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Abstract— Object detection in autonomous driving applications
implies the detection and tracking of semantic objects that are
commonly native to urban driving environments, as pedestrians
and vehicles. One of the major challenges in state-of-the-art
deep-learning based object detection are false positives which
occur with overconfident scores. This is highly undesirable
in autonomous driving and other critical robotic-perception
domains because of safety concerns. This paper proposes an
approach to alleviate the problem of overconfident predictions by
introducing a novel probabilistic layer to deep object detection
networks in testing. The suggested approach avoids the tradi-
tional Sigmoid or Softmax prediction layer which often produces
overconfident predictions. It is demonstrated that the proposed
technique reduces overconfidence in the false positives without
degrading the performance on the true positives. The approach
is validated on the 2D-KITTI objection detection through the
YOLOV4 and SECOND (Lidar-based detector). The proposed
approach enables interpretable probabilistic predictions without
the requirement of re-training the network and therefore is very
practical.

Index Terms— Object Detection; Overconfident prediction;
Probabilistic calibration; Multimodality; Deep learning.

I. INTRODUCTION

EMARKABLE advances in computing hardware, sensors

and machine learning techniques have contributed signif-
icantly to artificial perception for autonomous driving [1], [2],
[3], [4], [5]. However, even with such progresses, artificial
perception in real-world driving still meets challenges [4],
[6], [7], [8]. Object detection is a key aspect of perception
systems and has been gradually dominated by deep learning
(DL) approaches. Generally, modern DL methods export the
detection confidence as the normalized scores by the Softmax
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TABLE I

CLASSIFICATION RESULTS USING F-SCORE METRIC
BY DEEP NETWORK MODELS

Model Car Cyclist  Pedestrian  Average
LeNet [13] 99.17 89.08 93.79 94.02
AlexNet [14] 99.42 91.41 96.46 95.75
Inception V3 [15] 99.68 95.05 97.67 97.46
EfficientNetB1 [16]  99.84 97.43 98.74 98.67
ViT [17] 99.46 93.56 96.37 96.46
MLP Mixer [18] 98.98 87.47 92.42 92.96

function (SM) [9] or a single value obtained from the Sigmoid
function (SG) [10] without considering the overconfidence or
uncertainties in the predictions (see Fig. 1). Such a lack of
proper uncertainty prediction and the overconfident behaviour
are undesired, because objects detected as false positives
may have high score values without any level of uncertainty.
It can be better understood by an example: consider six deep
networks trained to classify three classes of objects namely,
car, cyclist, and pedestrian. The detection confidence values
for each object have been obtained through a prediction layer,
such as the Softmax layer, which then normalizes the values
within the interval [0, 1]. As shown in Table I, the networks
show satisfactory results in terms of F-scores [11], [12] on
a test set. However, what would happen when an object
out of the trained classes is presented to the networks? A
clue to answering this question is given by Fig. 2, where
an object representing ‘vegetation’ class' has been classified
with an extremist prediction (i.e., value very close to one,
indicating overconfident behaviour) to one of the three trained
classes. Ideally, the expected value for that example would
be close to 0.3, as the object does not belong to any of the
three classes considered in the training. More representative
cases of overconfident predictions considering out-of-training
distribution examples are shown in Fig. 3, considering different
classes e.g., ‘person-sitting’, ‘tree’, ‘pole’.

The ability to properly represent the uncertainties of pre-
dictions of an object detection system would ensure safer
decision-making actions, specially in autonomous driving
and robotic systems which may pose threat to people’s
lives [19]. In the literature, the uncertainties of a deep learning
model [20], [21], [22], [23] can be obtained through the
predicted values (calibration techniques) or via the network
weights/loss function (regularization techniques) [24], [25],
(261, [27], [28], [29], (301, [31], [32], [33], [34], [35],

IThe vegetation class was not considered on the training set.
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Fig. 1. In (a) we can see the overconfidence problem regarding the predictions
using Softmax for a three classes case (from left to right: pedestrian, car and
cyclist). The logit values (i.e., the layer that feeds into Softmax) have been
normalized and the corresponding distributions are shown in (b).
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Fig. 2. Example of classifying an out-of-(training)-distribution test
object. The object has been classified by six different neural networks,
and all the models’ outputs are overconfident - which may have critical
implications.

[36], [37]. However, we will see that calibration and regu-
larization techniques are not immune to the overconfidence
problem as well, as detailed in Section II. An alternative to
reduce overconfident predictions, and in some techniques to
enable probabilistic interpretation, can be attained by looking
at the logit-layer values (i.e., the score-values before the
prediction layer, or activation functions) [20], [21], [22], [23]
- as illustrated in Fig. 1b which presents a more tractable
distribution than the distribution out of the Softmax prediction
layer.

In this context, this paper presents a new methodol-
ogy to reduce overconfident predictions in deep object
detection networks without interfering in the cost func-
tion and/or re-training the network. Furthermore, this paper
shows that calibration techniques (such as temperature scaling
and Monte Carlo Dropout, as well as confidence penalty,
and Bayesian neural networks) may provide overconfidence
results.
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Fig. 3. Object classification on out-of-distribution test dataset through six
different neural networks, using Softmax as the prediction layer, considering
the LeNet [13], AlexNet [14], InceptionV3 [15], EfficientNetB1 [16], Vision
Transformer [17], and MLP Mixer [18] CNNs. The overconfident behavior is
notorious.

