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H1-SECOND ORDER CONVERGENT ESTIMATES FOR
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Abstract: In this paper we study numerical methods for integro-differential initial
boundary value problems that arise, naturally, in many applications such as heat
conduction in materials with memory, diffusion in polymers and diffusion in porous
media. We propose finite difference methods to compute approximations for the
continuous solutions of such problems. For those methods we analyze the stability
and study the convergence. We prove a supraconvergent estimate. As such methods
can be seen as lumped mass methods, our supraconvergent result is a superconver-
gent result in the context of finite element methods. Numerical results illustrating
the theoretical results are included.
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1. Introduction

We consider the semi-discretization of the integro-differential equation

∂u

∂t
(t) + Au(t) =

∫ t

0

B(s, t)u(s) ds + f(t), t ∈ (0, T ], (1)

where u(t) denotes a function defined on [a, b] when t ∈ [0, T ] is fixed, A and
B(s, t) represent the following operators

Au(x, t) = −
∂

∂x
(a2(x)

∂u

∂x
(x, t)) +

∂

∂x
(a1(x)u(x, t)) + a0(x)u(x, t),

B(s, t)u(x, t) = −
∂

∂x
(b2(s, t, x)

∂u

∂x
(x, t)) +

∂

∂x
(b1(s, t, x)u(x, t))

+b0(s, t, x)u(x, t),

for x ∈ (a, b), s, t ∈ (0, T ]. We assume that (1) is complemented with homoge-
neous boundary conditions and an initial condition u(x, 0) = u0(x), x ∈ [a, b].
For the coefficient functions we assume some smoothness that will be speci-
fied later.
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Integro-differential equations of type (1) arise in several applications as for
instance transport in heterogeneous media ([7], [19], [28]) and heat propaga-
tion in materials with memory ([21]).

Transport in media or heat propagation phenomena are traditionally mod-
eled by the convection-diffusion equation

∂u

∂t
+ ∇J = f, (2)

where u denotes the concentration, J represents the mass flux and f denotes
the reaction term. In (2) J can be expressed as

J = Jadv + Jdif + Jdis, (3)

where

Jadv = vu (4)

represents the advection mass due to the the fluid velocity v,

Jdif = −Dm∇u (5)

denotes the mass flux due to molecular diffusion, being Dm the effective
molecular diffusion coefficient, and Jdis satisfies the so called Fick’s law

Jdis = −Dd∇u

and represents the dispersive mass flux associated with random deviations
of fluid velocities within the porous space from their macroscopic value v. In
the definition of Jdis, Dd denotes the dispersive tensor.

Combining (2) with (3) we obtain the parabolic equation

∂u

∂t
+ ∇(vu) = ∇((DmI + Dd)∇u) + f, (6)

where I is the identity tensor.
Equation (6) gives good accurate results in laboratory environment for per-

fectly homogeneous media. Nevertheless when non homogeneous media are
considered, deviations of the Fickian behavior are observed. In this case the
main sources for such deviations are the small-scale and large-scale hetero-
geneities ([19], [28]). From the theoretical point of view, as the equation (6)
is of parabolic type, it induces infinite propagation speed.

In order to circumvent the pathologic behavior of the convection-diffusion-
reaction (6) several approaches were proposed in the literature. The reference
[28] summarizes some of them. The approach that leads to a simplified
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version of equation (1) is to consider that the dispersive mass flux satisfies
the following differential equation

τ
∂Jdis

∂t
(x, t) + Jdis(x, t) = −Dd∇u(x, t), (7)

where τ is a delay parameter ([26]). We remark that the left hand side of (7)
is a first order approximation of the left hand side of

Jdis(x, t + τ) = −Dd∇u(x, t),

which means that the dispersion mass flux at the point x at the time t + τ
depends on the gradient of the concentration at the same point but at a
delayed time.

From (2) to (7) and considering non reactive flows, we obtain the hyperbolic
equation

∂2u

∂t2
+∇

∂

∂t
(vu)+

1

τ

∂u

∂t
+

1

τ
∇(vu) =

∂

∂t
∇(Dm∇u)+

1

τ
∇(Dm∇u)+

1

τ
∇(Dd∇u).

(8)
To avoid the mixed derivatives that arise in the equation (8) we point out
that (7) leads to

Jdis(t) = −
1

τ

∫ t

0

e−
t−s
τ Dd∇u(s) ds, (9)

provided that Jdis(0) = 0. Combining the partition (3), where Jadv, Jdif

and Jdis are given by (4), (5) and (9), respectively, with (2) we obtain the
integro-differential equation

∂u

∂t
+ ∇(vu) −∇(Dm∇u) =

1

τ

∫ t

0

e−
t−s
τ ∇(Dd∇u)(s) ds + f. (10)

This equation is an example of the integro-differential equation (1).
Initial boundary value problems defined with integro-differential equations

of type (1) have been studied numerically. We mention without being ex-
haustive [24], [25], [32], [35] for the study of the semi-discrete approxima-
tions for the solution when finite element method is considered. Generally,
in those papers, it is shown that several results known for the semi-discrete
approximations for the solution of Fickian parabolic problems also hold for
the semi-discrete approximation for the solution of (1). For instance, it is
established for the two dimensional version of (1) that, under convenient as-
sumptions on the partition of the domain, the semi-discrete approximation



4 S. BARBEIRO, J.A. FERREIRA AND L. PINTO

defined using piecewise linear finite element method is second order conver-
gent with respect to the L2-norm and it is first order convergent with respect
to the H1-norm. This results was also considered in [29] for a semi-discrete
lumped mass approximation but with respect to discrete norms and assum-
ing that the solution of the continuous problems are smooth enough (initial
condition in H3).

