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Abstract. This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products
such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores
how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current
situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected
the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed sur-
veillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identifica-
tion can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic
resources are essential for the effective management of invasive plants and incorrect identifications can impede eco-
logical studies. On the other hand, biological invasions have provided important tests of basic theories about species
concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve
the accuracy of species identification and further refine taxonomic classification at the level of populations and
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genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts
and approaches. In particular, differing points of view between the proponents of morphological and molecular
approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic deci-
sion-making clearly increases if insights from a variety of different complementary disciplines are combined and con-
fronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from
these studies.

Keywords: Biological invasions; detecting new invasions; DNA barcoding; invasive plants; karyology; management;
species identification; taxonomy.

Introduction
The decline in taxonomic expertise substantially com-
promises rigorous studies in all fields of biodiversity or
biogeography, including invasion biology (Smith et al.
2008a; Pyšek and Richardson 2010). Most regions of the
world have been colonized by species from many other
parts of the globe, and identifying many of these non-
native species is a major challenge. Expertise in taxonomy
(i.e. discovery, description and revision of taxa, and by im-
plication determining the correct name of an organism) is
crucial for implementing effective quarantine measures,
monitoring invasions and their pathways, and ensuring
that the time to first detection for new invaders is
minimized. Additionally, resources are required for broad-
based public participation in invasive species manage-
ment and for providing information to horticulturalists,
foresters and others who utilize, and often financially
benefit from, alien species. Two conclusions of the Global
Invasive Species Programme (GISP) were that ‘in most
countries it will be found that more research will be
needed on taxonomy and identification of species, and
that there will often be a shortage of knowledge about
natural distributions’ (Wittenberg and Cock 2001). We
suggest that a decade after the completion of the first
phase of GISP, this prediction has proved correct and the
problem has reached critical proportions. More capacity
in the taxonomy of plants and animals, both native and
alien, is urgently needed (Smith et al. 2008b; Smith and
Figueiredo 2009) because misidentification using both
morphological and genetic data can have serious conse-
quences. Furthermore, rapid identification of alien speci-
mens can drastically reduce the time taken to respond to
new or potential invasions.

A fundamental role of taxonomists in both taxonomic
and non-taxonomic studies is to provide the correct scien-
tific names by using the best available knowledge of the
organisms submitted for identification. This service is
provided to a range of clients—biologists, environmen-
tal managers, agronomists and environmental impact
assessors—who require a robust framework of names in
order to conduct their work accurately (Patterson et al.
2010). Despite the rapid advances in molecular

techniques, classical (alpha) taxonomy is still useful and
necessary in the 21st century. It is unlikely to lose this pos-
ition since biology, especially biodiversity science, will
always need taxonomists to do ‘real’ taxonomy (Godfray
2007), including the verification of the identity of organ-
isms for which genetic data have been deposited into
GenBank (i.e. garbage in, garbage out; see for example
Shen et al. 2013). Additionally, many regions globally are
unlikely to have easy access to such genetic data. In
ecology, taxonomy is one of the fundamental units of cur-
rency (Gotelli 2004). The reliable identification of taxa
(native or alien) paves the way for the study of organisms,
potentially sheds light on many aspects of their biology,
allows reference to the same taxa from other localities,
and makes comparisons with congeners and other taxa
possible. Incorrect identification of plant invaders as a
result of inaccurate taxonomic services could lead to a
misunderstanding of the dynamics of biological invasions.
Moreover, alien species management is an international
and multi-sectoral endeavour that requires accurate sci-
entific names for global information sharing (Smith et al.
2008a).

This paper explores the ongoing and critical role of tax-
onomy in the study of plant invasions and specifically
examines how the lack of taxonomic expertise can
impede progress in understanding and managing inva-
sions. The converse is equally true: we argue that tax-
onomy can also benefit from insights from biological
invasions, a perspective that has not been sufficiently
explored and emphasized in the literature. Finally, we
suggest that classical taxonomy and modern genetic
approaches must work in tandem, not only to improve the
accuracy of species identification but also to potentially
refine classifications at the levels of organism, population
and genotype in the field and laboratory.

Systemic Problems with Taxonomy
Is the current scope of taxonomyand nomenclature facing
a crisis? Is the field of taxonomy suffering from a shortage
of expertise and declining resources disproportionate rela-
tive to other disciplines in biology (Agnarsson and Kuntner
2007)? Or, are there now more taxonomists describing

2 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2013

Pyšek et al. — Taxonomic challenges for, and of, plant invasions

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/doi/10.1093/aobpla/plt042/163033 by U

N
IV.C

O
IM

BR
A/FAC

.PSIC
O

LO
G

IA E user on 23 O
ctober 2023



more species than ever before, as inferred from new data-
bases showing that the number of taxonomists is increas-
ing faster than the rate of species descriptions (Costello
et al. 2013; but see Smith et al. 2008b)? Joppa et al.
(2011) analysed the global rates of species descriptions,
concluding that taxonomic research continues apace,
despite contrary reports on the dissolution of taxonomic
capacity. They determined that ‘the numbers of [flowering
plant] taxonomists are increasing . . .as are the numbers of
taxonomists who are the senior authors on species
descriptions’. This led to their conclusion that ‘taxonomic
description no longer belongs to those who do nothing
else; species description is much more widely practiced’.
However, there is a great difference between describing
one new species and producing a taxonomic revision for
a group of species, the former being a task often under-
taken by amateurs whereas the latter demands greater
perspective and most usually formal training and long-
term employment.

Aside from these issues, it is clear that the field of tax-
onomy suffers from some systemic problems. Taxonomy
is undervalued in current scientometric analyses (Krell
2000, 2002; Valdecasas et al. 2000; Agnarsson and
Kuntner 2007; Seifert et al. 2008) and technological
advances have provided new approaches to classifying
biota, often at the expense of traditional approaches
(Godfray 2002, 2005; Godfray and Knapp 2004; Godfray
et al. 2008a, b). A primary reason why alpha taxonomy is
undervalued in top-ranking journals is that such work is
rarely hypothesis driven, is often of more local than
global significance, applies standard rather than innova-
tive approaches and has limited immediate impact on
policy or management. Specialist taxonomic journals
have relatively low impact factors, due to citation practices
that include the convention of not citing original taxonom-
ic descriptions or subsequent taxonomic revisions, the
long citation half-life of taxonomic papers, regionality as
a typical feature of taxonomic work, and because much
important work in taxonomy is published in voluminous
and immensely informative monographs rather than as
succinct papers in journals. Furthermore, many authors
cite papers that test the validity of taxonomic hypotheses
with molecular data or papers that promote or use DNA
barcodes, rather than papers based on classical taxonomy
(Agnarsson and Kuntner 2007). The low number of specia-
lists for particular groups of organisms further decreases
the chances of taxonomic papers becoming highly cited
(Krell 2002).

In the sphere of education, experienced researchers for-
mulate research topics for students and stimulate interest
in taxonomy and other fields among future generations.
Data gathered on 1018 theses completed from the
1960s to the present from the Department of Botany at

Charles University in Prague, Czech Republic, a region
where taxonomy has been traditionally very strong,
allow us to examine how these trends translate into the
interests of students and how research agendas shift
over time (Fig. 1). The data reveal a steady, though slight,
decline in the proportion of theses focusing on classical
plant taxonomy between 1970 and 1990, after which
this field maintained a low level (not exceeding 10 % of
all theses completed in the department). Interestingly,
molecular taxonomy seems to have overcompensated
for the decline in classical plant taxonomy in the last
decade, possibly indicating interest in a field that offers op-
portunities to dowhat is widely perceived as ‘cutting-edge’
science, with more attractive opportunities to publish in
high-impact journals than is the case for classical tax-
onomy. On the other hand, the marked decrease in ‘floris-
tics and phytogeography’ (from 36 to 14 % of all theses
from the 2000s to the 2010s), which inter alia requires stu-
dents to identify plants in the field, points to a declining
interest in an area of expertise that is also highly relevant
for invasion biology (Fig. 1). A similar declining trend in the
number of students graduating with bachelor degrees in
botany/plant biology has been reported from the USA
between 1991 and 2008 (Kramer et al. 2010). Of particular
concern is that the full impact of these trends is delayed as
researchers work their way through the academic system.
Fewer and fewer senior academics trained in classical tax-
onomy means fewer voices when it comes to setting insti-
tutional research agendas or departmental university
priorities. This has the potential to create a negative feed-
back loop and general downward spiral in the advocacy
required to maintain and promote taxonomy as highly
relevant. Taxonomic expertise is rarely required when
it comes to securing a job, especially in academia.
Agnarsson and Kuntner (2007) estimated that as much
as half the funding for taxonomic training may be lost
due to lack of employer demand. Because the low profile
of taxonomy results in serious underfunding in many
parts of the world, employment opportunities are
reduced for natural scientists, thereby further reducing
the profile of taxonomy.

Problem of Taxonomy for Biological
Invasions
As in other fields of biology, taxonomic expertise in plant
invasion biology is currently underfunded. For example,
Europe suffers from a scarcity of experts particularly for
insect and plant invasions (Hulme et al. 2009). This
dearth of experts contrasts sharply with the recognition
that taxonomists are increasingly needed to address the
threats of biological invasions and that training opportun-
ities and employment prospects for these skills are crucial
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at all career levels (Wheeler et al. 2004; Agnarsson and
Kuntner 2007). Below we discuss problems related to the
identification of newly arriving alien species, including
the use of molecular tools, and examine how potential
biases resulting from misidentification of alien species
could impede the progress in ecological research on
plant invasions.