In summary, the contributions are:

« An investigation of the predicted values using distribu-
tions from the logit-layer data;

o An efficient way to obtain proper probabilistic infer-
ence via Maximum Likelihood (ML) and Maximum
a-Posteriori (MAP) formulations;

o Detailed comparisons between the ML/MAP against the
Sigmoid layer, considering true and false positive pre-
dictions by YOLOV4 and SECOND, with respect to
overconfidence results;

o Comprehensive results showing that the traditional pre-
diction layers can induce erroneous decision-making in
deep object detection networks.

II. RELATED WORK ON OVERCONFIDENT PREDICTIONS

Generally, the formulations that acts directly on the pre-
dicted scores to reduce overconfident predictions of learning
models are considered as post-processing (or post-hoc) cal-
ibration techniques [31], [38], [39], [40], [41]. On the other
hand, the problem of overconfident predictions in deep models
can also be addressed with regularization techniques (formu-
lations that interfere with the learning procedure of the model,
to improve the generalization ability) [42], [43], [15], Bayesian
models (that leverage approximate Bayesian inference instead
of classical point estimation in neural networks) [36], [44],
[45], or even augmentation methods [46], that produce better-
calibrated models. Well-calibrated models are expected to
provide accurate predictions when they are right about object
detection and, conversely, provide high uncertainty when they
are inaccurate about a detection. However, such techniques to
reduce or mitigate overconfidence are still to be improved [25].
Actually, recent studies have shown overconfident predictions
as unsolved problems in the field of deep learning [25], [47],
[48], [49], [50]. Consequently, several probabilistic methods
have been proposed as an alternative to reduce overconfident
predictions, as well as to capture uncertainties in deep neural
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network models [20], [21], [22], [23], [26], [27], [28], [29],
[301, [32], [33], [34], [35], [36], [37], [44], [51], [52], [53].

The following subsections present more details about the
most common and recent calibration techniques (like tempera-
ture scaling [31]), some regularization techniques (penalization
of overconfident output distributions [28], [30], [32], [52],
[53], label smoothing [54]) and some forms of approxi-
mate Bayesian inference (like variational inference [36] and
Monte Carlo Dropout [33], [55]). Additionally, we would
discuss the disadvantages of the mentioned techniques when
predicting objects belonging to out-of-training-distribution
data (which may be critical in autonomous driving and
robotics).

A. Softmax and Sigmoid Prediction Layers

The Softmax function, a generalization of the Sigmoid
function for the multiclass case, is currently one of the most
commonly employed functions to act as the prediction layer
in deep networks. In part, this is explained by the fact that
such function increases the weights of the correct classes in
an exponential way, strongly interfering in the updating of
the weights, and thus may guarantee a better result in terms
of classification performance. However, such behaviour may
lead to overfitting, since the model becomes overconfident
on the training data [56]. Additionally, the Softmax function
does not provide any reliable confidence measurements for
the predicted values [31], [57], [58]. Also, it is possible
to find in the literature works where the Softmax’s outputs
are considered actual likelihood values [38], [59], [60], [61]
(perhaps because they sum up to one) which tends to give an
erroneous probabilistic interpretation about the results.

The Softmax, as well as the Sigmoid function, are sensitive
to adversarial attacks. The studies that back this claim consider
adversarial perturbations applied to the Softmax and Sigmoid
prediction layer, generating possible underfitting problems on
the weights [62], [63]. Additionally to the fact that Softmax
and Sigmoid functions are prone to provide poorly calibrated
scores and being sensitive to adversarial attacks, such functions
also seem to be inadequate to cope with out-of-distribution
objects in the test phase (e.g., during the evaluation time the
trained network can be faced with objects that do not fit to
any of the training classes) as demonstrated experimentally
in [21], [53], [58], [64], [65], and [66].

B. Post-Processing Calibration Techniques

Among the various existing techniques to reduce over-
confident predictions, post-processing calibration techniques
present the advantage of being easily applied to pre-trained
models. For example, temperature scaling has demonstrated
interesting characteristics because it is simple and, in some
cases, efficient [31].

The value of temperature scaling (7S) is obtained by
minimizing the negative log likelihood (NLL) on the validation
set. All the values of the logit vector (before the prediction
layer) are multiplied by a scalar parameter TLS, with TS > 0.
Simply, the temperature scaling parameter can be included in
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the Softmax prediction layer (SM)
) RETER)
SM()) = ———! M
Z @/ TS)
k=1
where k € {1, ..., K}, K is the number of classes, zAj is the

output of the predicted logit layer i.e., predict score value of
the object j.

C. Regularization Techniques

Different from the post-processing techniques, regulariza-
tion techniques such as label smoothing and confidence
penalty act during the training process, on the updates of the
weights according to the cost function [15], [32], [43], [54].

For classification problems, defining X = {xq,...,xj} as
input data, and Y = {yy,...,y;} as output data obtains the
dataset D = {Xj, yj ;\[21, where N is training set size, Xj €
R", and y; € {1,..., K} with K classes, the loss function
considering the true label as one-hot encoding vector is defined
by

Nis
1 ~
L=—7- > pyjlxplog(p(ilx)), @
ts .
J

where p(yjlxj) is the distribution of the true label (ground-
truth) given the data, yj is the predicted value for the input x;,
and p(¥jlx;) is the predicted labels distribution. The expression
of the confidence penalty (3) includes a weighting term in the
cost function given in (2). The additional term is the Entropy
of the predicted values, and g is the parameter that controls
the confidence penalty [32]

Nis
1 A
- N 2,- [p(yjlx)log(p(¥jlx))

— Br(¥jIxplog(p(¥jlxj)]. 3)