Second order estimates for the semi-discrete approximation with respect
to the L2-norm were obtained for finite volume approximations in [10] and
[11] provided that the exact solution is in H3. The previous smoothness
assumption was weakened in [30] where second order estimates were also
obtained if the solution is in H2.

Integro-differential problems defined by equation (1) can be rewritten as
equivalent systems composed by a partial differential equation involving only
a time derivative and an integro-differential equation involving only partial
derivatives with respect to the space variables and the integral term. This
approach was used for instance in [12] where mixed finite element methods
were studied.

Finite difference methods (FDM) for initial boundary value problems (IBVP)
defined by (1) were considered by the authors recently in [1], [5], [6] and [16],
where schemes presenting the same qualitative behaviour of the correspon-
dent continuous models with respect to stability were proposed. In [16], for

a2 = a1 = a0 = 0, b1 = b0 = 0 and b2(s, t, x) =
β

τ
e−

s−t
τ , it was shown that the

character of (1) is related with both parabolic and hyperbolic type.
Application of integro-differential models on drug release were considered

in [3], [4] and [16].
The aim of this paper is to study a semi-discretization for the IBVP (1)

with homogeneous Dirichlet boundary conditions. The method that we
propose can be obtained combining a piecewise linear finite element semi-
discretization with a quadrature rule in space. This method can be seen
as a lumped mass method. The stability and convergence analysis of the
semi-discrete solution will be presented. Concerning the error estimates, we
establish a second order convergence estimate with respect to the H1-norm.
This result shows that our method presents a supraconvergent behavior, that
is, the convergence order is greater than the order of the truncation error.
Supraconvergent finite difference schemes have been considered in the lit-
erature for elliptic equations and for parabolic equations. Without being
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exhaustive we point out [2], [8], [9], [13], [14], [17], [18], [20], [22], [23] and
[27]. Here we prove that the L2-norm of the gradient of the error is second
order convergent, being this property known as supercloseness of the gradient
([33]). The results obtained in [2] have a central role in the proof of the con-
vergence result. The paper is organized as follows. In Section 2 we introduce
the method, de basic definitions and the notation used. Section 3 focuses on
the stability analysis of the semi-discrete solution. The convergence analysis
is presented in Section 4. In Section 5 we illustrate the second convergence
order of our method with some numerical results. Finally, in Section 6, we
present the conclusions.

2. A fully semi-discrete Galerkin approximation

We start with the Galerkin formulation of our IBVP and its discretization
by linear finite element with quadrature. By Hr

0(a, b), r ∈ N0, we represent
the usual Sobolev spaces where we consider the usual norms ‖.‖r, r ∈ N0.
For r = 0 we use the notation H0

0(a, b) = L2(a, b) were we consider the usual
inner product (., .)0. By L2(0, T, Hr

0(a, b)) we represent the space of functions
v defined on [a, b]× [0, T ], such that v(t), which denotes the function v when
t is fixed, is in Hr

0(a, b) and
∫ T

0

‖v(t)‖2
r dt (11)

is finite.
We consider the following variational formulation of our problem:

find u ∈ L2(0, T, H1
0(a, b)) such that

∂u

∂t
(t) ∈ L2(a, b) and































(
∂u

∂t
(t), v)0 + a(u(t), v) =

∫ t

0

b(s, t, u(s), v) ds + (f(t), v)0, t ∈ (0, T ],

for all v ∈ H1
0(a, b),

u(0) = u0,
(12)

where a(., .) and b(s, t, ., .) are the bilinear forms defined by

a(v, w) = (a2v
′, w′)0 − (a1v, w′)0 + (a0v, w)0, (13)
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for v, w ∈ H1
0(a, b), and

b(s, t, v, w) = (b2(s, t)v
′, w′)0 − (b1(s, t)v, w′)0 + (b0(s, t)v, w)0, (14)

for v, w ∈ H1
0(a, b).

The coefficient function of the integro-differential equation (1) are assumed to
be smooth enough, e.g, a2, b2(s, t) ∈ C[a, b], a0, a1, b0(s, t), b1(s, t) ∈ W 2,∞(a, b),
for s, t ∈ (0, T ].

