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the category considered: for instance, we consider groups vs. abelian groups, Lie
algebras vs. vector spaces, precrossed modules vs. crossed modules and Leibniz al-
gebras vs. Lie algebras. We also examine the interplay between the relative case
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Introduction

Universal central extensions have always been an important tool in low-
dimensional homology. In fact the concept was there in Schur’s foundational
work [37], when homology for algebraic objects was only just starting to be
developed; it was Schur who discovered the relations between perfect groups,
universal central extensions and the Schur multiplier—the latter of which,
as Hopf later realised, may be expressed in terms of integral homology of
groups [25].

Given a group G and a normal subgroup N of G, the commutator [N, G]
is the normal subgroup generated by the elements ngn='g~! for alln € N and
g € GG. A group G is perfect when G is equal to its commutator subgroup
|G, G]. A surjective group homomorphism f: B — A is a central exten-
sion when the commutator [K|[f], B] of the kernel K[f] of f with B is trivial.

Received 27th February 2009.

The first author’s research was supported by Ministerio de Educacion y Ciencia under grant
number MTM2006-15338-C02-02 (includes European FEDER support), by project Ingenio Math-
ematica (i-MATH) under grant number CSD2006-00032 (Consolider Ingenio 2010) and by Xunta
de Galicia under grant number PGIDITIO6PXIB371128PR. The second author’s research was sup-
ported by CMUC and FCT. He would like to thank the University of Vigo for its kind hospitality
during his stay in Pontevedra.



2 J. M. CASAS AND T. VAN DER LINDEN

A central extension u: U — A is universal when, for any other central ex-
tension f: B — A, there exists a unique group homomorphism f: U — B
satisfying fof = u. If u is a universal central extension then both its domain
U and its codomain A are perfect. Conversely, for any perfect group A there
exists such a universal central extension u. Computing the second integral
homology group Hs(A,Z) of a perfect group A is particularly simple: take a
universal central extension u: U — A; its kernel K|u] is Ho(A,Z).

Of course the application of those ideas is not limited to the case of groups:
universal central extensions have been considered in many other situations as
well. For instance, the case of Lie algebras is classical (here the Lie bracket
plays the role of commutator), and more recently, similar theories have been
worked out for crossed modules, precrossed modules, Leibniz algebras, etc.
[1, 10, 11, 21, 22]. The aim of the present work is to make explicit the
underlying unity of these results, and to join them in one abstract framework,
so that a basic theory of universal central extensions is developed for all those
special cases simultaneously.

Our approach is based on categorical Galois theory with, in particular,
Janelidze and Kelly’s general notion of central extension [28]. Their notion
is relative in sense that whether or not an extension f: B — A in a Barr
exact Mal'tsev category A is central depends on the choice of a Birkhoff
subcategory B of A. This relative approach is based on (and generalises)
the work of the Frohlich school [19, 35, 20] which focused on varieties of
Q-groups. Recall [24] that such is a variety of universal algebras which has
amongst its operations and identities those of the variety of groups but has
just one constant; and a Birkhoff subcategory of a variety is the same thing
as a subvariety. Although some examples (e.g., groups vs. abelian groups and
Lie algebras vs. vector spaces) are absolute, meaning that they fit into the
theory relative with respect to the subcategory of all abelian objects, others
are not: precrossed modules vs. crossed modules, and Leibniz algebras vs.
Lie algebras, for instance. In the absolute case, some results were already
investigated in [22].

The text is structured as follows. In the first section we develop that part
of the theory which does not depend on the existence of either projective
objects or short exact sequences. Here we work in the context of pointed
Barr exact Mal’tsev categories. We give several characterisations of universal
central extensions in terms of perfect objects. The most interesting results,
however, are obtained in the setting of semi-abelian categories with enough
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projectives [4, 29]—which still includes all varieties of 2-groups. In Section 2
we prove that any perfect object admits a universal central extension; we
also make the connections with semi-abelian homology. In the last section
we consider an adjunction
I
A_1°B (A)

<« —
D

with the two resulting absolute theories—abelianisation in A and in B—
and focus on the interplay between the different types of universal central
extension induced by them.

1. Basic theory

In their article [28], Janelidze and Kelly introduced a general theory of
relative central extensions in the context of exact categories. This is the
theory we shall be considering here, focusing on the induced relative notion
of universal central extension. We give an overview of the needed definitions
and prove some preliminary results on the relation between universal central
extensions and perfect objects.