Accurate identification of species: detecting new
invasions

The accurate identification of an organism under study is
pivotal to all ecological research. The challenges faced
by researchers and managers working on alien plant
taxa are, however, often different from those faced by
researchers who work on native species; the latter can ac-
cumulate considerable experience on the taxonomy of
their group of specialization for their ‘patch’ (floristic

province, state, country, region). Invasion ecologists
usually do not have a specific biogeographic focus and
require taxonomic information from much larger areas
(essentially the whole world) for many taxa. Taxonomists
specializing on a specific area rely on regional literature
such as Floras (note the capital letter to denote published
work) and identification keys that they can become well
acquainted with during their careers. Such taxonomists
are frequently able to flag taxa as alien (i.e. not repre-
sented in their regional floras). However, regional taxono-
mists may prove of little help if their expertise is
geographical rather than linked to a particular taxonomic
group. An increasing number of online taxonomic data-
bases, such as the Annual Checklist of World Plants
(www.sp2000.org), the International Plant Names Index
(IPNI) (www.ipni.org), e-Floras (www.efloras.org) and the
Germplasm Resources Information Network (www.ars-

Figure 1. Trends in botanical interest at the Department of Botany,Charles University in Prague, Czech Republic over the last 50 years, expressed as
the percentage of theses (master, doctoral, habilitation) in individual research fields (A), and by decades for areas relevant to plant invasion
studies; those of interest for ‘taxonomy of invasions’, i.e. related to identification of alien species, are in red (B). Based on a total sample of
1018 theses completed in the examined period, with numbers for decades shown above bars.
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grin.gov), can be of some help to regional taxonomists
but there is still a level of taxonomic expertise necessary
to interpret such information, especially in specialized
databases such as IPNI. The problem is especially pro-
nounced in species-rich taxonomic groups that supply
the highest number of invasive taxa such as plants
(Pyšek et al. 2008). For example, 54 % of the 10 771 alien
species recorded in Europe are plants (DAISIE 2009).

Current knowledge on biological invasions is geograph-
ically and taxonomically biased toward more developed
regions, further complicating accurate species identifica-
tion. Some regions, such as Asia, South America and
Africa (excluding South Africa), are seriously understudied
in terms of ecology (Pyšek et al. 2008). Since research in-
tensity is generally related to economic prosperity
(Leimu and Koricheva 2005), the same regions are also
likely to be taxonomically understudied (Stuessy and
Lack 2011), which is ironic since they are home to most
of the world’s biodiversity.

Historical information on alien species composition and
distribution comes from floristic literature, herbaria and
museum collections, seed suppliers and garden catalog-
ues. Taxonomists are therefore well placed to track the
introduction history of alien taxa via the preserved collec-
tions that they curate (Fuentes et al. 2008; Aikio et al. 2010).
Scientific curation by taxonomists in herbaria requires con-
stant and ongoing updating, especially for nomenclature
and incorporating taxonomic changes. These collections
are indispensable resources to facilitate locating alien
species in the exact areas where they were initially col-
lected and the habitats in which they were first described
(Aikio et al. 2012). As in the case of requiring accurate
species identification, expanding preserved collections
(typically herbaria and natural history museums) of alien
taxa is important as they provide both temporal-historical
and accurate geographical information on such prove-
nances for morphological and genetic data. These data
also provide important historical information in cases
where the alien population from which a specimen was
gathered is subsequently cleared.

Identifying the origin of a species, i.e. determining
whether it is alien to a given region, is closely associated
with correct species identification. This can be complicated
by species being native and alien in different parts of the
same country (e.g. many species of Acacia in Australia:
Bean 2007; Richardson et al. 2011; or Spartina in North
America: Daehler and Strong 1994; Anttila et al. 1998) or
continents (Lambdon et al. 2008), and by difficulties in
distinguishing relatively recent natural dispersal events
from human-mediated introductions (for examples from
Antarctica: see Hughes and Convey 2012). Problems also
arise from different taxonomic approaches in the native
and invaded ranges. For example, the genus Oenothera

has a specific reproduction system (permanent transloca-
tion heterozygosity) resulting in rapid formation of new
species, which makes it difficult to align taxa invasive
in Europe to their native North American counterparts,
partly because some of them originated in the invaded
range (Cleland 1972; Dietrich et al. 1997; Mihulka and
Pyšek 2001).

DNA barcoding and plant invasions

The last decade has seen substantial effort towards con-
solidating a fragmented taxonomic knowledge base
through the use of web-based tools (Godfray 2002;
Godfray et al. 2008a; Clark et al. 2009). The plea for web-
based unitary taxonomy reflects the threat imposed on
classical taxonomy by increasingly classifying biodiversity
using available genetic sequence data. This trend there-
fore suggests that current taxonomy must embrace
and absorb new trends rather than set itself in opposition
to them (Godfray et al. 2008b). Such is the current prom-
inence of molecular systematics that some journals (e.g.
Phytotaxa) strongly discourage authors from attempt-
ing to publish papers that recognize classically deter-
mined families not accepted as valid by the Angiosperm
Phylogeny Group (2009); the presentation of alternative
family concepts otherwise requires a written justification
(see e.g. http://www.mapress.com/phytotaxa/author.htm).

Taxon identification using standardized DNA gene
regions or barcodes, i.e. DNA barcoding, is a rapidly devel-
oping research discipline with many strengths and possi-
bilities (CBOL Plant Working Group 2009; Hollingsworth
2011). A DNA barcode can overcome several limitations
of morphology-based taxonomy, including detection of
morphologically cryptic species, recognition of species
with high phenotypic plasticity, and individuals in early
ontogenetic stages or incomplete and poorly developed
specimens (Valentini et al. 2008). Molecular taxonomy
can be particularly useful in groups that have received
inadequate taxonomic attention (e.g. to reliably assess
the diversity they contain) and it can enhance an under-
standing of species limits in groups with simple morph-
ologies (serving as an independent arbiter between
competing taxonomies). In general, DNA barcoding can
modernize and revitalize conventional taxonomy and
attract new specialists to this field, but ‘the promise of
barcoding will be realized only if based on solid taxonom-
ic foundations’ (Meyer and Paulay 2005; Godfray et al.
2008b). The names of organisms are linked to type
specimens and the interpretation of these along with
the correct nomenclature cannot be replaced by any
molecular means.

DNA barcoding has recently been successfully applied in
plant invasion biology. For example, this methodology has
efficiently distinguished invasive aquatic species
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belonging to the genera Cabomba, Ludwigia, Myriophyllum
and to the family Hydrocharitaceae from their non-
invasive related counterparts (Ghahramanzadeh et al.
2013). Similarly, DNA barcodes proved successful in the
identification of invasive Solanum species, with practical
implications for plant biomonitoring (Zhang et al. 2013).

Despite these encouraging results, barcoding of ter-
restrial plants faces several challenges and limitations
(Chase and Fay 2009), particularly for closely related
species in which restricted variation in barcoding mark-
ers limits reliable identification; some plant genera have
even been found to be refractory to barcoding (Piredda
et al. 2011). Another limitation of widely used plastid bar-
codes for taxonomic decision-making stems from their
uniparental inheritance (maternal in most angiosperms,

paternal in the majority of gymnosperms) resulting in
interspecific crosses remaining unrecognized and identi-
fied as their plastid donor parent. This can introduce seri-
ous bias in invasion studies because hybrids can show
greater invasion potential than their parental species
(Ellstrand and Schierenbeck 2000, Table 1; see also Smith
and Figueiredo 2007 on a hybrid of Agave species in Portu-
gal). Biparentally inherited nuclear barcodes might solve
the problem and provide more information than organel-
lar DNA. However, their value can be compromised by
methodological issues and the presence of multiple diver-
gent copies within a single individual. The risk of misiden-
tification due to paralogy-related problems is particularly
high in polyploids and polyploidization is common among
invasive plants (te Beest et al. 2012). The complex

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Examples of taxonomically challenging genera where ecological studies profited from a detailed taxonomic study.

Genus Taxa Results References

Centaurea C. stoebe Diploids prevail in the native range and are often

monocarpic, the invasive cytotype is tetraploid and

predominantly polycarpic.

Treier et al. (2009)

Fallopia F. japonica, F. sachalinensis,

F. × bohemica

Increased ploidy variation and rapid post-invasive

evolution were observed in the invaded range.

Particular genotypes of the hybrid taxon differ in

invasiveness.

Mandák et al. (2003); Pyšek et al.

(2003); Suda et al. (2010)

Heracleum H. mantegazzianum,

H. persicum, H. sosnowskyi

Taxonomic study disentangled overlapping

distributions of congeners and the history of their

introduction and indicated that the invasion

occurred through multiple introductions.

Jahodová et al. (2007)

Myriophyllum M. sibiricum, M. spicatum Invasive populations resulted from hybridization of

native and introduced species.

Moody and Les (2002)

Phalaris P. arundinacea Native and introduced populations have distinct

genome sizes.

Lavergne et al. (2010)

Phragmites P. australis The introduced haplotype displaced the native one

and invaded where the species previously had not

occurred. Taxonomic study made it possible to

disentangle the global pattern of the invasion.

Saltonstall (2002); Meyerson et al.

(2010a, b, 2012); Lambertini et al.

(2012); Meyerson and Cronin

(2013)

Rhododendron R. catawbiense, R. ponticum Introgression from R. catawbiense increased the cold

tolerance of invasive populations and allowed

invasion to colder regions.

Milne and Abbott (2000)

Spartina S. alternifolia, S. anglica,

S. maritima,

S. × townsendii

Hybridization of S. alterniflora with native S. maritima

in the UK, and native S. foliosa on the West Coast of

North America, resulted in formation of highly

invasive types, including a new species

S. × townsendii in the former region.

Anttila et al. (1998); Daehler and

Strong (1994); Ayres et al. (2008);

Ainouche et al. (2009)

Tamarix T. ramosissima, T. chinensis,

T. parviflora, T. gallica

Most invasive was a novel hybrid combination of two

species-specific genotypes that were

geographically isolated in their native range.

Gaskin and Schaal (2002)
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evolutionary history of polyploid species (Soltis and Soltis
1999) can easily lead to incongruence between morpho-
logical and molecular identification that can only be
reliably resolved by an experienced taxonomist with a
deep understanding of processes shaping the variation of
the group under investigation.