The discretization of (12) is obtained in the following way. We first intro-
duce in [a, b] the grid

Ih := {a = x0 < x1 < · · · < xN−1 < xN = b},

where h is the vector of mesh-sizes hj = xj − xj−1, j = 1, . . . , N. By Wh,0 :=
{uh, vh, wh, . . . } we denote the space of real-valued grid functions defined on
Ih null on the boundary points. In Wh,0 we introduce the inner product

(vh, wh)h =
N−1
∑

i=1

hi+1/2vh(xi)wh(xi), for vh, wh ∈ Wh,0, (15)

where hi+1/2 = (hi + hi+1)/2. The norm induced by the inner product (15) is
denoted by ‖.‖h

Let Rh denote the operator of pointwise restriction to the grid Ih. We now
introduce the discretization of the bilinear forms a(., .) and b(s, t, ., .). By
ah(., .) and bh(s, t, ., .) we represent the following bilinear forms

ah(vh, wh) = (M(a2)(Phvh)
′, (Phwh)

′)0 − (M(Ph(Rha1vh)), (Phwh)
′)0

+(Rha0vh, wh)h,
(16)

for vh, wh ∈ Wh,0, and

bh(s, t, vh, wh) = (M(b2(s, t))(Phvh)
′, (Phwh)

′)0

−(M(Ph(Rhb1(s, t)vh)), (Phwh)
′)0

+(Rhb0(s, t)vh, wh)h,

(17)

for vh, wh ∈ Wh,0. In (16) and (17) we use the notation M(q)(x) = q(xi+1/2)
for x ∈ [xi, xi+1], i = 0, . . . , N − 1.

We assume that ah(., .) is continuous

|ah(vh, wh)| ≤ αc‖Phvh‖1‖Phwh‖1, for all vh, wh ∈ Wh,0,
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and elliptic in the sense that

ah(vh, vh) ≥ α0‖Phvh‖
2
1, for all vh ∈ Wh,0. (18)

We also suppose that bh(s, t, ., .) is uniformly bounded, that is,

|bh(s, t, vh, wh)| ≤ β0‖Phvh‖1‖Phwh‖1, for all vh, wh ∈ Wh,0, s, t ∈ [0, T ]. (19)

Remark 1. The bilinear form ah(., .) satisfies the assumption (18) provided
that a2, a0 ≥ γ0 > 0 in [a, b], and

γ0 −
1

4η2
‖a1‖

2
∞ ≥ 0 (20)

or

γ0

( 1

3(b − a)2
+ 1

)

−
( η2

3(b − a)2
+

1

4η2
‖a1‖

2
∞

)

≥ 0, (21)

for η such that

γ0 − η2 > 0. (22)

In fact, as for ah(., .) we have

ah(vh, vh) ≥ (γ0 − η2)‖(Phvh)
′‖2 +

(

γ0 −
1

42
η

‖a1‖
2
∞

)

‖vh‖
2
h,

using the Friedrich-Poincaré inequality and ‖Phvh‖
2 ≥

1

3
‖vh‖

2
h, we immedi-

ately conclude the assumption (18) under the assumptions (20) or (21), for
η satisfying (22).

If the coefficient functions of bh(s, t, ., .) are bounded then this bilinear form
satisfies (19).

Let g be a function defined on [a, b]. We denote by (g)h the grid function

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x) dx, i = 1, . . . , N − 1, (23)

(g)h(x0) = (g)h(xN) = 0, where xi+1/2 = xi +
hi+1

2
, xi−1/2 = xi −

hi

2
.
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The semi-discrete variational problem has the form:

find uh(t) ∈ Wh,0 such that






























(
duh

dt
(t), vh)h + ah(uh(t), vh) =

∫ t

0

bh(s, t, uh(s), vh) ds

+((f(t))h, vh)h, t ∈ (0, T ], for allvh ∈ Wh,0,

uh(0) = u0,h,

(24)

where u0,h ∈ Wh,0 is an approximation of u0.
The semi-discrete variational problem (24) is equivalent to a standard fi-

nite semi-discretization of (1) on nonuniform grids which we derive in what
follows. We use the divided differences

(Dcvh)(xi) =
vh(xi+1) − vh(xi−1)

xi+1 − xi−1
, (Dvh)(xi) =

vh(xi+1/2) − vh(xi−1/2)

xi+1/2 − xi−1/2

and

(Dvh)(xi+1/2) =
vh(xi+1) − vh(xi)

xi+1 − xi
,

where vh(xi+1/2) is used as far as it makes sense.
Now choosing vh ∈ Wh,0 to vanish in all but one grid point in Ih \ {a, b}

and collecting the terms arising in (24), we obtain for uh(t) the following
ordinary differential problem






























duh

dt
(t) + Ahuh(t) =

∫ t

0

Bh(s, t)uh(s) ds + (f(t))h in Ih \ {a, b}, t ∈ (0, T ],

uh(x0, t) = uh(xN , t) = 0, t ∈ (0, T ],

uh(0) = u0,h,
(25)

where

Ahvh = −D(a2Dvh) + Dc(a1vh) + a0vh

and

Bh(s, t)vh = −D(b2(s, t)Dvh) + Dc(b1(s, t)vh) + b0(s, t)vh.

