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Abstract. Continuing our recent work (2008 New J. Phys. 10 053011), we
demonstrate that due to strong nonlocal effects additional boundary conditions
(ABCs) are essential to characterize the reflection of electromagnetic waves
by nonconnected wire arrays using homogenization methods. Based on simple
physical considerations, we derive the ABCs for circumstances where the wire
medium is adjacent either to a dielectric or to a conducting material, and
demonstrate that in the lossless case such boundary conditions ensure the
conservation of the power flow. It is shown that the number of ABCs is related
to the number of metallic wires in a unit cell. We illustrate the application of the
novel boundary conditions to several configurations with practical interest.
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1. Introduction

Artificial materials formed by long metallic wires have attracted significant attention in recent
years [1]–[14]. In some circumstances such wire media may be characterized by a plasmonic-
type electric response, which potentially may enable interesting phenomena to occur such
as superlensing [15], negative refraction [12, 13] or the excitation of strongly localized
electromagnetic modes. However, it has been known for some time that in general wire media
may fail to completely mimic the properties of a local plasma, and may have a spatially
dispersive response [4, 6], [16]–[22], i.e. the electric displacement vector in a given point of
space cannot be written exclusively in terms of the macroscopic field at the considered point,
but, on the contrary, may depend on the distribution of the electric field in a neighborhood that
encompasses many unit cells. This property is a consequence of the fact that the metallic wires
are spanned over many unit cells, and consequently the polarization acquired by the metallic
inclusions in a given unit cell (which is roughly proportional to the current along the wires), may
depend significantly on the electric field outside the considered cell. Recently, it was suggested
that the spatial dispersion effects may be reduced either by attaching conducting structures on
the wires or by coating the wires with a magnetic material [23]. In [15], it was also demonstrated
that at infrared and optical frequencies the nonlocal effects may be significantly weakened when
the radius of the metallic rods is comparable to (or smaller than) the skin depth of the metal.

Even though in some applications spatial dispersion effects may be regarded as unde-
sirable, in other circumstances they may open new possibilities. For example, in part due to
nonlocal effects, an array of parallel wires may behave as a material with extreme optical
anisotropy and this may enable the transport and manipulation of the near-field [7], [9]–[11],
[24, 25]. Moreover, in a recent series of works it was shown that the spatially dispersive prop-
erties of a crossed wire mesh may enable the realization of materials with an extreme index of
refraction [14], the realization of ultra-subwavelength waveguides [14, 26], superlensing [27],

New Journal of Physics 11 (2009) 113016 (http://www.njp.org/)

http://www.njp.org/


3

broadband all-angle negative refraction [28], and low-loss broadband anomalous disper-
sion [29]. Some of these effects (e.g. the low-loss anomalous spectral dispersion) are specific to
spatially dispersive materials, and cannot be observed in local materials. Due to these and other
potential applications, the accurate characterization and modeling of nonlocal materials gain in
importance.

One of the peculiarities of nonlocal materials is that they may support additional waves,
i.e. for a fixed direction of propagation and a fixed frequency, the number of plane waves
supported by the material may be greater than two, differing in this way from conventional local
materials. For example, some of the plane waves may have identical polarization (i.e. the same
orientation for the electric field) and be associated with different wave vectors. It is well known
that such property implies that the classical boundary conditions, which impose the continuity
of the tangential components of the electric and magnetic fields, may be insufficient to solve a
scattering problem at an interface between a spatially dispersive material and another material,
due to the degrees of freedom associated with the ‘new’ waves. A possible strategy to overcome
this problem is the introduction of additional boundary conditions (ABCs) [30]–[33]. In [5, 34],
alternative ‘ABC-free’ strategies are described.

There is no general theory for the derivation of ABCs. In fact, the ABCs depend on the
very specific microstructure of the material, and should describe the dynamics of the internal
variables of the nonlocal material, so that the degrees of freedom are removed. In recent
works, the ABC approach was successfully used to model the reflection and refraction of
electromagnetic waves at an interface between a wire medium formed by parallel wires and
a conventional (dielectric or conducting) material [35, 36].

The objective of this paper is to generalize the theory of our previous works [35, 36] to the
case of nonconnected ‘double’ and ‘triple’ wire media, and demonstrate that the introduction
of suitable ABCs enables the accurate modeling of these structures using homogenization
techniques. As mentioned before, such materials may have interesting applications to several
problems [14], [26]–[29], which justifies, besides obvious theoretical motivations, the present
study. It should be mentioned that it is not trivial to extend the theory of [35, 36] to the case of
more complex metamaterial topologies. For example, it will be shown here that in general at an
interface between a crossed wire mesh and a regular dielectric two distinct ABCs are required,
whereas for an array of parallel wires one single ABC is sufficient to characterize the interface
effects [35, 36].

This paper is organized as follows. In section 2, we derive the ABCs. In section 3, it is
demonstrated that in the lossless case the proposed ABCs ensure the conservation of the power
flow through a wire medium slab. A formula for the Poynting vector in the spatially dispersive
material is derived. Then, in sections 4–6, we illustrate the application of the ABCs in several
scenarios of interest, and demonstrate their accuracy using full-wave numerical simulations. In
particular, we discuss the potentials of a wire mesh in the realization of ultra-subwavelength
waveguides and the emergence of negative refraction. Finally, in section 7 the conclusions are
drawn. It is assumed that the fields are monochromatic and have the time dependence e−iωt .

In this work, we use several different notations for the field entities. For the convenience
of the reader, the meaning of these notations is summarized below for the electric field case:

• e: microscopic electric field. This is the exact solution of the Maxwell’s equations, taking
into account the exact microstructure of the material.

• E: ‘bulk’ electric field. This is the electric field that results from the homogenization of the
bulk material. Specifically, the macroscopic field is obtained by averaging the microscopic
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Figure 1. Geometry of the unit cell of the ‘bulk’ double wire medium (N = 2).
The cubic unit cell contains two nonconnected metallic wires. The dashed line
represents a hypothetical cut of the bulk material with a plane normal to the
z-direction.

field over a volumetric region within which the structure is invariant to translations along
three independent directions of space.

• Eav,T: transverse-averaged electric field. This definition assumes that the considered
structure is periodic along two directions of space (assumed parallel to the xoy plane).
However, the periodicity along z is not required. The transverse-averaged field is obtained
by averaging the microscopic field exclusively along the directions parallel to the xoy
plane, as detailed in section 2.

2. Derivation of the ABCs

Here, we generalize the ideas of [35, 36] and derive ABCs that enable the characterization of
the internal variables responsible for the spatial dispersion effects in nonconnected wire media.

The material is formed by N mutually orthogonal and nonconnected sets of wires, oriented
along the directions of space ûn (n = 1, . . . , N ) [18], where N = 1, 2, 3 is the number of
components of the wire medium. Each wire array is arranged in a square lattice with lattice
constant a. The radius of the wires is rw. For N = 1, the material consists of a single array of
parallel wires, and for N = 2 (N = 3) it is formed by a double (triple) wire array. The distance
between adjacent orthogonal wires is a/2. It is assumed that the wires are good conductors, i.e.
the radius of the wires is much larger than the skin depth of metal at the frequency of operation.
For reasons that will be clear shortly, in general the unit vectors ûn are not oriented along the
coordinate axes x , y and z.

As an example, the unit cell of the bulk double wire medium (crossed wire mesh) is
represented in figure 1. The unbounded material is formed by the periodic repetition of the
primitive cell. Since the wires intersect the boundaries of the unit cell, it should be clear that
such construction effectively yields infinitely long wires.

Let us suppose that the bulk material is sliced to form a planar interface with another
adjacent material (a regular dielectric or metal; see figure 4(c)). This operation breaks the
translational symmetry of the system along the direction normal to the interface, which without
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loss of generality is assumed to be the z-axis. In particular, the wires lying in cells of the wire
medium adjacent to the interface are sliced as well (except, possibly, if some of the wires are
parallel to the interface). However, the periodicity of the system in the transverse plane (xoy-
plane) is preserved.

We use the transverse-average (TA) field approach introduced in [37], in order to describe
the electromagnetic wave propagation using homogenization methods. The TA fields are
obtained by averaging the ‘microscopic’ fields over the directions parallel to the interface
(x- and y-directions), i.e. over the directions along which the system has translational symmetry.
It is assumed that the microscopic fields have the Floquet–Bloch property in the xoy-plane,
being characterized by the transverse wave vector k‖ = (kx , ky, 0). This situation occurs,
for example, when the wire medium slab is illuminated by a plane wave, being in such
circumstances k‖ determined by the direction of incidence and by the frequency of operation.