Biases in data for macroecological analyses due
to the lack of taxonomic expertise

Much of the theory and current knowledge in plant inva-
sion biology has arisen from analyses of secondary data,
drawn from regional Floras, floristic literature and distribu-
tion atlases. Such analyses have made it possible to
explore distribution patterns and invasion dynamics at
various scales (e.g. Sax 2001; Pyšek and Hulme 2005;
Cadotte et al. 2006; Wilson et al. 2007; Pyšek et al. 2009,
2010; Winter et al. 2009; Hulme 2011; Richardson et al.
2011). However, such databases and checklists can be ser-
iously biased in terms of species present in a region and
their distribution. Among the many types of errors that
can plague occurrence databases, misidentification of
species is arguably the most serious (Scott and Hallam
2002; Robertson et al. 2010; McGeoch et al. 2012),
coupled with geographic and temporal variation in the no-
menclature applied to a particularorganism (Graham et al.
2004; Venette et al. 2010; Santos and Branco 2012).
Groups for which the taxonomy is contentious or for
those whose members are difficult to distinguish from
one another are likely to be prone to the greatest bias
(Ensing et al. 2013), including some invasive species
(Rocchini et al. 2011). An additional problem of invasive
species lists is inconsistent terminology (Hulme and
Weser 2011; McGeoch et al. 2012) although detailed
recommendations for standardization (e.g. Richardson
et al. 2000; Pyšek et al. 2004; Blackburn et al. 2011) have
been suggested and should reduce the problem in future.

A comparison of the alien flora of the Czech Republic
(Pyšek et al. 2002) with data reported for that country in
the Flora Europaea (Tutin et al. 1964–1980) provides quan-
titative insight into such biases. One hundred and eleven
alien taxa naturalized in the Czech Republic (almost
50 % of the total number) were not reported in Flora
Europaea for the Czech Republic at all (Pyšek 2003). This
strong bias holds even if one accepts that this is a compari-
son of a specialized regional checklist with a source com-
piled for a continent several decades ago with no clear
focus on alien species. The discrepancy in the number of
naturalized species (present in the country for decades)
is substantial.

Such biases seem to be due to insufficient research in-
tensity coupled with a lack of taxonomic expertise. In
the dynamic field of plant invasion ecology, focused taxo-
nomic effort results in considerable improvement and

almost invariably expansion of knowledge on organisms.
Forexample, for the Czech Republic, a revision of a national
checklist performed a decade after the original study
yielded 151 taxa added to the list of alien plant species.
These additions were due to detection of newly introduced
species, new information due to investigation of sources
omitted from the previous catalogue (including additional
herbarium material), redetermination of previously
reported taxa, reassessment of some taxa traditionally
considered native and inclusion of intraspecific taxa previ-
ously not recognized in the flora. In addition, 134 names
were changed for nomenclatural reasons or changes in
taxonomic opinion (Danihelka et al. 2012; Pyšek et al.
2012a, b), 10 taxa were deleted because of being taxo-
nomically unsound (hence now omitted from the Czech
flora), and 16 were doubtful records previously only
reported in the literature without herbarium evidence or
taxa that were erroneously identified by the collector
(Pyšek et al. 2012a, b). Similarly, 30 taxa were also omit-
ted from the checklist of Belgian alien plants following a
thorough taxonomic revision (Verloove and Lambinon
2008). Such challenges are not restricted to checklists of
alien species and the magnitude of the bias usually only
becomes obvious when modern monographs are pub-
lished. This is illustrated by a comparison of data from
modern monographs of Juncaceae and Potamogetona-
ceae with the 1997 IUCN Red List, which somewhat dis-
turbingly was shown to be only correct for 20–25 % of
species included (Kirschner and Kaplan 2002).

Nevertheless, much has recently been done in Europe to
improve the situation with alien species checklists. The re-
search conducted during the building of the DAISIE data-
base illustrates the magnitude of taxonomic work behind
any alien species database. With the DAISIE plant data, a
merging of checklists of alien floras from the 48 regions
considered, yielded 14 656 different names that had to
be manually assigned to 5789 alien plant taxa reported
for Europe in Lambdon et al. (2008); 48 taxa have been
reported in local sources by 10 or more different names.
Although the expertise needed to check and correct syno-
nyms is not directly related to ability to identify species in
the field, the above example shows that a huge taxonomic
capacity is needed to build these databases and checklists,
update and maintain them over time, and incorporatenew
data.

An additional concern is the historical under-represen-
tation of alien taxa in some herbaria. Of the 198 invasive
species listed under South Africa’s 2001 Conservation of
Agricultural Resource’s Act (CARA), 40 did not have herbar-
ium records recorded in the country’s National Herbarium
(PRE) Computerized Information System (PRECIS) as of
2009, either because specimens were not collected or
because data had not yet been uploaded (Wilson et al.
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2013). Without physical specimens, it is impossible to
verify the identity of invaders and update these data in
the light of taxonomic changes or to collect DNA
samples from archived material. In the case of South
Africa, taxonomists have been appointed and provided
with resources to facilitate this process specifically to
detect new invaders before they become widespread
(Wilson et al. 2013).

For macroecological analyses, such as those based on
regional species richness (Pyšek et al. 2010; Essl et al.
2011), the implicit biases described above are less of a
problem because even misidentified species still count
toward the total number for a region regardless of their
correct identity. Also, given the great differences in species
richness across large regions such as Europe, slightly impre-
cise numbers are unlikely to affect the results of ecological
studies significantly. For example, broad patterns showing
the positive relationship between alien plant species rich-
ness and economic development in European countries
are fairly robust to different sources of information
(Hulme 2007; Pyšek et al. 2010). The same is likely to
hold for studies that compare the species composition of
whole alien floras across a large geographical range
(Winter et al. 2009). Yet this robustness very much
depends on using data that have used a standardized clas-
sification of species status. In a comparison of two major
databases on alien species distribution in Europe, differ-
ences in nomenclature between the databases meant
that interpretation of the correlates of alien species rich-
ness was dependent on the database used (Hulme and
Weser 2011). These problems would be further accentu-
ated in analyses that incorporate traits if these are incor-
rectly assigned to a species.

When the lack of taxonomic expertise impedes
progress in ecological research

The role of taxonomy therefore becomes explicit when de-
termining the precise identity of species subject to
detailed study. Examples of taxa that are taxonomically
challenging include apomictic groups (e.g. Crataegus, Pilo-
sella, Rubus, Taraxacum), karyologically variable complexes
(e.g. Centaurea, Fallopia), genera with specific reproduction
systems (e.g. Oenothera), or those for which horticulturalists
havebrednumerouscultivarsandvarieties(e.g.Cotoneaster)
(Table 1).

The reliability of data for ecological studies can be
limited in taxonomically or cytologically challenging
species or complexes, particularly for historical data
reported in the literature. For Fallopia taxa in the Czech
Republic, sites reported in the literature and herbaria
were revisited to explore whether the clones still persisted
after decades since the first record. Redetermination of
plants in the field revealed that 13 and 16 % of the

records were misidentified for the two parental taxa, Fallo-
pia japonica and F. sachalinensis. The misidentification
rate was highest for the hybrid F. × bohemica, with 20 %
of plants originally erroneously identified, either in the
literature or as herbarium records, as one of the paren-
tal species (Pyšek et al. 2001). It was only after the compli-
cated pattern of increased ploidy variation and rapid
post-invasion evolution in the invaded range of Europe
was disentangled that it was possible to carry out com-
parative ecological studies of the hybrid and/or its
parents. For example, these studies documented in-
creased competitive and regenerative ability and faster
spread of the hybrid relative to the parents (Table 1).

Phragmites is an example of a genus where thorough
taxonomic research in the last decade has provided
insights into the global pattern of its multiple invasions.
Three distinct lineages of Phragmites australis were identi-
fied in North America (Saltonstall 2002): (i) native
P. australis subsp. americanus found throughout the USA
and much of Canada; (ii) introduced P. australis subsp.
australis from Eurasia found throughout North America;
and (iii) the Gulf Coast lineage, P. australis var. berlandieri,
found in the southern USA from Florida to California and
extending into Central America. The origin of this lineage
is unknown and it is therefore considered cryptogenic
(Saltonstall 2002). However, the Phragmites story is
further complicated by the hybridization of both the Gulf
Coast type and the Eurasian type with other congeners,
P. karka and P. mauritianus in the Gulf Coast region of the
USA (Lambertini et al. 2012; Meyerson et al. 2012) that
haveproducedageneticallyandmorphologicallyheteroge-
neous mosaic of Phragmites patches in this southern
region. Most recently, a new introduced haplotype of
P. australis (L1) was detected in Quebec,Canada, bysequen-
cing the chloroplast DNA (Meyerson and Cronin 2013), sug-
gesting that Phragmites diversity in North America may be
increasing and that both molecular and morphological
tools are needed to understand this rapidly evolving
invasion.

Similarly, taxonomic advancement in the genus
Bolboschoenus (Cyperaceae, formerly included in the
genus Scirpus) achieved by classical methods during the
last few decades has resulted in the reclassification of a
taxon previously known as B. maritimus, with two subspe-
cies in Europe (De Filipps 1980), into several closely
related but distinct species well characterized by their
morphology, karyology, ecology and distribution (Browning
and Gordon-Gray 2000; Hroudová et al. 2007). Only then did
it become obvious that populations introduced to eastern
North America, where they became weedy in rice fields,
belong to a distinct taxon, B. glaucus (Browning et al. 1995).

The Fallopia example mentioned above illustrates that
identifying hybrids requires considerable taxonomic and
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karyological experience (Suda et al. 2010). There is an
urgent need for progress in this area, as much evidence
has emerged that hybridization regularly stimulates inva-
siveness, where the new taxon is more invasive than either
parent (Abbott 1992; Vilà and D’Antonio 1998; Vilà et al.
2000; Abbott et al. 2003; see Ellstrand and Schierenbeck
2000 for a review and examples) or when it can invade
new environments. Spartina anglica, a hybrid taxon that
arose through allopolyploidization, is the classic example
(Thompson 1991; Ainouche et al. 2009). With the emer-
gence of karyological and molecular methods it has
become obvious that invasiveness is often manifested
below the species level, for example, at the cytological
level (e.g. Centaurea stoebe—Treier et al. 2009) or in
genotypes (Fallopia × bohemica—Pyšek et al. 2003;
Myriophyllum—Moody and Les 2002; P. australis—
Saltonstall 2002; Lambertini et al. 2012; Meyerson et al.
2012; Rhododendron ponticum—Milne and Abbott 2000;
Tamarix—Gaskin and Schaal 2002). Besides the formation
of new hybrid taxa, introgression more often results in
hybrid swarms or in ‘genetic pollutions’, which are best
examined at the gene level (Petit 2004).