We remark that Phuh(t) is an approximation for the weak solution defined
by (12), being uh(t) the finite difference solution defined by (25).
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3. The stability analysis

In what follows we establish the stability of the solution uh(t) defined by
(25) with respect to perturbations of the initial condition u0,h.

Theorem 1. Let us suppose that ah(., .) and bh(s, t, ., .) satisfy (18) and (19)
respectively. Then for the solution uh(t) of (25) holds

‖uh(t)‖
2
h+

∫ t

0

‖Phuh(s)‖
2
1 ds ≤ eCtC

(

‖uh(0)‖2
h+

∫ t

0

‖f(s)‖2
0e

−Cs ds
)

, t ∈ [0, T ],

(26)
with

C =
max{1, β2

0T
2ǫ2 }

min{1, 2(α0 − ǫ2)}
(27)

for all ǫ 6= 0 such that

α0 − ǫ2 > 0. (28)

Proof: As uh(t) satisfies (24) with vh = uh(t) we establish

1

2

d

dt
‖uh(t)‖

2
h + α0‖Phuh(t)‖

2
1 ≤ β0

∫ t

0

‖Phuh(s)‖1‖Phuh(t)‖1 ds

+
1

2
(‖(f(t))h‖

2
h + ‖uh(t)‖

2
h).

As we have
∫ t

0

‖Phuh(s)‖1‖Phuh(t)‖1 ds ≤
1

4ǫ2

(

∫ t

0

‖Phuh(s)‖1ds
)2

+ ǫ2‖Phuh(t)‖
2
1,

for all ǫ 6= 0, we deduce

d

dt
‖uh(t)‖

2
h + 2(α0 − ǫ2)‖Phuh(t)‖

2
1 ≤

β2
0

2ǫ2

(

∫ t

0

‖Phuh(s)‖1 ds
)2

+‖(f(t))h‖
2
h + ‖uh(t)‖

2
h.

(29)

Using the inequality

(

∫ t

0

‖Phuh(s)‖1 ds
)2

≤ T

∫ t

0

‖Phuh(s)‖
2
1 ds
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in (29) and integrating the obtained inequality we get

‖uh(t)‖
2
h + 2(α0 − ǫ2)

∫ t

0

‖Phuh(s)‖
2
1 ds ≤

∫ t

0

‖((f(s))h‖
2
h ds + ‖uh(0)‖2

h

+
β2

0T

2ǫ2

∫ t

0

∫ s

0

‖Phuh(µ)‖2
1 dµ ds +

∫ t

0

‖uh(s)‖
2
h ds.

(30)
Choosing ǫ satisfying (28) we obtain

‖uh(t)‖
2
h +

∫ t

0

‖Phuh(s)‖
2
1 ds ≤ C

(

∫ t

0

‖(f(s))h‖
2
h ds + ‖uh(0)‖2

h

)

+ C

∫ t

0

(

∫ s

0

‖Phuh(µ)‖2
1 dµ + ‖uh(s)‖

2
h

)

ds

(31)

with C defined by (27). Finally considering the Gronwall lemma in (31) we
conclude (26).

Theorem 2. Let uh(t) be the solution of (25) with a1 = 0. If ah(., .) satisfies
(18), bh(s, t, ., .) satisfies (19) and

bh(t, t, vh, vh) ≥ βe‖Phvh‖
2
1, for all vh ∈ Wh,0, (32)

and

|
∂bh

∂t
(s, t, vh, wh)| ≤ βd‖Phvh‖1‖Phwh‖1 , for all vh, wh ∈ Wh,0, s, t ∈ [0, T ],

(33)
then the solution uh(t) of (25) satisfies

∫ t

0

‖
duh

ds
(s)‖2

hds + ‖Phuh(t)‖
2
1 +

∫ t

0

‖Phuh(t)‖
2
1

≤ eCt max{1, αc}

min{1, α0 − η2, 2βe − ǫ2)}

(

‖Phuh(0)‖2
1 +

∫ t

0

‖f(s)‖2 e−Cs ds
)

,

(34)
for t ∈ [0, T ], for ǫ and η such that

α0 − η2 > 0, 2βe − ǫ2 > 0, (35)

with

C =
max{β2

0T
η2 ,

β2
dT

2ǫ2 }

min{1, α0 − η2, 2βe − ǫ2)}
. (36)
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Proof: Considering in (24) vh replaced by
duh

dt
(t) we obtain

‖
duh

dt
(t)‖2

h + ah(uh(t),
duh

dt
(t)) =

∫ t

0

bh(s, t, uh(s),
duh

dt
(t)) ds

+((f(t))h,
duh

dt
(t))h.