Following [37], the TA-electric and induction fields are defined as

Eav,T(z) =
1

Acell

∫
�T

e(r)e−ik‖·rdxdy,

Bav,T(z) =
1

Acell

∫
�T

b(r)e−ik‖·rdxdy,

(1)

where e and b are the microscopic electric and induction fields, �T represents the transverse
unit cell in each z = const. plane and Acell is the area of �T. As demonstrated in [37], the TA
fields verify the differential system (assuming the time convention e−iωt ):(

ik‖ +
d

dz
ûz

)
×

Bav,T

µ0
= −iωε0εhEav,T + Jd,av,(

ik‖ +
d

dz
ûz

)
× Eav,T = iωBav,T,

(2)

where εh is the relative permittivity of the host medium, and Jd,av is the averaged microscopic
current. It should be clear that the TA fields depend exclusively on the z coordinate.

For the considered wire media, formed by metallic inclusions, the averaged microscopic
current is given by [37]:

Jd,av(z) =
1

Acell

∫
∂ A(z)

Jc(r)e−ik‖·r
1

|ν̂ × ûz|
dl, (3)

where Jc = ν̂ × b/µ0 is the density of electric current on the surface of a given wire, ν̂ is the unit
vector normal to the surface of the wire, ∂ A(z) is the contour determined by the intersection of
the surface of the wires in the unit cell and the pertinent z = const. plane, and dl is the element of
arc. Strictly speaking formula (3) is only valid when there are no wires parallel to the transverse
plane (otherwise the integrand becomes singular), which is the case of interest in this work.
The key result is that, similar to the analysis of [36], it is possible to write Jd,av in terms of the
microscopic electric currents induced on the metallic wires.

Indeed, assuming that the wires are relatively thin, rw � a, it is a good approximation to
consider that the density of current over the nth wire in the unit cell (parallel to the unit vector
ûn) is of the form (thin wire approximation):

Jc|∂ Dn
=

In(z)

2πrw
e+ik‖·rûn, (4)
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where ∂ Dn represents the surface of the considered wire, In is the electric current, and
n = 1, . . . , N , where N is the number of components of the wire medium. Note that the
density of current is modulated by the exponential factor e+ik‖·r, because of the assumed Floquet
periodicity of the microscopic fields in the transverse plane. Substituting equation (4) into
equation (3), it may be shown that the averaged microscopic current is given by

Jd,av(z) =
1

a2

∑
n

In(z)ûn. (5)

Thus Jd,av has indeed a simple relation with the microscopic electric currents. On the other
hand, from equation (2) it is straightforward to write the averaged current as a function of the
macroscopic TA-electric field

iωµ0Jd,av(z) =

(
ik‖ +

d

dz
ûz

)(
ik‖ +

d

dz
ûz

)
Eav,T +

(
k2

‖
−

(ω

c

)2
εh −

d2

dz2

)
Eav,T. (6)

Equations (5) and (6) establish the connection between the microscopic currents and the
macroscopic electric field and will be used in what follows to derive ABCs for nonconnected
wire media.

Let us consider first the case where the material adjacent to the wire medium is
nonconducting (e.g. a dielectric). In this situation, similar to the case of an array of parallel
wires [35, 36], the microscopic electric current must vanish at the interface. This means that
In = 0, n = 1, . . . , N , at the interface with the dielectric material, i.e. the currents associated
with different wires in the unit cell must vanish independently. But, equation (5) shows that this
property implies that the averaged current verifies

Jd,av · ûn = 0, (dielectric interface), n = 1, . . . , N . (7)

This equation, along with equation (6), may be regarded as a set of N -independent ABCs at
the interface with the dielectric material. It should be clear that equation (7) may be written
exclusively in terms of the macroscopic electric field and its derivatives, and that the number of
ABCs is equal to the number of metallic wires in a unit cell (N = 2 for the double wire medium
and N = 3 for the triple wire medium). Obviously, equation (7) assumes that all the metallic
wires intersect the interface. When some ûn is parallel to the interface, in general Jd,av · ûn does
not vanish at the interface because the path of the current is not interrupted.

The ABCs (7) are a generalization of the results of our previous works [35, 36] for an
array of parallel wires (N = 1). As demonstrated in [35, 36], when N = 1 the ABC and the
classical boundary conditions imply the continuity of the normal component of the electric
field multiplied by the host permittivity at the interface. In particular, when the host material
is air, the ABC, together with the classical boundary conditions, is equivalent to the continuity
of all the Cartesian components of the electromagnetic field. Interestingly, when N = 2 or 3
the situation is quite different, specifically, since the number of ABCs is greater than one, the
continuity of the normal component of the electric field multiplied by the host permittivity (one
single independent equation) cannot be regarded as equivalent to all the ABCs (two or three
independent equations).

Another case of interest occurs when the material adjacent to the wire medium has very
high conductivity (e.g. a metal). It is obvious that in such configuration the ABCs (7) are not
valid, because, assuming that the wires are connected with good Ohmic contact to the ground
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plane, the current path is not interrupted at the interface. In fact, it was demonstrated in [36] that
it is the microscopic electric density of charge σc that vanishes at the connection point with the
metallic surface, rather than the electric current. Thus, electric charge cannot be accumulated
at the connection points between the wires and the ground plane. For a wire directed along
the nth direction, the condition σc = 0 is equivalent to dJc,n

ds = 0, where Jc,n =
In(z)
2πrw

e+ik‖·r is the
density of current along the considered wire (see equation (4)), and s is a coordinate measured
along the wire axis. It is clear that for the nth wire d

ds = ûn · ∇, and hence the condition dJc,n

ds = 0
is equivalent to ûn · (ik‖ + ûz

d
dz )In(z) = 0. Thus, using equation (5), it is readily found that the

averaged current must verify(
ik‖ + ûz

d

dz

)
· ûnûn · Jd,av = 0, (metallic interface), n = 1, . . . , N . (8)

The above equations define a set of N -independent ABCs at the interface between a
nonconnected wire medium and a ground plane, and are a generalization of the results of [36].
Again, it should be clear that equations (6) and (8) define a functional relation between the
macroscopic electric field and its derivatives at the interface, and that it is implicit that all the
wires intersect the interface.

The application of the proposed ABCs will be illustrated in sections 5 and 6, where, for
the case of a double wire medium, it is shown with full-wave simulations that the ABCs may
enable the accurate analytical modeling of wave propagation.

An important point, which is discussed next, is the characterization the TA-macroscopic
fields in the wire medium. The obvious idea is to write the macroscopic fields in the material as a
superposition of plane waves. The plane waves may be characterized using the homogenization
model proposed in [14, 18, 19]. Specifically, the dielectric function of the nonconnected wire
medium is

¯̄ε(ω, k) = εh
¯̄I +

N∑
n=1

(
εn,n(ω, k) − εh

)
ûnûn,

εn,n(ω, k) = εh

1 +
1

1
fV (εm/εh−1)

−
(ω/c)2εh−k2

n
β2

p

 ,

(9)

where ¯̄I is the identity dyadic, ûnûn = ûn ⊗ ûn represents the dyadic (tensor) product of two
vectors, βp = [2π/(ln(a/2πrw) + 0.5275)]1/2/a is the plasma wavenumber, fV = π(rw/a)2, εh

is the host relative permittivity, εm = εm(ω) is the metal relative complex permittivity, c is the
speed of light in vacuum, k = (kx , ky, kz) is the wave vector, and kn = k · ûn.

Using the dielectric function (9) it is possible to calculate the bulk macroscopic fields
(E, B). An important observation is that, for a general metamaterial, the bulk macroscopic fields
may not be coincident with the TA fields used in the formulation of the ABCs (7) and (8). Indeed,
the bulk macroscopic fields, as defined in [18, 37], are obtained by averaging the microscopic
fields over the unit cell (a volumetric region) of the periodic material, whereas the TA fields
are obtained by averaging the microscopic fields over the transverse unit cell (a surface) [37].
Fortunately, as demonstrated in appendix A for nonconnected wire media, and supposing that
all the wires intersect the interface (i.e. there are no wires parallel to the interface), it is possible
to identify to a very good approximation the bulk macroscopic fields with the TA fields. This
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means that it is possible to drop the subscripts ‘av, T’ in equation (6), and characterize the
TA-field Eav,T using the dielectric function of the bulk material. These ideas are further clarified
in sections 5 and 6.

3. Conservation of the power flow

An important question that may be formulated is whether in the lossless case (i.e. when both εh

and εm are real valued) the proposed ABCs ensure the conservation of the power flow in the wire
medium. We demonstrate that that is indeed the case. The theory developed below is based on
the bulk medium fields, which as mentioned in the end of the previous section, may be regarded
as equivalent to the transverse-averaged fields in the case of interest.