Unlike confidence penalty, the label smoothing technique
does not interfere with the mathematical formulation of the
cost function, making the model less certain about the provided
predictions. In fact, label smoothing modifies the values of the
one-hot encoding vector, as defined in (4) [15]

€
Yaew = (1= ik + . @)

where yjk is the object j in the class k, ynew;, is the new
label value, € is the smoothing parameter arbitrarily defined,
and K is the number of classes. Label smoothing reduces the
difference between the values of the labels of the correct class
against the values of the other classes, influencing the updating
of the weights of the network. Not using the label smoothing
technique can cause two problems, according to [15]: “First,
it may result in over-fitting: if the model learns to assign full
probability to the groundtruth label for each training example,
it is not guaranteed to generalize. Second, it encourages the
differences between the largest logit and all others to become

large, and this, combined with the bounded gradient 8_
Tk
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reduces the ability of the model to adapt. Intuitively, this
happens because the model becomes too confident about its
predictions”.

D. Bayesian Neural Networks

Bayesian Neural Networks are modelled using approximate
Bayesian inference (5) to assign probabilities to events, and
thus capturing uncertainties in a model’s predictions [44], [53],
[45], by considering the network weights as a probability dis-
tribution parameter(s) instead of a ‘deterministic’ value (like
in traditional deep neural networks). The posterior probability
of the weights given the input and the target/class data can be
expressed by [33] and [44]

WX, y) = PYIX-Wr(W) 5)
p(Y[X)

where W = {wj, ..., wj} denotes the weights matrix, X is
input data, Y is output data, p(W) is the prior distribution,
which expresses the uncertainty before any data observed
[45], [67], and p(Y|X, W) is the class conditional den-
sity (likelihood function). The p(Y|X) # O acts as a
scaling factor for p(W|X,Y), and it can be expressed as
f p(Y X, W)p(W)dW that can often be determined by the
law of the total probability [45]. For example, considering a
discrete case,” P(Y|X) can be computed per parameter wj i.e.,
2 P(YIX, wi) P (w;).

The calculation of the posterior p(W|X,Y) may not be
trivial because the density function p(Y|X) can assume a
complex form (whereas the prior can be specified from some
previous knowledge and the likelihood conceivably obtained
from the data). For this reason, in complex models - like deep
neural networks - the posterior becomes intractable. Thus,
a possible solution is to perform an approximation by means
of variational inference [34], [35], [36], [52], [55], [67], [68],
[45]. Nonetheless, variational inference still presents some
challenges in terms of computational complexity, specially
when dealing with large models and large quantities of data.

A computationally more efficient (and therefore popular)
method of approximate Bayesian inference is the Monte Carlo
Dropout formulation, [33], [55], that leverages dropout [69]
(commonly used as a regularization technique) at test time,
to capture the model uncertainty. Dropout [69] is a stochastic
technique [66], which might potentially be included in the
neural network, contributing to avoid overfitting. It is usually
used during training, and therefore it can be questioned: what
does occur when the dropout is used during testing? The
predicted values will not be deterministic i.e., the values
depend on which connections between the neurons will be
randomly chosen during the prediction stage. In fact, the
same test sample forwarded several times in the network can
have different predicted values. In [33], the authors show
that applying dropout (at inference) before every weight layer
of a deterministic deep neural network is equivalent to an
approximation of a probabilistic deep Gaussian process.

2Probability formulations for continuous cases are represented by lowercase
letters, while for discrete cases they are represented by uppercase letters.
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Fig. 4. Object classification on out-of-(training)-distribution test dataset using
calibration and regularization techniques in an InceptionV3 CNN model.

E. Discussion on the State of the Art

Temperature scaling, confidence penalty, and label smooth-
ing techniques aim to reduce the overconfidence problem
when making predictions using relatively simple formula-
tions. Temperature scaling also enables, as an advantage, the
possibility of being applied without the need to re-train the
network. The disadvantage of these techniques is the inabil-
ity to directly provide an uncertainty interval regarding the
detected objects subjected to the trained classes. Monte Carlo
Dropout and Bayesian neural networks, on the other hand,
provide uncertainties measures i.e., the mean and variance
associated with each confidence value, but with relatively
higher computational cost.

Figure 4 shows the performance of some of the previously
mentioned techniques by considering out-of-distribution test
objects (person sitting, tree, pole/stem). The networks were
trained from scratch to classify objects belonging to the
categories {car, cyclist, pedestrian}, considering ¢ = 0.2 in
(4) for label smoothing, 8 = 0.3 in (3) for the confi-
dence penalty, 7S = 1.82 in (1) for temperature scaling,
and for Monte Carlo Dropout the test sample was for-
warded 300 times through the network. In the case of the
Bayesian neural network, the classification experiments were
conducted using the Tensorflow toolbox. Note that most of the
objects in this controlled experiment have been classified with
overconfidence.

The overconfidence problem in deep models can be detri-
mental to draw a firm conclusion regarding safety, particularly
because it is not possible to foresee all kinds of objects that can
appear, for example, within a perception system’s FOV of an
autonomous vehicle operating in a real-world (uncontrolled)
environment. However, it can be partially concluded that the
behavior shown in Fig. 4 makes it very difficult to interpret
the model’s confidence in a proper way.
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III. PROBABILISTIC INFERENCE FOR OBJECT DETECTION

This section presents a formulation to reduce overconfi-
dent predictions on existing deep object-detectors, including
non-parametric and parametric modeling to represent the like-
lihood and the priors. The proposed approach relies on a Max-
imum Likelihood (ML) and Maximum a-Posteriori (MAP)
function-layers, based on the Bayes rule, to replace Softmax
or Sigmoid functions depending on the object detector.