Taxonomic uncertainty can also impede the results of
ecological studies. For Pilosella glomerata, a European
species invasive in North America, ecological niche
models yielded varying predictions of its invasion
potential depending on which genetic entities are used
in training models (all records compared with only taxo-
nomically verified records). Using all records resulted in
substantially larger predicted potential ranges in the
adventive range (Ensing et al. 2013). A similar result was
reported for the Australian tree Acacia saligna, which is in-
vasive in many parts of the world. Very different predicted
ranges emerged from models trained using different
genetic entities (tentatively subspecies) (Thompson et al.
2011). These are examples of rare empirical studies
showing that vetting occurrence records for taxonomic
reliability is crucial for niche modelling—and indeed for
ecological research on invasions in general. Records of
questionable taxonomic accuracy should be used with
caution inecological studies (Jimenez-Valverde et al. 2010).

Risk of karyological bias introduced by
species misidentification

Karyology is a rapidly developing research area and
genome characteristics are among the traits that have
been recently used in studies explaining species invasive-
ness. Here as well, the lack of taxonomic expertise could
affect the results of ecological studies. Evidence has accu-
mulated in recent years that invasive behaviour can be
associated with karyological characteristics, including
variation in genome copy number (polyploidy) and
genome size (te Beest et al. 2012). Polyploidization is one

of the few mechanisms of instantaneous speciation and
can rapidly alter organisms’ traits by a single genetic
event (Levin 2002). In species with multiple cytotypes,
the polyploids are usually the ones that become invasive
(te Beest et al. 2012). Similarly, at the interspecific level,
polyploids are overrepresented among invasive aliens
relative to native or rare species in local floras (Pandit
et al. 2011). The high incidence of ploidy heterogeneity
within plant genera entails the risk of ploidy mismatch: if
the samples are not correctly assigned to species, incor-
rect ploidy levels can be introduced into a data set due
to species misidentification, and the results of a study
addressing the effects of karyological characteristics on
invasiveness can be affected. We analysed data on
ploidy variation from the Index to plant chromosome
numbers (Goldblatt and Johnson 1979 onwards) in inva-
sive land plant species of the world (as listed by Weber
2003) and their non-invasive congeners (not included in
Weber’s checklist). This analysis reveals that the risk of
ploidy bias due to species misidentification is likely to be
small in 75 of the 216 genera (34.7 %), and intermediate
in 106 genera (49.1 %; Appendix 1; Fig. 2). More important-
ly, the danger of ploidy mismatch between globally inva-
sive and non-invasive species is comparatively high in
35 genera (16.2 %), the most salient examples being the
genera Amorpha, Chromolaena, Litsea and Syzygium, in
which the ploidy levels of species from both groups are mu-
tually exclusive.

Inherently associated with ploidy is the amount of
nuclear DNA (genome size). Genome size can constrain
several characteristics that can underpin invasive suc-
cess, including minimum generation time, seed mass,
growth rate and specific leaf area (Leitch and Bennett
2007). A negative correlation between invasiveness and
genome size was reported, for instance, in pines (Grotkopp
et al. 2004) while Kubešová et al. (2010) showed that
alien species naturalized in the Czech Republic have,
on average, smaller genomes than their non-invading
congeners. Because genome size often varies consider-
ably even among closely related species, accurate
species determination is an essential prerequisite for
any studies addressing the role of this cytogenetic par-
ameter. Using the same data set as above, we assessed
the magnitude of risk that holoploid genome size values
(taken from the Plant DNA C-values database; Bennett
and Leitch 2012) would be biased if globally invasive
species (Weber 2003) were misidentified with their non-
invasive congeners. We found low and intermediate
risk for 43 and 51 % of genera, respectively, whereas
considerable differences between both species groups
were revealed in seven out of the 109 genera with
available data (6 %), including Imperata and Vinca
(Appendix 1).
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Problem of Biological Invasions
for Taxonomy
Thus far we have focused on the critical role of taxonomy in
studying and managing plant invasions. We now turn our
attention to what the dynamic field of invasion biology has
to offer to taxonomy. An increasing number of studies
have demonstrated that processes such as evolution and
speciation can occur rapidly in species that are introduced
to novel ranges and become invasive. These almost ‘real
time’ developments offer exciting opportunities to refine
taxonomic approaches to better address the novel spe-
cies assemblages that are associated with rapid global
change.

The concept of ‘species’ as the basic category of bio-
logical classification is fundamental to taxonomy and
the importance of species in biology derives primarily
from their importance in the taxonomic framework used
in all branches of biology (de Queiroz 2005). Although
the species concept has generated considerable con-
troversy (Hey 2006) by distinguishing between species
conceptualization (the evolutionary history of a lineage)
and species delimitation (different properties acquired
by lineages during the course of divergence), a unified
concept has helped clarify the debate (de Queiroz 2007).
A range of criteria have been proposed to support
species delimitation (Table 2) and it is widely believed
that the presence of any one of the properties (if appropri-
ately interpreted) is evidence for the existence of a species,
though more properties and thus more lines of evidence
are associated with a higher degree of corroboration.
While the different species concepts have faced various

challenges, alien plants are increasingly forcing taxono-
mists to rethink the concepts they apply to ‘species’.

At its simplest, taxonomists attempt to identify and dis-
tinguish species based on reproducible and consistent
morphological criteria. The phenetic species concept
defines a species as a set of organisms that look similar
to each other and distinct from other sets, usually
assessed through a multivariate phenetic distance statis-
tic derived from measures of many characters across
many organisms. However, the invasion of alien species
that are morphologically indistinguishable, or hardly dis-
tinguishable, from native species or earlier established
species is regarded as a cryptic invasion (Chu et al. 2012).
For example, species-level identification in the seaweed
genus Ulva is typically difficult, notably in view of the intra-
specific variability often seen in the rather few morpho-
logical and anatomical characters used for species
discrimination. Ulva pertusa is widely distributed in the
Indo-Pacific Ocean but has been introduced with shellfish
aquaculture to the Atlantic coast of Europe. On the NW
Iberian Peninsula coast U. pertusa has previously been
misidentified as native taxa Ulva rigida, U. pseudocurvata
or U. scandinavica, thus delaying any action against this
potentially invasive species (Baamonde et al. 2007).

Morphology on its own may therefore not be a reliable
guide to a species; thus the biological species concept
describes a species as a group of individuals that can
breed together but cannot breed with other groups, inde-
pendent of morphological similarity. While hybridization
in the wild between closely related species is not
unusual, the global interchange of species between differ-
ent regions of the world challenges the biological species

Figure 2. Frequency distribution of risk scores of introducing ploidy bias to ecological studies due to species misidentification, based on chromo-
some numbers of invasive plant species of the world and their non-invasive congeners (see Table 1 for delimitation of risk categories).
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concept. Many hybridization events are recorded, either
between native and alien taxa or between alien taxa
brought together for the first time in a novel region
(Ellstrand and Schierenbeck 2000; Schierenbeck and
Ellstrand 2009). Interspecific hybridization can result in
genetic swamping of native taxa or an increase in colon-
ization probabilities and rates (Hovick et al. 2012). For evo-
lutionarily well-differentiated taxa, reproductive isolating
barriers are often strong and the resulting hybrids are
sterile. However, the study of biological invasions has
shown how even where reproductive isolating barriers
may be strong, new taxacan occur following hybridization.
Allopolyploidy and clonality can stabilize lineages that
would suffer sterility as F1 hybrids while fixing hybridity
and novelty (Schierenbeck and Ellstrand 2009).

The abilityof perennial plants to persist and spread clon-
ally in the absence of seed production provides a powerful
mechanism to overcome even strong fertilization barriers
and runs counter to the recognition species concept.
Indeed, where genetically distinct asexual clones are
found fora particular taxon, then undereither the biologic-
al species concept or the recognition species concept, such
taxa could be described as separate species. Bryonia

alba (Cucurbitaceae) is a herbaceous Eurasian vine that
reproduces predominantly clonally (asexually) through
apomixis, but possesses moderate to high levels of
clonal diversity in its introduced range in the western
USA—probably the result of multiple introductions and
founder events (Novak and Mack 2000). In contrast, in
New Zealand, the apomictic Hieracium lepidulum demon-
strates high intra- and inter-population genotypic diver-
sity as a result of both recombination and mutation
(Chapman et al. 2004).

The challenge of asexual species has led to the con-
sideration of a phylogenetic species concept where a
species is a single lineage of ancestral descendant popula-
tions or organisms that maintains its identity from other
such lineages and that has its own evolutionary tenden-
cies and historical fate. However, alien plants challenge
this assumption yet again in that hybrids may be found
between quite distinct historical lineages. The invasive
Myriophyllum heterophyllum in the northeastern USA
comprises at least three distinct lineages: an interspecific
hybrid (M. heterophyllum × M. laxum) and two historically
allopatric lineages of pure M. heterophyllum (Tavalire et al.
2012).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Common species concepts, their definition and examples of challenges posed by alien plant species.

Species concept Definition Challenges

Phenetic species

concept

A species is a set of organisms that are phenotypically

similar and that look different from other sets of

organisms.

Misidentification of the introduced U. pertusa as native taxa

U. rigida, U. pseudocurvata or U. scandinavica delaying

any action against this potentially invasive species

(Baamonde et al. 2007).

Biological species

concept

A species is a group of individuals that can breed together

but cannot breed with other groups.

Numerous examples of distantly related native–alien plant

crosses resulting in an invasive hybrid (Schierenbeck and

Ellstrand 2009).

Recognition species

concept

Species are the most inclusive population of individual

biparental organisms, which share a common

fertilization system.

Allopolyploidy and clonality can stabilize lineages resulting

from native–alien crosses that would normally suffer

hybrid sterility (Schierenbeck and Ellstrand 2009).

Phylogenetic

species concept

A species is a single lineage of ancestral descendant

populations or organisms that maintains its identity

from other such lineages and that has its own

evolutionary tendencies and historical fate.