Let (E, H) be a solution of Maxwell’s equations in the homogenized bulk wire medium
such that the variation in the x- and y-coordinates is of the form eik‖·r, with k‖ = (kx , ky, 0) a
real-valued vector. The bulk magnetic field is by definition H = B/µ0. Thus, (E, H) verify

∇ × H = −iωD,

∇ × E = iωµ0H,
(10)

where D = ε0εhE + P is the electric displacement vector in the spatially dispersive material and
P is the nonlocal (generalized) polarization vector (relative to the host material). Let us define
S0 as follows:

S0
=

1
2Re {E × H∗}. (11)

It is well known that in general S0 cannot be identified with the Poynting vector in a spatially
dispersive material [38, 39]. In fact, there is no general formula for the Poynting vector
in a spatially dispersive material. The only circumstances in which the Poynting vector is
actually known is when the material is lossless and the electromagnetic field is associated
with a propagating plane wave [39]. In what follows, we will demonstrate that for lossless
nonconnected wire media, it is possible to define unambiguously the z-component of the
Poynting vector, even if the electromagnetic field has an arbitrary variation with z (not
necessarily a propagating plane wave).

To begin with, we note that from equation (10) it follows that

∇ · S0
=

1
2Re {−iωE · D∗} =

1
2Re {−iωE · P∗} , (12)

where the second identity is a consequence of the fact that the host permittivity εh is a real
number in the absence of loss. The next step is to relate P and E. In the spectral (Fourier)
domain we clearly have that

P̃(k) = ε0

(
¯̄ε(ω, k) − εh

¯̄I
)

· Ẽ(k), (13)

where ¯̄ε is the relative permittivity of the wire medium, the symbol ‘∼’ denotes the spatial
Fourier transform, and here k represents the Fourier coordinates. In particular, the projections
of Ẽ and P̃ onto the principal direction ûn of the dielectric function verify P̃n = ε0(εn,n(ω, kn) −

εh)Ẽn with kn = k · ûn (n = 1, . . . , N ). Thus, using equation (9) it follows that

Ẽn =
1

ε0εhβ2
p

(
k2

n −
ω2

c2
εh +

β2
p

fV (εm/εh − 1)

)
P̃n. (14)
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Hence, calculating the inverse Fourier transform, we obtain the following relation in the space
domain:

En =
1

ε0εhβ2
p

[(
−iûn · ∇

)2
−

ω2

c2
εh +

β2
p

fV (εm/εh − 1)

]
Pn. (15)

But, since it is assumed that the variation of the electromagnetic field in the x- and y-coordinates
is of the form eik‖·r, we have that −iûn · ∇ = ûn · k‖ − iûn · ûz

d
dz . Thus, after some simplifications,

it is found that

Re
{
−iP∗

n En

}
=

1

ε0εhβ2
p

Re

{
i
(
ûn · ûz

)2
P∗

n

d2 Pn

dz2
− 2

(
k‖ · ûn

) (
ûn · ûz

)
P∗

n

dPn

dz

}
. (16)

Next, we note that

Re

{
iP∗

n

d2 Pn

dz2

}
= Re

{
d

dz

(
iP∗

n

dPn

dz

)}
and that

Re

{
P∗

n

dPn

dz

}
=

d

dz

(
|Pn|

2

2

)
to finally write

Re
{
−iP∗

n En

}
=

1

ε0εhβ2
p

d

dz
Re

{(
ûn · ûz

)2
iP∗

n

dPn

dz
−
(
k‖ · ûn

) (
ûn · ûz

)
|Pn|

2

}
. (17)

We are now in a position to calculate the divergence of S0, given by equation (12). On one
hand, we note that due to the assumed dependence of (E, H) in the x- and y-coordinates, it is

clear that S0 depends exclusively on z, and thus ∇ · S0
=

dS0
z

dz where S0
z is the z-component of

S0. On the other hand, it is obvious that P∗
· E =

∑N
n=1 P∗

n En because the only nonvanishing
components of P are precisely the Pns (remember also that the unit vectors ûn are mutually
orthogonal). Therefore equations (12) and (17) show that

dSz

dz
= 0, (18)

where Sz is given by

Sz = S0
z −

ω

2

1

ε0εhβ2
p

Re

{
i

N∑
n=1

ûn · ûz P∗

n

(
ik‖ +

d

dz
ûz

)
· ûn Pn

}
. (19)

As discussed below, Sz is the z-component of the Poynting vector in the spatially dispersive
material. Before that discussion, let us show that the conservation law (18) implies that the
ABCs introduced in this work guarantee the conservation of power flow at an interface with a
dielectric or a metallic material.

Indeed, it is clear from equation (19) that at the points z such that for every n = 1, . . . , N ,

either Pn = 0 or

(
ik‖ +

d

dz
ûz

)
· ûn Pn = 0, (20)
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we have that Sz = S0
z . Comparing equations (2) with (10), and using the fact that in the

nonconnected wire medium the bulk medium fields can be identified with the TA fields (see
appendix A), it is evident that the polarization vector verifies,

P =
1

−iω
Jd,aveik‖·r, (21)

where Jd,av is the averaged microscopic current. But then it follows that the first condition in
equation (20) is equivalent to the ABC (7), whereas the second condition is equivalent to the
ABC (8). Hence, we conclude that at the points z of the material where either the ABCs (7)
(associated with dielectric interfaces) or the ABCs (8) (associated with metallic interfaces) are
enforced, we have that Sz = S0

z .
Let us now consider a truncated wire medium (wire medium slab) with interfaces at z = zi

and z = z f . From equation (18) we see that in the lossless case Sz is constant inside the wire
medium, and consequently when the ABCs are enforced S0

z has the same value at the two
interfaces: S0

z (zi) = S0
z (z f ) (calculated from the wire medium side). But due to the classical

boundary conditions (continuity of the tangential components of E and H at the interfaces), S0
z

may be evaluated either at the wire medium side of the interface or at the exterior side with the
same result. Thus, we have demonstrated that the proposed ABCs together with the classical
boundary conditions imply that S0

z (zi) = S0
z (z f ), being S0

z evaluated at the exterior side of the
interface, where it is obviously the z-component of the Poynting vector. This shows that in the
lossless case the ABCs (7) and (8) (or more generally the condition (20)) guarantee, in fact,
the conservation of the power flow through a wire medium slab, as we wanted to prove. This
result is valid for simple (N = 1), double (N = 2) or triple (N = 3) wire media.

To show that Sz can be identified with the z-component of the Poynting vector in the
spatially dispersive material, we consider the typical case where the electromagnetic field is
a superposition of plane waves:

E(r) =

∑
l

Ele
+ikl ·r, (22)

where El is a constant vector (determines the polarization of the plane wave), and kl =

k‖ + k(l)
z ûz is the wave vector associated with the plane wave. The z-component k(l)

z may be
either real (positive or negative) or complex valued (as discussed in section 4, the wire medium
may support evanescent modes even in the absence of loss). It is supposed that each individual
plane wave verifies equations (10). In appendix B, we demonstrate that for such superposition
of plane waves, Sz, defined by (19), may be rewritten as

Sz =

∑
l,m

kl =k∗
m

Re

{(
1

2
El × H∗

m

)
· ûz −

ωε0

4
E∗

m ·
∂ ¯̄ε (ω, kl)

∂kz
· El

}
, (23)

where the summation is restricted to the indices l, m so that kl = k∗

m , and Hl is the magnetic
field associated with El . But for a single plane wave with a real wave vector the above formula
reduces to the well-known expression of the Poynting vector in a general spatially dispersive
material [38, 39]. This demonstrates that Sz may indeed be identified with the z-component
of the Poynting vector. It should however be stressed that the above formula is more general
than the results reported in [38, 39], which apply exclusively to a single plane wave with a real
wave vector. The result (23) generalizes the classical result to the case of a superposition of
plane waves (possibly associated with complex wave vectors) in a lossless nonconnected wire
medium.
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Figure 2. Isofrequency contours of the fundamental plane wave mode for (a)
propagation in the yoz-plane with the electric field along the x-direction; (b)
propagation in the xoz-plane with the electric field in the same plane. The radius
of the wires is rw = 0.05a and the metal is assumed to be a perfect conductor.
The text insets indicate the value of the normalized frequency ωa/c.

4. Crossed wire mesh

In the rest of the paper, we apply the developed theory to the particular case of a crossed wire
mesh formed by a double array of metallic wires [6, 14, 19]. It is assumed that the wires are
parallel to the xoz-plane, and that û1 = (1, 0, 1)/

√
2 and û2 = (−1, 0, 1)/

√
2. Thus, the angle

of the wire axes with respect to the interface normal is ±45◦. A cut of the considered structure in
the planes yoz and xoz is represented in figure 2. We will analyze the scattering and guiding of
electromagnetic waves by the wire medium slab in the cases where the wave vector is confined
to one of these two planes. Moreover, in case of propagation in the yoz-plane with will assume
that the electric field is polarized along the x-direction, whereas in case of propagation in the
xoz-plane we will restrict our attention to the situation where the magnetic field is along the
y-direction (thus, in both cases, the electric field is in the xoz-plane).