A. ML and MAP Layers

The formulation behind the Bayesian inference for the
proposed ML and MAP layers is built up from the logit out-
puts/scores (denoted by x) and the random variables C and W
i.e., the class-labels and the network weight respectively. The
decision layers will then output a posterior P(C|x, W) that is
proportional to the class-conditional density (i.e., likelihood)
p(x|C, W) and the priors P(C), where C = {cy, ..., cn} and
x = {x1, ..., xn}, with x; corresponding to the logit value for
the class ¢;. Thus, the Bayes’ rule may simply be given by
(6), considering that the weights were the result of a learning
process in order to explain the data [67] and are assumed to
be constant after the training,

P(C|x) = M (6)
p(x)
The law of total probability [45], [70] allows (6) to be
rewritten using the per-class discrete formulation,
Px|c;i) P(c;
P(ci|x) = K”’# (7
Zi P(x|ci) P(ci)
i=
where K is the number of classes.

Inference can then be made on the test set regarding C
given the dependence with x i.e., the value of the posterior
probability (7) of C is determined after observing the value of
x. Once we have specified the likelihood distribution p(x|C),
and the priors, the proposed ML/MAP prediction layers can
be used to replace a Softmax or a Sigmoid function in order
to output the object classification scores in a probabilistic
way. Thus, the Maximum Likelihood (ML) and Maximum a-
Posteriori (MAP) functions can be defined as prediction layers
at the testing time, and they are expressed by

P(X|ci) + A
ML:argmaXI((('#
1

;(P(X|Ci) +2)
(P(x[c;)P(ci) + 1)
< )

2 (PXlc))P(ci) +2)

i=1

®)

MAP = arg max 9)
]

where A is an additive smoothing parameter to avoid the “zero”
probability issue [71], [72], [73], to indirectly mitigate the
overconfidence problem, and at the same time incorporate
some level of uncertainty in the final prediction. The parameter
A is not too high or too small, and does not depend on any
specific prior information, but its value has to preserve the
original distribution ‘shape’ without degrading the final result.
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Notice that, although the Bayesian formulation takes distri-
butions into account, ML and M AP layers compute a single
estimate rather than a distribution.

B. Estimating the Likelihood and Prior Probability

The non-parametric probabilistic density distribution chosen
here to obtain the likelihood function comes from normalized
histograms® of the logit-layer’s scores for each class on the
training dataset, as shown in Fig. 5

During the testing phase (i.e., on the test set), the logit-layer
score per example (or object) will then be matched to the per-
class histogram, as illustrated in Fig. 5.

Unlike the likelihood function estimation, the prior proba-
bility distribution has been modelled by a Normal. Thus, the
parametric estimation depends on the mean and the variance
obtained from the logit scores as well (this time it is a
continuous pdf as shown in Fig. 6). Therefore, the prior is
P(c;) ~ N (x|, 0%) with mean p and variance o2 computed
per class.

The purpose of considering a discrete (normalized his-
togram) and a continuous pdf to model the likelihood and
the a-prior probability respectively, is motivated from the per-
spective of complementary information that can be extracted
from the same data.

Algorithm 1 summarizes the steps of the proposed method-
ology to computes ML and MAP layers scores of each class
from the logit-layer values. Note that some detection mod-
els consider the objectness score (OS) parameter (parameter
obtained during training), according to YOLOV4. OS is
a parameter which defines whether a region in the image
(grid) contains an object or not. For each grid in the image,
the network provides a set of bounding-boxes, having each
bounding-box an objectness score and a classification score.
From an objectness threshold, the network defines which is
the best bounding box that represents a given object. In other
words, OS is used to evaluate which bounding box centered on
a grid best represents the detected object [10]. By multiplying
O S with the classification score, the resulting is the confidence
level of the detected object. Thus, in the formulation of
YOLOV4, the final process of defining an object’s class is
to multiply the objectness score with the classification score.
Therefore, the proposed methodology maintains the same way
of classifying an object according to the detection algorithm
being analyzed. In other words, in the case of YOLOV4,
the proposed methodology replaces the classification scores
obtained by the Sigmoid function by the scores from the ML
and MAP layers i.e., multiplying the ML and MAP scores by
the objectness scores.

IV. OBIJECT DETECTION

Currently, the state of the art in pattern recognition for
autonomous driving and robotics is closely related to object
detection using deep models, which has become one of the
most important areas of computer vision (including LiDAR-
based systems). The primary purpose of a detector is to

3The importance of normalizing the histogram is to ensure proper densities.

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 17,2024 at 11:30:18 UTC from IEEE Xplore. Restrictions apply.