(37)

As
d

dt
ah(uh(t), uh(t)) = 2ah(uh(t),

duh

dt
(t))

and

d

dt

∫ t

0

bh(s, t, uh(s), uh(t)) ds = bh(t, t, uh(t), uh(t))

+

∫ t

0

bh(s, t, uh(s),
duh

dt
(t)) ds

+

∫ t

0

∂bh

∂t
(s, t, uh(s), uh(t)) ds,

we deduce

1

2
‖
duh

dt
(t)‖2

h +
1

2

d

dt
ah(uh(t), uh(t)) ≤

d

dt

∫ t

0

bh(s, t, uh(s), uh(t)) ds

−

∫ t

0

∂bh

∂t
(s, t, uh(s), uh(t)) ds

− bh(t, t, uh(t), uh(t)) +
1

2
‖(f(t))h‖

2
h.

(38)
Using inequalities (32) and (33) in (38) we establish

1

2
‖
duh

dt
(t)‖2

h +
1

2

d

dt
ah(uh(t), uh(t)) + βe‖Phuh(t)‖1 ≤

1

2
‖(f(t))h‖

2
h

+ βd

∫ t

0

‖Phuh(s)‖1 ds‖Phuh(t)‖1 +
d

dt

∫ t

0

bh(s, t, uh(s), uh(t)) ds.

Consequently, as

βd

∫ t

0

‖Phuh(s)‖1 ds‖Phuh(t)‖1 ≤
Tβ2

d

4ǫ2

∫ t

0

‖Phuh(s)‖
2
1 ds + ǫ2‖Phuh(t)‖

2
1
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holds for any ǫ 6= 0, we have

‖
duh

dt
(t)‖2

h +
d

dt
ah(uh(t), uh(t)) + (2βe − ǫ2)‖Phuh(t)‖

2
1 ≤ ‖(f(t))h‖

2
h

+2
d

dt

∫ t

0

bh(s, t, uh(s), uh(t)) ds +
β2

dT

2ǫ2

∫ t

0

‖Phuh(s)‖
2
1 ds.

(39)

The integration of the inequality (39) leads to

∫ t

0

‖
duh

ds
(s)‖2

hds + ah(uh(t), uh(t)) + (2βe − ǫ2)

∫ t

0

‖Phuh(s)‖
2
1 ds

≤ 2

∫ t

0

bh(s, t, uh(s), uh(t)) ds +
β2

dT

2ǫ2

∫ t

0

∫ s

0

‖Phuh(µ)‖2
1 dµ ds

+ah(uh(0), uh(0)) +

∫ t

0

‖(f(s))h‖
2
h ds.

(40)

Combining (40) with (18) and (19) we deduce

∫ t

0

‖
duh

ds
(s)‖2

hds + (α0 − η2)‖Phuh(t)‖
2
1 + (2βe − ǫ2)

∫ t

0

‖Phuh(s)‖
2
1 ds

≤
β2

0T

η2
)

∫ t

0

‖Phuh(s)‖
2
1 ds +

β2
dT

2ǫ2

∫ t

0

∫ s

0

‖Phuh(µ)‖2
1 dµ ds

+αc‖Phuh(0)‖2
1 +

∫ t

0

‖(f(s))h‖
2
h ds,

and consequently

∫ t

0

‖
duh

ds
(s)‖2

hds + ‖Phuh(t)‖
2
1 +

∫ t

0

‖Phuh(t)‖1

≤ C

∫ t

0

(

∫ s

0

‖Phuh(µ)‖2
1 dµ + ‖Phuh(s)‖

2
1

)

ds

+
max{1, αc}

min{1, α0 − η2, 2βe − ǫ2)}

(

‖Phuh(0)‖2
1 +

∫ t

0

‖(f(s))h‖
2
h ds

)

(41)

for ǫ, η satisfying (35) and with C defined by (36).
Applying Grownwall lemma to the inequality (41) we conclude (34).
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Remark 2. For bh(t, t, ., .) holds a remark analogous to Remark 1. Moreover
if the coefficient functions of bh(s, t, ., .) have bounded time derivative then

(33) holds and this means that
∂bh

∂t
(s, t, ., .) is bounded.

4. A supraconvergent estimate

In this section we compute an estimate for the error Pheh(t) = PhRhu(t)−
Phuh(t). Following [34] we split the error Pheh(t) in the following form

Pheh(t) = PhRhu(t) − Phũh(t) + Phũh(t) − Phuh(t)

=: Phρh(t) + Phθh(t)
(42)

where ũh(t) is solution of the discrete variational problem

ah(ũh(t), vh) = (gh(t), vh)h, for all vh ∈ Wh,0 (43)

with

gh(t) =

∫ t

0

(B(s, t)u(s))h − (
∂u

∂t
(t))h + ((f(t))h. (44)

As we have successively

α0‖Phρh(t)‖
2
1 ≤ ah(ρh(t), ρh(t))

= ah(Rhu(t), ρh(t)) − (gh(t), ρh(t))h

= ah(Rhu(t), ρh(t)) − ((Au(t))h, ρh(t))h

= ah(Rhu(t), ρh(t)) −

N−1
∑

i=1

∫ xi+1/2

xi−1/2

Au(x, t) dxρh(xi, t)

=: τ
(a)
h (ρh(t)),

we conclude that

‖Phρh(t))‖
2
1 ≤

1

α0
τ

(a)
h (ρh(t)). (45)

A bound for Phρh(t) is obtained using Lemma 1 and (45). The proof of this
lemma as well the proofs of Lemmas 2, 3 and 4 differ in minor details from
the proof of Theorem 3.1 of [2].
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Lemma 1. For the functional τ
(a)
h holds the following

|τ
(a)
h (vh)| ≤ C

(

N
∑

i=1

h2r
i ‖u(t)‖2

H1+r(xi−1,xi)

)1/2

‖Phvh‖1, r ∈ {1, 2}, (46)

for vh ∈ Wh,0.