Before addressing the problem of propagation in a finite structure (wire medium slab),
next we will briefly review some key properties of the electromagnetic modes in the unbounded
crossed wire mesh. Unlike a conventional local plasma, the metamaterial may support
propagating modes for arbitrarily low frequencies [6, 8, 14, 18, 19]. Specifically, in the
lossless case (e.g. for perfect electrical conductors (PEC), i.e. εm = −∞), and for frequencies
much lower than the effective plasma frequency, ω/c � βp/

√
εh, the wire medium supports a

propagating plane wave with an electric field in the xoz-plane.
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Following [14, 27], the plane waves supported by the material in the case of propagation
in the yoz-plane (kx = 0) with the electric field along the x-direction are characterized by the
dispersion characteristic

ε(ω, kz)(ω/c)2
= k2

y + k2
z , with ε(ω, kz) = εh

1 +
1

1
fV(εm/εh−1)

−
(ω/c)2εh−k2

z /2
β2

p

. (24)

The isofrequency contours of the propagating mode are depicted in figure 2(a) for PEC wires
with normalized radius rw/a = 0.05. Clearly, the material is strongly anisotropic, and the
isofrequency contours resemble ellipses with a large axial ratio. It is seen that the contours are
nearly perpendicular to the z-direction, and consequently the energy tends to flow along z. This
suggests that adjacent wire planes tend to guide the wave along z, and obstruct the propagation
along y. It was shown in [14] that the effective index of refraction for propagation along z is
(assuming εh = 1 and PEC wires):

nef ≡
kzc

ω

∣∣∣∣
ky=0

=

√√√√3

2
+

1

2

(
1 + 8

(
βpc

ω

)2
)1/2

. (25)

Since βp ∼ 1/a, one interesting feature of this structure is that for a fixed frequency the index
of refraction may be greatly enhanced by reducing the spacing between the wires (maintaining
the metal volume fraction) [14]. Other mechanisms to design materials with a high index were
proposed in [40, 41], but the required microstructures are arguably much more complicated to
fabricate than a crossed wire mesh.

As could be expected from the geometry of the material, the propagation properties in the
xoz-plane (ky = 0) are very different. The dispersion characteristic is now [28]

k2
1

k2 − (ω/c)2ε11
+

k2
2

k2 − (ω/c)2ε22
= 1, (26)

where εn,n (n = 1, 2) is given by equation (9), k2
= k2

x + k2
z , and kn = k · ûn, with k = (kx , 0, kz).

The corresponding isofrequency contours are depicted in figure 2(b), and are two perpendicular
hyperbolas. The electric field associated with each plane wave is nearly (but not exactly)
tangent to the isofrequency contours [28]. The shape of the isofrequency contours suggests that
propagation is favored along the coordinates axes, i.e. when the wave vector makes an angle
of ±45◦ with the wire axes. On the other hand, when the wave vector is normal to one of wire
axes the structure has a directional bandgap. The hyperbolic-shaped isofrequency contours may
enable the emergence of negative refraction [6, 19, 28], as will be further discussed in section 6.

5. Propagation in the yoz-plane

In what follows, we apply the ABCs derived in section 2 to characterize the scattering of plane
waves by a double-wire medium slab, assuming propagation in the yoz-plane (figure 2(a)). As
in section 2, it is assumed that the normal to the interfaces is along the z-direction.

To begin with, we calculate the averaged microscopic current in the wire medium slab. It
is assumed that the excitation is such that the electric field is along the x-direction. Clearly,
for propagation in the yoz-plane the transverse wave vector is such that k‖ = kyûy , where ky is
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determined by the excitation (for an incoming plane wave, ky = ω/c sin θi where θi is the angle
of incidence). Thus, from equation (6), it is found that the averaged current verifies

iωµ0Jd,av(z) =

(
k2

y − εh
ω2

c2
−

d2

dz2

)
Ex ûx , (27)

where Ex is the electric field in the wire medium slab. The ABCs at a dielectric interface can
now be easily obtained using equation (7). As discussed in section 2, in the double-wire medium
case, one needs to impose two distinct ABCs at the interface (N = 2). However, in the present
case the two ABCs (7) impose the same condition on the macroscopic electric field:

d2 Ex

dz2
+

(
εh

ω2

c2
− k2

y

)
Ex = 0 (dielectric interface). (28)

This degeneracy occurs due to the exceptionally high symmetry of the system. In the general
case, the ABCs are not redundant and yield, in fact, independent equations, as will be shown in
section 6. Similarly, at a metallic interface, the two ABCs (8) also yield a single equation

d3 Ex

dz3
+

(
εh

ω2

c2
− k2

y

)
dEx

dz
= 0, (metallic interface). (29)

Equations (28) and (29) correspond exactly to the ABCs that were enunciated in our previous
works [14, 27] (with no proof). These ABCs can be readily applied to solve a scattering or
wave-guiding problem when the wave vector is confined to the yoz-plane. Since the use of the
ABCs for this specific configuration was already addressed in [14, 27], our discussion here will
be somewhat abbreviated.

5.1. Slab standing in free-space

First, we consider the case where the wire medium slab stands in free space, and is illuminated
by a plane wave characterized by the transverse wave number ky = ω/c sin θi (see the inset
of figure 3). As mentioned in section 2, the key assumption is that the electromagnetic field
inside the wire medium slab can be written as superposition of plane waves characterized by
the dielectric function of the bulk (unbounded) material. Because of translational invariance ky

must be conserved, and thus the pertinent plane waves can be found from the solution of the
dispersion characteristic (24) with respect to kz, with ω and ky determined by the excitation.
As discussed in [14, 27], the solution of equation (24) yields exactly two different solutions
for k2

z . It should be clear that for a regular local dielectric slab there is only a single solution.
This clarifies why for propagation in the yoz-plane, a single ABC is sufficient to characterize
interface effects (despite that the wire medium has two components), i.e. since there is only one
additional wave only one ABC is required. Thus, the electric field inside the metamaterial slab
may be written as (the y dependence of the field is suppressed):

Ex = A+
1e+ikz,(1)z + A−

1 e−ikz,(1)z + A+
2e+ikz,(2)z + A−

2 e−ikz,(2)z, (30)

where kz,(i) = kz,(i)(ω, ky) are the solutions of the dispersion equation (24). As discussed in
[14, 27], for long wavelengths and in the absence of loss, there is only a propagating mode in
the wire medium, i.e. one of the propagation constants, let us say kz,(1), is real valued and is
associated with the isofrequency contours depicted in figure 2(a), while the other propagation
constant, kz,(2), is purely imaginary.
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Figure 3. Magnitude of the transmission coefficient as a function of frequency
for a metamaterial slab with a lattice constant a = L/15 and rw = 0.05a and a
fixed thickness L . The solid line represents the spatially dispersive (nonlocal)
model, the dashed line represents the local model. The discrete symbols were
calculated with CST Microwave Studio. The inset shows the geometry of the
problem.

The electric field in the air regions (below and above the metamaterial slab) can also
be written as a superposition of (free-space) plane waves. By enforcing the continuity of the
tangential components of the electric and magnetic field and the ABC (28) it is possible to
determine the reflection and transmission coefficients for plane-wave incidence. For further
details the reader is referred to [27] (in particular, formula (5) of [27] gives a closed form
expression for the transmission coefficient T ).

In the first example, we consider a metamaterial slab formed by PEC wires where the
spacing between the wires is a = L/15 and L is the thickness of the slab. The host material is
air. The amplitude of the transmission coefficient for plane-wave incidence along θi = 0.1◦ is
plotted in figure 3 as a function of the normalized frequency. It is seen that the results obtained
with the nonlocal homogenization model and the proposed ABCs (solid line) compare well
with the results obtained with the full-wave electromagnetic simulator CST Microwave Studio
(discrete symbols) [42].

As mentioned before, in the absence of loss, the propagation constant kz,(1) may be assumed
to be real valued (associated with a propagating mode in the wire medium), whereas the
propagation constant of kz,(2) is purely imaginary (associated with an evanescent mode). Thus,
it might be thought that this latter evanescent mode would play a minor role in the response
of the metamaterial slab. In order to test this hypothesis, we have calculated the transmission
coefficient obtained by setting A±

2 = 0 in equation (30). This condition removes the extra degree
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of freedom of the problem, and thus to calculate the transmission coefficient it is sufficient
to impose the classical boundary conditions at the interfaces, i.e. if one neglects the effect of
the evanescent wave it is not necessary to consider an ABC at the interfaces. We refer to the
results obtained with this approximation as the ‘local model’ results. A bit surprisingly, as
reported in figure 3, the results obtained with the local model (dashed line) are qualitatively
very different from the results obtained with the nonlocal model. In particular, the frequencies
for which the local model predicts the maxima of T correspond to the minima of the nonlocal
model, and vice versa. This demonstrates that the effect of the evanescent mode and the ABCs
cannot be neglected, and they are essential to describe accurately the response of the material. It
should be noted that the evanescent mode, even though strongly attenuated in the interior of the
metamaterial slab, may be excited in the close vicinity of the interfaces in order to ensure that the
microscopic current in the metallic wires vanishes at the interfaces. Thus, even though the wave
propagation in the interior of the slab is dominated by the propagating mode, the ‘effective wave
impedance’ at the interfaces is determined by both the propagating and the evanescent modes.
This explains the disagreement between the local and nonlocal models reported in figure 3.

