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1. Introduction
There is a deep connection between algebras and the categories of their

modules. The interplay between their properties contributes to both the
structure theory of algebras and the theory of abelian categories.

It is often the case that the study of the category of modules over a par-
ticular algebra can lead to the use of other abelian categories, which are
non-equivalent to module categories over any algebra. One of such exam-
ples is the category of modules over a C-graded algebra, where C is a small
category. Such categories appear in the joint work of the author and A. P.
Santana [18] on homological properties of Schur algebras.

Algebras graded over a small category generalise the widely known group
graded algebras (see [16, 12, 8, 15, 14]), the recently introduced groupoid
graded algebras (see [10, 11, 9]), and Z-algebras, used in the theory of operads
(see [17]).

One of the important properties of some abelian categories, that consider-
ably simplifies the study of their homological properties, is the existence of
projective covers for finitely generated objects. Such categories were called
semi-perfect in [7]. We give in this article the characterisation of C-graded
algebras whose categories of modules are semi-perfect. This result will be of
particular importance in the above mentioned work on Schur algebras.

We now introduce the definitions used in the paper and explain the main
result in more detail. A C-graded algebra is a collection of vector spaces
Aα parametrised by the arrows α of C with preferred elements es ∈ A1s

for
every object s of C and a collection of maps µα,β : Aα ⊗Aβ → Aαβ for every
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composable pair of morphisms α, β of C. For every composable triple α, β,
and γ of arrows in C we require associativity

Aα ⊗ Aβ ⊗ Aγ
µα,β⊗Aγ

//

Aα⊗µβ,γ
²²

Aαβ ⊗ Aγ

µαβ,γ

²²

Aα ⊗ Aβγ
µα,βγ

// Aαβγ.

Also for every γ : s → t the unitary axiom

µ1t,γ(et, a) = a = µγ,1s
(a, es)

for all a ∈ Aγ, holds.
A C-graded module M over a C-graded algebra A is a collection of vector

spaces Mγ parametrised by the arrows γ of C with maps rα,β : Aα⊗Mβ → Mαβ

for every composable pair of morphisms in C. These are subject to the
associativity

Aα ⊗ Aβ ⊗Mγ
µα,β⊗Mγ

//

Aα⊗rβ,γ
²²

Aαβ ⊗Mγ

rαβ,γ

²²

Aα ⊗Mβγ
rα,βγ

// Aαβγ

and unitarity
r1t,γ(et,m) = m, ∀m ∈ Mγ

axioms. An A-homomorphism between two C-graded A-modules M and N
is a collection of linear homomorphisms fγ : Mγ → Nγ such that for every
composable pair of morphisms α, β ∈ C the diagram

Aα ⊗Mβ
Aα⊗fβ

//

r1,α,β

²²

Aα ⊗Nβ

r2,α,β

²²

Mαβ
fαβ

// Nαβ

is commutative.
We denote the category of all C-graded A-modules by A-mod.
Given a morphism γ : s → t of C define the left stabiliser Stlγ of γ by

Stlγ = {α ∈ C(t, t)|αγ = γ} .

Then Stlγ is a submonoid of C(t, t) since for every α1, α2 ∈ Stlγ we have

α1α2γ = α1γ = γ.
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For every C-graded algebra A the multiplication maps µα,β induce an algebra
structure on the vector space

Al(γ) :=
⊕

α∈Stlγ

Aα

with unity et.
The main result of this paper is

Theorem 1.1. Let C be a small category. The category of C-graded modules
over a C-graded algebra A is semi-perfect if and only if for all arrows γ of C
the algebras Al(γ) are semi-perfect.

Note that if C is a group G considered as a category with one object,
then we recover a criterion of Dăscălescu [4] for a G-graded algebra to be
semi-perfect.

This paper is written with the reader unfamiliar with category theory in
mind. Thus the author tried to give all relevant definitions and prove all the
properties in full detail. The names of the sections are self-explaining.

