditions (4.8) and (4.17).
It is important to see that case (i) is included in case (ii). If Q̂1 = 1 in case (ii), it is nothing but

case (i) and this case corresponds to the su(2)-algebra already discussed. If Q̂1 �= 1, the relation
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R̂0|t, t〉 = −R̂|t, t〉 does not exist. For example, if Q̂1 = 2T̂ , the operator Q̂ p + p
(
T̂0 − T̂

)
for

p = 1 becomes
(
T̂ + T̂0

)
. Then, in this case, R̂±,0 can be expressed in the form

R̂+ = T̂+ ·
√

T̂m − T̂0 ·
(√

T̂0 − T̂ + 1 + ε

)−1

, (4.24a)

R̂− =
(√

T̂0 − T̂ + 1 + ε

)−1

·
√

T̂m − T̂0 · T̂−, (4.24b)

R̂0 = T̂0 − 1
2

(
T̂m − T̂ + 1

)
. (4.24c)

R̂ = 1
2

(
T̂m − T̂ − 1

)
, R̂2 = R̂

(
R̂ + 1

)
− 1

2

(
T̂m − T̂ + 1

) (
2T̂ − 1

)∑
t

|t〉〈t |. (4.25)

Of course, the following relations are obtained:[
R̂+, R̂−

]
= 2R̂0 −

(
T̂m − T̂ + 1

) (
2T̂ − 1

)∑
t

|t〉〈t |, (4.26)

R̂0|t, t〉 = −1
2(tm − 3t + 1)|t, t〉 �= −R̂|t, t〉. (if t > 1/2) (4.27)

The case t = 1/2 is reduced to the su(2)-algebra
(
Ŝ±,0

)
. The above argument may be permitted to

call Q̂1 �= 1 as a pseudo su(2)-algebra.
The (t0 − t) time operation of R̂+ on the state |t〉 is given in the form

(
R̂+

)t0−t |t〉 =
√

(tm − t)!

(tm − t0)!

√√√√tm−t−1∏
k=0

(
qp,t + pk

)√ (2t − 1)!

(t0 − t)!(t0 + t − 1)!

(
T̂+
)t0−t |t〉. (4.28)

Here,
∏tm−t−1

k=0

(
qp,t + pk

)
can be expressed in terms of the gamma-function:

tm−t−1∏
k=0

(
qp,t + pk

) = pn �
(
qp,t/p + n

)
�
(
qp,t/p

) . (n = t0 − t) (4.29)

If we intend to describe the system under investigation exactly, it may be enough to use the orthogonal
state

(
T̂+
)n|t〉 (n = 0, 1, 2, . . . , tm − t

)
. However, if we adopt an approximation such as in (A), the

above idea of the deformation becomes useful. We will consider the case on the following state:∣∣φp,t
〉 = 1√

�p,t
exp

(
zR̂+

)
|t〉. (〈

φp,t
∣∣φp,t

〉 = 1
)

(4.30)

Here, z and �p,t denote a complex parameter and the normalization constant, respectively. In such
a problem, it is indispensable which form is chosen for R̂+. In (A), as R̂+, T̂+, e.g., T̂+ itself was
used. The norm of the state

(
R̂+

)n|t〉 is given by

〈t |
(
R̂−

)n ·
(
R̂+

)n |t〉 = (tm − t)!

(tm − t − n)!

n−1∏
k=0

(
qp,t + pk

) · (2t − 1)!

n!(2t − 1 + n)!
〈t |
(

T̂−
)n ·

(
T̂+
)n |t〉

= (tm − t)!

(tm − t − n)!

n−1∏
k=0

(
qp,t + pk

)
, (4.31)

〈t |
(

T̂−
)n ·

(
T̂+
)n |t〉 = (2t − 1 + n)!n!

(2t − 1)!
. (4.32)
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Then, �p,t is expressed as a function of x in the following:

�p,t =
tm−t∑
n=0

(−)n

(
tm − t

n

)
�(qp,t/p + n)

n!�(qp,t/p)
(−px)n

= Gtm−t
(
qp,t/p − (tm − t), 1; −px

)
, (4.33)

x = |z|2. (4.34)

Here, the relation (4.29) was used. The function Gtm−t is a Jacobi polynomial. At the limit p → 0
and qp,t → 1, the expression (4.33) is reduced to

�0,t = lim
p→0

qp,t→1

�p,t =
tm−t∑
n=0

(−)n

n!

(
tm − t

n

)
(−x)n = Ltm−t (−x). (4.35)

The function Ltm−t denotes a Laguerre polynomial. Here, the following relation was used:

lim
p→0

qp,t→1

�(qp,t/p + n)

�(qp,t/p)
(−px)n = (−x)n. (4.36)

With the use of the relation (4.29), we can obtain the expression (4.35) directly.
The expression (4.33) is too complicated to be applied to any concrete problem. This indicates that

an idea for the approximation must be sought. For this aim, three points for �p,t must be pointed out.
The first is the case q1,t = 1, which leads us to the simple form:

�1,t = (1 + x)tm−t . (4.37)

The second is the maximum power of the polynomial �p,t for x :

the maximum power = tm − t. (4.38)

It is independent of the choice of qp,t . The third is related to the behavior of �p,t near x = 0. In the
region x ∼ 0, �p,t can be expressed as

�p,t = 1 + �
(1)
p,t x + 1

2�
(2)
p,t x

2 + · · · , (4.39a)

�
(1)
p,t = (tm − t)qp,t , �

(2)
p,t = 1

2(tm − t)(tm − t − 1)qp,t
(
qp,t + p

)
. (4.39b)

Concerning �p,t (x), the above-mentioned three points suggest the following approximation:

�a(x) = (1 + Cx)k(1 + Dx)l,

k, l : positive integers, k + l = m (= tm − t). (4.40)

In order to take into account the difference between C and D, �a(x) should be treated in the region

1 ≤ l ≤ m − 1. (4.41)

Hereafter, in order to avoid unnecessary complication, we will omit the index (p, t) and use the
symbol m(= tm − t). We determine C and D so as to make the coefficients of the terms x and x2 in

15/43

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2015/4/043D

01/1522923 by 00500 U
niversidade de C

oim
bra user on 09 O

ctober 2023



PTEP 2015, 043D01 Y. Tsue et al.

the form (4.40) agree with those in the relation (4.39):

C = q

(
1 ∓

√
l

k
· m − 1

2
· ζ

)
, D = q

(
1 ±

√
k

l
· m − 1

2
· ζ

)
, (4.42)

ζ = 1 − p

q
(≥ 0). (4.43a)

The condition ζ ≥ 0 and the relations (4.5) and (4.8) give us the inequality for ζ :

0 ≤ ζ ≤ 1 + 1

m
,

i.e.,

0 ≤ ζ < 1 (p = 1), ζ = 1 (p = 0), 1 < ζ ≤ 1 + 1

m
(p = −1). (4.43b)

The function �(x)(= �p,t (x)) is a polynomial, in which the coefficient of each term is positive and,
then, �(x) = 0 does not have any root in the range x ≥ 0, i.e., �(x) > 0 (x ≥ 0). Therefore, we
require the condition �a(x) > 0 (x ≥ 0), i.e.,

C > 0, D > 0. (4.44)

The quantities C and D are symmetric with each other for k, l, ∓, and ± in the relation (4.42) and,
for D, we can adopt the form with the upper of the sign ±:

D = q

(
1 +

√
k

l
· m − 1

2
· ζ

)
(> 0). (4.45a)

Therefore, automatically, C becomes of the form

C = q

(
1 −

√
l

k
· m − 1

2
· ζ

)
(> 0). (4.45b)

The expression (4.45a) satisfies D > 0. The condition C > 0 is reduced to

l < λ0, λ0 = m

1 + m−1
2 · ζ

. (4.46)

It should be noted that l is a positive integer, but λ0 is generally not an integer. We introduce l0, which
is the nearest integer to λ0 under the condition l0 < λ0. Then, the following inequality is obtained:

0 < λ0 − l0 ≤ 1, l = l0, l0 − 1, . . . , 2, 1. (4.47)

With the use of the relation (4.46), the inequality (4.47) can be rewritten in the form

ζmin ≤ ζ ≤ ζmax,

ζmin = 2(m − 1 − l0)

(m − 1)(l0 + 1)
, ζmax = 2(m − l0)

(m − 1)l0
. (4.48)

Some concrete cases of the inequality are summarized in Table 1. We can see that the case (p = 1,

q = 1) reduces to ζ = 0 and C = D = 1. In this case, the relation (4.40) becomes of the form (4.37)
independent of the choice of l. Of course, this case corresponds to the su(2)-algebra. The result in
any other case depends on the choice of l. So far, we have no idea how to determine the value of
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Table 1. Parameter set.

l0 ζmin ζmax l

m − 1 0
2

(m − 1)2
m − 1, m − 2, . . . , 2, 1

m − 2
2

(m − 1)2

4

(m − 1)(m − 2)
m − 2, m − 3, . . . , 2, 1

...
...

...
...

m + 1

2

2(m − 3)

(m − 1)(m + 3)

2

m + 1

m + 1

2
,

m − 1

2
, . . . , 2, 1 (m : odd)

m

2

2(m − 2)

(m − 1)(m + 2)

2

m − 1

m

2
,

m − 2

2
, . . . , 2, 1 (m : even)

m − 1

2

2

m + 1

2(m + 1)

(m − 1)2

m − 1

2
,

m − 3

2
, . . . , 2, 1 (m : odd)

...
...