One of the interesting properties of the crossed wire mesh is that it may interact very
strongly with the incoming wave, even when the length of the metallic wires is electrically short,
effectively behaving as a material with very large dielectric constant [27]. For instance, in the
example depicted in figure 3 the first dip of the transmission coefficient occurs for ωL/c ≈ 0.2,
which corresponds to the metallic wires with length Lw =

√
2L = 0.04λ0. This value is one

order of magnitude smaller than the traditional λ0/2 resonance of a metallic wire. Moreover, as
discussed in [27], the resonance length of the wires may be made arbitrarily small by increasing
the density of wires (number of wires per unit of volume), keeping the metal volume fraction
unchanged. Indeed, unlike conventional metamaterial designs, the effective index of refraction
of the material does not saturate when the inclusions are scaled and the lattice constant a is
made smaller.

To further clarify these ideas we consider the scenarios depicted in figure 4. In panels
(a) and (b), we represent a conventional metamaterial slab (e.g. an array of metal or dielectric
spheres) with fixed thickness L , but different lattice constants ax . The volume fraction of the
inclusions is assumed to be the same in the two cases. Each inclusion is entirely contained in a
basic cell. The incoming wave illuminates the slab along the normal direction. From the classical
Clausius–Mossotti formula [43], it should be clear that in the quasi-static limit the value of the
index of refraction of the bulk metamaterial will eventually saturate and become independent of
the lattice constant ax , when ax is made sufficiently small (keeping the volume fraction of the
inclusions unchanged). In fact, for a fixed frequency, and with ax increasingly small, the index
of refraction will obviously converge to the static case value. In particular, it is expected that
in the quasi-static limit the transmission coefficient in configurations (a) and (b) will become
independent of ax , provided ax is sufficiently small.

The situation for a crossed wire mesh is completely different. As discussed in section 4—
see equation (25)—for a fixed frequency and a fixed metal volume fraction, the index of
refraction of the bulk wire mesh can be made arbitrarily large by reducing the lattice constant
ax . Thus, despite the fact that the volume fraction of the metal is kept constant, the response of
the structures depicted in figure 4(c) and (d) may be radically different. In particular, unlike in a
conventional metamaterial, the response does not saturate when ax is made increasingly small.
This important qualitative difference between the wire mesh and a conventional metamaterial
stems from the fact that in a wire mesh each inclusion is spanned over many unit cells, i.e. each
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Figure 4. (a) generic metamaterial slab formed by inclusions whose size is
smaller than the lattice constant. (c) crossed wire mesh slab formed by inclusions
that are spanned over many unit cells. As discussed in the main text, unlike a
standard metamaterial, the response of the crossed wire mesh does not saturate
when the density of inclusions (number of inclusions per unit of volume) is
increased, keeping the volume fraction constant (panels (b) and (d)).

individual wire crosses several unit cells (see figures 4(c) and (d) and its length is independent of
the size of the cell. Obviously, this property precludes the application of the Clausius–Mossotti
formula, and clarifies the strong coupling between the different inclusions and the anomalous
electrical response of the wire mesh.

To illustrate how the response of the wire mesh is modified when the density of wires
is increased, we have calculated the dispersion characteristic of the guided modes supported
by the metamaterial slab (i.e. the waves that may propagate along the y-direction attached to
the interfaces, even in the absence of an external source). The dispersion characteristic of the
guided modes, ky = ky(ω), may be obtained from the poles of the transmission coefficient for
plane-wave incidence [27].

In figure 5, we depict (solid lines) the calculated dispersion characteristics for a slab with
thickness L and different values of the lattice constant a. The metal volume fraction is constant
in all the examples (rw = 0.05a). The results were obtained using the homogenization model. As
with a conventional dielectric substrate, the crossed wire mesh supports a guided mode with no
cut-off frequency, i.e. for arbitrarily long wavelengths. Consistent with the previous discussions,
it can be seen that for a fixed frequency the effective index of refraction of the guided mode,
kyc/ω, increases significantly when the lattice constant a is reduced from a = L/5 to L/15, i.e.
when the density of the wires is increased. This simple example illustrates how, unlike with a
conventional metamaterial slab, the response of the crossed wire mesh does not saturate as the
lattice constant is made smaller.

Even though, for simplicity, the examples considered here assume PEC wires, the proposed
homogenization model can also be applied when either the effect of loss or the plasmonic
response of the metal is taken into account. For further details, the reader is referred to [27],
where the model has been validated against full-wave simulations in such scenarios.
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Figure 5. Dispersion characteristic of surface waves for a metamaterial slab with
thickness L and different values of the lattice constant a. The radius of the wires
is rw = 0.05a. Solid lines: metamaterial slab stands in free-space. Dashed lines:
grounded metamaterial slab.

5.2. Grounded slab

Next, we consider the case in which the bottom face of the metamaterial slab is covered with a
metallic plane [14]. It is supposed that the metallic wires are attached to the ground plane with
good Ohmic contact. In this configuration, assuming plane-wave incidence with the electric field
polarized along the x-direction, the electric field inside the metamaterial slab can still be written
as in equation (30). The boundary conditions at the air interface are the same as in section 5.1.
On the other hand, at the metallic interface Ex must vanish, and the ABC (29) must be enforced.
Proceeding in this manner (see [14]), it may be proven that the reflection coefficient referred to
the air interface is

ρ =−1+
2γ0

(
k2

z,(2)−k2
z,(1)

)
D(ω, ky)

[
kz,(2)

(
γ 2

h +k2
z,(2)

)
tan(kz,(1)L)−kz,(1)

(
γ 2

h +k2
z,(1)

)
tan(kz,(2)L)

]
(31)

D(ω, ky) = kz,(1)kz,(2)

[
2γ 2

h

(
γ 2

h + k2
z,(1) + k2

z,(2)

)
+ k4

z,(1) + k4
z,(1)

]
+
(
γ 2

h + k2
z,(1)

) (
γ 2

h + k2
z,(2)

) [(
k2

z,(1) + k2
z,(2)

)
tan(kz,(1)L) tan(kz,(2)L)

− 2kz,(1)kz,(2) sec(kz,(1)L) sec(kz,(2)L)
]

+ γ0

(
k2

z,(2) − k2
z,(1)

)
×
[
kz,(2)

(
γ 2

h + k2
z,(2)

)
tan(kz,(1)L) − kz,(1)

(
γ 2

h + k2
z,(1)

)
tan(kz,(2)L)

]
. (32)

In equations (31) and (32), kz,(1) and kz,(2) are defined as in section 5.1, L is the thickness of

the slab, γ0 =

√
k2

y − ω2ε0µ0, γh =

√
k2

y − ω2ε0µ0εh, and ky is the transverse wavenumber of the

incoming wave.
To illustrate the application of the formula, we have calculated the phase of the reflection

coefficient as a function of frequency for a grounded metamaterial slab such that a = L/10
and different incidence angles. The wires are assumed to be perfect conductors and thus the
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Figure 6. Phase of the reflection coefficient as a function of the normalized
frequency for different angles of incidence. The lattice constant is a = L/10
and the radius of the wires is rw = 0.05a, where L is the thickness of the
grounded slab. The host material is air. Solid lines: homogenization model.
Star- and triangle-shaped symbols: full-wave simulations for θ = 15◦ and 85◦,
respectively.

magnitude of ρ is unity. The results obtained with equation (31) are depicted in figure 6 (solid
lines) superposed on data obtained using CST Microwave Studio (discrete symbols) [42]. An
excellent agreement is revealed supporting the validity of the proposed homogenization method.
It is interesting to note that the frequencies where the phase of ρ vanishes are nearly independent
of the angle of incidence. Thus, at such frequencies the grounded slab may mimic very closely
the behavior of an ideal perfect magnetic conductor [44]. Moreover, due to the large index of
refraction of the wire mesh such behavior may be obtained with a strongly subwavelength slab.
For example, the first resonance in the example of figure 6 occurs for L = 0.02λ0.

