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In 1979, Ferguson characterized the periodic Jacobi matrices with given
eigenvalues and showed how to use the Lanzcos Algorithm to construct each
such matrix. This article provides general characterizations and constructions for
the complex analogue of periodic Jacobi matrices. As a consequence of the main
procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi
matrix is at most 2.
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1. Introduction

A periodic Jacobi matrix is a real symmetric matrix of the form

aj bl bn
P , (1)
bn
by by ay
where b;>0, for i=1,...,n, and all the non-mentioned entries are zero.

Extensive attention has been paid in the literature to the theory of periodic Jacobi
matrices (cf. [1,2,3,7,10]). Many problems on the spectra of periodic Jacobi matrices arise
in a remarkable variety of applications, in pure and applied mathematics.

Ferguson [3] presented an algorithm for calculating L from some given spectral data,
based on the Lanczos algorithm as treated by Boley and Golub [2], using a discrete version
of Floquet theory. It is a typical inverse eigenvalue problem, a problem concerning the
reconstruction of a matrix from prescribed spectral data.

Let J denote the Jacobi matrix obtained by deleting from the periodic matrix (1) the
last row and column, with characteristic polynomial

wy() = detd —=J) = (A — 1) - (A = pa)-
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We assume a Jacobi matrix to be any real, symmetric tridiagonal matrix whose next

diagonal entries are positive [4-6]. Let uq, ..., u,_; be the eigenvalues of J, uy,...,u,_; be
the first components of a set Yq,..., Y,_; of real orthonormal eigenvectors of J associated
with eigenvalues wy,..., u,_1, respectively.

Definition 1.1[3] The Floquet multipliers p1, ..., p,_; of L corresponding to (ty, ..., f,—_1
are the numbers defined by the relation

by by = —pjey(w)byi;

n’j?

j=1,....n—1. )

Ferguson [3] showed that for given real numbers A, B(>0), u;>--->u,_; and
Pls ..., P such that

piw, () <0, forj=1,....,n—1,
there exists a unique periodic Jacobi matrix L (1) such that
a+a+---+a,=A and b;---b, =B,

where p; i=1,...,n—1, are the eigenvalues of J and the p; are the Floquet
multipliers of L.

Ferguson also based his analysis on the partial characterization of periodic Jacobi
matrices by van Moerbeke who in [10] had given an analogue of Floquet theory for
a different periodic Jacobi matrix.

Later, Andrea and Berry [1] presented some algorithms based on a continued fraction
expansion for solving the inverse eigenvalue problem for periodic Jacobi matrices.

In this work, we will see a periodic Jacobi complex matrix as the adjacency matrix of
weighted cycle. After an introduction with some results on the characteristic polynomial of
a weighted graph, we establish an algorithm for the construction of general periodic Jacobi
matrices with a given spectra. This procedure is based on Ferguson’s algorithm, but it is
more general. A final corollary states that the multiplicity of an eigenvalue of a periodic
Jacobi matrix is at most 2.

2. The characteristic polynomial of a weighted graph

A graph G =(V, £) consists of a finite set V =)(G) whose members are called vertices, and
a set £=E(G) of 2-subsets of V, whose members are called edges. By a digraph D =(V, A)
we mean the same finite set V, and a subset A= A(D) of V x V, whose members are called
arcs. Note that an arc is an ordered pair (7, j), whereas an edge of a graph is also a pair but
is unorder. We write in both contexts i ~j.

A directed path from i to i, P; ;. in the digraph D is a sequence of distinct
vertices (iy,1,...,i_1,i.) such that each arc (i, ),...,(i,_1,i) is in A(D). The length
of P, €(P;y;), is r—1. If to the path P;; we add the arc (i.,i;), then we have
a directed cycle (i1, b, ..., 1. i;) (of length r). Analogously, the path from #; to i. in the

simple graph G is a sequence of distinct vertices (i, ,...,i._1,i.) such that each edge
{iy, b}, ..., {i,_1, 0} is in E(G). If to this path we add the edge {i.i}, then we
have a cycle (iy, i, ..., i) of length r. If any two vertices can be joined by a path we

say that the graph is connected. A forest is a graph without cycles and a tree is
a connected forest.
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Given an arc e =(i,j) of D, D\e is obtained by deleting e but not the vertices i or j; the
sub-digraph D\X, where X is a subset of vertices of D, is obtained from D deleting the
vertices X and all arcs incident with vertices of X.