Proposition 1. The error Phρh(t) satisfies the estimate

‖Phρh(t)‖1 ≤ C
(

N
∑

i=1

h2r
i ‖u(t)‖2

H1+r(xi−1,xi)

)1/2

, r ∈ {1, 2}. (47)

An estimate for ‖Ph
dρh

dt
(t)‖1 can be obtained following the procedure used

on the estimation of ‖Phρh(t)‖1. In fact we have successively

α0‖Ph
dρh

dt
(t)‖2

1 ≤ ah(Rh
∂u

∂t
(t) −

dũh

dt
(t),

dρh

dt
(t))

= ah(Rh
∂u

∂t
(t),

dρh

dt
(t)) − ((B(t, t)u(t))h,

dρh

dt
(t))h

−

∫ t

0

(
∂

∂t
B(s, t)u(s))h ds,

dρh

dt
(t))h

+(
∂2u

∂t2
(t))h + (

∂f

∂t
(t))h,

dρh

dt
(t))h

= ah(Rh
∂u

∂t
(t),

dρh

dt
(t)) − ((A

∂u

∂t
(t))h,

dρh

dt
(t))h

= ah(Rh
∂u

∂t
(t),

dρh

dt
(t)) −

N−1
∑

i=1

∫ xi+1/2

xi−1/2

A
∂u

∂t
(x, t) dx

dρh

dt
(xi, t)

=: τ
(d)
h (

dρh

dt
(t)),

that is

α0‖Ph
dρh

dt
(t)‖2

1 ≤ τ
(d)
h (

dρh

dt
(t)). (48)

Lemma 2. For the functional τ
(d)
h holds the following

|τ
(d)
h (vh)| ≤ C

(

N
∑

i=1

h2r
i ‖

∂u

∂t
(t)‖2

H1+r(xi−1,xi)

)1/2

‖Phvh‖1, r ∈ {1, 2}, (49)
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for vh ∈ Wh,0.

From Lemma 2 and the inequality (48) we conclude the next proposition.

Proposition 2. The error Ph
dρh

dt
(t) satisfies the estimate

‖Ph
dρh

dt
(t)‖1 ≤ C

(

N
∑

i=1

h2r
i ‖

∂u

∂t
(t)‖2

H1+r(xi−1,xi)

)1/2

, r ∈ {1, 2}. (50)

Lemma 3. For the functional τ
(b)
h defined by

τ
(b)
h (vh) =

∫ t

0

(

bh(s, t, Rhu(s), vh) − (B(s, t)u(s), vh)h

)

ds,

for vh ∈ Wh,0, satisfies

|τ
(b)
h (vh)| ≤ C

∫ t

0

(

N
∑

i=1

h2r
i ‖u(s)‖2

H1+r(xi−1,xi)

)1/2

ds ‖Phvh‖1, r ∈ {1, 2}. (51)

Lemma 4. For τ
(u)
h (vh) = (Rh

∂u

∂t
(t), vh)h − ((

∂u

∂t
(t))h, vh)h, with vh ∈ Wh,0,

we have

|τ
(u)
h (vh)| ≤ C

(

N
∑

i=1

h2r
i ‖

∂u

∂t
(t)‖2

H1+r(xi−1,xi)

)1/2

‖Phvh‖1, r ∈ {1, 2}. (52)

In what follows we use the notation

τ
(b)
h (t) = C

∫ t

0

(

N
∑

i=1

h2r
i ‖u(s)‖2

H1+r(xi−1,xi)

)1/2

ds

and

τ
(u)
h (t) = C

(

N
∑

i=1

h2r
i ‖

∂u

∂t
(t)‖2

H1+r(xi−1,xi)

)1/2

.

The following lemma has a central role in the main result of this paper.
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Lemma 5. For Phθh(t) holds the following

‖θh(t)‖
2
h + 2(α0 − 3ǫ2)

∫ t

0

‖Phθh(s)‖
2
1 ds ≤

β2
0T

2ǫ2

∫ t

0

∫ s

0

‖Pheh(µ)‖2
1 dµ ds

+‖θ(0)‖2
h +

1

2ǫ2

∫ t

0

(

‖
dρh

ds
(s)‖2

h + τh(s)
2
)

ds,

(53)
for t ∈ [0, T ] and for any ǫ 6= 0.