...
...

2
2(m − 3)

3(m − 1)

m − 2

m − 1
2, 1

1
m − 2

m − 1
1 + 1

m
1

l. In relation to a certain approximation adopted in next section, the case l = 1 may be the most
reasonable.

The expectation values of T̂0, R̂+, and R̂− for |φ〉 given in the relation (4.30) are calculated in the
form 〈

φ

∣∣∣T̂0

∣∣∣φ〉 = t + �(x), (4.49a)〈
φ

∣∣∣R̂+
∣∣∣φ〉 = z∗ �(x)

x
,

〈
φ

∣∣∣R̂−
∣∣∣φ〉 = z

�(x)

x
. (4.49b)

Here, �(x) is defined as

�(x) = x d�(x)
dx

�(x)
. (4.50)

In the case of the approximate form of �(x), �a(x) is given in the form

�a(x) = kCx

1 + Cx
+ l Dx

1 + Dx
= m

[
1 −

(
k/m

1 + Cx
+ l/m

1 + Dx

)]
. (4.51)

The relation (4.51) will play a central role in next section. The relations (4.34) and (4.35) lead us to
the following expression for �(x):

�(x) = m

(
1 − Gm−1(q/p − m + 1, 1, −px)

Gm(q/p − m, 1, −px)

)
, (4.52)

�(x) = m

(
1 − Lm−1(−x)

Lm(−x)

)
. (4.53)

Figure 1 shows the comparison of �a(x) for the case (k = m − 1, l = 1) and �(x).
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1.0

2.0

3.0

0 2 4 6 8 10

1.0

2.0

3.0
a

(x)
(x) (x)

(x)

a

su(2) limit

su(2) limit

xx

(a) (b)

Fig. 1. (a) The comparison of �a(x) with �(x) in Eq. (4.52) for the case k = m − 1, l = 1 with m = 3. Here,
p = 1 and q = 2 are adopted. In this case, �a(x) and �(x) almost overlap one another. (b) The comparison
of �a(x) (dotted curve) with �(x) (solid curve) in Eq. (4.53) with p = 0 and q = 1. In both panels, the
dash-dotted curves represent the su(2) limit.

5. A possible application

As mentioned in Sect. 1, the aim of this paper is to formulate a new boson representation of the su(2)-
algebra and its deformation, in which the idea of phase space doubling is applied straightforwardly.
In this section, in order to demonstrate our idea, we will apply the present form to the case of a simple
boson model. This model is essentially the same as that discussed in Sect. 7 in (A). We pay attention
to the boson Hamiltonian

Ĥb = ωb̂∗b̂. (5.1)

This Hamiltonian corresponds to the fermionic one, as discussed in Sect. 7 of (A). The Hamiltonian
Ĥb is nothing but Ĥintr, introduced in the relation (1.1). Following the idea of phase space doubling,
we introduce another boson Hamiltonian Ĥa = ωâ∗â and set up the form

Ĥba = Ĥb − Ĥa = ω
(

b̂∗b̂ − â∗â
)
. (5.2)

Of course, Ĥa plays the role of Ĥextr and Ĥba = Ĥ0. As for the interaction between the two boson
systems, V̂ba , we adopt the following form:

V̂ba = −iγ
(

â∗b̂∗ · f
(

â∗â, b̂∗b̂
)

− f
(

â∗â, b̂∗b̂
)

· b̂â
)
. (5.3)

Here, γ denotes the interaction strength. For example, the case f
(
â∗â, b̂∗b̂

) = 1 corresponds to
the su(1, 1)-algebraic model investigated in Refs. [8–10]. As for â∗b̂∗ · f

(
â∗â, b̂∗b̂

)
, we adopt the

operator R̂+, shown in the relation (4.3), and then the Hamiltonian Ĥ is given by

Ĥ = Ĥba + V̂ba = ω
(

2T̂ − 1
)

− iγ
(
R̂+ − R̂−

)
. (5.4)

It should be noted that Ĥ does not mean the total energy. It may be clear that T̂ is a constant of
motion. The above is our model discussed in this paper.

For treating the Hamiltonian (5.4), we follow the same method as in (A). Regarding |φ〉 as a time-
dependent variational state, we set up the following variational equation:

δ

∫ 〈
φ

∣∣∣i∂τ − Ĥ
∣∣∣φ〉dτ = 0. (5.5)

Here, in order to avoid confusion between the time variable and the quantum number t , we will
use τ for the time variable. If a finite temperature system is considered, the entropy operator Ŝent

should be introduced, the Hamiltonian Ĥ should be replaced with the free energy Ĥ − Ŝent/β, where
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β represents the inverse of temperature, and a mixed state should be introduced, as discussed in
Ref. [14]. In this paper, a system at zero temperature is treated. If z and z∗ are regarded as time-
dependent variational parameters, the variational equation (5.5) leads us to the following equation:

ż = −γ

[
1 − z2

x

(
1 − �(x)

x d�(x)
dx

)]
, ż∗ = −γ

[
1 − z∗2

x

(
1 − �(x)

x d�(x)
dx

)]
. (5.6)

The expectation value of Ĥ , H, is given in the form

H = 〈
φ
∣∣Ĥ ∣∣φ〉 = ω(2t − 1) − iγ

(
R+ − R−

)
= ω(2t − 1) − γ i

(
z∗ − z

)�(x)

x
. (5.7)

Here, R± denote the expectation values of R̂±. The details can be found in (A).
The present system is of two dimensions and, therefore, there exist two constants of motion. One

is the quantum number t and the second, which will be denoted by κ , is given through the relation

i
(
z∗ − z

)�(x)

x
= 2κ. (5.8)

This may be self-evident, because H itself, shown in the relation (5.8), is a constant of motion. If
z is expressed in the form z = u + iv, we have

i
(
z∗ − z

) = 2v. (5.9)

In (A), we learned that, instead of x , it may be convenient to adopt the variable y, defined as

y = �(x)

x
.

(
x = ∣∣z∣∣2 = u2 + v2

)
(5.10)

Inversely solving this, x can be expressed as a function of y. Then, v can be expressed in the form

v = κ

y
, i.e., yu = ±

√
xy2 − κ2. (5.11)

With the use of the relation (5.6), ẋ can be given as

ẋ = −2γ
�(x)

x d�(x)
dx

· u. (5.12)

The definitions of y and ẋ , which are given in the relations (5.10) and (5.12), respectively, give us ẏ
in the form

ẏ = − 2γ

x + y dx
dy

·
(

±
√

xy2 − κ2

)
. (5.13)

Now, let us express x as a function of y. The basic equation for this task is the relation (5.10). As
for �(x), we adopt the approximate form �a(x) given in the relation (4.51). For �a(x), the relation
(5.10) is reduced to the form

C Dy · x2 − (mC D − y(C + D)) · x + (y − (kC + l D)) = 0. (5.14)

A solution of Eq. (5.14) is as follows:

x = m

2y
− C + D

2C D
+ m

2y

√
1 + 2I y + J 2y2,

I =
(

k − l

m2

)(
C − D

C D

)
, J 2 = 1

m2

(
C − D

C D

)2

.

(
J 2 =

(
k + l

k − l

)2

I 2

)
(5.15)
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In the case C = D, another solution becomes negative and we pick up only the solution (5.15). Next,
we consider a possible approximation of

√
1 + 2I y + J 2y2, which, up to the term y2, is expanded

for y: √
1 + 2I y + J 2y2 = 1 + I y + 1

2

(
J 2 − I 2)y2. (5.16)

Let the following inequality be permitted:

y 

∣∣∣∣ 2I

J 2 − I 2

∣∣∣∣ . (5.17)

Then, we are able to obtain the approximate form√
1 + 2I y + J 2y2 = 1 + I y = 1 +

(
k − l

m2

)(
C − D

C D

)
y. (5.18)

Later, we will discuss the condition under which the inequality (5.17) is meaningful. Then, we have

x = m

2y
− C + D

2C D
+ m

2y

(
1 +

(
k − l

m2

)(
C − D

C D

)
y

)
= m

y
− 1

B
, (5.19)

1

B
= 1

m

(
k

C
+ l

D

)
. (5.20)

With the use of the relation (5.19), we obtain

xy2 − κ2 =
(

m2 B

4
− κ2

)
− 1

B

(
y − m B

2

)2

, (5.21a)

x + y
dx

dy
= − 1

B
. (5.21b)

Therefore, ẏ, shown in the relation (5.13), can be expressed as

ẏ = ±2γ B

√(
m2 B

4
− κ2

)
− 1

B

(
y − m B

2

)2

. (5.22)

By solving Eq. (5.22), y can be expressed as a function of τ . The relation (5.22) can be rewritten in
the form

1
2 ẏ2 + 1

2 · 4γ 2 B

(
y − m B

2

)2

= 2γ 2 B

[(
m B

2

)2

−
(√

Bκ
)2
]

. (5.23)

The relation (5.23) tells us that the present system is equivalent to a simple harmonic oscillator in
classical mechanics. Then, we have

y = m B

2
+
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

Bτ + χ0

)
. (5.24)

Here, χ0 is determined by the initial condition. The quantities x and �a(x) can be expressed in the
following form:

x =
m B

2 −
√(

m B
2

)2 −
(√

Bκ
)2

cos
(

2γ
√

Bτ + χ0

)
m B

2 +
√(

m B
2

)2 −
(√

Bκ
)2

cos
(

2γ
√

Bτ + χ0

) , (5.25)

�a(x) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

Bτ + χ0

)
. (5.26)
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Thus, we could express x and �a(x) as functions of τ . Of course, this is a general solution, in
which the initial and boundary conditions are not taken into account. In Sect. 6, we will discuss these
conditions.