9258 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2023
Ped Car (4
= [3.1|578 273562 3.6532] }L°8't layer-Testing
P Y 0.25 0.25
PDF-Training PDF-Training PDF-Training
0.18 ]
016t 1 02t 02f
Edge: 3.22 -3.88
0.4 Value: 0.1551
- o~ ™
@ 0.12 @ 0.15 2 0.15
(%] (7] [7]
8 .1 | Edge:2.15-3.45 K] o
Q Value: 0.0651 Q Q
S 0081 1_‘ S ot S 01
0.06 Edge: 27.15 - 29.45
Value: 0.0151
0.04 {1 005} 0.05
0.02 I
o ®A 0
D AV oD W © D D \Q D (> QBQQQQQQQQQQQQQ
IS AUCA A APAAN QQ’ N A I R A LRSS A RS R S A AR
Predicted values lof the logit-layer Predicted values of the logit-layer Predicted values of the logit-layer
|
Likelihood = [0.0651 0.0151 0.1551]
SUM | iretihooa = 0.0651 4+ 0.0151 + 0.1551 = 0.2353
0.0651 0.0151 0.1551 0”2‘“16 5 8‘242 5 (f;in
ML =[0.2767 O. .
0.2353 02353 0.2353 —) [ ]
Fig. 5. Getting the probability values from normalized-histograms used to model the distributions of the logits on the training set. .
0.18 . .
o Among the various detection models, we have chosen the
016 F Cyclist | YOLOV4 [10], which at the time has reached the state of the
Pedestrian art performance on the COCO dataset, while achieving shot
014r 1  inference time. The structure of YOLOV4 and the proposed
012} | methodology is illustrated in Fig. 7.
- The advantages of YOLOV4, over previous versions and
% 0.1 1 other existing object detection algorithms, are that YOLOV4
§ o8k | tries to avoid overconfident results by using data augmentation
[ (CutMix and Mosaic), class label smoothing, and dropout
0.06 F . in the convolution layers (DropBlock regularization), which
then influence the classifier accuracy. Also, unlike many
0.041 i object detection algorithms, YOLOV4 uses the Mish activation
002k | function instead of the traditional functions (e.g., ReLU, ELU,
SeLU, PReLU, Swich). Additionally, the cost function of
0 : ‘ ‘ YOLOV4 incorporates overlap area, central point distance

0 5 10 15 20 25
Logits-layer scores

Fig. 6. Gaussian distributions to estimate the prior probabilities for the three
training classes (car, cyclist and pedestrian).

estimate the object’s position, size and class/category. A 2D
detector estimates bounding boxes considering the coordinates
of the center, width and height of the objects’ hypothesis.
Additionally, detectors estimate the classification score and
predicted class. In plain words, the recent detectors rely on
a series of steps to define the bounding boxes and the classi-
fication scores depending on comparisons across thresholds
between predicted output and ground-truth (training stage),
as well as objectness score threshold, intersection over union
(IoU), non-max suppression (NMS), and class threshold.

and aspect ratio [74], as well as cosine annealing scheduler
(learning rate) [75], a modified cross-iteration batch normal-
ization [76], self-adversarial training [10]. Finally, the Sigmoid
function is employed to get the final bounding boxes and the
respective classification scores.

Even though YOLOV4 considers strategies to reduce over-
confident predictions, our results demonstrate that a significant
number of false positives are predicted with high score values,
which demonstrates that the prediction layer using the Sig-
moid function did not mitigate overconfident results enough,
as shown in Fig. 8.

For object detection with 3D point clouds, we choose
the lightweight yet effective SECOND [77] detector as the
baseline. SECOND extracts features by encoding voxel-based
3D data with submanifold sparse 3D convolution layers [77].
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YOLOV4 representation with logit and Sigmoid (SG) layers, Maximum Likelihood (ML) and Maximum a-Posterior (MAP) functions. After training,

the predicted values from the Sigmoid Layer were replaced by the scores from ML and MAP functions. Notice that the YOLOV4 was not trained or re-trained

with the ML/MAP functions.

Algorithm 1 ML and MAP Layers

Input:
« Densities (normalized histogram and Gaussian
distribution on the training set - logit-layer values,
Fig. 5);
o Logit-layer values on the test set (Test);
« Additive smoothing (1);
o Number of classes (K).
Output:

e Maximum Likelihood (ML);
e Maximum a-Posteriori (MAP).

Normalized frequency histograms:
hc < histogram(Train(K));
Edge values of each bin of each histogram:
BinLow < BinEdgesLow(hc);
BinHigh < BinEdgesHigh(hc);
Frequency values of each of the histograms:
V <« Values(hc)
Getting the likelihood:
P(x|C) < zeros(size(Test), K);
for k < 1:5size(Test) do
for cl < 1:K do
for i < 1:size(BinValues) do
if (BinLow(cl,i) <
Test(k,cl)) & (Test(k,cl) <
BinHigh(cl,i)) then
L PX|C)(k,cl) < V(cl,i);
end
end

L end

Getting the Prior:

P(C) (_N(TeStl[MTraim U]Z"ra,'n]);

Calculating the ML and MAP:

ML < P(x|C) + A;

ML < (ML/sum(M L)) * ObjectnessScore;
MAP < PX|C)P(C) + A;

MAP < (MAP/sum(M AP)) % ObjectnessScore;

The 3D features are converted to Bird’s Eye View (BEV)
representations via high compression, where the height in the

°
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(a) Score distributions of the true positive objects.
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Normalized histograms

(b) Score distributions of the false positive objects.

Fig. 8. Distributions of the YOLOV4’s classification scores for car, cyclist,
and pedestrian classes, considering RGB modality.

metric space is flattened into the feature channels. Standard
2D convolutions are used to generate BEV features. The out-
putting feature map is passed to the single-stage anchor-based
detector head for classification and bounding box regression.
Compared to the sophisticated models with more structure
information, the voxel-based SECOND [77] has a much faster
runtime with comparable performance.

As shown in Fig. 9, SECOND [77] outputs a similar
distribution, in a lato sensu perspective, of the true positives as
YOLOV4, while giving distinct and more desirable decisions
on the false positives.