Throughout this paper C denotes a small category.

2. Free objects
A C-graded vector space is just a collection Vγ of vector spaces parametrised

by the arrows γ ∈ C. A map between two C-graded vector spaces is a
collection of linear homomorphisms fγ : Vγ → Wγ. We denote the category
of C-graded vector spaces by VC.

Given a C-graded algebra A and a C-graded vector space V , we define a
free C-graded A-module FA(V ) by the formula

FA(V )γ =
⊕

γ=αβ

Aα ⊗ Vβ,

with the structure map rδ,γ : Aδ⊗FA(V )γ → FA(V )δγ defined by the require-
ment that its restriction to the component Aδ ⊗ Aα ⊗ Vβ is µδ,α ⊗ Vβ. We
say that a C-graded A-module M is free if M ∼= FA(V ) for some V ∈ VC.
Let f : V → W be a map of C-graded vector spaces. Define FA(f) by the
formulas

FA(f)γ|Aα⊗Vβ
= fα ⊗ Vβ, for all α, β ∈ C1 such that αβ = γ.

With these definitions, we get a functor FA : VC → A-mod.
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Proposition 2.1. The functor FA is a left adjoint to the forgetful functor
U : A-mod → VC.

Proof : We will denote by Id the identity functor. By Theorem 3.1.5. in [3],
to prove the proposition it is enough to show the existence of natural trans-
formations η : Id → UFA and ε : FAU → Id, such that (εFA)(FAη) = 1FA

and
(Uε)(ηU) = 1U .

For every C-graded vector space V define ηV : V → A⊗ V by

(ηV )γ(v) = et ⊗ v,

where t is the target of γ. For every f : V → W we have

((A⊗ f) ◦ (ηV ))γ(v) = (A⊗ f)γ(et ⊗ v) = et ⊗ f(v) = (ηW ◦ f)γ(v),

which shows that η is a natural transformation of functors.
For every A-module M define εM : A ⊗ M → M to be the action of A

on M . That ε is a natural transformation of functors follows just from the
definition of homomorphism of A modules.

It is left to check the above stated equalities. Let M be an A-module and
m ∈ Mγ. Then

(Uε)(ηU)(m) = (Uε)(et ⊗m) = m.

Let V be a C-graded vector space. Then FA(V ) = A⊗ V . The vector space
FA(V )γ is a direct sum of vector spaces Aα ⊗ Vβ with αβ = γ. Let a ∈ Aα

and v ∈ Vβ. Denote by t the target of β. Then

(εFA)(FAη)(a⊗ v) = (εFA)(a⊗ et ⊗ v) = a⊗ v.

Denote by M the composition UFA. Then M has a structure of a monad
(M, µ, η), where µ : M2 →M is given by µV = U(εFA(V )). For information
on monads and there connection with adjoint functors the reader is referred
to [2].

Let us compute the explicit formula for µ. For every αβγ = δ, a1 ∈ Aα,
a2 ∈ Aβ, w ∈ Vγ

(µV )δ(a1 ⊗ a2 ⊗ w) = U(εFA(V ))δ(a1 ⊗ a2 ⊗ w) = µα,β(a1 ⊗ a2)⊗ w.
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Recall that an M-algebra is a C-graded vector space V together with a
map r : M(V ) → V such that the diagrams

M2(V )
µV //

M(r)
²²

M(V )

r
²²

M(V ) r // V

V
ηV //

1V ##FFFFFFFFFF M(V )

r
²²

V

are commutative. The map between M-algebras V and W is a map of C-
graded vector spaces f : V → W such that the diagram

F (V )
F (f)

//

r
²²

F (W )

r
²²

V
f

// W

is commutative. From the above computation it immediately follows that the
category of M-algebras is the same as the category of A-modules. We will
use this fact to prove some basic properties of the category of A-modules.