Invasive variable leaf watermilfoil (M. heterophyllum) in the

northeastern USA consists of at least three distinct

lineages: an interspecific hybrid and two historically

allopatric lineages (Tavalire et al. 2012).

Genotypic cluster

species concept

A species is a morphologically or genetically

distinguishable group of individuals that has few or no

intermediates when in contact with other such clusters.

Only after the marked expansion of P. australis in North

America have the native and introduced lineages of

common reed been designated as distinct subspecies

(Saltonstall et al. 2004).

Ecological species

concept

A species is a lineage (or a closely related set of lineages)

that occupies an adaptive zone minimally different from

that of any other lineage in its range and that evolves

separately from all lineages outside its range.

Species occupy new ranges/habitats in their invasive

ranges.
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Rather than focus on the evolutionary lineage, it has
been proposed that perhaps a species should simply be
distinguished by being a morphologically or genetically
distinguishable group of individuals that has few or no
intermediates when in contact with other such clusters.
Two examples from the invasive species domain challenge
this genotypic cluster species concept. Rubus alceifolius
has been introduced to Indian Ocean islands where popu-
lations on each island are characterized by a single differ-
ent genotype—the result of successive nested founder
events leading to a cumulative reduction in genetic diver-
sity (Amsellem et al. 2000). It remains controversial as to
whether such genetically distinguishable clones should
be treated as separate species.

In contrast, alien plants have highlighted how an
existing taxonomic group may indeed comprise multiple
genetically distinct subspecies. The invasive European
genotype of P. australis rapidly outcompeted the native
genotype in North America with the result that the dis-
tribution and abundance of European P. australis in
North America have increased dramatically over the past
150 years (Saltonstall 2002). Marked differences in ge-
netic structuring and population diversity have been
found between the native and introduced lineages
(Saltonstall 2002; Meyerson et al. 2009; Kettenring and
Mock 2012) and some evidence for hybridization has
begun to emerge (e.g. Meyerson et al. 2010b, 2012; Paul
et al. 2010; Lambertini et al. 2012). Thus, what was
believed to be a single species behaves, in terms of morph-
ology and genetics, as two different species. It was only
after the recognition of the two lineages in 2002 that
they were designated as distinct subspecies, i.e. the
North American native is subsp. americanus while the
European lineage is subsp. australis. In the Gulf Coast of
the USA an even more complexstoryof inter- and intraspe-
cific hybridization among Phragmites species and lineages
is occurring (Lambertini et al. 2012; Meyerson et al. 2012),
further demonstrating that this genus is taxonomically
more complicated than previously recognized. The Phrag-
mites story illustrates how both classic and molecular tax-
onomy work in tandem.

A final example of how alien plant species can challenge
species concepts is demonstrated by the ecological
species concept where a species is a lineage that occupies
an adaptive zone minimally different from that of any
other lineage in its range and that evolves separately
from all lineages outside its range. However, increasing
evidence reveals situations where alien species occupy
distinct niches in their introduced range relative to their
native range (Guo et al. 2013; Hulme and Barrett 2013).
Under these circumstances, such events may call into
question the relevance of the ecological species concept.
Where these niche shifts also include changes in genotype

frequencies and morphological traits, these alien invaders
may reflect the initial stage of speciation, especially if re-
productive isolation follows as is the case for asexual
species.

While the above is not an exhaustive assessment
of species concepts (see also Table 2), it does illustrate
that while the study of plant invasions requires a detailed
understanding of taxonomy, invasive species pose
considerable challenges, and many opportunities, to
taxonomists.

Implications for Management
Taxonomy is required for invasion biology beyond simply
the challenges associated with cataloguing life, i.e.
adding the name of an organism to a biological inventory.
Failure to identify the invasive entity correctly or identify-
ing it too late can result in a delayed response to a
nascent invasion, or the application of inadequate or in-
appropriate management measures. In Belgium, the
initial erroneous identification or confusion of four alien
species (Digitaria violascens, Eleocharis pellucida, Juncus
dichotomus and Vicia dalmatica) with non-invasive spe-
cies made it possible for noxious environmental weeds
to become invasive and a problem for conservation man-
agement (Verloove 2010). Because hybrid populations
may respond differently to local ecological conditions
than their parents (Thompson 1991; Milne and Abbott
2000), information on hybrid presence and distribution is
also of particular importance to management and conser-
vation programmes (Moody and Les 2002). Consequently,
inadequate taxonomic resolution limits options for early
detection and rapid response and for various subsequent
management options when the wrong species is targeted
by specific control measures.

Accurate identification is also critical for the classical
biological control of invasive plants. For example, biologic-
al control of Cactaceae in South Africa was delayed
because the wrong species of herbivorous cochineal
insect was collected; after the taxonomic problems asso-
ciated with the identification of Cylindropuntia fulgida
var. fulgida were resolved and the appropriate insect was
released, the population of the invasive plant declined
(Paterson et al. 2011). Phylogeographic tools have
helped such situations. For example, biocontrol research-
ers used a molecular approach to identify the specific
origin of Lygodium microphyllum, a fern invading Florida.
They then identified which haplotype of a phytophagous
mite, Floracarus perrepae, was naturally associated with
the invasive fern in Florida, and found that this mite was
significantly more damaging than other haplotypes
(Goolsby et al. 2006). Correct taxonomy also provides
insights into the groups and geographic locations that
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should be searched for potential control agents in the
weed’s native range, and which plants in the introduced
range should be included in host specificity assessment
to determine the risks of non-target impacts (Wapshere
1974; Briese and Walker 2008). Finally, classical biological
control is an example where applied needs in the invaded
range stimulate and fast-track taxonomical work in the
native range, e.g. the first formal description of many
agents only occurs because the agents have promise for
biological control.

In general, legislation explicitly relies on the biological
species concept. However, we need to understand all as-
pects of invasions, and the biological species concept is
inadequate for resolution of some key facets of invasion
ecology such as the crucial details of subspecific differ-
ences, cultivars and hybrids. For example, horticulturalists
and regulators need tools to separate non-invasive
from invasive cultivars (Wilson and Hoch 2009). At a
minimum, legal frameworks should support identification
and monitoring of alien species below the species level as
part of a broader requirement for identifying and monitor-
ing components of biological diversity (Shine et al. 2000).

Conclusions: The Way Forward
Failure to correctly identify an organism can lead to spuri-
ous conclusions and ultimately to inappropriate and inef-
fective legislation, management and policy tools, from the
local to the global scales. The study of biological invasions
needs to utilize and integrate ecological, molecular and
morphological information on alien species to better
understand particular invasions, and to inform appropri-
ate management interventions. Specifically, it requires
(i) field floristic knowledge for recording plants in the
field and their distributions; (ii) traditional (alpha) tax-
onomy based on the ability to assess morphological
samples; and (iii) molecular systematics using genetic
tools to identify taxaand localize the specific origin of inva-
ders. The latter two approaches are often combined, but
all three areas are essential for improving the quality of in-
vasive plant databases.

Unfortunately, taxonomy is undervalued in current
scientometric analyses, which is reflected in poor funding
opportunities in many parts of the world. A greater focus
on education is required. A drawcard for taxonomy to
attract students these days is the link with molecular
work. Closer links between molecular work and what is
often called classical taxonomy will also probably help to
remedy the citation and impact factor issue as new classi-
fications/taxonomy linked to studies of evolutionary rela-
tionships are likely to make taxonomic papers more
competitive in the current scenario of citation practices.
On the other hand, molecular studies will profit greatly

from the deep insights and knowledge that can only be
gained by a long-term natural history study of living
plants in the field, such as are regularly undertaken on
many invasive species.

Although DNA barcoding offers exciting new research
possibilities (Cross et al. 2011), it is no panacea. Even in
the genomic era automated identification of all plant spe-
cies based on DNA markers is, and probably will remain, an
unrealistic goal, making conventional taxonomy an irre-
placeable discipline. Effectively addressing the current
and future challenges of invasion biology requires collab-
orative taxonomic expertise from both classical and mo-
lecular approaches. A more ‘integrative taxonomy’ (Pires
and Marinoni 2010) would combine the strengths of both
traditional and molecular taxonomy and profit from their
synergistic use, and potentially produce new tools for inva-
sion biology and taxonomy alike. For example, molecular
tools may assist us in detecting and identifying finer
scale morphological differences in both genotypes and
hybrids, thereby facilitating more rapid and accurate dif-
ferentiation in the field and further enriching taxonomy
overall.

The time has come for a resurgence and reinvestment in
taxonomy for the 21st century and beyond. Global change
(in the form of biological invasions and climate change) is
creating novel environments in which plant communities
are likely to respond in both fascinating and unexpected
ways. Trained taxonomists are indispensable for under-
standing the changes in the Earth’s biota, and for provid-
ing insights for management and conservation. Reliable
taxonomic keys require data from both classical taxono-
mists and molecular biologists. Species recognition will
continue to be a fundamental basis for all basic and
applied biological research. In invasion biology, correct
species identification and knowledge of interspecific di-
versity and traits determine the success and, consequent-
ly, cost of biological control programmes. For practitioners,
reliable determination keys based on morphological char-
acters will continue to be a major information source
for species identification because the majority of non-
specialists will never have access to molecular methods
nor the skills to use them for distinguishing species.
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Fuentes N, Kühn I, Ugarte E, Klotz S. 2008. Alien plants in Chile. Infer-
ring invasion periods from herbarium records. Biological Invasions
10:649–657.

Gaskin JF, Schaal BA. 2002. Hybrid Tamarix widespread in US invasion
and undetected in native Asian range. Proceedings of the National
Academy of Sciences of the USA 99:11256–11259.

Ghahramanzadeh R, Esselink G, Kodde LP, Duistermaat H, van
Valkenburg JLCH, Marashi SH, Smulders MJM, van de Wiel CCM.
2013. Efficient distinction of invasive aquatic plant species from
non-invasive related species using DNA barcoding. Molecular
Ecology Resources 13:21–31.

Godfray HJC. 2002. Challenges for taxonomy: the discipline will
have to reinvent itself if it is to survive and flourish. Nature 417:
17–19.