A. RGB and LiDAR Modalities

The proposed probabilistic methodology is validated
through multi-sensory 2D and 3D object detection on the
KITTI dataset, considering for YOLOV4 detector RGB
images, range-view (RaV), and reflectance-view (ReV) maps
modalities, as showed in Fig. 10, and 3D point clouds for
SECOND detector. The modalities (RaV), and (ReV) were
obtained by projecting the 3D — LiDAR point clouds in
the 2D image plane followed by an upsampling step using
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Fig. 9. Distributions of the SECOND’s classification scores for car, cyclist, Fig. 11. Maps generated by bilateral filtering using sliding window with size

. . . : . 13 x 13.
and pedestrian classes, considering LiDAR modality (3D LiDAR).
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Fig. 12. Precision-recall curves for car, cyc. and ped. classes using the RGB
(b) Projection of the 3D point clouds in the 2D image plain.  modality, with Ap;z = 1.6 x 1076, Binspp =22, Aprap = 1.0 x 1078, and
Binspyap = 24.
Fig. 10. The 3D cloud points were obtained from the Velodyne 64 sensor

and then projected onto the image plane. — Car-Easy | Cartlodee P
a tailored bilateral filter implementation, expressed in (10), 02 02 0
Whel‘e ro 18 the upsampled plxel [78] 0o o2 oaReca”os 08 1 0o o2 wﬁeca“os 08 1 o o2 oaﬂecaﬂos 08 1
n i Cyc-Easy | Cyc-Moderate 4 Cyc-Hard
~ 1 08 08
A= 5 2 Golllco = cilDGo,(Iro = ribri,  (10)
i=1 gos Zos
n 0 4
where W = Z Go, (llco — ¢il)Go, (ro — 1;) is a scaling fac- ‘ 7 ety ‘ R o el
i=1 0s 1 0 T 0s )
tor that ensures the output sums to one, G5, weights the point  :,, ‘
c; inversely proportional to a distance (we used the Euclidean & | Zos Zos
distance), and G, weights the sampled points from their " ‘ " "
intensity values r;. G5, and G, were considered to be of Fecall Recal Recal
the form Fig. 13. Precision-recall curves for RaV modality, with Apr; = 1.3 x 1073,
1 Binsyr =20, Ayrap = 1.7 x 1075, and Binsprap = 24.
Gopy = ——, (11)
* T+ (lleo — il
G — 1 (12) In fact, the upsample is for estimating points at positions
or 14+ (ro—ri])° where there are no projected points. The estimate of such
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Fig. 15. Precision-recall curves considering 2D bounding boxes after
SECOND detector training.

points can be performed by considering a mask C,45 of
size ¢ X ¢ pixels, and using the sliding window principle. The
sampled point 7, located at the center of Cp4sr, is weighted
by the number of neighboring points defined by the mask
size i.e., the formulation combines the intensity and distance
values of a pixels group which are inside the mask Cy,qsk,
being c¢g = (cp, ¢y) the mask center, which is the localization
of interest, and 7y the value to be estimated at co from the
ri (RaV or ReV), where c¢; and ¢, are the positions in the
horizontal and vertical directions respectively, as in Fig. 11.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate quantitatively the proposed
approach to reduce overconfident predictions through the
ML and MAP layers, considering Gaussian distributions, and
normalized histograms, to model the prior and likelihood
respectively. The approach depends of some “hyperparame-
ters” that interfere in the results achieved by the ML and
MAP layers. The additive smoothing A (c.f. Sect. III-A), the
chosen densities e.g., the numbers of bins of the normalized
histograms (described in Sect. III-B above), are design depen-
dent parameters and hence are subjected to the problem in

Fig. 17. Precision-recall curves considering BEV detection.

hands. Here, the choice of these parameters has been made
experimentally.

The experiments conducted in this Section to assess the
proposed technique and to support comparison studies make
use of the KITTI ‘Object Detection’ dataset,* both the RGB
(camera) and the LiDAR modalities (necessary for the RaV,
ReV, and 3D point cloud). We have split the original training
set by considering 3367 frames for training, 375 for vali-
dation, and then the remaining 3739 frames comprise the
actual test set. RGB, RaV, and ReV modalities were trained
with the same hyperparameters (learning rate, image size,
anchors, strides, IoU threshold, etc.) for YOLOV4, while
the 3D point clouds were trained directly via the SECOND
detector.

A. General Performance and Overconfidence

The results on the per-modalities test sets are shown in
figures 12, 13, and 14 through precision-recall curves (Pr-Rc)
for YOLOV4, while the figures 15, 16, and 17 correspond to
the experimental results achieved with the SECOND detector.

4http://WWW.cvlibs.net/datasets/kitti/eval_3dobjc:ct.php
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Note that the curves are presented to the three different
difficulty levels (easy, moderate and hard), according to the
KITTI dataset methodology for object detection.

In addition to the results given by the Pr-Rc curves, we fur-
ther present a quantitative comparison, between the baseline
(designated by Sigmoid, or simply SG) and the proposed
ML, and MAP layers, using the area under the curve (AUC),
as shown in tables II and IV.

Based on the Pr-Rc curves using YOLOV4, it is possible
to observe that the proposed probabilistic inference (ML, and
MAP layers) outperformed the baseline (SG layer) in almost
all modalities and for most of the difficulty levels, particularly
for the cyclist class, which has the smallest amount of objects
in both training and test sets. To facilitate the comparison
analysis, Table II contains the AUC from these experiments,
where the best achieved detection performances are high-
lighted in bold. The AUC metrics show that ML and MAP
achieved very satisfactory performance for different levels of
difficulties and classes, as well as for different modalities.
Additionally, the graphs in figures 18 and 19 show, when using
the YOLOV4 detector, the distribution of the output-scores for
the proposed approach and the baseline (i.e., using Sigmoid).
We can see that the baseline results achieved by YOLOV4
(shown in the first row) present many false positives (FP)
with overconfident scores, while the ML and MAP layers
have reduced the overconfidence on the FPs, whereas the
performance on the true positives (TP) is relatively unaffected,
according to Table III.