1.1. Barr exact Mal’tsev categories. Recall that a regular epimor-
phism is a coequaliser of some pair of arrows. A category is regular when
it is finitely complete with coequalisers of kernel pairs and with pullback-
stable regular epimorphisms. In a regular category, any morphism may be
factored as a regular epimorphism followed by a monomorphism, and this
image factorisation is unique up to isomorphism. A category is Barr ex-
act when it is regular and such that any internal equivalence relation is a
kernel pair. Since the theory of central extensions becomes somewhat simpler
then, we shall restrict ourselves to the case when the categories considered
are also Mal’tsev, i.e., any internal reflexive relation is an equivalence rela-
tion. In fact, a Barr exact category is Mal’tsev if and only if the pushout of
a regular epimorphism along a regular epimorphism always exists, and the
comparison map to the induced pullback is also a regular epimorphism [8].
See, e.g., [4] for further details.

Examples 1.2. The examples we shall be considering throughout the text
are all categories which are (equivalent to) varieties of Q-groups, and as such
are finitely complete Barr exact Mal’tsev categories. They are: the categories
Gp of groups and Ab of abelian groups; Leibk, Liex and Vectx of Leibniz
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algebras, Lie algebras and vector spaces over a field K; and the categories
PXMod, XMod and AbXMod of precrossed modules, crossed modules and
abelian crossed modules.

Recall [32, 33] that a Leibniz algebra g is a vector space over a field K
equipped with a bilinear operation [-,-]: g X g — g that satisfies

[l‘, [:%Z]] = HxayLZ] o HJ?,Z],y]

(the Leibniz identity) for all x,y, z € g. When [z,2] = 0 for all x € g the
bracket is skew-symmetric and the Leibniz identity is the Jacobi identity, so
g is a Lie algebra.

Recall that a precrossed module (7,G,0) is a group homomorphism
0: T — G together with an action of G on T, denoted 9t for ¢ € G and
t € T, satisfying 0(%) = gd(t)g~! for all g € G and t € T. If in addi-
tion if verifies the Peiffer identity 2t = tt't~! for all ¢, ¢’ € T, we say
that (7, G, 0) is a crossed module. A morphism of (pre)crossed modules
(f1, fo): (T,G,0) — (T",G', J') consists of group homomorphisms fi: T — T"
and fo: G — G’ such that 9'of; = fyo0 and the action is preserved. The cat-
egories PXMod and XMod are equivalent to varieties of {)-groups; see, e.g.,
29], [30] or [31]. The category AbXMod consists of abelian crossed modules,
i.e., (T,G,0) such that T and G are abelian groups and the action of G on
T is trivial.

From now on, A will denote a chosen Barr exact Mal'tsev category.

1.3. Birkhoff subcategories. The notion of central extension introduced
in [28] is relative, being defined with respect to a chosen subcategory B of
the category A considered.

A Birkhoff subcategory B of A is a full and reflective subcategory which
is closed under subobjects and regular quotients. We write the induced
adjunction as in (A) and denote its unit n: 14 = I. A Birkhoff subcategory
of a variety of universal algebras is the same thing as a subvariety. If A is
finitely complete Barr exact Mal'tsev then so is any Birkhoff subcategory B
of A.

For a given full and reflective subcategory B closed under subobjects, the
Birkhoff property of B (i.e., closure under quotients) is equivalent to the
following condition: given any regular epimorphism f: B — A in A, the
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induced square of regular epimorphisms

B—1s4
nBl J/m (B)
IB -~ IA

is a pushout.
The examples considered in 1.2 form categories with a chosen Birkhoff
subcategory in the following ways.

Example 1.4 (Groups). The left adjoint to the inclusion of Ab in Gp is the
abelianisation functor, denoted ab: Gp — Ab; it sends a group G to its
abelianisation G/[G, G].

Example 1.5 (Leibniz algebras and Lie algebras). Here there are three in-
clusions of Birkhoff subcategories, of which the left adjoints form the next
commutative triangle.

Vectk

The left adjoint (—)ie: Leibg — Liex (which is usually called the Liesation
functor) takes a Leibniz algebra g and maps it to the quotient g/g”™, where
g™ is the two-sided ideal (i.e., normal subalgebra) of g generated by all
elements [z, z| for x € g.

Vectg may be considered as a subvariety of Liex by equipping a vector
space with the trivial Lie bracket; the left adjoint ab: Liex — Vectg to the
inclusion Vectx C Liex takes a Lie algebra g and maps it to the quotient
g/]g, g], where [g, g] is generated by the elements [z, y] € g for all =, y € g.
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Example 1.6 ((Pre)crossed modules). As in the previous example, we obtain
a commutative triangle of left adjoint functors.