Godfray HCJ. 2005. Taxonomy as information science. Proceedings of
the Californian Academy of Science 56(Suppl. I):170–181.

Godfray HCJ. 2007. Linnaeus in the information age. Nature 446:
259–260.

Godfray HCJ, Knapp S. 2004. Introduction to theme issue, ‘Taxonomy
for the 21st Century’. Philosophical Transactions of the Royal
Society, London B 359:559–570.

Godfray HCJ, Clark BR, Kitching IJ, Mayo SJ, Scoble MJ. 2008a. The web
and the structure of taxonomy. Systematic Biology 56:943–955.

Godfray HCJ, Mayo SJ, Scoble MJ. 2008b. Pragmatism and rigour can
coexist in taxonomy. Evolutionary Biology 35:309–311.

Goldblatt P, Johnson DE. 1979 onwards. Index to plant chromosome
numbers. St Louis: Missouri Botanical Garden.

Goolsby JA, De Barro PJ, Makinson JR, Pemberton RW, Hartley DM,
Frohlich DR. 2006. Matching the origin of an invasive weed for se-
lection of a herbivore haplotype for a biological control pro-
gramme. Molecular Ecology 15:287–297.

Gotelli NJ. 2004. A taxonomic wish-list for community ecology. Philo-
sophical Transactions of the Royal Society of London B 359:
585–597.

Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT. 2004.
New developments in museum-based informatics and applica-
tions in biodiversity analysis. Trends in Ecology and Evolution 19:
497–503.
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Perglová I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE. 2008. Alien
flora of Europe: species diversity, temporal trends, geographical
patterns and research needs. Preslia 80:101–149.

Lambertini C, Sorrell BK, Riis T, Olesen B, Brix H. 2012. Exploring the
borders of European Phragmites within a cosmopolitan genus.
AoB PLANTS 2012:pls020; doi: 10.1093/aobpla/pls020.

Lavergne S, Muenke NJ, Molofsky J. 2010. Genome size reduction can
trigger rapid phenotypic evolution in invasive plants. Annals of
Botany 105:109–116.

Leimu R, Koricheva J. 2005. What determines the citation frequencyof
ecological papers? Trends in Ecology and Evolution 20:28–32.

Leitch IJ, Bennett MD. 2007. Genome size and its uses: the impact of
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Variation in DNA-ploidy levels of Reynoutria taxa in the Czech
Republic. Annals of Botany 92:265–272.

McGeoch MA, Spear D, Kleynhans EJ, Marais E. 2012. Uncertainty in in-
vasive alien species listing. Ecological Applications 22:959–971.

Meyer CP, Paulay G. 2005. DNA barcoding: error rates based on com-
prehensive sampling. PLoS Biology 3:2229–2238.

Meyerson LA, Cronin JT. 2013. Evidence for multiple introductions of
Phragmites australis to North America: detection of a new non-
native haplotype. Biological Invasions (in press, doi:10.1007/
s10530-013-0491-2).

Meyerson LA, Saltonstall K, Chambers RM. 2009. Phragmites australis
in eastern North America: a historical and ecological perspective.
In: Silliman BR, Grosholz E, Bertness MD, eds. Salt marshes under
global Siege. Berkeley: University of California Press, 57–82.

Meyerson LA, Lambert AM, Saltonstall K. 2010a. Three invasion fronts of
Phragmites australis in North America: research and management
needs in the face of common reed expansion in the west and Gulf
Regions. Invasive Plant Science and Management 3:515–520.

Meyerson LA, Viola D, Brown RN. 2010b. Hybridization of invasive
Phragmites australis with a native subspecies in North America.
Biological Invasions 12:103–111.

Meyerson LA, Lambertini C, McCormick MK, Whigham DF. 2012.
Hybridization of common reed in North America? The answer is
blowing in the wind. AoB PLANTS 2012:pls022; doi: 10.1093/
aobpla/pls022.
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Danihelka J, Chrtek J Jr, Sádlo J. 2009. The global invasion

16 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2013
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Pyšek P, Jarošı́k V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S,
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Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD,
West CJ. 2000. Naturalization and invasion of alien plants: con-
cepts and definitions. Diversity and Distributions 6:93–107.

Richardson DM, Carruthers J, Hui C, Impson FAC, Robertson MP,
Rouget M, Le Roux JJ, Wilson JRU. 2011. Human-mediated intro-
ductions of Australian acacias: a global experiment in biogeog-
raphy. Diversity and Distributions 17:771–787.

Robertson MP, Cumming GS, Erasmus BFN. 2010. Getting the most out
of atlas data. Diversity and Distribution 16:363–375.

Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C,
Bacaro G, Chiarucci A. 2011. Accounting for uncertainty when
mapping species distributions: the need for maps of ignorance.
Progress in Physical Geography 35:211–226.

Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the
common reed, Phragmites australis, into North America. Proceed-
ings of the National Academy of Sciences of the USA 99:2445–2449.

Saltonstall K, Peterson PM, Soreng RJ. 2004. Recognition of Phragmites
australis subsp. americanus (Poaceae: Arundinoideae) in North
America: evidence from morphological and genetic analyses.
Sida 21:683–692.

Santos AM, Branco M. 2012. The quality of name-based species
records in databases. Trends in Ecology and Evolution 27:6–7.

Sax DF. 2001. Latitudinal gradients and geographic ranges of exotic
species: implications for biogeography. Journal of Biogeography
28:139–150.

Schierenbeck KA, Ellstrand NC. 2009. Hybridization and the evolution
of invasiveness in plants and otherorganisms. Biological Invasions
11:1093–1105.

Scott WA, Hallam CJ. 2002. Assessing species misidentification rates
through qualityassurance of vegetation monitoring. Plant Ecology
165:101–115.

Seifert K, Crous P, Frisvad J. 2008. Correcting the impact factors of
taxonomic journals by ACT. Inoculum 59:4.

Shen Y-Y, Chen X, Murphy RW. 2013. Assessing DNA barcoding as a
tool for species identification and data quality control. PLoS One
8:e57125.

Shine C, Williams N, Gundling L. 2000. A guide to designing legal and
institutional frameworks on alien invasive species. Environmental
Policy and Law Paper No. 40. Gland, Switzerland, Cambridge and
Bonn: IUCN.

Smith GF, Figueiredo E. 2007. Naturalized species of Agave
L. (Agavaceae) on the southeastern coast of Portugal. Haseltonia
13:52–60.

Smith GF, Figueiredo E. 2009. Capacity building in taxonomy and sys-
tematics. Taxon 58:697–699.

Smith RD, Aradottir GI, Taylor A, Lyal C. 2008a. Invasive species man-
agement: what taxonomic support is needed? Nairobi, Kenya:
Global Invasive Species Programme.

Smith GF, Buys M, Walters M, Herbert D, Hamer M. 2008b. Taxonomic
research in South Africa: the state of the discipline. South
African Journal of Science 104:254–256.

Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome
evolution. Trends in Ecology and Evolution 14:348–352.

Stuessy TF, Lack HW, eds. 2011. Monographic plant systematics: fun-
damental assessment of plant biodiversity. Ruggell: Gantner.
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Vilà M, D’Antonio CM. 1998. Hybrid vigor for clonal growth in Carpobro-
tus (Aizoaceae) in coastal California. Ecological Applications 8:
1196–1205.
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Henderson L, Thuiller W. 2007. Residence time and potential
range: crucial considerations in modelling plant invasions. Diversity
and Distributions 13:11–22.

Wilson JRU, Ivey P, Manyama P, Nänni I. 2013. A new national unit
for invasive species detection, post-border risk assessment,
anderadicationplanning.South AfricanJournal ofScience 13:1–13.

Wilson RL, Hoch WA. 2009. Identification of sterile, noninvasive culti-
vars of Japanese spirea. HortScience 44:2031–2034.

Winter M, Schweiger O, Klotz S, Nentwig W, Andriopoulos P,
Arianoutsou M, Basnou C, Delipetrou P, Didžiulis V, Hejda M,
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Appendix 1. Comparison of chromosome numbers and genome sizes among globally invasive plant species and their non-invasive congeners.

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Abrus 22 24 1

Acacia 26, 52, 104 26, 52, 78, 104, 208 2 0.55–1.78 0.53–2.10 0

Acer 26, (42), 52 26, 34, 52 1 0.54–1.35 0.38–1.35 0

Agapanthus 30 30 0 12.68 11.23–23.78 0

Agave 60, (90), 120, 150 60, 90, 120, 150, 180 1 3.05–11.31 2.98–12.53 0

Ageratina 51, 102 34, 51, 68,102 2

Agrostis 28, 42 14, 28, 42, 56, 84 4 3.50–4.65 1.68–10.89 2

Aira 14, 28 14, 28 0 6.03 2.93–5.35 1

Albizia 26 26, (78) 1

Allium 18, 27 14, 16, 18, 20, 21, 22, 24, 28, 30, 32, 35, 36,

40, 42, 46, 48, 64

2 18.15 7.60–74.50 2

Alstroemeria 16 16, (13, 25) 1 26.75–40.45 18.25–39.5 0

Alternanthera 100 28, 32, 34, 40, 96 4

Amorpha 40 20 5

Andropogon 20, 40 20, 30, 40, 60, 70, 80, 90 3

Annona 1.35 0.68–1.43 0

Anredera 24, 36 24 2

Anthoxanthum 10, 20 10, 20, 40, 56, 70, 86, 88 4

Aponogeton 3.95 1.73 1

Argemone 28, 56 28, 56 0

Arrhenatherum (14), 28 14, 28 1 7.98 4.81 0

Asparagus 20, 40 16, 18, 20, 30, 40, 60 2 1.35–2.18 1.28–2.65 0

Asphodelus 28, 56 14, 28, 52, 56, 70, 84 3

Atriplex 0.85 0.43–2.99 1
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Avena (28), 42 14, 28, 42 2 14.15 4.00–13.7 1