Finally, we will discuss the inequality (5.17), which leads us to the simple result shown in the
relation (5.26). First, we note the maximum value of y, ymax, which is expressed as

ymax = m B. (5.27)

The relation (5.27) is obtained under the condition
(
κ = 0, cos

(
2γ

√
Bτ + χ0

) = 1
)

in the relation
(5.24). Therefore, we have

m B 

∣∣∣∣ 2I

J 2 − I 2

∣∣∣∣ . (5.28)

After rather lengthy consideration, the following inequality can be derived from the relation (5.28):

ζ0 
 ζ0( j), (5.29)

(i) for 0 < j ≤ 1

4
, ζ0( j) = 2

m − 1
· 1 − j

j
, (5.30a)

(ii) for
1

4
< j < 1

2 , ζ0( j) = 2

m − 1
· j (1 − j)(1 − 2 j)2(

1 − 6 j + 6 j2
)2 , (5.30b)

(iii) for 1
2 ≤ j < 1, ζ0( j) = 2

m − 1
· j (1 − j)(1 − 2 j)2(

1 − 2 j + 2 j2
)2 . (5.30c)

Here, j denotes

j = l

m
.(0 < j < 1) (5.31)

On the other hand, we note the inequality (4.48):

ζ < ζmax( j0), ζmax( j0) = 2

m − 1
· 1 − j0

j0
. (5.32)

Here, j0 denotes

j0 = l0
m

.
(
0 < j0 < 1

)
(5.33)

Further, we note the relation (4.40), which can be expressed as

j0 ≥ j. (5.34)

The inequality (5.29) and (5.32) suggest the relation

ζmax( j0) 
 ζ0( j). (5.35)

Figure 2 shows the behavior of ζ0 and ζmax in units of (2/(m − 1)). From the figure, we can learn
the following points: (i) If j ∼ 0 and j0 ∼ 1, the inequality (5.35) is sufficiently satisfied. (ii) If
1/4 ≤ j < 1/2 and j0 ∼ 1, the inequality (5.35) may be satisfied, but not so sufficiently as in case (i).
(iii) If 1/2 < j < 1 and 1/2 < j0 < 1, the inequality (5.35) is not satisfied. The above summary leads
us to the following conclusion: If l is rather far from l0 (l 
 l0), our approximation may be justified.
Therefore, the case (l = 1, l0 = m − 1) is the most reliable. This point has already been suggested
in the previous section.
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m 1 )
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Fig. 2. For the comparison, ζ0( j) in Eq. (5.29) and ζmax in Eq. (5.32) are depicted. The vertical axis represents
ζ0( j) and/or ζmax( j0) in units of 2/(m − 1).

2 4 60

7

8

9

10

11

Hb

Fig. 3. The time-dependent energy for the b-system depicted as a function of time τ .

As an example of physical systems, let us consider the b-system governed by the Hamiltonian (5.2)
considered in this section. Figure 3 shows the energy expectation value for the b-system as a function
of time τ , which is depicted by using the approximation in Eq. (5.26). The parameters are taken as
t = 4, s = 3/2, which leads to tm = 7 and m = 3. Also, l = 1, p = 1, q = 2, γ = 1, ω = 1, and
κ = 3/2 are adopted and an initial condition, χ0 = 0, is given. It is seen that the energy flows into
the b-system from the external environment and vice versa. Namely, the behavior of the intrinsic
system is not a simple pure damped or amplified oscillator due to the su(2) algebra with p = 1 being
the compact one, while the simple damped or amplified oscillator appears in the case governed by
the su(1, 1)-algebra [9].

6. Detailed explanation of the results

First of all, we will examine the formal result for the approximate solution (5.26) closely. For this
aim, we first consider the quantity B, defined in the relation (5.20). With the use of the relations
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Table 2. Examples for q and B.

q B

1 1

2 1 + 1

m

6
(
6 − √

5
)⎛⎜⎝1 + 1

m − 2
(

1 −
√

3
5

)
⎞⎟⎠ ≈ 2.127

(
1 + 1

m − 0.451

)

9 3

(
1 + 1

m − 1
2

)

13
(
13 − √

78
)⎛⎜⎝1 + 1

m −
(

2 −
√

6
13

)
⎞⎟⎠ ≈ 4.168

(
1 + 1

m − 1.321

)

(4.45a) and (4.45b), B can be expressed in the following form for the case (k = m − 1, l = 1):

B = q

(
1 −

√
ζ

2

)⎛⎜⎝1 + 1

m −
(

2 −
√

2
ζ

)
⎞⎟⎠ . (6.1)

Since m ≥ 2, B obeys the inequality

B ≥ q

(
1 −

√
ζ

2

)
. (6.2)

We are mostly interested in the case p = 1, i.e., ζ = 1 − 1/q. Then, we have the relation

q

(
1 −

√
ζ

2

)
− 1 = 1√

2

√
q − 1(q − 2)√

2(q − 1) + √
q

≥ 0. (6.3)

The inequalities (6.2) and (6.3) lead us to

B ≥ 1. (6.4)

Examples are shown in Table 2. In several places later in the paper, we will use the inequality (6.4).
Now we investigate the general solution (5.26). For this aim, we define two functions:

�a(θ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos θ, (6.5a)

y(θ) = m B

2
+
√(

m B

2

)2

−
(√

Bκ
)2

cos θ. (6.5b)

If θ is replaced with
(

2γ
√

Bτ + χ0

)
, �a(θ) and y(θ) are reduced to the results (5.26) and (5.24).

The present approximate result should obey the following boundary conditions:

(i) y(θ) · �a(θ) − κ2 ≥ 0, i.e.,

(
m B

2

)2

−
((

m B

2

)2

−
(√

Bκ
)2
)

cos2 θ − κ2 ≥ 0, (6.6a)
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(ii)

(
m B

2

)2

−
(√

Bκ
)2 ≥ 0, (6.6b)

(iii) �a(θ) ≤ m, i.e.,
m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos θ ≤ m. (6.6c)

Condition (i) results from the relation (5.11), in which
(
xy2 − κ2

)
can be expressed in the form(

y(θ) · �a(θ) − κ2
)
. Condition (ii) may be self-evident. Condition (iii) comes from the relations

(4.52) and (4.53). On the basis of conditions (i), (ii), and (iii), we examine our general solution (5.26).
Let us start with condition (i). It is easily verified through the following inequality:

y(θ) · �a(θ) − κ2 =
((

m B

2

)2

−
(√

Bκ
)2
)

sin2 θ + (B − 1)κ2 ≥ 0. (6.7)

Here, we used the conditions (6.4) and (6.6b). It is important to see that condition (i) holds at any
value of θ . It may be convenient to treat condition (ii) by classifying it into two cases (a) and (b):

(a)

(
m B

2

)2

−
(√

Bκ
)2 = 0, i.e., |κ| = m

2

√
B, (6.8a)

(b)

(
m B

2

)2

−
(√

Bκ
)2

> 0, i.e., |κ| <
m

2

√
B. (6.8b)

In the present treatment, κ is given as an initial condition and case (a) gives us time-independent
�a(= m B/2).

The consideration of condition (iii) is rather lengthy; therefore, only the results will be presented.
In this case, it may be successful to consider the problem in the following four cases, depicted in
Fig. 4: Case (A) is nothing but case (a) given in the relation (6.8a). Since �a(τ ) ≤ m, we have

1 ≤ B ≤ 2, |κ| = m

2

√
B, �a(τ ) = �a

A(τ ) = m B

2
. (6.9)

In case (B), the following inequality holds:

m B

2
+
√(

m B

2

)2

−
(√

Bκ
)2 ≤ m. (6.10)

By solving the inequality (6.10), we have

1 ≤ B < 2, m

√
1 − 1

B
≤ |κ| <

m

2

√
B. (6.11)

Here, of course, we used the result of case (b). Then, if at the initial time τ = 0, θ = 0 is chosen, i.e.,
χ0 = 0 in the general solution (5.26), we have

�a(τ ) = �a
B(τ ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

Bτ
)
. (6.12)
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m

(a) (b)

(c) (d)

m

mm

a

0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

a

a a

Fig. 4. Schematic depiction of the four cases (a), (b), (c) and (d) under consideration, which lead to Case (A),
(B), (C) and (D) under some conditions described in the text.

Case (C) satisfies the inequality

m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

< m <
m B

2
+
√(

m B

2

)2

−
(√

Bκ
)2

. (6.13)

In this case, we obtain

B > 1, |κ| < m

√
1 − 1

B
. (6.14)

We adopt the same initial condition as that in the above, θ = 0, i.e., χ0 = 0 at τ = 0. As shown in
Fig. 4, there exists an angle θm and it is given in the form

m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos θm = m,

i.e., cos θm = m
( B

2 − 1
)√(

m B
2

)2 −
(√

Bκ
)2

, (0 < θm < π). (6.15)

At the time τm = θm/
(
2γ

√
B
)
, �a(θm) = m and, in the interval τ = 0 → τm , �a(τ ) can be

expressed as

�a(τ ) = �a
0(τ ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

Bτ
)
. (6.16)
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Fig. 5. The behavior of �a(τ ) for various values of κ is shown with the same parameters as in Fig. 3, except
for κ .