(_ ) Peiff

PXMod XMod

N4

AbXMod

Given two normal precrossed submodules (M, H,0) and (N, K, 0) of a pre-
crossed module (7,G,0), the Peiffer commutator (M, N) is the normal
subgroup of T generated by the Peiffer elements (m,n) = mnm=(?™n)~!
and (n,m) = nmn ' (?®m)~" for m € M, n € N [13]. We denote by

(M,H,0),(N,K,0))

the precrossed module ((M, N), 1,1); it may be considered as a normal pre-
crossed submodule of (T, G, 0). The precrossed module

(1,G,0),(T,G,0)) = ({(T,T),1,1)

is the smallest one that makes the quotient (T, G,0)/{((T,G,0),(T,G,0)) a
crossed module. This defines a functor (—)peir: PXMod — XMod, left adjoint
to the inclusion of XMod in PXMod.

Given a precrossed module (T, G, ), the commutator [G,T] is the normal
subgroup of T generated by the elements 9tt~! for g € G and t € T. The left
adjoint functor ab: PXMod — AbXMod takes a precrossed module (T, G, 0)
and maps it to (T/[T,T]|G,T],G/|G,G],d), where 9 is the induced group
homomorphism. The functor ab: XMod — AbXMod is given by ab(T, G, 0) =
(T'/1G,T],G/1G,G], ).

From now on, B will be a fixed Birkhoff subcategory of a Barr exact
Mal’tsev category A.

1.7. Extensions and central extensions. An extension in A is a regular
epimorphism. A morphism of extensions is a commutative square between
them, and thus we obtain the category ExtA of extensions in A.
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Together with the classes |ExtA| and |ExtB| of extensions in A and B, the
adjunction (A) forms a Galois structure

I
I'=(A_L B, |ExtA|, [ExtB])
>

in the sense of [26]. With respect to this Galois structure, there are notions
of trivial and central extension, which in the present context amount to the
following [7, 28]. An extension f: B — A in A is trivial (with respect to
B) or B-trivial when the induced square (B) is a pullback. And f is central
(with respect to B) or B-central when either one of the projections fy, fi
in the kernel pair (R[f], fo, f1) of f is B-trivial. That is to say, f is central
with respect to B if and only if in the diagram

2
Rf| —=B >4

fi
TR f] l lnB
I'fo

IRIf] == 1B
If

either one of the left hand side squares is a pullback. It may be shown that

central extensions are pullback-stable, and that a split epimorphism is trivial

if and only if it is central [28, Proposition 4.3 and Theorem 4.8].

Examples 1.8 (Classical examples). Some of our examples give rise to clas-
sical notions of central extension. In the case of Example 1.4, Gp vs. Ab, an
extension f: B — A is central if and only if its kernel K[f] is contained in
the centre

ZB={z€ B|[z,b]=1forallbe B}

of B. Similarly, the notion obtained in the case of Liex vs. Vectg (Exam-
ple 1.5) is the ordinary notion of central extension of Lie algebras, where the
kernel K[f] of f: b — a should be included in the centre of b, i.e., in

Zb={ze€b|[z,b =0 forall beb}.

Example 1.9 (Leibk vs. Lieg, Example 1.5). Given a Leibniz algebra g, its
Liex-centre Z|(g) is the two-sided ideal generated by

{z€gllg, 2] =—[z4] forall g € g}.

For an extension f: b — a of Leibniz algebras, the following three conditions
are now equivalent:
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(1) f: b — ais Lieg-central;

(2) R[f]Ann ~ bAnn;

(3) K[f] C Ziie(b).
Indeed, (1) is equivalent to (2) by definition. Now suppose that (2) holds and
consider k € K[f] and b € b. Then both [(k,0), (k,0)] = ([k, k], [0,0]) and
[(b—k,b),(b—k,b)] = ([b—k,b— K], [b,b]) are in R[f]A™, which implies that
[k, k] =[0,0] =0 and [b—k,b—k] = [b,b]. Thus we see that [b, k] + [k, b] = 0,
which implies that (3) holds.

Conversely, consider [(b, k), (b, k)] in R[f]A™ N K[f1]; then [k, k] = 0 and
b—k is an element of the kernel of f. Now (3) implies that [b—k,b—k] =0,
b, k] = [b, k] — [k, k] = [b—k,k] =0 and [k, b] = [k, b] — [k, k] = [k, b— k] = 0,
so that also [b, b] = 0. It follows that [(b, ), (b, k)] = 0. Hence R[f]A™ = pAm
and (2) holds.