3. Abelian category
For the definition and examples of abelian categories the reader is referred

to [13].
Recall that a discrete category is a category without non-trivial maps. We

may consider the category VC as a category of functors from the discrete
category whose set of objects coincide with the set of morphisms of C to the
category of vector spaces V . Since V is an abelian category it follows from
the second paragraph of p.65 in [13] that the category VC is abelian as well.

Proposition 3.1. Let A be a C-graded algebra. Then the category A-mod is
abelian.

Proof : We prove the theorem by applying Proposition 5.3 of [5]. This propo-
sition states that if C is an abelian category and M is an additive monad
on C that preserves cokernels, then the category of M-algebras is abelian.
We know that the category of A-modules is equivalent to the category of
M-algebras, where M is the monad defined in the previous section.

Thus it is enough to check that M is additive and preserves cokernels.
Note that direct sums and cokernels in VC are defined componentwise. Now
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for any two C-graded vector spaces V and W and any map f : V → W we
have

M(V ⊕W )γ = FA(V ⊕W )γ =
⊕

αβ=γ

Aα ⊗ (V ⊕W )β =
⊕

αβ=γ

Aα ⊗ (Vβ ⊕Wβ)

=
⊕

αβ=γ

Aα ⊗ Vβ ⊕ Aα ⊗Wβ =
⊕

αβ=γ

Aα ⊗ Vβ ⊕

⊕

αβ=γ

Aα ⊗Wβ




= FA(V )γ ⊕ FA(W )γ = M(V )γ ⊕M(W )γ.

Also

Coker(M(f))γ = Coker(FA(f))γ = Coker(FA(f)γ) = Coker


⊕

αβ=γ

Aα ⊗ fβ




=
⊕

αβ=γ

Coker(Aα ⊗ fβ) =
⊕

αβ=γ

Aα ⊗ Coker(fβ)

=
⊕

αβ=γ

Aα ⊗ Coker(f)β = FA(Coker(f))γ = M(Coker(f))γ.

4. Grothendieck category
Given an abelian category C, the set of objects {Mα|α ∈ I} is called a gen-

erating set if every object of C is a quotient of direct sums from {Mα|α ∈ I}.
Denote by K[γ] the C-graded vector space defined by

K[γ]α =

{
K if α = γ
0 otherwise.

Then clearly
{
K [γ]

∣∣γ ∈ C1
}

is a generating set of the category VC.

Proposition 4.1. The set
{
FA (K [γ])

∣∣γ ∈ C1
}

is a generating set of the
category A-mod.

Proof : The functor FA commutes with direct sums, and so FA(V ) is a direct
sum of modules FA (K [γ]) for every C-graded vector space V . Let M be
a C-graded A-module. Denote by ψ : VC(M,M) → A-mod(FA(M),M) the
adjunction isomorphism. Then ψ is given by the formula

ψ(f)γ(et ⊗m) = fγ(m)



SEMI-PERFECT CATEGORY-GRADED ALGEBRAS 7

for all m ∈ Mγ and t = t(γ). In particular,

ψ(1M)(et ⊗m) = m.

Therefore M is a quotient of a direct sum of objects FA(K [γ]).

A complete and cocomplete abelian category C is called Grothendieck if for
every object X and every ascending family of subobjects Ui and subobject
V of X we have

V ∩ ∪iUi = ∪i(V ∩ Ui).

Here ∪iUi is the image of the direct limit lim−→i∈I
Ui under the structure map

from the direct limit to X. Analogously for ∪i(V ∩ Ui). The intersection
V ∩ U is defined as a pull-back of the diagram

V

²²

U // X.

Note that in the modern literature the completness condition is usually
omited in the definition of Grothendieck category. But the reader should be
aware that Harada uses it in his article [7]. Since we quote the result from
this paper we stick to his definition.

Proposition 4.2. The category A-mod is complete and cocomplete.