However, after τ = τm , �a
0(τ ) cannot be adopted, because, if it is permitted, �a

0(τ ) > m. Then, we
define the following function:

�a(τ ) = �a
1(τ ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

B(τ − 2τm)
)
. (6.17)

The function �a
1(τ ) satisfies �a

1(τm) = �a
0(τm) = m and, in the interval τ = τm → 3τm ,

�a
1(τ ) < m. Further, in the interval τ = 3τm → 5τm , we define �a

2(τ ) in the form

�a(τ ) = �a
2(τ ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

B(τ − 4τm)
)
. (6.18)

Certainly, �a
2(3τm) = �a

1(3τm) = m and �a
2(τ ) is useful in the interval τ = 5τm → 7τm . By

proceeding with this task, we arrive at the following solution:

�a(τ ) = �a
C (τ ) = �a

n(τ ) = m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2

cos
(

2γ
√

B(τ − 2nτm)
)

,

for (2n − 1)τm ≤ τ ≤ (2n + 1)τm .(n = 0, 1, 2, 3, . . .) (6.19)

In case (D), we have the relation

m B

2
−
√(

m B

2

)2

−
(√

Bκ
)2 = m. (6.20)

The solution of this equation is given as

B > 2, |κ| = m

√
1 − 1

B
, �a(τ ) = �a

D(τ ) = m. (6.21)

Case (D) is regarded as the limit θm → 0 in case (C). The function �a
D(τ ) does not depend on τ , but

its origin is different from that in case (A). Figure 5 shows the behavior of �a(τ ) for various values
of κ . The same parameters as those used in Fig. 3 are adopted, except for κ , which is a conserved
quantity determined by the initial condition. Under this parameter set, we obtain B = 4/3, which is in
the range 1 < B < 2. Then, for various values of κ , the function �a(τ ) is turned into �a

C(τ ), �a
B(τ ),

or �a
A(τ ) according to Table 3. For κ = 0 and κ = √

21/4 ≈ 1.1456, we take �a(τ ) = �a
C(τ ). For

κ = 3/2, we adopt �a(τ ) = �a
C (τ ) = �a

B(τ ). For κ = 2
√

2/3 ≈ 1.633, we chose �a(τ ) = �a
B(τ ).

Finally, for κ = √
3 ≈ 1.732, we adopt �a(τ ) = �a

B(τ ) = �a
A(τ ).
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Table 3. For various values of B and κ , �a(τ ) is turned into �a
A(τ ),

�a
B(τ ) or �a

C(τ ).

B κ �a(τ )

B = 1 0 ≤ |κ| <
m

2
�a

B(τ )

|κ| = m

2
�a

A(τ )

1 < B < 2 0 ≤ |κ| < m

√
1 − 1

B
�a

C(τ )

m

√
1 − 1

B
≤ |κ| <

m

2

√
B �a

B(τ )

|κ| = m

2

√
B �a

A(τ )

B = 2 0 ≤ |κ| <
m√

2
�a

C(τ )

|κ| = m√
2

�a
A(τ )

B > 2 0 ≤ |κ| < m

√
1 − 1

B
�a

C(τ )

|κ| = m

√
1 − 1

B
�a

D(τ )

light particlespring heavy particle

Fig. 6. The elastic collision of a simply oscillating light particle with a sufficiently heavy one.

In classical mechanics, we can find the same problem as that discussed in this section: elastic
collision of a simply oscillating light particle with a sufficiently heavy one, which is illustrated in
Fig. 6. The results obtained in the above are summarized in Table 3.

So far, we have proposed a new boson representation of the su(2)-algebra. The basic idea comes
from the pseudo su(1, 1)-algebra in the Schwinger boson representation. In a certain sense, ours is
on the opposite side of the Schwinger representation of the su(2)-algebra. In subsequent sections,
we will prove that ours satisfies the su(2)-algebra in the subspace (2.8) of the whole space (2.5) for
the case tm = Cm + 1 − t , and will give connections to the other boson representations.

7. Some theoretical features of the new boson representation

In the same scheme as that in the Schwinger boson representation [7], three generators in our new
boson representation are also expressed in terms of two kinds of bosons. Concrete forms can be seen
in the relations (3.7) and (3.8c) or (3.9) and (3.10). The operator for the magnitude of the su(2)-spin
is given in the relation (3.10): Ŝ = (

â∗â − b̂∗b̂
)
/2 + Cm/2. Here, Cm denotes a certain constant,
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which is appropriately chosen. On the other hand, in the Schwinger representation, Ŝ is given as
Ŝ = (

â∗â + b̂∗b̂
)
/2, which is seen in the relation (3.2b). This is an essential difference between the

Schwinger and our representations. In the previous section, we promised to prove that our new boson
representation obeys the su(2)-algebra. For this proof, we must consider the subspace (2.8) in the
whole space given in the Schwinger boson representation of the su(1, 1)-algebra. In this subspace,
our representation satisfies the su(2)-algebra. In the next subsection, Sect. 7.1, it is proved that, in
the subspace (2.8), Ŝ±,0, introduced in the relation (3.9), obey the su(2)-algebra, and Ŝ, given in the
relation (3.10), plays the role of the magnitude of the su(2)-spin. In Sect. 7.2, raising and lowering
operators for the magnitude of the su(2)-spin are discussed, respectively.

7.1. The boson representation of the su(2)-algebra developed in the preceding sections

The main aim of this subsection is to formulate the fact that our representation of the su(2)-algebra
strictly holds in the space (2.8) as a subspace of the whole space (2.5). We sketch out the space (2.8)
and other subspace on the t–t0 plane. As has already been mentioned, we are interested in the space
obeying the condition (2.8), which is a subspace of the whole space specified by the condition (2.5).
Figure 7 shows various subspaces for the case T̂m = Cm + 1 − T̂ . This formula was given in the
range 1/2 ≤ t ≤ μ (= (Cm + 1)/2) for a certain reason, discussed in Sect. 2. We assume that the
above formula for T̂m is also useful in the range −∞ < t ≤ 0 and, in this paper, the case T̂m = Cm +
1 − T̂ is treated exclusively. In our present scheme, the whole space is divided into five subspaces
P , Q, Rp, Rq , and R, which are shown in Fig. 7. Of course, we are mainly interested in P . With
the above-mentioned point in mind, the su(2)-algebra was formulated in Sect. 3. The expressions for
Ŝ±,0 and Ŝ are given in the relations (3.7) and (3.8) or (3.8c) and (3.10). In this subsection, we will
examine some properties of these expressions in P and Q.

To prepare for the main discussion, we first make a list of the relations. The relations (3.7a) and
(3.8c) or (3.9c) and (3.10) are rewritten as

T̂ = 1
2

(
Cm + 1

)− Ŝ, T̂0 = 1
2

(
Cm + 1

)+ Ŝ0, (7.1)

i.e., t = 1
2

(
Cm + 1

)− s, t0 = 1
2

(
Cm + 1

)+ s0. (7.2)

The relations (3.9a) and (3.9b) are rewritten as

Ŝ+ = â∗b̂∗ ·
(√

Cm + 1 − Ŝ + Ŝ0 + ε

)−1

·
√
Ŝ − Ŝ0, (7.3a)

Ŝ− =
√
Ŝ − Ŝ0 ·

(√
Cm + 1 − Ŝ + Ŝ0 + ε

)−1

· b̂â. (7.3b)

The minimum weight state denoted by |s, σ 〉 obeys the conditions

Ŝ−|s, σ 〉 = 0, i.e., b̂â|s, σ 〉 = 0, (7.4)

Ŝ|s, σ 〉 = s|s, σ 〉, Ŝ0|s, σ 〉 = σ |s, σ 〉. (7.5)

The relations (7.4) and (7.5) with (7.3b) give us

P ; |s, σ 〉 = (
b̂∗)Cm−2s |0〉, σ = −s, (7.6)

Q ; |s, σ 〉 = (
â∗)2s−Cm |0〉, σ = s − Cm . (7.7)
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0 1/2 +1/2

Rp

Rq

R

Q Pt0 = 1–t

t0 = t

t0 = Cm+2–t

t0 = Cm+1–t

t

= –
2
1 (Cm+1)

t0

Fig. 7. The subspaces P , Q, Rp, Rq , and R on the t–t0 plane.