Example 1.10 ((Pre)crossed modules, Example 1.6). The results of [16,
Section 9.5] imply that an extension of precrossed modules f: B — A is
XMod-central if and only if (K[f], B) = 1; the next characterisation may
also be shown directly, parallel to Example 1.9. Given a precrossed module
(T, G, 0), its XMod-centre Zxmoq(T, G, 0) is the normal precrossed submod-
ule (Zxmod T, G, 0) of (T, G,0) where

ZxmodT ={t € T|(t,t")y =1 = (t',t) for all ' € T}.

For an extension (fi, fo): (T,G,0) — (T',G', ") of precrossed modules, the
following conditions are equivalent:

(1) (f1, fo) is XMod-central;

(2) ((RLA], Rlfo], 0 x 9), (RA], Rlfo], 0 x 9)) = (T, G,0), (T, G, 9));

(3) (RLAA], RIfA]) =T, T);

(4) K[f1] C ZxmodT;

(5) K[(fla fO)] - ZXMOd(T7 G, 8)
Alternatively, these central extensions may be characterised in terms of group
commutators: see [15].

On the other hand, as shown in [7], an extension of crossed modules is
central with respect to AbXMod exactly when it is central in the sense of [23].
And an extension of precrossed modules is AbXMod-central if and only if it
is central in the sense of [1, 2].

1.11. Perfect objects. An object A of A is called perfect (with respect
to B) or B-perfect when [ A is the terminal object 1 of B. If f: B — A is
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an extension and B is perfect then so is A, because the reflector I preserves
regular epimorphisms, and a regular quotient of a terminal object is terminal.

Examples 1.12. Example 1.5 gives rise to a new notion of perfect object; a
Leibniz algebra g is Lieg-perfect if and only if g = gA™.

Similarly, a precrossed module (T, G,0) is XMod-perfect if and only if
(T,G,0) = ((T,G,0),(T,G,0)). In particular, then G = 1; hence (T,T) =
[T, T], so that (T, G, d) is XMod-perfect exactly when T" is Ab-perfect and G
is trivial.

In the absolute case, 1.5 and 1.6 give classical notions of perfect object—see
also Section 3.

Our first result, Proposition 1.14, shows how an object being perfect may
help when composing central extensions.

Lemma 1.13. If f: B — A is a B-central extension and B is B-perfect, then
the kernel pair (R[f], fo, f1) of f may be written as (IR[f] x B, prg, prgeb)
for some automorphism b: B — B of B.

Proof: The assumptions on f and B imply that the squares

R[f] > B Rlf] -~ B
NIR[f) l i and NIR[f] l l
IR[f] —1 IR[f] —1
are pullbacks. The result follows. |

Proposition 1.14. Let A be a Barr exact Mal’tsev category and B a Birkhoff
subcategory of A. If f: B — A and g: C — B are B-central extensions and
B is a B-perfect object then the extension fog is B-central.

Proof: Take the kernel pair of f and further pullbacks along ¢g until the next
commutative diagram is obtained, in which all the squares are pullbacks.

g g 9
R[f] —— R[f] > B
fo Jo f

C B A
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Using Lemma 1.13, the top left square may be written as

11Rr[f) %X 90

IR[f) % Rlg) """ [R[f] x C
1rrip ><91l lllR[f] xXg

IR[f] x C ———— IR[f] x B.
Lirpsxg
Now f; is trivial by assumption, hence so is its pullback fi: both split epi-
morphisms and central extensions are pullback-stable. Also gy is assumed
to be trivial, so that g is a trivial extension. It follows that the composite
f10g = (feg)o is trivial, which finishes the proof. |

1.15. Pointed categories. As the proof of the next lemma indicates, the
theory only starts behaving really well when the terminal object 1 is also
initial, i.e., when the category A is pointed. In this case, the object 1 = 0
is called the zero object of A. A map f is zero when it factors over the
zero object.

Since the reflector I always preserves pullbacks of split epimorphisms along
split epimorphisms, in the pointed case, it also preserves products.

From now on, A will be a fixed pointed exact Mal’tsev category.

Lemma 1.16. Let B’ be a B-perfect object and let f: B — A be a B-central
extension. If by, by: B’ — B are morphisms such that foby = foby then
by = by.