Azolla (40), 44, 66 44, 48, 52, 66, 88 2

Berberis 28 (24), 28, 42, 56 2 0.70–1.55 0.50–3.10 1

Bidens 48, 72 24, 32, 34, 36, 48, 60, 66/68, 72, 80, 84, 96 3 1.73 1.60–3.22 0

Brassica 20 16, 18, 20, 22, 24, 27, 28, 32, 34, 36, 38, 40 3 0.55 0.50–3.93 1

Briza 14 10, 14, 28 2 6.48 2.90–11.68 1

Bromus 14, 28, (42), 56 14, 28, 42, 56, 70 1 3.25–12.27 1.88–16.33 0

Buddleja 76 38, 76 2 1.37 0.86–0.94 1

Caesalpinia 22, 24 24, 48 2

Calotropis 22 22 0

Cardiospermum 20, (22) 14, 20, 22 1

Carduus 16, 22, 32, 54, 64 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 54,

62

1

Casuarina 18 18 0

Cecropia 28 26, 28 1

Celastrus 46 46 0

Celtis 20 20, 30, 40 2

Cenchrus 32, 34, 36, 54, (72) 34, 36, 42, 45, 48, 102 2 1.33 2.55–5.56 1

Centaurea 16, 18, 20, 36 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34,

36, 40, 42, 44, 48, 50, 52, 54, 60, 66, 84,

90, 110

3 0.87–1.57 0.83–2.15 0

Cestrum 16 16 0

Cinnamomum 24 24 0

Cirsium 34, 68 20, 21, 22, 23, 24, 26, 28, 30, 32, 34, c. 60, 68,

c. 102

3 1.42–2.77 1.07–1.8 0

Clematis 16 16, 32, 48 3 9.05 9.65–15.80 1

Clidemia 34 20, 34, 46, 48 3

Colocasia 28, 42 28, 42, 44, 46, 52, 58, 116 4 4.08 3.33 0

Conium 22 22 0

Coprosma 44 22, 44, 88, 132, 220, 264 4 1.38 1.28 0

Cortaderia 72 90 2

Cotoneaster 68 34, 51, 68 2 1.37 0.71–1.39 0

Cotula 20, 40 18, 20, 36, 52, c. 80, 104, 156, 208, 260 4

Crassula 14 14, 16, 32, 42, 48, c. 56, 64, c. 84, c. 90, c. 96 4

Crataegus 34, 51 24, 34, 48, 51, 64, 68, 72 3 0.76 0.63–1.77 1

Cynara 34 34 0

Cynodon 18, 27, 36, 54 18, 36 1 0.80–1.47 0.52 1

Continued
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Cyperus 42 16, 18, 22, 24, 26, 30, 32, 34, 36, 38, 40, 44,

46, 48, 50, 52, 54, 56, 58, 64, 68, 70, 72,

74, 78, 80, 82, 88, 96, 108, 112, 134, 136,

152, 186, 208, 220, 224

4

Cytisus 46, 48 24, 46, 48, 50, 52, c. 84, 96 4 0.85 0.55–2.07 1

Dactylis 14, 28 14, 28 0 3.30–4.40 2.16–2.26 1

Datura 24 24, (36), (48) 1 2.05 1.73–2.28 0

Dioscorea 40, 50, 60, 70, 80 20, 30,(36), 40, (56), 60, (64), 70, 80, 100,

120, 140

3 0.58–1.06 0.35–6.75 1

Dipsacus 18 16, 18, 36 2 3.28–3.21 3.29–5.29 0

Egeria 46 52 1

Ehrharta 24, 48 24, 48, 72, 96, 120 3

Echinochloa 108 18, 36, 48, 54, (56), (108) 4

Echium 16 12, 14, 16, 24, 32 2

Eichhornia 32, 64 16, 30 2

Elaeagnus 28 28 0

Elodea 24, 32, 40, 48, 56, 64, 72,

96

24, 48 1

Elytrigia 28, 35, 42, 49 24, 28, 35, 42, 56, 63 1 11.64–17.46 13.25–20.28 0

Eragrostis 20, 30, 40, 50, 60, 70, 80 20, 30, 40, 50, 60 1

Erica 24 24 0

Erigeron (27), 36 18, 27, 36, 45, 54 3

Erodium 20, 40, 60 16, 18, 20, (27), 36, 40, (56), 60 1

Eucalyptus 22 22, (44) 1 0.55 0.39–0.74 0

Eugenia 22, 33 22, 44, 66 2 0.25 0.24–0.32 0

Euphorbia 16, 20, 60, (64) 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,

36, 40, 42, 44, 46, 56, 60, 72, 80, 90, 120,

160

2

Fallopia 44, 66, 88, 110 20, 22, 40, 44, 132 3 2.43–4.82 0.35–4.63 1

Festuca 28, 42, 56, 70 14, 21, 28, 30, 35, 42, 49, (52), 56, 70 2 4.28–8.49 1.94–12.84 1

Ficus 26 26 0 0.37 0.68–1.5 1

Foeniculum 22 22 0

Frangula 0.33 0.34 0

Freesia 22 22 0

Fuchsia 44, (120) 22, 44, 55, 88 4 1.47 0.73–1.72 1

Galium 64, 66 20, 22, 24, 40, 44, 48, 66, 88, 96, 132 4 1.03 0.51–1.89 1

Genista 44, 46, 48 (12), 18, (22), 24, (26), (27), 30, 32, 36, 40,

44, 46, 48, 50, 52, (54), (58), (60), 72, 88,

96, 120, 132

4

Continued

20 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2013
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Gladiolus 30 22, 24, 28, 30, 45, 50, 52, 54, 56, 58, 60, 80,

90 120, 170, 180

3

Gleditsia 28 28 0

Glyceria 20, 40, 56, 60 20, 28, 30, 40, 60 1

Gunnera 34 34 0

Hedera 48 48, 96, 144, 192 3 1.48 1.40–5.45 1

Hedychium 34 34, 68 2

Helianthus 102 34, 68, 102 4 12.55 2.43–12.95 1

Heracleum 22 22, 40, 44 2 1.78 2.19 0

Hesperis 14, 24, 28 12, 14, 16, 28 1

Hiptage 58 58 0

Holcus 14 8, 14, 21, 28, 35, 42 4 1.7 2.78–4.10 1

Hordeum 14, 28, 42 14, 21, 28, 42, 63, 70 2 5.50–14.93 3.43–16.4 0

Hygrophila 32 (12), (24), 32, 34, 44 2

Hymenachne 20 20, 40 2

Hyparrhenia 20, 40 20, 30, 40, 45 2

Hypericum 16, 32, 40, 48 (8), 14, 16, 18, (20), 24, 28, (30), 32, 36, 38,

40, c. 54

1 0.78 0.34–0.51 1

Hypochaeris 8 6, 8, 10, 12, 14, 16, 20 2 1.34 0.84–4.05 1

Chamaecytisus 52, (46–50) 48, 96 2 1.25 2.05–3.19 1

Chenopodium 18, 27, 36, 45, 54, 90 18, 36, 54 2 0.77–2.33 0.37–2.20 1

Chloris 20, (36) 20, 30, 40, 60 3

Chromolaena 60 20, 40, 50 5

Ilex 40 34, 36, 38, 40, 120 3 1.15 1.13–2.13 0

Impatiens 18 6, 8, 10, 12, 14, 16, 18, 20, 26, 28, 30, 32, 34,

36, 40, 50, c. 60

4 1.15 1.33–3.25 1

Imperata 20, 40, 60 20 1 5.43 0.73 2

Ipomoea 30, 60 28, 30, 32, (38), 60, 90 2 0.95 0.63–2.25 1

Iris (16), (24), 34 14, 16, 18, 20, 22, 24, 26, 27, 28, 32, 34, 36,

40, 42, 44, 48, 54, 84, 108

4 5.67 4.00–28.20 1

Jacaranda 36 36 0 1.18 1.3 0

Jasminum 26, 39 24, 26, 39, 52, 65, 78 2

Juncus 40, 48, 80 8, 20, 26, (28), 30, 34, 38, 40, 42, 44, (46), 48,

60, (68), 70, 80, 84, 90, 100, 106, 108, 120,

126, 132

4 0.30–1.83 0.35–1.30 0

Lagarosiphon 3.25 1.8 0

Lantana 22, 33, 44, 55, 66 22, 44, 66 1

Lavandula 30 22, 30, 36, 42, 44, 48, 50, 54, 72 3

Continued
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Leersia (28), 48 24, 48, 72 3

Lepidium 24 (4), 16, 24, 28, 32, 48, 64 3 1.04 0.33–0.58 1

Leucaena (56), 104 36, 52, 54, 56, 104, 106, 108, 110, 112 3 1.28 0.31–1.65 1

Ligustrum 46 46 0

Litsea 24 48 5

Lolium 14, (56) 14, 28 2 2.76 2.13–3.18 0

Lonicera 18, (36) 18, 36, 45, 54 3

Lotus 12, 24, (36) 10, 12, 14, 24, 28 2 0.48–1.05 0.45–1.40 0

Lupinus 48, (96) 32, (34), 36, 38, 40, 42, 48, 50, 52, 54, 56,

100

3 0.85–0.90 0.49–1.34 0

Lygodium 58, 60 58, 60, 116 2

Lythrum 30, 60 10, 20, 30 4

Macfadyena 40, 80 40 1

Mahonia 28, 56 28, 56 0

Marrubium 34 20, 32, 34, (36) 2

Melaleuca 0.97 1.13 0

Melia 0.43 0.48 0

Melilotus 16, (24) 16 1 1.23 1.13–1.33 0

Melinis 36 36 0

Mentha 20, 30, 36, 40 18, 24, 36, 42, 48, 50, 54, 60, 66, 72, 74, 84,

90, 96, 108, 120

3

Miconia 32 32, 34, 48, 50, 62, c. 134 3

Microstegium 40 20, 40, 60, 70, 80 4

Mikania 72 34, 36, 38, 42, 68, 108 4

Mimosa 26 26, 52, 104 3

Montanoa 38 38 0

Morus 28, (30), 42 28, 30, 42, c. 304 2

Myosotis 18, 20 18, 22, 24, 28, 32, 36, 40, 44, 48, 52, 64, 66,

72, 88

4

Myriophyllum 28, (36), 42 14, 21, 28, 42 2 0.25 0.48–0.50 1

Nephrolepis 82 82, (164) 1

Neyraudia 40 40 0

Nicotiana 24, 48 18, 20, 24, 32, 34, 36, 38, 40, 42, 44, 46, 48,

60, c. 96

3 5.33 1.43–6.38 1

Olea 1.95 1.50–2.99 0

Opuntia (12), 22, (36), 44, 55, 66 22, 33, 44, 55, 66, 77, 88 1 2.28 2.04–3.80 0
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Ornithogalum 18, 27, 36, 44, 45, 46, 47,