We have also calculated the dispersion characteristic ky = ky(ω) of the guided modes
supported by the grounded slab. The dispersion characteristic is obtained by numerically solving
the equation D(ω, ky) = 0 with respect to ky , where D(ω, ky) is defined by equation (32). The
calculated results for a slab with fixed thickness L and different values of the lattice constant
are depicted in figure 5 (dashed lines). Consistent with the results reported in [14] and the
discussion of section 5.1, it is seen that when the density of wires is increased (i.e. a is reduced)
the guided mode becomes more attached to the metamaterial slab. Unlike the case where the slab
stands in free-space, the guided modes can only propagate above a certain cut-off frequency.
Despite that, due to the anomalously high index of refraction of the crossed wire mesh, the
metamaterial slab thickness may be strongly subwavelength at the onset of propagation of the
fundamental mode [14, 26]. For example, for a = L/10 the thickness of the slab at the cut-off
frequency of the fundamental mode is as small as L = 0.02λ0. Thus, the proposed structure
may enable the realization of ultra-subwavelength waveguides, as demonstrated experi-
mentally in [26].

It should be mentioned that, unlike a conventional dielectric slab, the dispersion
characteristic of a grounded crossed wires slab cannot be obtained from the dispersion
characteristic of a slab standing in free-space. In fact, it is impossible to place a PEC plane
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Figure 7. Amplitude of the reflection coefficient as a function of the transverse
component of the wave vector ky , and different frequencies of operation ω. The
lattice constant is a = L/10 and the radius of the wires is rw = 0.05a, where L is
the thickness of the grounded slab. Solid lines: homogenization model. Discrete
symbols: full-wave simulations.

at the mid-plane of a crossed wires slab standing in free-space without disturbing the fields,
because the crossed wire mesh is not transformed into itself after reflection with respect to the
xoy-plane.

We have used CST Microwave Studio, in order to partially validate the dispersion
characteristics depicted in figure 5, obtained using the homogenization model. Assuming plane-
wave incidence, we have calculated the amplitude of the reflection coefficient as a function of
the transverse wavenumber of the incoming wave ky , for several fixed frequencies (figure 7).
For ky < ω/c the incoming wave is a propagating wave (ky = ω/c sin θi), and, due to the
conservation of energy, the reflection coefficient amplitude is unity. On the other hand, for
ky > ω/c the incoming wave is an evanescent mode, and thus (since an evanescent wave does
not carry power), |ρ| may be any nonnegative value, even larger than unity. Indeed, it should
be clear from equation (31), that the points ky associated with the dispersion characteristic of
the guided modes correspond to the poles of the reflection coefficient. As seen in figure 7, there
is good agreement between the response to evanescent waves predicted by the homogenization
model (solid lines), and the actual response calculated using CST Microwave Studio (discrete
symbols). In particular, the position of the poles is predicted with good accuracy, and thus these
results partially validate the dispersion characteristic associated with a = L/10 (dashed line) in
figure 5.

6. Propagation in the xoz-plane

Here, we discuss the application of the proposed ABCs to the case where the plane of incidence
is the xoz-plane (figure 2(b)). The geometry of the double-wire medium slab is as explained in
section 4. It is assumed that the incoming plane wave has parallel polarization (i.e. the electric
field is in the xoz-plane, whereas the incident magnetic field is along the y-direction).
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6.1. Slab standing in free-space

Considering the geometry of the system under study and the polarization of the incoming wave,
it is obvious that the magnetic field in all space has a single Cartesian component, Hy . As in
section 5.1, it is assumed that inside the metamaterial slab the field is written in terms of a
superposition of plane waves. The propagation constants along z of the plane waves can be
calculated by solving the dispersion characteristic (26) with respect to kz, for a fixed frequency
ω, and a fixed transverse wavenumber of the incident wave kx = ω/c sin θi. It can be verified
that the dispersion characteristic is equivalent to a polynomial equation of degree three in the
variable k2

z [28]. Thus, the metamaterial slab supports three independent plane waves with the
magnetic field along the y-direction. Clearly, this property is a consequence of the nonlocal
effects, as in a local material two distinct plane waves (i.e. associated with different k2

z ) with
the same magnetic field orientation cannot exist. The propagation constants along z of the plane
waves in the bulk metamaterial are denoted by kz,(1), kz,(2) and kz,(3). Thus, the magnetic field
inside the metamaterial slab (−L < z < 0) can be written as (the x-variation of the fields is
suppressed),

Hy = A+
1e+i kz,(1)z + A−

1 e−i kz,(1)z + A+
2e+i kz,(2)z + A−

2 e−i kz,(2)z + A+
3e+i kz,(3)z + A−

3 e−i kz,(3)z, −L < z < 0,

(33)

where A±

i are the complex amplitudes of the excited waves. For frequencies much lower than
the plasma frequency of the wire medium, ω/c � βp/

√
εh, it can be verified that in the PEC

case and for a propagating incoming wave, only a single propagation constant, let us say kz,(1),
is real valued. The corresponding plane wave is associated with the hyperbolic isofrequency
contours depicted in figure 2(b). The other two propagation constants, kz,(2) and kz,(3) are purely
imaginary, and are associated with evanescent modes.

Assuming that the incoming plane wave propagates in the semi-space z > 0, the magnetic
field in the air regions verifies

Hy = H inc
y

(
eγ0z

− ρe−γ0z
)
, z > 0,

Hy = H inc
y T eγ0z, z < −L ,

(34)

where H inc
y is the complex amplitude of the incident magnetic field, γ0 = −i

√
ω2ε0µ0 − k2

x =√
k2

x − ω2ε0µ0 is the propagation constant of the incoming wave along the z-direction, and ρ

and T are the reflection and transmission coefficients, respectively.
The electrical field inside the metamaterial slab can be easily obtained from equation (33),

by noting that for each individual plane wave of the type H = H0eikx xei kz zûy , the corresponding

electric field is E = H0 ¯̄ε
−1

·

(
kz

ωε0
ûx −

kx
ωε0

ûz

)
eikx xei kz z, where ¯̄ε

−1
(ω, k) is the inverse of the

dielectric function of the crossed wire mesh, defined by equation (9) with N = 2. The averaged
macroscopic current Jd,av inside the metamaterial is finally obtained by replacing the electric
field in formula (6), taking into account that for the present geometry k‖ = kx ûx . The formulae
for E and Jd,av are too long to show here, and thus are omitted.

As in section 5, the reflection and transmission coefficients can be calculated by imposing
the continuity of the tangential electromagnetic fields (Hy and Ex components of the fields),
and the two ABCs (7) (N = 2). Unlike in section 5, the two ABCs are not degenerate for the
present geometry, and yield two independent equations. This property is consistent with the fact
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Figure 8. Amplitude of the transmission coefficient as a function of normalized
kx for a fixed frequency and different L and εh. The lattice constant is such that
ωa/c = 0.6, the radius of the wires is rw = 0.05a. Solid lines: homogenization
model. Dashed lines: full-wave simulations.

that the wire medium supports two additional waves for the present configuration, as is manifest
from equation (33), and thus two ABCs are required to remove the two additional degrees of
freedom.

We have applied the proposed homogenization procedure to characterize the response of
a wire medium slab under plane-wave incidence. In figure 8, we depict the amplitude of the
transmission coefficient, for a fixed frequency and lattice constant a, with ωa/c = 0.6, and for
different values of the slab thickness L , as a function of the transverse wavenumber kx of the
plane wave. As mentioned before kx = ω/c sin θi for a propagating plane wave, whereas kx >

ω/c when the incoming wave is evanescent. For simplicity the wires are assumed to be perfect
conductors. The results of figure 8 reveal a good agreement between the homogenization results
(solid lines) and the full-wave simulations obtained with CST Microwave Studio (dashed lines),
both for the propagating spectrum (kx < ω/c), and for the evanescent spectrum (kx > ω/c). The
homogenization results are especially accurate in the example where the permittivity of the host
material is εh = 2.2. It is seen that the transmission coefficient may have several poles, which
indicates the presence of guided modes.

As reported in [28], as a consequence of the hyperbolic-shaped isofrequency contours
associated with the propagating mode (figure 2(b)), the Poynting vector suffers negative
refraction at the interface between a crossed wire mesh and air. Therefore, unlike in a
conventional dielectric slab, the incident beam suffers a negative lateral shift 1 as it propagates
through the wire medium slab [28] (the inset in figure 9 represents the case in which 1 is
positive). As demonstrated in [28], the spatial shift 1 can be related to the phase φ = −arg T of
the transmission coefficient (T = |T |e−iφ), by the simple formula 1 = dφ/dkx . Thus, the spatial
shift is proportional to the slope of the phase of T . Hence, when φ is an increasing function of
kx the lateral shift is positive and the beam is positively refracted (this is what happens in a
conventional dielectric slab). On the other hand, when φ is a decreasing function of kx the
lateral shift is negative, which indicates that the beam is negatively refracted [28].
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Figure 9. Phase of the transmission coefficient as a function of normalized kx

for a fixed frequency and different L and εh. The lattice constant is such that
ωa/c = 0.6, the radius of the wires is rw = 0.05a. Solid lines: homogenization
model. Dashed lines: full-wave simulations.