Proof: The extension f being central means that the square in the diagram

fo f

R[f] B A
”R[f]l lnB
IR[f] > 1B

is a pullback. Since foby = foby, we have an induced map (by, b1): B’ — R|[f].
Now foO(bo, bo) — bo = fQO(bo, bl), but also

nrife(bo, bo) = I(bo, bo)enp = 0 = I(by, by)onp = ngse(bo, b1).

The unicity in the universal property of pullbacks now implies that (by, by) =
(bo, bl), so that by = b;. |
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1.17. Universal central extensions. For an object A of A, let CentrgA
denote the category of all B-central extensions of A, i.e., the full subcategory
of the slice category A | A determined by the central extensions. A (weakly)
initial object of this category CentrgA is called a (weakly) universal cen-
tral extension of A. A central extension u: U — A is weakly universal
when for every central extension f: B — A there exists a map f from u to
f, i.e., such that fof = u. And u is universal when this induced map f is,
moreover, unique. Note also that, up to isomorphism, an object admits at
most one universal central extension.

Examples 1.18. Examples of universal Vectg-central extensions of Leibniz
algebras over a field K may be found in [11]. The article [1] gives several
non-trivial examples of universal AbXMod-central extensions of (pre)crossed
modules.

Lemma 1.19. If u: U — A is a universal B-central extension then the ob-
jects U and A are B-perfect.

Proof: We know that the first projection pry: A x IU — A is a central ex-
tension, because the square

1axpry
Ax IU x TU —20 5 A U
nAxIUxIU\L lﬁszU
IAXIU X IU——TA X IU

1axpry)
is a pullback, which means that the first projection (pr4)o = 14 X pr, in the
kernel pair of pr, is a trivial extension. Hence there exists just one morphism
(u,v): U — A x IU such that pryo(u,v) = u. But then 0: U — IU is equal
tony: U — IU, and IU = 0. This implies that both U and A are perfect. m

Proposition 1.20. Let A be a pointed Barr exact Mal’tsev category and B
a Birkhoff subcategory of A. Let u: U — A be a B-central extension. Then
the following are equivalent:

(1) u is universal;
(2) u is weakly universal and the object U is B-perfect;
(3) the object U is B-perfect and every central extension of U splits.

Proof: We start by proving that (1) implies (3). If u is universal then it fol-
lows from Lemma 1.19 that U is perfect. Given a central extension g: C' — U,
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also the composite uog: C' — A is central by Proposition 1.14. The weak uni-
versality of u now yields a map h: U — C' such that uogoh = u. But also
uoly = u, so that goh = 1y by the universality of u, and the central extension
g splits.

Now suppose that (3) holds. To prove (2), let f: B — A be a central
extension of A. Then its pullback u*f: B — U along wu is still central; hence
u*f admits a splitting s: U — B, and (f*u)es is the needed map u — f.

Finally, (2) implies (1) by Lemma 1.16. m

Proposition 1.21. Let A be a pointed Barr exact Mal’tsev category and B
a Birkhoff subcategory of A. Let f: B— A and g: C' — B be B-central
extensions. Then fog is a universal B-central extension if and only if so

18 g.

Proof: If g is universal then B is a perfect object by Lemma 1.19; moreover,
Proposition 1.14 implies that fog is a central extension of A. In order to
prove its universality, let h: D — A be another central extension of A. Then
the pullback f*h: D — B of h along f is a central extension of B, and as
such induces a unique map h from g to f*h. The composite (h*f)oh: C' — D
is the needed unique map fog — h.

Conversely, when fog is a universal central extension, Lemma 1.19 implies
that the object C, and hence also the object B, is perfect. Consider a central
extension h: D — B of B. Then by Proposition 1.14 also the extension foh
is central, so that there exists a unique map foh from fog to foh. It remains
to prove that hofoh = g; but this follows from the universality of fog and
the fact that both hofoh and g are maps from fog to f. |

2. The universal central extension construction

Our aim is now to prove a converse to Lemma 1.19: Theorem 2.9, which
essentially states that every perfect object admits a universal central exten-
sion. To do so, a richer categorical context is needed; for instance, a good
notion of short exact sequence will be crucial in what follows. We switch to
the context semi-abelian categories. Also the existence of projective objects
will become important now.

2.1. Semi-abelian categories. A pointed and regular category is Bourn
protomodular when the (Regular) Short Five Lemma holds: this means
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that for any commutative diagram

K<L gL
¢ bi l (C)
K[f) s B A

such that f and f’ are regular epimorphisms, & and a being isomorphisms
implies that b is an isomorphism. A semi-abelian category is pointed, Barr
exact and Bourn protomodular with binary coproducts [29]. A variety of Q-
groups is always a semi-abelian category. A semi-abelian category is always
Mal’tsev.