Here, the normalization constants are omitted. Since Cm − 2s ≥ 0 and 2s − Cm ≥ 1, we have the
inequalities

P ; s ≤ 1
2Cm, (7.8)

Q ; s ≥ 1
2(Cm + 1) . (7.9)

By operating Ŝ+ successively on the state |s, σ 〉, we are able to obtain the eigenstate of Ŝ and Ŝ0

with the eigenvalues s and s0, respectively, in the form

P ;
∣∣∣s, s0

〉
=
(
Ŝ+
)s+s0

∣∣∣s, −s
〉
, (7.10)

Q ;
∣∣∣s, s0

〉
=
(
Ŝ+
)Cm−s+s0

∣∣∣s, s − Cm

〉
. (7.11)

Here, the normalization constants are omitted. Since s + s0 ≥ 0 and Cm − s + s0 ≥ 0, we have

P ; s0 ≥ −s, (7.12)

Q ; s0 ≥ s − Cm . (7.13)

Our system has the maximum weight state, denoted by |s, σm〉. It satisfies

Ŝ+|s, σm〉 = 0, i.e.,
√
Ŝ − Ŝ0 |s, σm〉 = 0, (7.14)

Ŝ|s, σm〉 = s|s, σm〉, Ŝ0|s, σm〉 = σm |s, σm〉. (7.15)

The relations (7.14) and (7.15) give us

P and Q ; σm = s. (7.16)
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Then, the quantum number s0 satisfies

P ; −s ≤ s0 ≤ s, i.e., s0 = −s, −s + 1, . . . , s − 1, s, (7.17)

Q ; s − Cm ≤ s0 ≤ s, i.e., s0 = s − Cm, s − Cm + 1, . . . , s − 1, s. (7.18)

We can see that Ŝ±,0 obey the su(2)-algebra in P , but not in Q. The relations (7.8) and (7.9) teach
us that upper and lower limits of s in P and Q, respectively, exist. Therefore, it may be interesting
to show the lower and upper limits of s in P and Q, respectively. For this task, the first part of the
relation (7.2) is useful. As can be seen in Fig. 7, the quantum number t in P and Q obeys

P ; t = 1
2 , 1, 3

2 , . . . , μ − 1
2 , μ, (7.19)

Q ; t = 0, −1
2 , −1, . . . , −∞. (7.20)

Combining the relations (7.19) and (7.20) with the relation (7.2), we have the following:

P ; s = 1
2Cm, 1

2

(
Cm − 1

)
, 1

2

(
Cm − 2

)
, . . . , 1

2 , 0, (7.21)

Q ; s = 1
2

(
Cm + 1

)
, 1

2

(
Cm + 2

)
, 1

2

(
Cm + 3

)
, . . . , ∞. (7.22)

In P , there exists a lower limit s = 0, but, in Q, the upper limit is ∞.
Next, we investigate the commutation relations for Ŝ±,0 and Ŝ. For the above discussion, the

following played a central role:[
Ŝ0, Ŝ±

]
= ±Ŝ±,

[
Ŝ, Ŝ±,0

]
= 0. (7.23)

Of course, the above relation is useful both in P and Q. Our problem is to investigate the relation
[Ŝ+, Ŝ−]. Direct calculation gives us the form[

Ŝ+, Ŝ−
]

= 2
(
Ŝ0 + �Ŝ0

)
, (7.24)

�Ŝ0 = �Ŝ(+)
0 − �Ŝ(−)

0 ,

�Ŝ(+)
0 = ε

2

(
T̂0 − T̂ + 1

) (
Cm + 1 − T̂0 − T̂

)
T̂0 + T̂ + ε

,

�Ŝ(−)
0 = ε

2

(
T̂0 − T̂

) (
Cm + 2 − T̂0 − T̂

)
T̂0 + T̂ − 1 + ε

. (7.25)

Evidently,
[
Ŝ+, Ŝ−

]
does not satisfy the commutation relation in the su(2)-algebra. As can be seen in

Fig. 7, t0 and t obey the inequality t0 + t > 0 in both P and Q. This indicates that the term
(
T̂0 + T̂

)
appearing in the denominator of �Ŝ(+)

0 is positive-definite and, then, we have

P and Q ; �Ŝ(+)
0 −→ 0, (ε → 0). (7.26)

In the case �Ŝ(−)
0 , it may be necessary to investigate if the operator

(
T̂0 + T̂ − 1

)
appearing in

the denominator is positive-definite or not. For this aim, the condition t0 + t − 1 = 0 should be
examined: In P , t0 = t = 1/2 and, in Q, t0 = −t + 1 (t ≤ 0). Figure 7 gives us these relations. We
notice the term

(
T̂0 − T̂

)
appearing in the numerator of �Ŝ(−)

0 . In this case, t0 − t = 1/2 − 1/2 = 0.
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Therefore, the following result is derived:

P ; �Ŝ(−)
0 −→ 0, (ε → 0). (7.27)

On the other hand, there does not exist a term that leads to �Ŝ(−)
0 → 0, (ε → 0). Therefore, we have

Q ; �Ŝ(−)
0 −→ 1

2

(
T̂0 − T̂

) (
Cm + 2 − T̂0 − T̂

)
· Q̂0, (ε → 0), (7.28)

Q̂0 =
∑
t≤0

∣∣t, t0 = −t + 1
〉〈

t, t0 = −t + 1
∣∣

=
∑

s≥1/2·(Cm+1)

|s, σ 〉〈s, σ |. (σ = s − Cm) (7.29)

For the operator Ŝ2
, we have

Ŝ2 = Ŝ
(
Ŝ + 1

)
− 1

2

(
�Ŝ(+)

0 + �Ŝ(−)
0

)
. (7.30)

Therefore, for ε → 0, Ŝ2
is expressed in the form

P ; Ŝ2 −→ Ŝ
(
Ŝ + 1

)
, (7.31)

Q ; Ŝ2 −→ Ŝ
(
Ŝ + 1

)
− 1

2

(
T̂0 − T̂

) (
Cm + 2 − T̂0 − T̂

)
· Q̂0. (7.32)

The above consideration teaches us that Ŝ±,0 obey the su(2)-algebra in P , but they do not obey the
su(2)-algebra in Q. It may be permitted to call the algebra in Q the pseudo su(2)-algebra. With the
use of the commutation relation (7.24), we can determine the normalization constants of the states
(7.6) and (7.7). For this aim, the following formula is useful:

〈s, σ |
(
Ŝ−
)n ·

(
Ŝ+
)n |s, σ 〉 = (−)nn!

�(2σ + n)

�(2σ)
〈s, σ |s, σ 〉. (7.33)

Combining the formula (7.33) with the relations (7.6), (7.7), (7.10), and (7.11), we can determine
the norms of the states (7.10) and (7.11) in the following form:

P ; 〈s, s0|s, s0
〉 = (2s)!(s + s0)!

(s − s0)!
· (Cm − 2s

)
!, (7.34)

Q ; 〈s, s0|s, s0
〉 = (−)Cm−s+s0

(
Cm − s + s0

)
!�
(
s + s0 − Cm

)
�
(
2
(
s − Cm

)) · (2s − Cm
)
!. (7.35)

With the aid of the relations (7.34) and (7.35), we are able to obtain the normalized |s, s0〉. Clearly,
the relation (7.34) is the same as that in the su(2)-algebra. Of course,

(
Cm − 2s

)
! is derived under the

minimum weight state (7.6). The above is a supplementary explanation of our boson representation
of the su(2)-algebra. Certainly, in P , our representation obeys the su(2)-algebra. We will discuss the
subspaces Rp, Rq , and R in Sect. 9.

7.2. Raising and lowering operators for the magnitude of the su(2)-spin

In this subsection, we will discuss the role of the original Schwinger representation (3.1) in our
present one. It is shown that the operators Ŝ+ and Ŝ− play the role of the raising and lowering opera-
tors for the magnitude of the su(2)-spin, respectively. First, we notice that the relation between

(
t, t0

)
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Fig. 8. The condition (7.37) on the s–s0 plane.

and
(
s, s0

)
is given as

t = 1
2

(
Cm + 1

)− s, t0 = 1
2

(
Cm + 1

)+ s0. (7.36)

The form (7.36) is derived from the relations (3.7a) and (3.8c) with the relation (2.16a). The space
is characterized by the conditions t ≤ t0 ≤ Cm + 1 − t and 1/2 ≤ t ≤ μ, which leads us to the
following conditions for

(
s, s0

)
:

−s ≤ s0 ≤ s, (7.37a)

0 ≤ s ≤ 1
2Cm . (7.37b)

The condition (7.37) can be shown in Fig. 8. With the use of the relation (7.36), the state |t, t0〉 in
P can be expressed in the form

|t, t0〉 = 1√
(t0 − t)!(t0 + t − 1)!

(
â∗)t0−t(

b̂∗)t0+t−1|0〉

= |s, s0〉 = 1√
(s + s0)!(Cm − s + s0)!

(
â∗)s+s0

(
b̂∗)Cm−s+s0 |0〉. (7.38)

The state ||s, s0〉 in the Schwinger representation is given as

||s, s0〉 = 1√
(s + s0)!(s − s0)!