Proof: It is easy to show that
dθh

dt
(t) is solution of the discrete variational

problem

(
dθh

dt
(t), vh)h = (

dũh

dt
(t), vh)h + ah(uh(t), vh) −

∫ t

0

bh(s, t, uh(s), vh) ds

−((f(t))h, vh)h.

(54)

Considering in (54) the definition (43) of ũh(t) we obtain

(
dθh

dt
(t), vh)h = (

dũ

dt
(t), vh)h − ah(θh(t), vh) −

∫ t

0

bh(s, t, uh(s), vh) ds

−((
∂u

∂t
(t))h, vh)h + (

∫ t

0

(B(s, t)u(s))h ds, vh)h

which is equivalent to

(
dθh

dt
(t), vh)h + ah(θh(t), vh) =

∫ t

0

bh(s, t, eh(s), vh) ds

−(
dρh

dt
(t), vh)h + τh(vh) ,

(55)

for vh ∈ Wh,0 and with τh(vh) = τ
(u)
h (vh) − τ

(b)
h (vh) := τh(t)‖Phvh‖1 where

τh(t) = τ
(u)
h (t) − τ

(b)
h (t).
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Fixing vh = θh(t) in (55) and using the same kind of arguments that were
used in the stability analysis, it can be shown that

1

2

d

dt
‖θh(t)‖

2
h + α0‖Phθh(t)‖

2
1 ≤

β2
0T

4η2

∫ t

0

‖Pheh(s)‖
2
1 ds + η2‖Phθh(t)‖

2
1

+
1

4ǫ2
‖
dρh

dt
(t)‖2

h + ǫ2‖Phθh(t)‖
2
1

+
1

4σ2
τh(t)

2 + σ2‖Phθh(t)‖
2
1,

for ǫ 6= 0, σ 6= 0 and for t ∈ [0, T ], which is equivalent to

d

dt
‖θh(t)‖

2
h + 2(α0 − 3ǫ2)‖Phθh(t)‖

2
1 ≤

β2
0T

2ǫ2

∫ t

0

‖Pheh(s)‖
2
1 ds

+
1

2ǫ2

(

‖
dρh

dt
(t)‖2

h + τh(t)
2
)

,

(56)

when ǫ = η = σ are considered. Integrating (56) we establish (53).

The main theorem is established now.

Theorem 3. Let u be the solution of the variational problem (12) and Phuh(t)
its approximation defined by (24). Then, for t ∈ [0, T ], Phuh(t) satisfies the
error estimate

∫ t

0

‖Pheh(s)‖
2
1 ds ≤ eCt

( 1

α0 − 3ǫ2
‖θh(0)‖2

h

+

∫ t

0

e−Cs
( 1

(α0 − 3ǫ2)ǫ2

(

‖
dρh

ds
(s)‖2

h + τh(s)
2
)

+ 2‖Phρh(s)‖
2
1

)

ds
)

,

(57)
where C is defined by

C =
β2

0T

(α0 − 3ǫ2)ǫ2
(58)

and ǫ is such that

α0 − 3ǫ2 > 0, (59)

Proof: The error Pheh satisfies the following
∫ t

0

‖Pheh(s)‖
2
1 ds ≤ 2

∫ t

0

‖Phρh(s)‖
2
1 ds + 2

∫ t

0

‖Phθh(s)‖
2
1 ds. (60)
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Using (53) in (60) and choosing ǫ satisfying (59), we obtain
∫ t

0

‖Pheh(s)‖
2
1 ds ≤

1

α0 − 3ǫ2

(β2
0T

ǫ2

∫ t

0

∫ s

0

‖Pheh(µ)‖2
1 dµ ds

+‖θ(0)‖2
h +

1

ǫ2

∫ t

0

(

‖
dρh

ds
(s)‖2

h + τh(s)
2
)

ds
)

+2

∫ t

0

‖Phρh(s)‖
2
1 ds.

(61)

Finally the application of the Gronwall lemma to (61) leads to (57).

Combining Theorem 3 with Propositions 1, with the definitions of τ
(b)
h (t)

and τ
(u)
h (t) we conclude the following result.

Corollary 1. Let u be the solution of the variational problem (12) and
Phuh(t) its approximation defined by (24). Then, there exists a positive con-
stant C such that
∫ t

0

‖Pheh(s)‖
2
1 ds ≤ C

(

‖Phu(0) − Phuh(0)‖2
h

+h2r
max

(

∫ t

0

‖u(s)‖2
r+1ds + ‖u(t)‖2

r+1 + ‖
∂u

∂t
(t)‖2

r+1

))

,

for t ∈ [0, T ] and r ∈ {1, 2}.

5. Numerical results

In the numerical results that we present in this section, the ordinary differ-
ential problem (25) is integrated using the implicit Euler method. We intro-
duce the uniform time grid {tn, n = 0, . . . , M} with step-size ∆t (M∆t = T )
and by un

h we represent the numerical solution obtained at time level tn.
The error that we compute in what follows is the maximum of ‖Phe

n
h‖1 =

‖Phu(tn) − Phu
n
h‖1 for n such that n∆t ≤ T, which is denoted by ‖Pheh‖1.