Since, in a semi-abelian category, a regular epimorphism is always the
cokernel of its kernel, an appropriate notion of short exact sequence exists.
Such will be any sequence

K-—t-p-Lsa
that satisfies K = Ker f and f = Coker k. We denote this situation

0—Kotsp-toa—s, (D)

Lemma 2.2. [5, 6] Consider a morphism of short exact sequences as (C)
above.

(1) The right hand side square fob = aof’ is a pullback iff k is iso.
(2) The left hand side square Ker fok = boKer f' is a pullback iff a is
mono. |

The first statement implies that any pullback square between regular epi-
morphisms (i.e., any square as fob = aof’ in (C)) is a pushout. It is also
well-known that the regular image of a kernel is a kernel [29]. In any semi-
abelian category, the classical homological lemma’s like the Snake Lemma
and the 3 x 3 Lemma are valid; for further details and many other results we
refer the reader to the article [29] and the monograph [4].

From now on, A will be a chosen semi-abelian category and B a Birkhoff
subcategory of A.

2.3. Commutators and centralisation. The kernel i of the unit n of the
adjunction (A) gives rise to a “zero-dimensional” commutator as follows: for
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any object A of A,
0—>[A At 4o T4 —>0

is a short exact sequence in A; hence A is an object of B if and only if
[A, Al = 0. On the other hand, an object A of A is B-perfect precisely
when [A, A]p = A. This construction defines a functor [—, —|z: A — A and
a natural transformation p: [—, —]g = 14. The functor [—, —|p preserves
regular epimorphisms: see [17, Section 5].

Lemma 2.2 implies that an extension f as in (D) is B-central if and only
if either one of the maps [fo, fols, [f1, fi]s is an isomorphism, which happens
exactly when they coincide, [fo, folzg = [f1, filg: [[R]f], R[f]]z — [B, B]s-
Hence the kernel [K, Blg of [fo, folg measures how far f is from being cen-
tral: indeed, f is B-central if and only if [K, B]g is zero. (Which explains,
for instance, why a subobject of a central extension is central.) This “one-
dimensional” commutator [K, B]g may be considered as a normal subobject
of B via the composite ppgo[fi, filgeKer [fo, folz: [K, Blp — B.

Thus the Galois structure I' mentioned in 1.7 induces a new adjunction

L
ExtAZC ExtgA,
D

where CExtgA is the full reflective subcategory of ExtA determined by the
B-central extensions. Given an extension f: B — A with kernel K, its cen-
tralisation [, f: B/[K, B|p — A is obtained through the diagram with exact
rows

OH[K7B]BHB—(>7[K§B}B —

T

Ob——A——A——>0.

Considering this diagram as a short exact sequence

Ml 771
0— Knjle—> f —+ L f —0

in the semi-abelian category of arrows ArrA (morphisms here are commuta-
tive squares) we obtain a description of the unit ! of the adjunction and its
kernel p!.
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2.4. Baer invariants. Recall [17, 19] that a Baer invariant is a functor

F: ExtA — A that makes homotopic morphisms of extensions equal: such
are (bg,ag) and (by,a1): f'— f

B =B

by
r| lf
ao

A—=A

satisfying ag = a1. Such a functor F' sends homotopically equivalent exten-
sions to isomorphic objects. The functor ExtA — A that maps an extension

00— K->t a—0 (E)

to the quotient [B, B|g/[K, B]g is an example of a Baer invariant, as is the
functor which maps this extension to the quotient (K N [B, B|g)/[K, B]g.
See [17] for further details.

2.5. Existence of a weakly universal central extension. From now on
we suppose that A has enough (regular) projectives, i.e., given any object
A of A, there exists a regular epimorphism f: B — A with B projective, a
(projective) presentation of A.

Let A be an object of A and f: B — A a projective presentation with
kernel K. The induced objects

[B,B]B and Kﬂ[B,B]B
[Ka B]B [K7 B]B

are independent of the chosen projective presentation of A as explained
above. It makes sense to call the latter object the second homology object
or the Schur multiplier of A (relative to B) and denote it Ho(A, B). We
shall denote the former object U(A, B), and H;(A, B) will be the reflection
IA of Ainto B.