(
â∗)s+s0

(
b̂∗)s−s0 |0〉. (7.39)

The state (7.38) gives us the relation

Ŝ+|s, s0〉 = â∗b̂|s, s0〉 =
√

(s + s0 + 1)(Cm − s + s0)|s + 1, s0〉, (7.40a)

Ŝ−|s, s0〉 = b̂∗â|s, s0〉 =
√

(s + s0)(Cm − s + s0 + 1)|s − 1, s0〉, (7.40b)

Ŝ0|s, s0〉 = 1
2

(
â∗â − b̂∗b̂

)
|s, s0〉 = (

s − 1
2Cm

) |s, s0〉. (7.40c)

Here, Ŝ±,0 denote the generators of the su(2)-algebra in the Schwinger representation. In the relations
(7.40a) and (7.40b), we can see that Ŝ+ and Ŝ− play the role of the raising and lowering operators,
respectively, not for s0 but for s. However, we must notice the case s = Cm/2. Operation of Ŝ+ on
the state |Cm/2, s0〉 should vanish, because Cm/2 + 1 does not belong to the space P . In order to
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overcome this trouble, we define the following operators:

�̂+ = Ŝ+ ·
√

1
2Cm − Ŝ ·

(√
1
2Cm − Ŝ + ε

)−1

, (7.41a)

�̂− =
(√

1
2Cm − Ŝ + ε

)−1

·
√

1
2Cm − Ŝ · Ŝ−, (7.41b)

�̂0 = Ŝ − 1
2Cm . (7.41c)

Then, we have

�̂+|Cm/2, s0〉 = 0. (7.42)

The above indicates that the state |Cm/2, s0〉 is the maximum weight state.
The commutation relations for �̂±,0 are given in the form[

�̂0, �̂±
]

= ±�̂±, (7.43)[
�̂+, �̂−

]
= 2

(
�̂0 + ��̂0

)
, (7.44)

��̂0 = ε

2

(
Ŝ0 + Ŝ + 1

) (
Ŝ0 + Cm − Ŝ

)
1
2Cm − Ŝ + ε

. (7.45)

The operator �̂
2

corresponding to the Casimir operator of the su(2)-algebra is given as

�̂
2 = �̂2

0 + 1
2

(
�̂−�̂+ + �̂+�̂−

)
= �̂

(
�̂ + 1

)
−
(
��̂

(+)
0 + ��̂

(−)
0

)
, (7.46)

�̂ = Ŝ0 + 1
2Cm . (7.47)

We can see that the set �̂±,0 forms a kind of pseudo su(2)-algebra.
Thus, we can learn of the existence of raising and lowering operators for the magnitude of the

su(2)-spin. With the use of the operators �̂+ and Ŝ±, we can express the state |s, s0〉 in the form

|s, s0〉 =
(
Ŝ+
)s+s0 |s, −s〉, (7.48a)

|s, −s〉 =
(
Ŝ−�̂+

)s−ρ |ρ, −ρ〉, (7.48b)

|ρ, −ρ〉 = (b̂∗)Cm−2ρ |0〉.
(
ρ = 0 and 1

2

)
(7.48c)

In the above relations, we omitted the normalization constants. If ρ = 0 and 1/2, s become integer
and half-integer, respectively. However, we must remark that the above idea is not proper to our
representation. In the case of the Schwinger representation, we obtain the state ||s, s0〉 by replacing
Ŝ±, �̂+, and |ρ, −ρ〉 with Ŝ±, T̂+, and ||ρ, −ρ〉 = (

b̂∗)ρ |0〉.

8. Connections to other boson representations

We know two forms of the boson representations of the su(2)-algebra. One is, of course, the
Schwinger representation [7] and the other is the Holstein–Primakoff representation [5,6]. It may be
interesting to investigate the connection between ours and the other two. In this section, the Holstein–
Primakoff representation can be derived rather easily from ours. The connection between our new
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boson representation and the Holstein–Primakoff representation will be seen in Sect. 8.1. However,
the relation between the Schwinger representation and ours is rather complicated. One thing that
they have common is that they are both formulated in terms of two kinds of bosons. However, ours
contains one parameter Cm , which can be seen in the relations (3.9) and (3.10). To understand Cm ,
the pairing model in the many-fermion system is an instructive example. In this model, we have
2Cm = 4�0, the total number of single-particle states, which is shown in Sect. 3. The above example
suggests that Cm is regarded as a parameter expressing the size of the system under consideration.
In Sect. 8.2, we can show that, as a natural consequence, the magnitude of the su(2)-spin s can
change in the range s = 0, 1/2, . . . , Cm/2 − 1, Cm/2, which is consistent with the well known for-
mula in the pairing model. In the Schwinger representation, such a restriction does not exist and,
thus, s = 0, 1/2, . . . , ∞. Certainly, if Cm → ∞, we can show that ours is reduced to the Schwinger
representation. In Sect. 8.2, the above will be discussed.

8.1. Connection to the Holstein–Primakoff representation

It may be interesting to show how the Holstein–Primakoff representation [5,6] can be derived from
our representation (3.9). The three su(2)-generators (3.9) are rewritten in the following forms:

Ŝ+ = â∗β̂∗ ·
√

2Ŝ − â∗â, Ŝ− =
√

2Ŝ − â∗â · β̂â, Ŝ0 = â∗â − Ŝ. (8.1)

Here, (β̂, β̂∗) is defined in the form

β̂ =
(√

b̂∗b̂ + 1 + ε

)−1

· b̂, β̂∗ = b̂∗ ·
(√

b̂∗b̂ + 1 + ε

)−1

. (8.2)

Further, for the above rewriting, we used the relation

Cm − b̂∗b̂ = 2Ŝ − â∗â. (8.3)

The relation (8.3) comes from the form (3.10). Any of
(
β̂, β̂∗) connect with any of

(
â, â∗), and we

have the relation

β̂β̂∗ = 1 − ε

b̂∗b̂ + 1 + ε
→ 1, (ε → 0) (8.4a)

β̂∗β̂ = 1 − ε

b̂∗b̂ + ε
. (8.4b)

Therefore,
[
β̂, β̂∗

]
is given as [

β̂, β̂∗
]

= ε

b̂∗b̂ + ε
. (8.5)

The operator
[
β̂, β̂∗

]
plays the role of projection operator and, for the state (7.38), we have[

β̂, β̂∗
]
|s, s0〉 = ε

Cm − s + s0 + ε
|s, s0〉 = δs−s0,Cm |s, s0〉. (ε → 0) (8.6)

Our boson representation is given in the space P in Fig. 7 and, then, δs−s0,Cm takes the value 1 in the
case

s = smax = Cm

2
, s0 = −smax = −Cm

2
, δs−s0,Cm |s, s0〉 =

∣∣∣∣Cm

2
, −Cm

2

〉
. (8.7a)
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In any other case, we have

δs−s0,Cm |s, s0〉 = 0. (8.7b)

With the use of
(
β̂, β̂∗), we define the operator

(
ĉ, ĉ∗):

ĉ = β̂â
( = âβ̂

)
, ĉ∗ = â∗β̂∗ ( = β̂∗â∗). (8.8)

The operator
(
ĉ, ĉ∗) satisfies the relation

ĉĉ∗ = âβ̂β̂∗â∗ = ââ∗, (8.9a)

ĉ∗ĉ = â∗β̂∗β̂â = â∗â · (β̂∗β̂
) = â∗â − â∗â

[
β̂, β̂∗

]
= â∗â −

(
Ŝ + Ŝ0

) [
β̂, β̂∗

]
→ â∗â. (ε → 0) (8.9b)

We notice that
(
Ŝ + Ŝ0

)[
β̂, β̂∗]∣∣Cm/2, −Cm/2

〉 = (Cm/2 − Cm/2)|Cm/2, −Cm/2〉 and, for any
other case,

[
β̂, β̂∗]|s, s0〉 = 0. Therefore,

(
ĉ, ĉ∗) is a boson operator:[

ĉ, ĉ∗
]

=
[
â, â∗

]
= 1, ĉ|0〉 = b̂|0〉 = â|0〉 = 0. (8.10)

Further, we obtain the relation [
ĉ, Ŝ

]
=
[
ĉ∗, Ŝ

]
= 0. (8.11)

With the use of the relations obtained above, Ŝ±,0 can be rewritten in the form

Ŝ+ = ĉ∗
√

2Ŝ − ĉ∗ĉ, Ŝ− =
√

2Ŝ − ĉ∗ĉ ĉ, Ŝ0 = ĉ∗ĉ − Ŝ. (8.12)

By setting s + s0 = n in the state (7.38), we have

f
(
Ŝ, ĉ∗ĉ

)
|s, s0〉 = f (s, n)|s, s0〉 = f

(
s, ĉ∗ĉ

)|s, s0〉. (8.13)

Therefore, in the space spanned by |s, s0〉 (s0 = −s, −s + 1, . . . , s − 1, s), the expression (8.12) can
be regarded as

Ŝ+ = ĉ∗√2s − ĉ∗ĉ, Ŝ− =
√

2s − ĉ∗ĉ ĉ, Ŝ0 = ĉ∗ĉ − s. (8.14)

The above is nothing but the Holstein–Primakoff representation. In Ref. [15], we discussed an idea
of how to derive the Holstein–Primakoff representation from the Schwinger one. In this case, much
more lengthy discussion was necessary. The main reason for this may be attributed to the fact that
the operator corresponding to

(
ĉ, ĉ∗) does not satisfy the simple boson commutation relation. The

state (7.38) can be rewritten as

|s, s0〉 1√
(s + s0)!

(
ĉ∗)s+s0 |s, −s〉, (8.15)

|s, −s〉 = 1√
(Cm − 2s)!

(
b̂∗)Cm−2s |0〉 (= |φ〉). (8.16)

Clearly, ĉ satisfies

ĉ|φ〉 = 0. (8.17)
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Since the state |φ〉 is the vacuum of ĉ, we have the orthogonal set:

|n〉 = 1√
n!

(
ĉ∗)n|φ〉.(n = 0, 1, . . . , 2s) (8.18)

The above is the connection to the Holstein–Primakoff representation.