Let 4=(a;) be an nxn matrix. The graph of A4,G(4), is the pair (V,&), where
V={1,...,n} and (i,)), i#J, is an edge in £ if and only if a;;7# 0 or a; # 0. Analogously, the
digraph D(4) = (V, A) of 4= (a;) contains the arc (i, j) € A if and only if a;;# 0. The matrix
A can be viewed as a weighted adjacency matrix of the digraph D(A4), with loops (arcs of
the type (i, 7)) allowed on the vertices.

We denote by A(X), where X is a subset of vertices of the graph or digraph of 4, the
submatrix obtained by deleting from A4 the rows and columns labelled by X.

We have a general formula for the determinant:

THEOREM 2.1 [9] Given an nxn matrix A=(ay) and re{l,...,n}, let us assume that
{Cy,...,C,} is the set of all directed cycles in D(A)=D containing the vertex r, with

m

detd=> (D" det AV(Cr) [] e 3)
k=1 (1. )eA(Cr)

where C;,=(V(Cy), A(Cy)) and det AV( Cy)) =1 if Cy. contains all vertices of D.

The set of cycles includes the cycles of one arc (a loop), the cycles with two arcs, (i, /, i),
if a;#0 and a;#0, and so on.

Suppose now A4 is Hermitian. Theorem 2.1 provides a general formula for the
characteristic polynomial of 4, ¢4(X) =det(A] — A).

COROLLARY 2.2 Given an n x n Hermitian matrix A= (a;) and i€ {1,...,n}, let us assume
that {Cy,...,C,,} is the set of all cycles in G(A)=G containing the vertex i, with
Cr=(ky,....ke k1), k=1,...,m. Then

0a(0) = (0 — ai)pan(V) — Y lagl e,
i~

m
—2) Re (aklkz kg ik, é_lk,zkkl)w(wck))(?»), 4
k=1

If the graph of A contains only one cycle, then we conclude the following:
COROLLARY 2.3 Given an nxn Hermitian matrix A =(a;) whose graph G has only one
cycle, say C=(1,...,¢,1), letie{l,...,L} be a vertex of C. Then

940) = O = ai)an(®) = Y _ gl @i, )(A) — 2Re(ary -+ ap_y.din, 1) paicn).
j~i

CoOROLLARY 2.4  Given an n x n Hermitian matrix A =/(a;) whose graph G is a cycle, say
(1,...,n, 1), and i€ {1,...,n}, the characteristic polynomial of A is

@a(V) = (A — ai)paiy(M) — lai-1i1*@ai-1.(%)
- |ai,i+1 |2¢A(i,i+l)()‘) -2 Re(al2 e anfl,nc_ln,l)~ (5)
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COROLLARY 2.5 Given an n x n Hermitian matrix A =(a;) whose graph G is a path, say
(1,....,n), and i€ {1,...,n}, the characteristic polynomial of A is

940) = O = ai)ean(®) = Y lagl*@ai.)(0)-
~i

For a Hermitian matrix 4 = (a;), let us denote the corresponding symmetric matrix of
the modulus of 4 by A" = (|a).

COROLLARY 2.6 Given an n x n Hermitian matrix A =(a;) whose graph G is a path, say
(1,....n),and ie{l,...,n}, then

©a(A) = @+ (X).

3. Inverse eigenvalue problem

The main aim of an inverse eigenvalue problem is to construct a matrix that maintains
a certain specific structure as well as some given spectral property. Given distinct real
numbers fi,...,u,—; and non-zero real numbers, ui,...,u,_;, whose squares sum is
1, Ferguson [3] used Lanzcos algorithm to get a Jacobi matrix

ay b]
b1 K . K .
J= ; (6)
bn—Z
ban ap—1
such that u,,...,u,_; are the first components of a set Yq,..., Y,_; of real orthonormal
eigenvectors of J associated with eigenvalues i, ..., u,_;, based on some relationships

between the eigenvalues and eigenvectors of J:
Algorithm 1 [3]
1. Set:

1.1: bo:l,
1.2: 4y ,;=0, for j=1,2,....,k;
L3:uy j=uy, for j=1,2,... k.