When A has enough projectives and A is an object of A, the category
Centrg A always has a weakly initial object: given a projective presentation
f: B — A with kernel K, such is its centralisation I1f: B/[K, B|p — A.
Indeed, any other central extension g: C' — A induces a morphism I; f — g in
CentrgA, the object B being projective. So in presence of enough projectives,
every object admits a weakly universal central extension.
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Remark 2.6. The objects Hy(A,B) and Hi(A,B) are genuine homology
objects: when A is a semi-abelian monadic category, they may be computed
using comonadic homology as in [18]; and in any case, they fit into the
homology theory worked out in [14]. Theorem 5.9 in [17] states that any
short exact sequence (D) induces a five-term exact sequence

Hy(B,B) — Hy(A,B) — g — Hi(B, B) —> Hi(A,B) — 0.

This is a relative generalisation of the Stallings-Stammbach sequence for
groups, a categorical version of the similar results considered in [19, 20, 35].

Examples 2.7. In the case of groups vs. abelian groups, Hs(A, Ab) is the
second integral homology group of a group A.

Given a Leibniz algebra g, the homology vector space Hs(g, Vectk) is the
Leibniz homology developed in [34]; see also [12, 36]. As far as we know,
H,(g, Lieg) has not been studied before, but certainly the theories referred to
in Remark 2.6 apply to it. If g is a Lie algebra, the vector space Hs(g, Vectk)
is the classical Chevalley-Eilenberg homology.

As to Example 1.6, the absolute homology crossed module

H,((T, G, 9), AbXMod)

was studied in [3] in case (T, G, 0) is a precrossed module, and in [9] in case
(T, G, 0) is a crossed module. For a precrossed module (T, G, ), the relative
Hy((T,G,0),XMod) was characterised in [16].

2.8. Existence of a universal central extension. The Baer invariants
from 2.4 may now be considered with respect to all weakly universal B-central
extensions of an object A: indeed, any two such extensions of A are always
homotopically equivalent. Since for any weakly universal B-central extension
(E) the commutator [K, B|p is zero, the objects

(B, Bs and KN |B,Bls

are independent of the chosen weakly universal central extension of A. (Here,
as in [27], the Hopf formula becomes Hy(A, B) = KN [B, B]p. Also note that
U(A,B) = B, Bls.

We are now ready to prove that, if A is B-perfect, then a universal B-central
extension of A does exist. This is a relative version of Proposition 4.1 in [22].
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Theorem 2.9. Let A be a semi-abelian category with enough projectives and
B a Birkhoff subcategory of A. An object A of A is B-perfect if and only if
it admits a universal B-central extension. Moreover, this universal B-central
extension may be chosen in such a way that it occurs in a short exact sequence

UB
0 —> Hy(A,B) > U(A,B) —» A —0.

Proof: 1f an object admits a universal B-central extension then it is B-perfect
by Lemma 1.19. Conversely, let (E) be a weakly universal central extension
of a B-perfect object A. Then u4 is a regular epimorphism, hence so is the
map foup = paolf, f]p in the induced diagram with exact rows

0—— KN[B,Blg—>[B, Bl % A——0

N
0 K* B A—>0.

The extension foup is central as a subobject of the central extension f; its
weak universality is clear. By Proposition 1.20, it is also universal: indeed,
the object [B, B|p is B-perfect, because the extensions foup and f are ho-
motopically equivalent, so that [B, Blg = [[B, B|s, [B, B]ss- _

Corollary 2.10. A B-central extension u: U — A is universal if and only if
H,(U,B) and Hy(U,B) are zero.

Proof: The object U is B-perfect because IU = Hy{(U,B) = 0; since also
H,(U, B) is zero, the universal B-central extension ub: U(U,B) — U of U
induced by Theorem 2.9 is an isomorphism. Proposition 1.20 now implies
that every B-central extension of U = U (U, B) splits. Another application of
Proposition 1.20 shows that also w is a universal B-central extension.
Conversely, if u: U — A is a universal B-central extension then again by
Proposition 1.20, H;(U,B) = IU = 0 and every B-central extension of U
splits. This implies that 1: U — U is a universal B-central extension of U:
it is weakly universal, because for any B-central extension g: C' — U of U, the
induced splitting is the needed map 1y — g; U being B-perfect, it is universal
by Proposition 1.20. Theorem 2.9 now tells us that Ho(U, B) = 0. n
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3. Remarks on the absolute case

An absolute version of the theory is obtained when the Birkhoff subcategory
AbA of abelian objects of A is considered. This situation is interesting in its
own right, because it covers many of the classical examples; but there are
also connections with the relative theory which occur in practice.