Proof : The category VC is complete as a category of functors from C1 to a
complete category V . Now the category M-alg is complete by Corollary 4.3
in [2].

To show that an abelian category is cocomplete it is enough to check that
it contains arbitrary direct sums. This is straightforward for A-modules since
we can take direct sums componentwise.

Proposition 4.3. The category A-mod is Grothendieck.

Proof : By Propositions 4.1 and 4.2 the category A-mod is a complete and
cocomplete abelian category. Thus it is enough to check that for every C-
graded module M , every A-submodule N of M and every ascending family
of submodules Ui ⊂ M , i ∈ I, we have

N ∩ (∪i∈IUi) = ∪i∈IN ∩ Ui.
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Since limits and colimits are given componentwise in the category A-mod we
have for all γ ∈ C

(N ∩ (∪i∈IUi))γ = Nγ ∩ (∪i∈IUi)γ.

Further,
(lim−→

i∈I

Ui)γ = lim−→
i∈I

(Ui)γ = ∪i∈I(Ui)γ ⊂ Mγ.

Thus
(∪i∈IUi)γ = ∪i∈I(Ui)γ

and

(N ∩ (∪i∈IUi))γ = Nγ ∩ (∪i∈I(Ui)γ) = ∪i∈INγ ∩ (Ui)γ = (∪i∈IN ∩ Ui)γ.

5. Projective cover
Let C be an abelian category. An object P ∈ C is called projective if for

any epimorphism φ : X ³ Y the map

C(P,X) → C(P, Y )

f 7→ φ ◦ f

is an epimorphism. It is straightforward that every object in VC is projective.

Proposition 5.1. Let V be a C-graded vector space. Then FA(V ) is a pro-
jective C-graded A-module.

Proof : Let h : M ³ N be a surjective morphism of C-graded A-modules. We
have to show that the map

A-mod(FA(V ),M) → A-mod(FA(V ), N)

f 7→ h ◦ f

is surjective. Now the diagram

A-mod (FA(V ),M)
φ

//

h◦−
²²

VC(V, M)

h◦−
²²

A-mod (FA(V ), N)
φ

// VC(V, N)

is commutative. Since the horizontal arrows are isomorphisms and the right
arrow is surjective because V is projective in VC, it follows that the left arrow
is an epimorphism as well.
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A family of maps {φi : Ti → X|i ∈ I} is called epimorphic in C if for any
W ∈ C the map

C(X,W ) →
∏

i∈I

C(Ti,W )

f 7→ (f ◦ φi)i∈I

is injective.
We say that the map φ : X → Y has a small image if for any map ψ : T →

Y the family (φ, ψ) is epimorphic if and only if ψ is an epimorphism. A
subobject T of Y is small if the natural inclusion T → Y has a small image.

A projective cover of an object Y is a projective object P together with an
epimorphism ψ : P ³ Y such that the kernel of ψ is a small subobject of P .

The following theorem insures that a projective cover of an object Y , if it
exists, is unique up to isomorphism.

Theorem 5.1. Let P and P̃ be projective objects in C and π : P ³ Y ,
π̃ : P̃ ³ Y epimorphisms. Suppose π is a projective cover. Then P is a
direct summand of P̃ , that is, there are i : P → P̃ and p : P̃ → P such that
p ◦ i = 1P . Moreover, π = π̃ ◦ i and π̃ = π ◦ p.

Proof : Since both P and P̃ are projective and both π and π̃ are epimorphisms
there are φ : P̃ → P and ψ : P → P̃ such that π̃ = π ◦ φ and π = π̃ ◦ ψ.
We will show that φ is surjective. Since P is projective, there is τ : P → P̃
such that φ ◦ τ = 1P . In particular P is a direct summand of P̃ and π̃ ◦ τ =
π ◦ φ ◦ τ = π ◦ 1P = π.

Let X be a kernel of π. Denote by θ : X → P the inclusion of X in P . We
will show that the family {φ, θ} is epimorphic. Then since the image of θ is
small this will imply that φ is an epimorphism.