2. Iteration i=1,2,...,k—1:
2.1: q; = Zﬁf:l etty;

2.2:b; = \/Zﬁzl((ue — auie — bioiuiy )
2.3: iy = ((w—a)u; j—bi_1ui_y )b, for j=1,2,... k.

k 2
3ooar =73 el ¢

In [8], Leal Duarte generalized this construction to any Hermitian matrix whose graph
is a tree. Ferguson also treated an inverse eigenvalue problem for periodic Jacobi matrices,
which we generalize here.
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The matrix
1
ar b —by
o
L= b : %)
bnfl
pby, bn-1 [
where p#0, has some interesting spectral properties:
THEOREM 3.1 [3]  The characteristic polynomial of L, admits the representation
1
detGiI — L) = by -+ b, (A(k) - (p +—)), ®)
0
where A(A), called the discriminant of L,, is independent of p. The Flogquet multipliers
P1s -« Pu_1 Of L corresponding to the eigenvalues w1, ..., w,—1 of J satisfy the relation
, A 1 _
(1Y A) :(—1)'(pj+;) S2 =1l ©)
)j
Furthermore, the eigenvalues Ay, . . ., ,, of L, which are the roots of A(A) =2, are real and can

be ordered so that
M>AM>A3>Ag = As > -0

Now, suppose that 4 is a Hermitian matrix whose graph is exactly the cycle
C=(1,...,n1), 1e.

ay b1 bn
by
A= , (10)
bn—l
bn bn—l ap
where a,’s are real numbers and b,’s are non-zero complex numbers.
Recall that the main characterization result by Ferguson states:
THEOREM 3.2 [3] There exists a periodic Jacobi matrix (1) with eigenvalues A1, . .., A, if and

only if the real numbers 7y, ..., A, can be rearranged such that
AM>A>A3>Ag >

Let us now consider the case when
M>ZA>A3>Ag > -

Set

A=di+da+ -+,
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and define real numbers ;> u,>--->u,_; and B(>0) such that

(—1YA(n) =2, forj=1,2,....,n—1,

and
AL > L = A2 > Uy > e,
where
1
AL = —2+l—g(x — A1) (= Ay).
Considering py,..., p,—1 such that

1
Aw) = —pj——, forj=12,....n—1,
Pj

with w,(A) =(u — 1) - (L — w,,—1), we establish the following algorithm:
Algorithm 2
1. Set:
L1z by = /3021 (B/ e (p0));
1.2: uy = 1/b,/(B/ poe)(0)), for £=1,2,...,n—1.

2. Use Algorithm 1 to contruct a Jacobi matrix (6).
3. Set:

3.1: b,_1 = B/(b1by...b, 2b,);
32:a,=A— (a1 +ar+---+a,_1).

We are now able to state a more general result containing the Theorem 3.2.

THEOREM 3.3 Let Ay,...,A, be real numbers. If A is a Hermitian matrix (10) with
eigenvalues My, ..., A,, then Ay, ..., A, can be ordered as

M>A>A3>As> -, if Re(by---b,_1b,) <0
or

M>A>A3>Ag> -, ifRe(by - bu1by)>0.

Conversely, if

M= >A3 > Ay > -0, (11
then Ay, ..., A, are the eigenvalues of a symmetric matrix as in (1), with by--- b, <0.
Similarly, if

M>A>A3>Ag > e, (12)
Ay ..., Ay are the original eigenvalues of some periodic Jacobi matrix as in (1).