51, 52, 53, 54, 55, 72,

90, 104

4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28,

30, 32, 34, 36, 40, 42, 46, 50, 51, 52, 54,

56, 60, 72, 76, 80, 108

2 24.85 4.10–33.45 1

Oxalis 24, 34 10, 12, 14, 16, 18, 22, 24, 28, 32, 35, 36, 42,

44, 48, 54, 64, 72

4 0.69–0.83 0.37–16.50 1

Paederia 44, 55, 66 22, 44, 66, 88 3

Panicum 18, 32, 36, 40, 48 18, 20, 30, 32, 36, 40, 54, 72 2

Parapholis 24, 28, 30, 36, 38 12, 14 2

Paspalum 20, 30, 40, 50, 60 12, 20, 24, 30, 32, 40, 50, 60, 80 2 1.15–1.79 0.62–1.61 0

Passiflora 18 12, (14), 18, 20, 24, 36, 72 3 1.58 0.92–2.68 0

Pastinaca 22 22, (44) 1

Pennisetum 18, 21, 27, 28, 36, 45, 54,

72

10, 14, 15, 16, 18, 20, 22, 28, 30, 32, 35, 36,

45, 48, 54, 56, 63, c. 70, 72, 90

2 1.15–2.90 0.85–4.80 0

Pereskia 22, 28 22 1

Petrorhagia 30 26, 30, 60 2

Phalaris 14, 28, 42 12, 14, 28, 56 2 4.13–6.45 1.38–5.70 1

Phleum 14, 28, 42 (10), 14, 28, 42 0 4.15 1.20–3.23 1

Phragmites (28), (36), (40), 48, 54, 72,

96, 120

48, 96 1

Physalis 48 24, 48, (72) 2

Pinus 24 24 0 21.92–28.90 17.25–36.00 0

Pilosella (18), 36, 45, 54, 63, (81),

(90)

18, 27, 36, 45, 54, 63, 72 1 3.45–6.06 1.08–8.34 1

Plantago 10, 12, 20, 24 8, 10, 12, 20, 24, 30, 36, 48, 72, 96 3 0.86–1.20 0.50–2.78 1

Poa 14, 21, 28, 35, 42, 44, 48,

49, 50, 56, 58, 63, 64,

66, 70, 72, 84

14, 21, 24, 28, 33, 34, 35, 36, 39, 42, 46, 48,

49, 50, 56, 58, 63, 70, 72, 76, 80, 84, 112

1 4.24–5.38 1.18–16.28 2

Polygonum 20, 30, 40, 50, 60 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 40, 42,

44, 46, 48, 50, 52, 54, 58, 60, 88, 100

2 0.85 0.43–0.70 1

Polypogon 28 14, 28, 42, 56 4

Populus 38 38, 40, 44, 45, 46, 48, 57 2 0.52 0.45–0.54 0

Prosopis 28, 56, 112 28, 56, 112 0 0.43–1.70 0.40–1.28 0

Prunus 16, 24 16, 24, 32, 48, 64 2 0.50–3.65 0.28–1.18 1

Psidium 22, 44 22, 44, 77 2 0.28–0.53 0.58 1

Ranunculus (24), (28), 32 14, 16, 24, 28, 32, 40, 42, 48, 56, 64, 72, 80,

96, 128

4 11.2 1.90–25.10 2

Rhamnus 24 20, 24 1 0.31–1.33 0.25–0.56 1

Robinia 22 30 1

Romulea 18 18, 20, 22, 24, 26, 28, 30, 32, 44, 48, 50, 56 4

Continued
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Rorippa 32 16, 28, 32, 40, 44, 48 3 0.54 0.19–0.73 1

Rosa 14, 21, 28, 35, 42 14, 21, 28, 35, 42, 49, 56 1 0.50–1.43 0.28–1.45 0

Rubus 14, 21, 28 14, 21, 28, 35, 42, 56, c. 70, 84, c. 98 2 0.29–0.35 0.24–1.23 1

Rumex 14, 20, 21, 28, 35, 40, 42,

60, c. 90

14, 15, 16, 18, 20, 22, 24, 30, 36, 40, 42, 50,

60, 80, 100, 120, 130, 140, 160, 200

2 1.68–4.40 0.48–6.24 1

Salix 38, 76 38, 76, 114, 152, 182, 186, c. 214 3 0.77–0.86 0.35–0.86 1

Salsola 36 18, 36, 54, 72 4 0.61 1.31 1

Salvia (14), (16), 42, 48, 54, 56,

60, 62, 64

12, 14, 16, 8, 20, 22, 24, 26, 28, 30, 32, 40,

42, 44, 48, 52, 66, 88

2

Salvinia 45 18, 36, 45, 54, 63 3

Sambucus 36 (18), 36, 38, c. 72 2 15.25 10.55–10.84 1

Securigera (16), 24 12, 20 3

Sedum 40, 56, 60, 80, 100 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,

34, 36, 40, 42, 44, 48, 52, 56, 58, 60, 64,

68, 70, 72, 74, 82, 84, 796, 98, 102, 104,

112, 124, 136, 140, 148, 160, 168, 185

3 1.25 0.15–9.10 2

Senecio 20 10, 18, 20, 24, 36, 38, 40, 44, 46, 48, 60, 70,

72, 76, 80, 90, 92, 96, 98, 100, 104, 110,

114, 120, c. 130, c. 160, 180

4

Senna 26, 28 22, 24, 26, 28 1

Sesbania 12 12, 14, 24 2

Schismus 12 12 0

Schkuhria 20, 40 20, 40 0

Solanum 24, 36, 48, 60, 72 12, 16, 22, 24, 36, 48, 72, 96 3 1.33–3.10 0.63–3.65 1

Solidago 18, 36, 54 18, 36, 54, 90, 108 2 1.58–1.82 1.13 1

Sonchus 32, (64) 14, 18, 32, 36, 54 3 1.6 1.31–1.85 0

Spartina 60, 52, 120, 122, 124 40, 60, 62 2

Sporobolus 36 18, 20, 24, 30, 36, 40, 50, 54, 60, 72 4

Stenotaphrum 18, 32 18 2

Syzygium 44, 66 22 5

Tagetes 48 24, 48 2

Tamarix 24 22, 24 1

Tecoma 36 36 0

Tectaria 160 80, 120, 160 2

Thespesia 26 26 0 4.1 1.6 1

Thunbergia 56 16, 18, 28, 56 3

Toona 56 52, 56 1

Tradescantia 30, 40, 50, 60, 70, 108,

132, 140, 144

12, 14, 16, 18, 22, 24, 26, 28, 30, 36, 60, 72,

74, 76, 92, 114

3 4.05–12.93 4.25–43.35 1

Continued
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Appendix 1. Continued

Genus Chromosomes

(invasive)

Chromosomes (non-invasive) RISK

(0–5)

Genome size

(invasive)

Genome size

(non-invasive)

RISK

(0–2)

Trifolium 14, 16, 28, 32 10, 12, 14, 16, 24, 32, 48, 56, 60, 64, 80, 84,

96, 126

4 0.39–1.12 0.34–5.79 1

Typha 30 30, 60 2

Ulex 32, 64, 96 32, 64, 96 0 3.85 2.9 0

Ulmus 28 28, 56 2

Urochloa 36 28, 30, 36, 48 3

Verbascum 36, c. 64 26, (28), 30, 32, 36, 44, 46, 56 2

Verbena 28 10, 14, 20, 28, 42 3

Vinca 90, 92 16, 46, (92) 4 2.1 0.74–0.76 2

Vulpia 14, 28, 42 14, 28, 35, 42 1 2.93–6.89 2.30–4.41 0

Watsonia 18, 27 18, (20), 27 1

Xanthium 36 36 0 3.15 2.59 0

Zantedeschia 32 32 0 2.3 2.3 0

Zizania 20, 34 30 2

Ziziphus 48 22, 24, 36, 48 3

Invasive species are classified as those listed in Weber (2003), and non-invasive as those not included in that list (each chromosome number datum refers to a
separate species). If related congeners are morphologically similar but differ in invasiveness that is related to ploidy levels, then misidentification based on
morphology would result in swapping their karyological data, and lead to spurious results in ecological studies. Ploidy variation data are based on chromosome
numbers (Goldblatt and Johnson 1979 onwards), and genome size data represent holoploid genome size values (taken from Bennett and Leitch 2012). Values
presented in parentheses are either dubious or not found in situ. The risk categories are defined as follows. For chromosome numbers: 0—karyologically
homogeneous genus, 1—largely corresponding chromosome numbers between invasive and non-invasive species, 2—slightly different chromosome numbers
between invasive and non-invasive species (inter-group difference between extreme chromosome numbers less than 2-fold), 3—different chromosome numbers
between invasive and non-invasive species (chromosomal variation of one group usually constitutes a fraction of the variation observed in the other group,
inter-group difference between extreme chromosome numbers at least 2-fold at one end), 4—considerably different chromosome numbers between invasive and
non-invasive species (chromosomal variation of one group usually constitutes only a small fraction of the variation observed in the other group, inter-group
difference between extreme chromosome numbers at least 2-fold at both ends), 5—mutually exclusive chromosome numbers between invasive and non-invasive
species. For genome size: 0—low difference in genome size between invasive and non-invasive species (inter-group difference between extreme C-values less than
2-fold at any end), 2—certain differences in genome size between invasive and non-invasive species (inter-group difference between extreme C-values at least
2-fold at one end), 3—high differences in genome size between invasive and non-invasive species (inter-group difference between extreme C-values at least 2-fold
at both ends or mutually exclusive C-values).
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