The SECOND detector receives 3D point-clouds as input
thus, besides 3D detection, we have converted the 3D repre-
sentation to 2D and Bird’s Eye View (B EV) for completeness
of the results and benchmarking analysis. At first glance,
the ML, and MAP approaches when applied to SECOND
demonstrate to be less effective in improving the detection
performance. This is due to the small amount of high-scoring
(i.e., highly confident) false positives in SECOND, as can
be analyzed in Fig. 20 - this is more evident on the car
category. Conversely, a bigger overlap of a relatively less
distinguishable score range (0.4-0.6) can be improved by
reweighing the scores. In this way, the probabilistic approach
proposed in this work was applied to perform a ‘smoothing’
on the classification scores to mitigate overconfidence, as can
be seen from Fig. 20, regarding the pedestrian class. Overall,
we can say that the results achieved by the ML and MAP
layers for the car and cyclist categories showed quite similar
results compared to the baseline. Such results can be seen
in Table IV, this implies that the approach may compromise
slightly the overall performance. The ML and MAP layers
were compiled considering Ay =5 X 1073, Binsyy = 22,
Amap =1x 1074 and Binsyap = 24.

The proposed technique for the SECOND detector tends to
perform better on the ‘hard’ level objects. We can conclude
that, because the baseline implementation on SECOND does
not attained overconfident behaviour, as shown by the results,
the proposed approach degraded a bit the overall performance
for that particular detector but, on the other hand, it smoothed
the scores for the false positives (which is very desirable in
autonomous driving), according to Table V. Furthermore, the
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Fig. 18. Score distributions considering TP objects from YOLOV4 detector.

proposed approach has the advantage of giving probabilistic
interpretation to the detectors.

As the SECOND detector provides a relatively regularized
scores across the classes, the ML and MAP approaches have
limited improvement by eliminating the high-scoring FPs.
However, the probabilistic approach is able to distinguish the
ambiguous scores from the pedestrian class. This can be shown
by the more overlap score range of true and false positive
objects (Figures 15, 16, 17, and 20).

B. Calibration Error

Typically, the calibration of probabilistic predictions (which
relates the model’s prediction scores to the true correctness
likelihood [79]) is analyzed by the Expected Calibration Error
(ECE) metric [31]. The ECE is obtained from a histogram with
M bins, where each bin contains a group of scores (predicted
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TABLE I

TRUE POSITIVES AND HAVE BEEN ACHIEVED BY THE YOLOV4 IMPLEMENTATION USING 2D REPRESENTATIONS

RGB Modality

Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 75.48 75.93 75.95 Car 70.67 70.90 71.00 Car 63.04 63.36 63.36
Cyc 45.47  47.20 47.20 | Cyc 45.47 46.83  46.99 | Cyc 40.94 42.09 42.22
Ped 61.84 63.05 63.05 Ped 52.27 51.25 51.24 Ped 45.65 44.52 44.52
RaV Modality
Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 82.99 81.13 83.21 Car 71.07 72.16 71.78 Car 62.97 62.80 63.53
Cyc 40.48 44.80 44.73 Cyc 32.28 32.74 3243 Cyc 28.13 30.39  29.99
Ped 66.27 66.45 66.60 Ped 52.56 52.22 52.22 Ped 45.57 44.93 44.96
ReV Modality
Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 74.42 72.68 73.92 Car 58.13 56.14 56.35 Car 50.83 50.69 50.52
Cyc 30.80 31.00 31.25 | Cyc 24.65 26.46 26.86 | Cyc 22.73 24.21  24.53
Ped 43.51 44.35 44.26 Ped 33.62 35.44 35.45 Ped 29.32 30.88 30.87
TABLE III

THE AVERAGE OF THE SCORES WITH THE PROPOSED APPROACH, CONSIDERING THE RESULTS FROM THE YOLOV4

Modality RGB RaV ReV
True Approach SG ML MAP SG ML MAP SG ML MAP
Positives Average 0.947 0950 0.950 | 0.974 0940 0.955 [ 0.970 0.934 0.951
Variance 0.007 0.006 0.006 | 0.004 0.010 0.011 | 0.005 0.011 0.012

Modality RGB RaV ReV
False Approach SG ML MAP SG ML MAP SG ML MAP
Positives Average 0.788 0.806 0.806 | 0.867 0.780 0.786 | 0.872 0.795 0.817
Variance 0.013 0.013 0.013 | 0.015 0.037 0.044 | 0.014 0.034 0.030

TABLE IV

AUC FOR THE SG, ML AND MAP LAYERS, USING THE SECOND DETECTOR, CONSIDERING THE TRUE-POSITIVE OBJECTS

2D Detection

Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 96.88 93.09 96.57 Car 95.42 93.61 95.24 Car 93.02 91.89 92.88
Cyc 92.66 91.91 92.44 Cyc 80.27 79.65 80.14 Cyc 76.65 76.11 76.52
Ped 70.77 6722 70.87 | Ped 67.74 65.35 67.78 Ped 64.09 62.36 64.16