In order to show that our homogenization model predicts the emergence of negative
refraction, we have calculated the phase of the transmission coefficient as a function of
kx = ω/c sin θi, for the normalized frequency ωa/c = 0.6 (ω and a are fixed). The obtained
results are represented in figure 9 for different thicknesses of the metamaterial slab. The discrete
symbols were calculated using CST Microwave Studio. It is seen in figure 9 that, consistent with
the results reported in [28], the phase φ is indeed a decreasing function of kx . In particular, it
is seen that for thicker slabs the slope of φ becomes more negative, which indicates, as could
be expected, that the lateral spatial shift becomes larger. Similarly, the slope also increases with
the angle of incidence (i.e. with kx ), consistent with the fact that for larger values of θi the beam
is more refracted at the interface [28]. As demonstrated in [28], the phenomenon of negative
refraction is very broadband.

6.2. Grounded slab

For the sake of completeness, we have also studied the application of the ABCs to the case
where the bottom face of the metamaterial slab is grounded (z = −L). As in section 6.1, the
magnetic field inside the wire medium is written as in equation (33). The magnetic field in
the air region (z > 0) is defined in the same manner as in equation (34). For this configuration,
the homogenization procedure is similar to that described in section 6.1, except that at the
ground plane it must be enforced that Ex = 0 and the two ABCs (8) (N = 2). We have
applied this analytical formalism to characterize the electromagnetic response (under plane-
wave incidence) of a grounded metamaterial slab with a fixed thickness L and the lattice
constant a = L/10 as a function of frequency. In figure 10, we depict the reflection coefficient
phase (solid lines) calculated for different angles of incidence. The host material is air and
the wires are perfect conductors. Similar to the results of section 5.2, it is seen that at certain
frequencies, nearly independent of the angle of incidence, the metamaterial may behave as
a high-impedance ground plane, and mimic very closely the behavior of a perfect magnetic
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Figure 10. Phase of the reflection coefficient as a function of the normalized
frequency for different angles of incidence. The lattice constant is a = L/10 and
the radius of the wires is rw = 0.05a, where L is the thickness of the grounded
slab. Solid lines: homogenization model. Star- and triangle-shaped symbols: full-
wave simulations for θ = 15◦ and 85◦, respectively.

conductor. It should be noted that in the present configuration the incoming wave is TM-
polarized, whereas in section 5.2 the wave is TE polarized. Thus, the high-impedance property
is independent of the polarization. The homogenization results agree well with the full-wave
simulations computed with CST Microwave Studio (discrete symbols), which further validates
our homogenization theory.

7. Conclusion

We extended our previous work on ABCs [35, 36] to wire media formed by N different
nonconnected components (N = 1, 2, 3). Using simple physical arguments, it was demonstrated
that in general N different ABCs must be considered at an interface. These ABCs were derived
for cases where the wire medium is adjacent to either a dielectric or a conducting material.
It was proven that in the absence of loss the proposed ABCs ensure the conservation of the
power flow, and in particular a general formula was derived for the Poynting vector in the wire
medium. We have illustrated the application of the proposed ABCs when the metamaterial is
formed by a double array of metallic wires (N = 2). It was demonstrated that the proposed
homogenization concepts enable the accurate numerical modeling of the considered nonlocal
materials in scattering problems (for both propagating and evanescent incident waves) and in
propagation problems (calculation of the guided modes). In particular, we have highlighted
the anomalous physical properties of nonconnected wire media, and demonstrated that these
materials may permit the construction of very compact devices as well as the emergence of
negative refraction.
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Appendix A

In this appendix, we demonstrate that in nonconnected wire media the bulk macroscopic fields
may be accurately approximated with the TA fields, provided none of the unit vectors ûn lies in
the transverse (xoy) plane. This result is a generalization taken from a property characteristic of
arrays of parallel wires and applied to double- and triple-wire media [36].

To this end, we consider the unbounded periodic material, making an assumption that
the microscopic fields (e, b) have the Floquet–Bloch property, i.e. (e, b)e−ik·r has the same
translational symmetry as the lattice, where k is the associated wave vector. Following
[18, 37] the bulk electric field is defined by E = Eaveik·r with (using the time convention
e−iωt ):

Eav =
1

Vcell

∫
�

e(r)e−ik·rd3r. (A.1)

The macroscopic induction field Bav is defined similarly. In the above, � represents the unit cell
of the nonconnected wire medium, and Vcell = a3 is its volume. The bulk macroscopic fields
verify the system [18, 37]

ik ×
Bav

µ0
= −iωε0εhEav − iωPav,

ik × Eav = iω Bav,

(A.2)

where the generalized polarization vector, Pav, is given by

Pav =
1

−iωVcell

∫
∂ D

Jc(r)e−i k·rds (A.3)

and Jc is the density of current over the surface ∂ D of the metallic wires enclosed in the
unit cell. The dielectric function of the bulk material (defined by equation (9)) is such that
¯̄ε(ω, k) · Eav = ε0εhEav + Pav [18].

The objective here is to relate the bulk medium fields with the TA fields defined by (1).
Note that unlike with the bulk medium fields, the definition of the TA fields depends on the
considered transverse plane or, equivalently, depends on the orientation of the wires relative
to the transverse plane (which is assumed in this work to be the xoy-plane). We suppose
that the transverse unit cell �T may be related to the unit cell of the bulk material as,
� = �T × [−az/2, az/2] for some az, which may depend on the orientation of the wires relative
to the transverse plane. From equation (26) of [37] it is known that the generalized polarization
vector may be written as a function of the TA density of current as

Pav =
1

−iωaz

∫ az/2

−az/2
Jd,av(z)e

−ikz zdz, (A.4)

where kz is the z-component of the wave vector. But, as demonstrated in section 2, within
the thin-wire approximation, the TA current is expressed in terms of the microscopic currents
as in equation (5). Moreover, since we assume here that the microscopic fields verify the
Floquet–Bloch condition (along three independent directions of space) it is clear that the
microscopic currents must be such that In(z) = Ineikz z, for some In. Taking this property into
account, and using equation (5), it is apparent that equation (A.4) implies that

Jd,av(z) = −iωPaveikz z. (A.5)
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Therefore, within the thin-wire approximation, and independent of the orientation of the wires
relative to the interface, the TA current associated with a Floquet mode of the unbounded
material can be written in terms of the polarization vector of the bulk material as in
equation (A.5). This result implies that the TA fields must verify

Eav,T(z) = Eav eikz z, Bav,T(z) = Bav eikz z. (A.6)

Indeed, in the considered scenario the TA fields are univocally determined by the (kz-Floquet)
solution of the differential system (2) with Jd,av given by equation (A.5). But since the bulk
medium fields verify equation (A.2), and noting that the wave vector can be decomposed as
k = k‖ + kzûz, k‖ being the projection of the wave vector into the transverse plane, it readily
follows that the solution of the differential system (2) is given by (A.6). This demonstrates that
the TA fields can be identified with the bulk medium fields, as we wanted to show. It should also
be clear that equation (A.6) can be immediately generalized to the case where the microscopic
fields are a superposition of several Floquet–Bloch modes (associated with different wave
vectors). In this case, the TA fields are obviously given by a superposition of plane waves (each
plane wave being associated with a different Floquet mode as in equation (A.6)).

As a final remark, we note that the result (A.6) is only valid if there are no wires parallel
(or quasi-parallel) to the interface because, as noted in section 2, equation (3) becomes singular
in such circumstances. In fact, it was demonstrated in [37] that when some wires are parallel
to the interface the TA fields cannot really be identified with the bulk macroscopic fields. The
reader is referred to [37] for more details about the methods that can be used to study such
configurations.

Appendix B

In this appendix, we demonstrate that for the superposition of plane waves (22), Sz defined by
equation (19) may be written as in equation (23).