Suppose there is W ∈ C such that the map

C(P, W ) → C(X,W )⊕ C(P̃ ,W )

f 7→ (f ◦ θ, f ◦ φ)
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is not injective. Let f be a non-zero element in its kernel. Then we get a
commutative diagram:

P̃

¨¨

φ

~~~~
~~

~~
~~

π̃
²²

X
θ //

ÃÃ

P
π //

f
²²

Y //

g~~}}
}}

}}
}}

0

W

where doted arrows denote zero maps and g exists since Y is a cokernel of θ.
Now

g ◦ π̃ = g ◦ π ◦ φ = f ◦ φ = 0

and so
f = g ◦ π = g ◦ π̃ ◦ ψ = 0,

which is a contradiction.

6. Small and finitely generated objects
An object X of an abelian category C is said to be small if for any direct

sum
⊕

i∈I Mi and arbitrary map f : X → ⊕
i∈I Mi there is a finite subset

J of I such that Im(f) ⊂ ⊕
j∈J Mj. It is straightforward that a C-graded

vector space V is small if and only if all Vγ are finite dimensional and there
are only finitely many γ such that Vγ 6= 0.

Proposition 6.1. Let A be a C-graded algebra. A C-graded A-module M is
small if and only there is a small C-graded vector space V and an inclusion
of C-graded vector spaces i : V → M such that ψ(i) : FA(V ) → M is an
epimorphism.

Proof : Suppose there is an inclusion i : V → M satisfying the conditions of
the proposition. Let f : M → ⊕

j∈I Mj be a map of C-graded A-modules.
Then f ◦ i : V → ⊕

j∈I Mj is a map of C-graded vector spaces, and since V
is small there is a finite subset J of I such that Im(f ◦ i) ⊂ ⊕

j∈J Mj.
Let m ∈ Mγ. Then there are αk, βk ∈ C and ak ∈ Aαk

, vk ∈ Vβk
such that

αkβk = γ and

ψ(i)

(∑

k

ak ⊗ vk

)
= m.
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Hence

f(m) = f ◦ ψ(i)

(∑

k

ak ⊗ vk

)

= f

(∑

k

ak ⊗ i(vk)

)
=

∑

k

ak ⊗ f ◦ i(vk) ∈
⊕

j∈J

Mj,

since f is a homomorphism of C-graded A-modules and
⊕

j∈J Mj is a C-
graded A-module.

Conversely, let M be a small C-graded A-module. Since FA(M) is a pro-
jective object the natural epimorphism ψ(1M) : FA(M) → M has a splitting
τ : M → FA(M). Now FA(M) is a direct sum of the C-graded A-modules
FA(K[γ]) with the multiplicity of FA(K[γ]) equal to dim(Mγ). Since M
is small there is a finite family J of morphisms in C such that Im(τ) ⊂⊕

γ∈J FA(K[γ]). Denote by V the direct sum
⊕

γ∈J K[γ] ⊂ ⊕
γ∈J FA(K[γ]).

Then V is small C-graded vector space, since the direct sum is finite. The
restriction i of ψ(1M) to V is an inclusion and ψ(i) is an epimorphism, since

ψ(i) ◦ τ = ψ(1M) ◦ τ = 1M .

An object X of an abelian category C is said to be finitely generated if for
every family of subobjects Xα with α ∈ I satisfying

X =
⋃

α∈I

Xα

there is a finite subset J ⊂ I such that

X =
⋃

α∈J

Xα.

It is straightforward that a quotient of a finitely generated object in an
abelian category is again finitely generated. Moreover, a projective object is
small if and only if it is finitely generated (see [6, pg.105]). Thus we get

Corollary 6.1. Every small object in A-mod is finitely generated.
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7. Harada’s criterion
We say that a ring R is semi-perfect if the category of left R-modules is

semi-perfect. An object M of an abelian category C is called semi-perfect if
the ring C(M,M) is semi-perfect. An object M is called completely indecom-