Example 1. Let us consider the equation (1) with

a2(x) = 0.5, a1(x) = a0(x) = 0,

b2(s, t, x) = −
0.5

τ
e−

t−s
τ , b1(s, t, x) = b0(s, t, x) = 0, τ = 0.01,

(62)
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f = 0, and with the conditions

u(0, t) = 1, u(1, t) = 0, t > 0, u(x, 0) = 0, x ∈ [0, 1], (63)

and T = 0.1. This IBVP can be used to model the diffusion of a substance
in the space domain [0, 1] which is initially empty, with a constant source
in the left hand side and the substance that arrives to the right hand side is
immediately removed.

In Figure 1 we plot the numerical solution for several time levels computed
using a uniform mesh and with ∆t = 10−4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

C

 

 
t=0.05
t=0.1
t=0.025
t=0.001

Figure 1. Numerical solution of (1) with the coefficients (62)
and with the conditions (63).

In Table 1 we illustrate the convergence order established in Corollary 1.
In this table we present the convergence rates given by

rate =
ln

(

‖Ph1
eh1

‖1

‖Ph2
eh2

‖1

)

ln
(

h1

h2

)

where h1 and h2 =
h1

2
are consecutive step-sizes that are contained in the first

column of this table.

Example 2. Let us consider the equation (1) with Ω = (0, 1),

a2(x) = x + 1, a1(x) = x + 1, a0(x) = 0,

b2(x, t, s) = e−
t−s
τ , b1(s, t, x) = b0(s, t, x) = 0,

(64)
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h N error rate
1.000e-02 1.000e+02 3.796e-06 2.00
5.000e-03 2.000e+02 9.484e-07 2.00
2.500e-03 4.000e+02 2.370e-07 2.00
1.250e-03 8.000e+02 5.916e-08 2.01
6.250e-04 1.600e+03 1.470e-08 2.03
3.125e-04 3.200e+03 3.590e-09 2.13
1.563e-04 6.400e+03 8.188e-10 -

Table 1. Convergence rates for (1) with the coefficients (62)
and with the conditions (63).

and τ = 0.01, T = 0.1. The reaction term f and the initial condition u0 are
such that the IVBP defined with (1) has the solution u(x, t) = tx(x−1) cos(x).

We consider a set of 451 random grids in [0, 1] and for the time integration
we take ∆t = 2×10−6. We plot in Figure 2 the logarithm of the error ‖Pheh‖1

versus the logarithm of the maximum step-size. The straight line plotted in
this figure is the least-squares fit to the points (ln(hmax), ln(‖Pheh‖1)). As the
slop of this straight line is 2.0107, the numerical results obtained confirm the
estimate given in Corollary 1.

−6.5 −6 −5.5 −5 −4.5 −4 −3.5
−11

−10

−9

−8

−7

−6

−5

−4

 

 

 
y = 2.0107*x + 2.6769

Figure 2. ln(‖Pheh‖1) versus ln(hmax).

Example 3. Let us consider the equation (1) with Ω = (0, 1),

a2 = a1 = 1, a0 = 0,

b2(s, t, x) = ex− t−s
τ sin(x), b1(s, t, x) = e−

t−s
τ x2, b0(s, t, x) = 0,

(65)
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and τ = 0.01, T = 0.1. Let f and u0 be such that the IBVP defined with (1)
has the solution u(t, x) = tx(x − 1) cos(x).

In Figure 3 we plot the logarithm of the error ‖Pheh‖1 versus the loga-
rithm of the maximum step-size for a set of 451 random grids considered
in [0, 1], when ∆t = 2 × 10−6. The least-squares straight line fitting the
points (ln(hmax), ln(‖Pheh‖1)) is also plotted in this figure. As the slop of this
straight line is 1.998 we conclude that these results illustrate the estimates
given in Corollary 1 .
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Figure 3. ln(‖Pheh‖1) versus ln(hmax).

6. Conclusions

In this paper a semi-discretization of the integro-differential problem (1)
with Dirichlet boundary conditions was studied. It was shown that the semi-
discrete approximation presents convergence of order r with respect to the

norm ‖.‖1 provided that u(t) and
∂u

∂t
(t) are in Hr+1(a, b) for r ∈ {1, 2}. The

semi-discretization studied can be seen as a standard finite difference dis-
cretization and as a lumped mass semi-discretization, and so the convergence
estimates established can be seen as both supraconvergent and supercloseness
estimates ([33]).

It is known that the semi-discrete approximation for the Fickian parabolic
problem correspondent to (1), defined using the piecewise linear finite element
method has second convergence order with respect to the L2-norm provided
the solution is in H2(a, b) ([32]). The smoothness required in the present
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paper is essential to conclude the unexpected convergence order obtained
because the convergence was established considering the norm ‖.‖1.
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