8.2. Connection to the Schwinger representation

In this subsection, we will discuss how the Schwinger boson representation is connected to the present
one. The three generators Ŝ±,0 and Ŝ given in the relations (3.9) and (3.10) are rewritten in the form

Ŝ+ = â∗β̂∗ ·
√

Cm − b̂∗b̂, Ŝ− =
√

Cm − b̂∗b̂ · β̂â, Ŝ0 = 1
2

(
â∗â −

(
Cm − b̂∗b̂

))
, (8.19)

Ŝ = 1
2

(
â∗â + (

Cm − b̂∗b̂
))

. (8.20)

Here,
(
β̂, β̂∗) is given in the relation (8.2). In order to rewrite the expressions (8.19) and (8.20), we

introduce the operator
(
b̆, b̆∗) in the form

b̆ = β̂∗
√

Cm − b̂∗b̂, b̆∗ =
√

Cm − b̂∗b̂ β̂. (8.21)

With the use of
(
b̆, b̆∗), Ŝ±,0 and Ŝ can be expressed as

S̆+ = â∗b̆, S̆− = b̆∗â, S̆0 = 1
2

(
â∗â − b̆∗b̆

)
, (8.22)

S̆ = 1
2

(
â∗â + b̆∗b̆

)
. (8.23)

Here, it should be noted that we rewrite Ŝ±,0 and Ŝ, shown in the relations (8.19) and (8.20), in the
forms (8.22) and (8.23) and, then, S̆±,0 = Ŝ±,0 and S̆ = Ŝ. If

(
b̆, b̆∗) is a boson operator, the expres-

sion (8.22) (and (8.23)) reduces to the Schwinger boson representation (3.1) (and (3.2)). Therefore,
it may be interesting to investigate the condition under which

(
b̆, b̆∗) can be regarded as a boson

operator. For this aim, we must calculate the commutation relation
[
b̆, b̆∗], the result of which is as

follows: [
b̆, b̆∗

]
= 1 −

(
Cm + 1 − b̂∗b̂

)[
β̂, β̂∗

]
= 1 −

(
Cm + 1 − b̂∗b̂

) ε

b̂∗b̂ + ε

= 1 −
ε
(

b̆∗b̆ + 1
)

Cm − b̆∗b̆ + ε
. (8.24)

Here, we used the relation

b̆b̆∗ =
(

Cm + 1 − b̆∗b̆
)
β̂∗β̂, b̆∗b̆ = Cm − b̂∗b̂. (8.25)

In the relation (8.24), we can see that if Cm → ∞,
(
b̆, b̆∗) may be regarded as a boson operator.
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In order to clarify the above-mentioned situation, we consider an orthogonal set constructed by b̆∗.
First, we introduce the state |0〉〉, defined as

|0〉〉 = (
β̂∗)Cm |0〉 = 1√

Cm!

(
b̂∗)Cm |0〉. (8.26)

The state |0〉〉 is the vacuum for b̆:

b̆|0〉〉 = β̂∗
√

Cm − b̂∗b̂ · 1√
Cm!

(
b̂∗)Cm |0〉 = 0. (8.27)

Then, we define the state |n〉〉 in the form

|n〉〉 = (
β̂∗)Cm−n|0〉 = 1√

(Cm − n)!

(
b̂∗)Cm−n|0〉. (n = 0, 1, 2, . . . , Cm) (8.28)

It can be proved that |n〉〉 is expressed as

|n〉〉 = 1√
n!

(
b̆∗)n|0〉〉. (8.29)

If n = Cm , we have the following relation:

b̆∗|Cm〉〉 =
√

Cm − b̂∗b̂ β̂|0〉 = 0. (8.30)

It may be interesting to see that the operation of b̆∗ on |Cm〉〉 vanishes. Therefore, if Cm → ∞, the
relation (8.30) becomes meaningless. The commutation relation (8.24) gives us the following:[

b̆, b̆∗
]
|n〉〉 = |n〉〉, (n = 0, 1, 2, . . . , Cm − 1) (8.31a)[

b̆, b̆∗
]
|Cm〉〉 = −Cm |Cm〉〉. (8.31b)

In the relation (8.31b), we have b̆b̆∗|Cm〉〉 = 0 and b̆∗b̆|Cm〉〉 = Cm |Cm〉〉, which come from the rela-
tion (8.30). From the above argument, we can conclude that, if Cm → ∞,

(
b̆, b̆∗) can be regarded as

a boson operator. In this connection, we mention that, if Cm = 1,
(
b̆, b̆∗) becomes a fermion operator.

Under the above consideration, we investigate the eigenvalue problem for S̆±,0 and S̆. First, we
introduce the state |s〉〉 in the form

|s〉〉 = 1√
(2s)!

(
b̆∗)2s |0〉〉. (8.32)

Here, it should be noted that s takes the values

s = 0, 1/2, 1, 3/2, . . . , (Cm − 1)/2, Cm/2. (8.33)

In the Schwinger representation, s = 0, 1/2, . . . , ∞. This difference was mentioned at the beginning
of this section. The state |s〉〉 is the minimum weight state satisfying the relation

S̆−|s〉〉 = 0, S̆0|s〉〉 = −s|s〉〉, S̆|s〉〉 = s|s〉〉. (8.34)
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Then, we define the following state:

|s, s0〉〉 =
√

(s − s0)!

(2s)!(s + s0)!

(
S̆+
)s+s0 ||s〉. (8.35)

Together with the properties, |s, s0〉〉 can be shown in the form

|s, s0〉〉 = 1√
(s + s0)!(s − s0)!

(
â∗
)s+s0

(
b̆∗
)s−s0 |0〉〉, (8.36)

S̆|s, s0〉〉 = s|s, s0〉〉, S̆0|s, s0〉〉 = s0|s, s0〉〉. (8.37)

Of course, s = 0, 1/2, 1, 3/2, . . . , (Cm − 1)/2, Cm/2 and, for a given s, s0 = −s, −s + 1, . . . ,

s − 1, s.
The commutation relations among S̆±,0 and S̆ are given as follows:[

S̆+, S̆−
]

= 2S̆0 − â∗â
(

1 −
[
b̆, b̆∗

])
, (8.38a)[

S̆0, S̆−] = −S̆− + 1
2 b̆∗â

(
1 −

[
b̆, b̆∗

])
, (8.38b)[

S̆, S̆−
]

= −1
2 b̆∗â

(
1 −

[
b̆, b̆∗

])
. (8.38c)

Of course, we have [
S̆0, S̆+

]
= S̆+ − 1

2

(
1 −

[
b̆, b̆∗

])
â∗b̆, (8.38d)[

S̆, S̆+
]

= 1
2

(
1 −

[
b̆, b̆∗

])
â∗b̆. (8.38e)

With the use of the relations (8.28) and (8.31), we have

â
(

1 −
[
b̆, b̆∗

])
|n〉〉 = 0.

(
n = 0, 1, 2, . . . , Cm − 1, Cm

)
(8.39)

Therefore, we can conclude that S̆±,0 obey the su(2)-algebra and commute with S̆.
In the previous discussion, the connection of the Schwinger representation to ours was clarified.

We continue this discussion by introducing a new boson space composed of a boson
(◦

b,
◦
b∗
)

. Of
course, the orthogonal set is given by

|n)) = 1√
n!

(◦
b∗
)n|0)). (n = 0, 1, 2, . . .) (8.40)

In this space, the following operator is introduced:

(
b̆
)

c =
(√

Cm − ◦
b∗ ◦

b + ε

)−1

·
√

Cm − ◦
b∗ ◦

b · ◦
b,

(
b̆∗)

c = ◦
b∗ ·

√
Cm − ◦

b∗ ◦
b ·

(√
Cm − ◦

b∗ ◦
b + ε

)−1

. (8.41)

We can easily verify the relation(
b̆
)

c|0)) = 0, (8.42)(
b̆∗)

c|n)) = ◦
b∗|n)),

(
n = 0, 1, 2, . . . , Cm − 1

)
,
(
b̆∗)

c|Cm)) = 0. (8.43)
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Further, we have

[(
b̆
)

c
,
(

b̆∗
)

c

]
= 1 −

(◦
b∗ ◦

b + 1
)
ε

Cm − ◦
b∗ ◦

b + ε

+
◦
b∗ ◦

bε

Cm − ◦
b∗ ◦

b + 1 + ε

. (8.44)

This relation leads us to[(
b̆
)

c
,
(

b̆∗
)

c

]∣∣∣n)) = |n)),
(

n = 0, 1, 2, . . . , Cm − 1
)

(8.45a)[(
b̆
)

c
,
(

b̆∗
)

c

]∣∣∣Cm

))
= −Cm |Cm)). (8.45b)

All of the above relations suggest that
((

b̆
)

c,
(
b̆∗)

c

)
may be regarded as the counterpart of

(
b̆, b̆∗) in

the boson space composed of
(◦

b,
◦
b∗
)

.

Next, we consider the counterparts of S̆±,0 and S̆ in the spaces composed of
(

â, â∗
)

and
(◦

b,
◦
b∗
)

,

which are denoted by
(
S̆±,0

)
c and

(
S̆
)

c. In this space, we introduce the following set:

|s, s0)) = 1√
(s + s0)!(s − s0)!