To begin with, we note that the polarization vector associated with the superposition of
plane waves is

P(r) = ε0

∑
l

(
¯̄ε (ω, kl) − εh

¯̄I
)

· Ele
+ikl ·r, (B.1)

where ¯̄ε is the dielectric function of the wire medium. In particular, the projection of P onto the
direction ûn (parallel to one of the wire arrays) verifies

Pn = ε0

∑
l

(
εn,n (ω, kl) − εh

)
ûn · Ele

+ikl ·r (B.2)

and, (
ik‖ +

d

dz
ûz

)
· ûn Pn = ε0

∑
l

(
ikl · ûn

) (
εn,n(ω, kl) − εh

)
ûn · Ele

+ikl ·r. (B.3)

On the other hand, explicit calculations show that(
εn,n − εh

)−1 ∂εn,n

∂kz
=

1

εhβ2
p

(
εn,n − εh

) (
−2k · ûn

) (
ûz · ûn

)
. (B.4)
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Substituting equations (B.2)–(B.4) and equation (22) into equation (19), it is found that

Sz = S0
z −

ω

4
ε0

∑
l,m

Re

{
N∑

n=1

(
εn,n(ω, kl) − εh

)−1 (
εn,n(ω, km) − εh

)∗
×E∗

m · ûn
∂εn,n

∂kz
(ω, kl) ûn · Ele

i(kl−k∗
m)·r

}
. (B.5)

This result and the definition of S0
z (11) show that Sz may be written as a linear combination

of exponentials of the type ei(kl−k∗
m)·r, where l and m identify a generic plane wave from the

set considered. However, from equation (18) we know that in the lossless case Sz must be a
constant, i.e. independent of r. This means that in equation (B.5) the coefficients associated
with the exponential ei(kl−k∗

m)·r necessarily vanish when kl 6= k∗

m . Hence, using the properties
εn,n(ω, km)∗

= εn,n(ω, k∗

m) and ∂ ¯̄ε

∂kz
=
∑N

n=1
∂εn,n

∂kz
ûnûn, we finally conclude that Sz may be written

as in equation (23).

References

[1] Pendry J, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[2] Smith D R, Padilla W, Vier D, Nemat-Nasser S and Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Pokrovsky A L and Efros A L 2002a Phys. Rev. Lett. 89 093901
[4] Belov P, Marqués R, Maslovski S, Nefedov I, Silveirinha M, Simovski C and Tretyakov S 2003 Phys. Rev. B

67 113103
[5] Nefedov I S, Viitanen A J and Tretyakov S A 2005a Phys. Rev. B 72 245113
[6] Nefedov I S, Viitanen A J and Tretyakov S A 2005b Phys. Rev. E 71 046612
[7] Belov P A, Hao Y and Sudhakaran S 2006 Phys. Rev. B 73 033108
[8] Shin J, Shen J and Fan S 2007 Phys. Rev. B 76 113101
[9] Shvets G, Trendafilov S, Pendry J B and Sarychev A 2007 Phys. Rev. Lett. 99 053903

[10] Ikonen P, Simovski C, Tretyakov S, Belov P and Hao Y 2007 Appl. Phys. Lett. 91 104102
[11] Belov P A, Zhao Y, Tse S, Ikonen P, Silveirinha M G, Simovski C R, Tretyakov S, Hao Y and Parini C 2008

Phys. Rev. B 77 193108
[12] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Science 321 930
[13] Liu Y, Bartal G and Zhang X 2008 Opt. Express 16 15439
[14] Silveirinha M G and Fernandes C A 2008 Phys. Rev. B 78 033108
[15] Silveirinha M G 2009a Phys. Rev. B 79 035118
[16] Silveirinha M G 2006a Phys. Rev. E 73 046612
[17] Pokrovsky A L and Efros A L 2002b Phys. Rev. B 65 045110
[18] Silveirinha M G and Fernandes C A 2005 IEEE Trans. Microw. Theory Tech. 53 1418
[19] Simovski C R and Belov P A 2004 Phys. Rev. E 70 046616
[20] Shvets G 2002 CP647 Advanced Accelerator Concept: Tenth Workshop ed C E Clayton and P Muggli

(American Institute of Physics) p 371
[21] Shapiro M A, Shvets G, Sirigiri J R and Temkin R J 2006 Opt. Lett. 31 2051
[22] Pollard R J, Murphy A, Hendren W, Evans P, Atkinson R, Wurtz G A, Zayats A and Podolskiy V A 2009

Phys. Rev. Lett. 102 127405
[23] Demetriadou A and Pendry J B 2008 J. Phys.: Condens. Matter 20 295222
[24] Silveirinha M G, Belov P A and Simovski C R 2007 Phys. Rev. B 75 035108
[25] Silveirinha M G, Belov P and Simovski C R 2008a Opt. Lett. 33 1726
[26] Silveirinha M G, Fernandes C A, Costa J R and Medeiros C R 2008b Appl. Phys. Lett. 93 174103
[27] Silveirinha M G, Fernandes C A and Costa J R 2008c Phys. Rev. B 78 195121

New Journal of Physics 11 (2009) 113016 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.76.4773
http://dx.doi.org/10.1103/PhysRevLett.84.4184
http://dx.doi.org/10.1103/PhysRevLett.89.093901
http://dx.doi.org/10.1103/PhysRevB.67.113103
http://dx.doi.org/10.1103/PhysRevB.72.245113
http://dx.doi.org/10.1103/PhysRevE.71.046612
http://dx.doi.org/10.1103/PhysRevB.73.033108
http://dx.doi.org/10.1103/PhysRevB.76.113101
http://dx.doi.org/10.1103/PhysRevLett.99.053903
http://dx.doi.org/10.1063/1.2767996
http://dx.doi.org/10.1103/PhysRevB.77.193108
http://dx.doi.org/10.1126/science.1157566
http://dx.doi.org/10.1364/OE.16.015439
http://dx.doi.org/10.1103/PhysRevB.78.033108
http://dx.doi.org/10.1103/PhysRevB.79.035118
http://dx.doi.org/10.1103/PhysRevE.73.046612
http://dx.doi.org/10.1103/PhysRevB.65.045110
http://dx.doi.org/10.1109/TMTT.2005.845128
http://dx.doi.org/10.1103/PhysRevE.70.046616
http://dx.doi.org/10.1364/OL.31.002051
http://dx.doi.org/10.1103/PhysRevLett.102.127405
http://dx.doi.org/10.1088/0953-8984/20/29/295222
http://dx.doi.org/10.1103/PhysRevB.75.035108
http://dx.doi.org/10.1364/OL.33.001726
http://dx.doi.org/10.1063/1.3012373
http://dx.doi.org/10.1103/PhysRevB.78.195121
http://www.njp.org/


27

[28] Silveirinha M G 2009b Phys. Rev. B 79 153109
[29] Silveirinha M G 2009c Phys. Rev. Lett. 102 193903
[30] Mahan G and Obermair G 1969 Phys. Rev. 183 834
[31] Melnyk A R and Harrison M J 1970 Phys. Rev. B 2 835
[32] Pekar S 1958 Sov. Phys.—JETP 6 785
[33] Davis W A and Krowne C M 1998 IEEE Trans. Antennas Propag. 36 97
[34] Henneberger K 1998 Phys. Rev. Lett. 80 2889
[35] Silveirinha M G 2006b IEEE Trans. Antennas Propag. 54 1766
[36] Silveirinha M G, Fernandes C A and Costa J R 2008d New J. Phys. 10 053011
[37] Silveirinha M G and Fernandes C A 2007 Phys. Rev. E 75 036613
[38] Landau L D, Lifshitz E and Pitaevskii L 2004 Electrodynamics of Continuous Media 2nd edn (Amsterdam:

Elsevier)
[39] Agranovich V and Ginzburg V 1966 Spatial Dispersion in Crystal Optics and the Theory of Excitons

(New York: Wiley Interscience)
[40] Shen J T, Catrysse P B and Fan S 2005 Phys. Rev. Lett. 94 197401
[41] Shin J, Shen J-T and Fan S 2009 Phys. Rev. Lett. 102 093903
[42] CST Microwave Studio 2008 CST GmbH http://www.cst.com
[43] Jackson J D 2001 Classical Electrodynamics 3rd edn (New York: Wiley)
[44] Sievenpiper D, Zhang L, Broas R, Alexopolous N and Yablonovitch E 1999 IEEE Trans. Microw. Theory

Tech. 47 2059

New Journal of Physics 11 (2009) 113016 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.79.153109
http://dx.doi.org/10.1103/PhysRevLett.102.193903
http://dx.doi.org/10.1103/PhysRev.183.834
http://dx.doi.org/10.1103/PhysRevB.2.835
http://dx.doi.org/10.1109/8.1078
http://dx.doi.org/10.1103/PhysRevLett.80.2889
http://dx.doi.org/10.1109/TAP.2006.875920
http://dx.doi.org/10.1088/1367-2630/10/5/053011
http://dx.doi.org/10.1103/PhysRevE.75.036613
http://dx.doi.org/10.1103/PhysRevLett.94.197401
http://dx.doi.org/10.1103/PhysRevLett.102.093903
http://www.cst.com
http://dx.doi.org/10.1109/22.798001
http://www.njp.org/

	1. Introduction
	2. Derivation of the ABCs
	3. Conservation of the power flow
	4. Crossed wire mesh
	5. Propagation in the yoz-plane 
	5.1. Slab standing in free-space 
	5.2. Grounded slab

	6. Propagation in the xoz-plane
	6.1. Slab standing in free-space
	6.2. Grounded slab

	7. Conclusion
	Acknowledgments
	Appendix A 
	Appendix B 
	References