3.1. Abelian objects. The generalised Eckmann-Hilton argument shows
that an object of a semi-abelian category admits at most one internal abelian
group structure. An object that does admit such a structure is called an
abelian object. It turns out that the full subcategory AbA of A deter-
mined by all abelian objects is an abelian Birkhoff subcategory. The reflector
ab: A — AbA may be described as follows (see, e.g., [4]): given an object A
of A, its abelianisation abA is the coequaliser

(0,14) o
AT=AXA—abA
(1A,O)

of (0,14) and (14,0), and the A-component 74>4: A — abA of the unit b4
of the adjunction is the composite g40(0,14).

Examples 3.2. Of course AbGp = Ab. It is also well-known that the category
Vectk of vector spaces over K, considered as a subcategory of Lieg, is AbLiek.
Moreover, an abelian Leibniz algebra is always a Lie algebra, so that AbLeibgk
coincides with AbLiex = Vectg.

Similarly, an abelian crossed module is the same thing as an abelian object
in XMod (or PXMod), so that the notation AbXMod makes sense.

On the other hand, the reflections (—)i ;e and (—)peifr from Example 1.5 and
Example 1.6 are not determined by abelianisation.

3.3. A triangle of adjunctions. Next to the adjunction (A) we shall now
also consider the adjunctions induced by abelianisation of the objects of A
and B. We shall be especially interested in the case where every abelian
object of A is also an object of B, so that Ab.A = AbB; we obtain the
next commutative triangle of left adjoint functors. (All right adjoints are
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inclusions.)

A B

ab™ ab®
AbA = AbB

Examples 3.4. In the article [21] we find the situation described in Exam-

ple 1.5. The case of (pre)crossed modules, considered in Example 1.6, occurs
in [1].

Lemma 3.5. Under the given circumstances:

(1) an object of B is AbB-perfect if and only if it is AbA-perfect;
(2) an extension of B is AbB-central if and only if it is AbA-central.

Proof: If B is an object of B then ab*B = ab®IB = ab® B, which proves the
first statement. As to the second statement, an extension f: B — A in B is
central with respect to AbB if and only if in the diagram

R -2 -p-T.4
5] |
ab®’R[f] — ab®B

ab®f,

the square is a pullback. Now the inclusion of B in A preserves and reflects all
limits and moreover ab® f; = ab™ f;, so that f being AbB-central is equivalent
to f being central with respect to Ab.A. |

We shall be interested in the absolute homology of an object of B, i.e.,
the homology with respect to abelianisation, when this object is considered
either as an object of B or as an object of A. Note that it makes sense to talk
about homology in B, because the left adjoint I preserves projective objects
and regular epimorphisms, so that the category B has enough projectives

if A has.

Lemma 3.6. For any object B of B, the adjunction (A) restricts to an

adjunction

I
—
CentrAbAB ; CentrappB.
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Hence the functor I preserves universal central extensions:
I(uA: U(B,AbA) — B) = up*®: U(B,AbB) — B,
for any AbB-perfect object B.

Proof: By Lemma 3.5, CentrappB is a subcategory of CentrapsB.

Suppose that g: C' — B is an AbA-central extension of B. Applying the
functor I, we obtain the extension Ig = gone: IC' — B, which is Ab.A-central
as a quotient of g. Being an extension of B, Ig is AbB-central by Lemma 3.5.

Finally, as any left adjoint functor, I preserves initial objects. |

Proposition 3.7. When B is an AbB-perfect object of B, there is the exact
sequence

0 — Ho(U(B,AbB),AbA) > Hy(B,AbA) — Hy(B,AbB) —
relating the two types of absolute homology of B. Moreover,
[U(B,AbA),U(B,AbA)]s = Ho(U(B, AbB),AbA),
and upP? = upPP if and only if Ho(B, AbA) = Hy(B, AbB).

Proof: By Lemma 3.6 and Theorem 2.9, when B is an AbB-perfect object
of B, the comparison map between the induced universal central extensions
gives rise to the next 3 x 3 diagram.

0 0
Hy(U(B,AbB), AbA) == H,(U(B, AbB), AbA) —(
uhbA I
0 —— Hy(B,AbA) > U(B,AbA) > B 0
MU (B,AbA) H
v v
0 —— Hy(B,AbB) - U(B,AbB) — DB 0
0 0 0
The result follows. [ |

If we consider Proposition 3.7 for the case given in Example 1.5, we recover
the result in [21]; in case of Example 1.6 we regain the result in [1].
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