(
â∗)s+s0

(◦
b∗
)s−s0 |0)). (s = 0, 1/2, 1, 3/2, . . . , Cm/2) (8.46)

Further, (S̆±,0)c and (S̆)c are introduced in the form

(
S̆+
)

c = â∗(b̆)c =
(√

Cm − ◦
b∗ ◦

b + ε

)−1

·
√

Cm − ◦
b∗ ◦

b · â∗ ◦
b, (8.47a)

(
S̆−
)

c = (
b̆∗)

câ = ◦
b∗â ·

√
Cm − ◦

b∗ ◦
b ·

(√
Cm − ◦

b∗ ◦
b + ε

)−1

, (8.47b)

(
S̆0
)

c = 1
2

(
â∗â − (

b̆∗)
c

(
b̆
)

c

)
= 1

2

(
â∗â − ◦

b∗ ◦
b
)

+ 1
2�

◦
S, (8.47c)(

S̆
)

c = 1
2

(
â∗â + (

b̆∗)
c

(
b̆
)

c

)
= 1

2

(
â∗â + ◦

b∗ ◦
b
)

− 1
2�

◦
S. (8.48)

Here, �
◦
S is given as

�
◦
S = ε

◦
b∗ ◦

b

Cm − ◦
b∗ ◦

b + 1 + ε

. (8.49)

Since, in the present space, �
◦
S is positive-definite, it can be omitted and, then, |s, s0)) is the

eigenstate of
(
S̆
)

c and
(
S̆0
)

c with the eigenvalues s and s0, respectively. Therefore, the following
commutation relations are easily verified:[(

S̆0

)
c
,
(
S̆±
)

c

]
= ±

(
S̆±
)

c
,

[(
S̆
)

c
,
(
S̆±,0

)
c

]
= 0. (8.50)

The commutation relation
[(

S̆+
)

c
,
(
S̆−
)

c

]
is given by[

(S̆+
)

c
,
(
S̆−
)

c

]
= 2

((
S̆0

)
c
− �

(
S̆0

)
c

)
, (8.51)

�
(
S̆0

)
c

= 1
2

⎛⎜⎝εâ∗â
(◦

b∗ ◦
b + 1

)
Cm − ◦

b∗ ◦
b + ε

−
ε
(

â∗â + 1
)◦

b∗ ◦
b

Cm − ◦
b∗ ◦

b + 1 + ε

⎞⎟⎠ . (8.52)
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We can show that the operation of �
(
S̆0
)

c on the state |s, s0)) makes the result of the operation
vanish. Further, we can prove the relation(

S̆2
)

c
=
(
S̆0

)2

c
+ 1

2

((
S̆−
)

c

(
S̆+
)

c
+
(
S̆+
)

c

(
S̆−
)

c

)
= (

Ŝ
)

c

((
Ŝ
)

c
+ 1

)
. (8.53)

Thus, we can conclude that
(
S̆±,0

)
c

obey the su(2)-algebra with the magnitude of the su(2)-

spin
(
S̆
)

c
.

9. Concluding remarks

In this paper, we have investigated various theoretical features and an application to a physical system
of a new boson representation of the su(2)-algebra. As has been stressed in this paper, the essential
difference between the Schwinger representation and ours can be found in the expressions of the
operators that give the quantum numbers specifying the orthogonal set, (s, s0). They are completely
opposite to each other. Therefore, we must put each representation to its proper use. In this final
section, we will mention two points.

The first point is concerned with the promise mentioned at the end of Sect. 7.1. We will examine
the subspaces Rp, Rq , and R. The case R is simple: the su(1, 1)-algebra presented in Sect. 7.1 for
the case t ≥ μ + 1/2. The cases Rp and Rq are a little bit complicated. As a preliminary argument,
we consider the case of the Holstein–Primakoff representation (8.14). Let us investigate the case in
which the order of 2s and ĉ∗ĉ in Ŝ± is changed. In this case, we define the operators T̆±,0:

T̆+ = ĉ∗ ·
√

ĉ∗ĉ − 2s, T̆− =
√

ĉ∗ĉ − 2s · ĉ, T̆0 = ĉ∗ĉ − s
(
= Ŝ0

)
. (9.1)

The commutation relations are given in the form[
T̆+, T̆−

]
= −2T̆0,

[
T̆0, T̆±

]
= ±T̆±. (9.2)

Of course, we have the state

|n〉 =
(

T̆+
)n−(2s+1) |2s + 1〉 =

(
ĉ∗
)n|0〉,

T̆−|2s + 1〉 = 0, n = 2s + 1, 2s + 2, . . . . (9.3)

The Casimir operator is given as

T̆
2 = (s + 1)((s + 1) − 1). (9.4)

Here, the quantity (s + 1) indicates the magnitude of the su(1, 1)-spin. In this case, we obtain the
su(1, 1)-algebra.

Following the above idea, the order of T̂m and T̂0 in the relations (3.7b) is changed. In this case,
we define the operators T̆±,0:

T̆+ = T̂+ ·
√

T̂0 − T̂m ·
(√

T̂0 + T̂ + ε

)−1

,

T̆− =
(√

T̂0 + T̂ + ε

)−1

·
√

T̂0 − T̂m · T̂−,

T̆0 = T̂0 − 1
2

(
T̂m + T̂

) (
= Ŝ0

)
. (9.5)
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In the case T̂m = Cm + 1 − T̂ , T̂0 − T̂m = T̂0 + T̂ − (Cm + 1). The commutation relation
[
T̆+, T̆−

]
is given in the form[

T̆+, T̆−
]

= −2
(
T̆0 + �T̆0

)
, �T̆0 = �T̆ (+)

0 − �T̆ (−)
0 , �T̆ (+)

0 = �Ŝ(+)
0 ,

�T̆ (−)
0 = �Ŝ(−)

0 . (9.6)

Here, �Ŝ(±)
0 is given in the relation (7.25). Since, in the spaces Rp and Rq , we have t0 + t > 0

and t0 + t − 1 > 0, i.e., T̂0 + T̂ and T̂0 + T̂ − 1 are positive-definite, then, �T̆0 → 0, (ε → 0).
Therefore, together with the other, we have[

T̆+, T̆−
]

= −2T̆0,
[
T̆0, T̆±

]
= ±T̆±. (9.7)

The above shows that, in the spaces Rp and Rq , T̆±,0 forms the su(1, 1)-algebra. In the same argument
as that of �T̆0, the Casimir operator is expressed as

T̆ 2 = T̆ 2
0 − 1

2

(
T̆−T̆+ + T̆+T̆−

)
= T̆

(
T̆ − 1

)
, (9.8)

T̆ = 1
2

(
T̂m − T̂

)
+ 1,

[
T̆ , T̆±,0

]
= 0. (9.9)

The orthogonal set should obey the condition t0 ≥ tm + 1 and the minimum weight state is given in
the form

Rp and Rq ; |t, tm + 1〉〉, T̆−|t, tm + 1〉〉 = 0. (9.10)

We can see that the above is in completely the same situation as that in the Holstein–Primakoff
representation.

The second point is related to another example of T̂m . In the pseudo su(1, 1)-algebra, we intro-
duced tm as the maximum value of t0 for a given t and, as a possible example, we gave the form
tm = Cm + 1 − t (see (2.16a)). However, this form is not unique and there exist infinite possibilities;
here, we give another example: tm = 3t − 1. We consider the form

T̂m = 3T̂ − 1. (9.11)

In this case, Ŝ±,0 are expressed in the form

Ŝ+ = T̂+ ·
√

3T̂ − 1 − T̂0 ·
(√

T̂0 + T̂ + ε

)−1

= â∗b̂∗ ·
√

b̂∗b̂ − 2â∗â ·
(√

b̂∗b̂ + 1 + ε

)−1

,

(9.12a)

Ŝ− =
(√

T̂0 + T̂ + ε

)−1

·
√

3T̂ − 1 − T̂0 · T̂− =
(√

b̂∗b̂ + 1 + ε

)−1

·
√

b̂∗b̂ − 2â∗â · b̂â,

(9.12b)

Ŝ0 = T̂0 − 2T̂ + 1
2 = 1

2

(
3â∗â − b̂∗b̂

)
, (9.12c)

Ŝ = T̂ − 1
2 = 1

2

(
− â∗â + b̂∗b̂

)
. (9.13)

The expressions (9.12) and (9.13) obey the su(2)-algebra in the space P , shown in Fig. 9. The
quantum numbers

(
s, s0

)
are related to

(
t, t0

)
in the space P as follows:

s = t − 1
2 , s0 = t0 − 2t + 1

2 , (9.14)

t = 1
2 , 1, 3

2 , . . . , μ − 1, μ. (9.15)
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0 1/2

t0 = t
P

t0 = 3t–1

t

t0

Fig. 9. The space P on the t–t0 plane.

The eigenstate of Ŝ and Ŝ0 is given as

|s, s0〉 =
√

(2s)!

(s + s0)!(3s + s0)!

(
T̂+
)s+s0 · 1√

(2s)!

(
b̂∗)2s |0〉

= 1√
(s + s0)!(3s + s0)!

(
â∗)s+s0

(
b̂∗)3s+s0 |0〉. (9.16)

Evidently, the forms (9.12) and (9.13) are very different from the forms (3.9) and (3.10). However,
the form (9.12) is rewritten as

Ŝ+ = â∗β̂∗ ·
√

2Ŝ − â∗â, Ŝ− =
√

2Ŝ − â∗â · β̂â, Ŝ0 = â∗â − Ŝ. (9.17)

The above leads us to the expression (8.12).
Through the above consideration, we may conjecture that there exist various boson representations

of the su(2)-algebra.
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