posable if the ring C(M, M) is local. Since every local ring is semi-perfect
(see [1, pg. 303 ]) every completely indecomposable object is a semi-perfect.

Theorem 7.1. Let C be a Grothendieck category with a generating set
{Pα|α ∈ I} of semi-perfect projective objects. Then C is a semi-perfect cate-
gory.

Proof : In Corollary 1 to Theorem 4 of [7] it is proved that under the condi-
tions of the theorem C is semi-perfect if and only if it has a generating set
{Pα|α ∈ I} of completely indecomposable projective objects.

Now, suppose that the set {Pα|α ∈ I} is a generating set of semi-perfect
projective objects. Then each ring C(Pα, Pα) is semi-perfect. By Theo-
rem 27.6 of [1] for each α the ring C(Pα, Pα) has a complete orthogonal
set eα,1, eα,2, . . . , eα,nα

with each ei,αC(Pα, Pα)ei,α a local ring. Denote by Pα,i

the direct summand of Pα that corresponds to the idempotent eα,i. Then Pα,i

is projective as a direct summand of a projective object and C(Pα,i, Pα,i) ∼=
eα,iC(Pα, Pα)eα,i is a local ring. It is clear that {Pα,i|α ∈ I, 1 ≤ i ≤ nα} is a
generating set for the category C.

Theorem 7.2. Let C be a semi-perfect Grothendieck category with a generat-
ing set of finitely generated projective objects. Then every finitely generated
projective object P in C is semi-perfect.

Proof : By Corollary 1 in [7] the category C has a generating set {Pα|α ∈ I}
of completely indecomposable projective objects. Now P is a quotient of a
direct sum

⊕
α∈J Pα, where J is a family of elements in I. So if we denote the

quotient map by ψ, we have that P is the union of the images of restrictions
of ψ on Pα, α ∈ J . Since P is finitely generated there is a finite subfamily
S of J such that the restriction of ψ on P̃ =

⊕
α∈S Pα is surjective. As P is

projective it is a direct summand of P̃ and therefore P ∼= ⊕
α∈S′ Pα for some

subfamily S ′ of S. From Lemma 2 [7, p.331] it follows that the ring C(P, P )
is semi-perfect.
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8. The main result
Recall from the introduction that given an arrow γ : s → t of a small

category C we denoted by Al(γ) the algebra
⊕

α∈Stlγ

Aα,

where Stl(γ) is the left stabiliser of γ.

Theorem 8.1. The category A-mod is semi-perfect if and only if for all
γ ∈ C1 the algebras Al(γ) are semi-perfect.

Proof : By Theorems 7.1 and 7.2 the category A-VC is semi-perfect if and
only if all objects FA(K[γ]) are semi-perfect. Now, we have isomorphisms of
vector spaces

A-mod (FA(K[γ]), FA(K[γ])) ∼= VC(K[γ], FA(K[γ]))

∼= (FA(K[γ]))γ
∼=

⊕

α∈Stlγ

Aα = Al(γ).

We claim that this is an anti-isomorphism of algebras. Denote by v the
element in K[γ]γ that corresponds to the unit of K. Let f : FA(K[γ]) →
FA(K[γ]) be a map of A-modules. Then the image of f under the first two
isomorphisms is the evaluation of f on et ⊗ v, where t is the target of γ. In
particular, this is an element of FA(K[γ])γ

∼= ⊕
αγ=γ Aα⊗K[γ]γ. Thus it has

the form a⊗ v for some a ∈ Al(γ). Now, let g be another endomorphism of
the A-module FA(K[γ]). Suppose that g(et ⊗ v) = b⊗ v. Then

g(f(et ⊗ v)) = g(a⊗ v) = ag(et ⊗ v) = ab⊗ v.
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