3D Detection

Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 91.80 79.40 87.27 Car 82.86 75.57 80.32 Car 79.86 75.16 78.15
Cyc 84.21 81.89 82.88 Cyc 67.99 6659 67.31 Cyc 64.03 62.80 63.50
Ped 57.19 51.45 57.11 Ped 52.39 48.60 52.41 Ped 47.42 4443 47.38

BEYV Detection

Easy Moderate Hard
Case SG ML MAP | Case SG ML MAP | Case SG ML MAP
Car 93.67 86.44 91.55 Car 89.81 85.64 88.49 Car 88.90 86.24  88.02
Cyc 89.30 87.24 88.59 Cyc 7241 7117 72.04 Cyc 68.14 67.07 67.85
Ped 61.98 57.26 62.07 | Ped 57.82 54.83 57.89 Ped 53.39 51.11 53.41

TABLE V

9263

AUC, IN %, FOR THE BASELINE METHOD DENOTED BY SG, AND THE PROPOSED APPROACHES (ML AND MAP LAYERS). THERESULTS REFER TO THE

THE AVERAGE OF THE SCORES AFTER THE PROPOSED APPROACH, CONSIDERING THE RESULTS FROM THE SECOND DETECTOR FOR 3D POINT CLOUDS

True | Approach SG ML  MAP |
Positives Average 0.860 0.570 0.310
Variance 0.030 0.017 0.008

False | Approach SG ML MAP
Positives Average 0.258 0.161 0.091
Variance 0.026 0.017 0.005

values). Each object with its respective classification score is
allocated within a bin, according to the prediction confidence
i.e., maximum prediction value. Each bin B, is defined

through a range I, = ((mA;I), %] where m = 1, .., M. The
average accuracy - acc(B,,) - is obtained for each bin By,
as well as the average confidence conf (B,) = ﬁ Zi Di>
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Fig. 19. Score distributions considering FP objects from YOLOV4 detector.

where p; is the confidence for classified object i and |B,,| is
the amount of objects in each bin B,,. From the acc(-) and
conf (-), the ECE is obtained according to (13):

M
B
ECE=)_ |n—m||acc(Bm) — conf(Bw)|,

m=1

13)

where n is the total the number of objects. Thus, the proposed
approach can be compared quantitatively with the baseline
through the ECE, as shown in Table VI (RGB, RaV and
ReV modalities) and Table VII (3D Point clouds). Based
on the results shown in Table VI, considering the YOLOV4
detector, we can see that the ECE was reduced for the proposed
methodology. However, for the SECOND detector applied to
point-cloud representation the achieved ECE remained close
to the baseline - as shown in Table VII.
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Fig. 20. Score distributions considering objects from SECOND detector.

TABLE VI

ECE ON THE DIFFERENT MODALITIES, WHEN
USING YOLOV4 As DETECTOR

RGB Modality

Method: SG (baseline) ML MAP

ECE 0.007 0.005 0.005
RaV Modality

Method: SG (baseline) ML MAP

ECE 0.036 0.013 0.027
ReV Modality

Method: SG (baseline) ML MAP

ECE 0.031 0.013 0.031

TABLE VII

ECE FOR THE DETECTOR SECOND - 3D POINT CLOUDS

3D - PointCloud
SG (baseline) ML
0.196 0.323

MAP
0.208

Method:
ECE

VI. CONCLUDING REMARKS

Many machine learning models, particularly deep learn-
ing ones, have the tendency of regarding the values of the
detected objects’ scores as being a degree of confidence (or
related to a probability) without any level of uncertainty i.e.,
many deep models are not formulated to provide uncertainties
associated with the predicted results. One way to ensure that
the classification scores of detected objects can be interpreted
as probabilistic values or have some level of uncertainty
is through calibration/regularization techniques. However, the
developments of such techniques are quite challenging, for

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on January 17,2024 at 11:30:18 UTC from IEEE Xplore. Restrictions apply.



MELOTTI et al.: PROBABILISTIC APPROACH FOR ROAD-USERS DETECTION

instance because there is no ground truth available on uncer-
tainty data - and it is still an open problem.

The state-of-the-art formalism to capture model uncertain-
ties (calibration/regularization techniques), during training or
at the time test phase, aim to ensure confidence measures
for the predictions of the models. In this way, this paper
proposes a formulation considering the concepts of Maximum
Likelihood (ML) and Maximum a-Posteriori (MAP) to reduce
the overconfidence of detected false positive objects from the
classification scores i.e., the ML/MAP layers are be able to
reduce confidence in incorrect predictions. The formulation
takes into account a probabilistic inference through two mod-
els, one being non-parametric (normalized histogram) and the
other is parametric (Gaussian density to model the priors for
the MAP).

As a way to present the efficiency of the proposed prob-
abilistic inference approach, this work considered different
modalities, as RGB imagens, RaV, and ReV maps, as well
as 3D point clouds data i.e., datasets with different char-
acteristics. In the case of RGB images, the characteristics
are obtained directly from the camera, while RaV and ReV
maps are obtained from depth (range-view) and intensity
(reflectance-view) data, respectively. In addition, this paper
has considered the detection of objects directly on 3D point
clouds, as input, processed by a LiDAR-based pipeline -
SECOND [77].

The results achieved by the proposed approach are very
satisfactory, specially for the cyclists class (for YOLOV4), and
pedestrian case (for SECOND), as evidenced by the improve-
ments in general performance (evaluated with the Pr-Rc curves
and AUC), reduction of overconfidence (illustrated in Figures
18, 19 and 20) and a general reduction in the calibration error
(evaluated using the ECE). Finally, a key advantage of the
proposed approach is that there is no need to perform a new
network training, that is, the approach has been applied on
already trained networks.
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