Proof We start with the necessity. By Corollary 2.4, the characteristic polynomial of 4 is

94() = (0 — aDeay () — 1b1P@aa.5(R) = 1bal*0ac.m(*) — 2Re(by -+ by_1by).
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If one considers the symmetric matrix

ay bl D]

4t — |b1]
|bn71|
|bn| |bn—l| Ay

then, again by Corollary 2.4, the characteristic polynomial of 47 is
@ar(A) = (O — a4+ y(A) — b1 @4+, M) — |bal* @4+ 1my(R) — 21by - - - byl
Hence by Corollary 2.6,
arA) = @a(A),  para M) = @aa (A, @aran(R) = Qaam(R),
and then
04(1) = 94:(0) +21by - byl = 2Re(by -+~ b1 by).
If
Agr () = 1By -+ byl T g () + 2
(the so-called discriminant of A™), then

Pa(X) = |by "'bn|(AA+()\) -2 M)

|b1 bn|

Since |Re(by- - -b,,_1| <|by---b,_1], the eigenvalues of A, which are the roots of

Re(by - - by_1by)

A+)\, :2 )
4+() by -+« by

verify

)< zRe(bl "'bn—lbn) <

—_— <2.
- |b1bn| -

If 41> - >, are the eigenvalues of the Jacobi matrix obtained by deleting from A™ the
last row and column, then, using Theorem 3.1,

(Y Ap(u) =2, j=1,....n—1.
Consequently, the eigenvalues of 4 are real and can be ordered so that
M>A>A3>As> -, if Re(by - by_1by) <0
or
M>A>A3>A>---, ifRe(by- by1by) >0,

because the coefficient |b---b,|~" of A" in A4+ (}) is positive.
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Conversely, from Theorem 3.2, if the real numbers Aq,..., A, verify (12), then we can
find such matrix. On the other hand, if those real numbers satisfy condition (11), according
to Algorithm 2,

ay b] bn
by
Tl - bnf2
bn—Z ap—1 _bn—l
bn _bn—l ap

is the desired matrix. In fact, let

1
ag b1 ;bn
b - -
T,= : _ _ , with p # 0.
’ bn—2
bpa  ap —by_1
,Obn _bn—l an

Since uy = (1/b,)\/(B/pee;,(£)) and B=b,---b,, we have
by---by = peay(ue)b*ul, for=1,2,....n—1.

If Yyq,...,Y,_; are the orthonormal eigenvectors of J, corresponding to its eigenvalues
M1, ..., My—1, Obtained using Algorithm 1, then let u;, denote the i-th component of Y,.
From the last equality and from the identity

b] .. ~b”_2 = w}(uj)ul,jun_l,j, for ] = 1, e — 1,
we get

pebptty o — by_qup—1 =0, with £=1,...,n—1.

Y, Y,
sz( 0€> =M(( OZ), for ¢=1,...,n—1.

Therefore, . is an eigenvalue of 7, , for £=1,2,...,n— 1. Using elementary properties of
determinants, it is easy to see that (d/dp)det(Al — T,) = by - - - b,(1 — (1/p?)). When both
sides are integrated with respect to p, we obtain

Consequently

det(l = T,) = b - --bn(AT(x) + <p+/13>)
Then

1
AT(MK)Z—pg——, for 621,2,...,11—1.
Pe
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Note that

1
Arh) =5~

1---by

()Ln _ A)\n_l + )’

and thus the coefficients of A” and A"~' in A7(%) and A()), respectively, are the same.
Hence, A#{A)— A(X) is a polynomial of degree <n—2. But An{ul)— A(u,)=0, for
£=1,2,...,n—1, which means that Ax(1)— A(A) has n—1 distinct roots. Therefore,
Ar=A, and so Ay,..., A, are the eigenvalues of 7). ]

Example 3.1 Given the numbers 6, 3, 1, we want to find a Hermitian matrix (10) whose
eigenvalues are

)\1:6:)L2>)L3:3:X4>)L5:1. (13)

We can get with A=19, B=1, u1 =6>u>,=5>u3=3, uy=2 and applying Algorithm 2,
the matrix

4 V2 0 0 2-43
V3 1

2 4437 -

V2 +3 5 0 0
1 V3

0 5 45 V2 0

0 0 V2 4 —V2+/3

2-43 0 0 V2443 3

whose eigenvalues are given in (13).

CoROLLARY 3.4 Any eigenvalue of a Hermitian matrix of the form (10) has at most
multiplicity 2.
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