
Received: 4 December 2021 Revised: 14 September 2022 Accepted: 18 October 2022

DOI: 10.1111/sjos.12629

O R I G I N A L A R T I C L E

Transform orders and stochastic monotonicity
of statistical functionals

Tommaso Lando1,2 Idir Arab3 Paulo Eduardo Oliveira3

1Department of Economics, University of
Bergamo, Bergamo, Italy
2Department of Finance, VSB-TU
Ostrava, Ostrava, Czech Republic
3CMUC, Department of Mathematics,
University of Coimbra, Coimbra, Portugal

Correspondence
Tommaso Lando, Department of
Economics, University of Bergamo,
Bergamo, Italy.
Email: tommaso.lando@unibg.it

Funding information
SGS research project of VŠB-TU Ostrava,
Grant/Award Number: SP2022/4; Centro
de Matemática da Universidade de
Coimbra, Grant/Award Number:
UIDB/00324/2020; Grantová Agentura
̌Ceské Republiky, Grant/Award Number:
20-16764S

Abstract
In some inferential statistical methods, such as tests
and confidence intervals, it is important to describe the
stochastic behavior of statistical functionals, aside from
their large sample properties. We study such a behavior
in terms of the usual stochastic order. For this purpose,
we introduce a generalized family of stochastic orders,
which is referred to as transform orders, showing that
it provides a flexible framework for deriving stochastic
monotonicity results. Given that our general definition
makes it possible to obtain some well known order-
ing relations as particular cases, we can easily apply
our method to different families of functionals. These
include some prominent inequality measures, such as
the generalized entropy, the Gini index, and its gen-
eralizations. We also illustrate the applicability of our
approach by determining the least favorable distribu-
tion, and the behavior of some bootstrap statistics, in
some goodness-of-fit testing procedures.
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1 INTRODUCTION

In statistics, one is often interested in estimating an unknown characteristic of a given dis-
tribution F, rather than the distribution itself. In many such cases, these characteristics
may be represented by some probability functional T(F) ∶  → R, where  is the space of
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cumulative distribution functions (CDFs). The most intuitive way of estimating T(F) is the plug-in
method, which simply consists in replacing the unknown F with its natural estimator, namely,
the empirical CDF Fn. Correspondingly, we shall refer to T(Fn) as a statistical functional. How-
ever, since the empirical distribution is a random process, that is, a function of the random
sample, then statistical functionals are random variables, and therefore it is important to study
their behavior from a stochastic point of view. While most of the work in the literature focuses
on large sample properties of statistical functionals, because of their applications to estimation
theory, we are concerned with a different problem, namely, we are interested in establishing
relationships between their distribution functions that hold for any given sample, regardless
of its size.

Let T be some functional, and let Fn and Gn be the empirical CDFs that correspond to random
samples from F and G, respectively. We are interested in determining the conditions on F, G and T,
such that T(Fn) stochastically dominates T(Gn)with respect to the usual stochastic order (recalled
below in Definition 2). This is a relevant information as it may be used to help characterizing
finite sample properties of testing procedures, as we will be describing later. Results of this kind
may be rather complicated to derive, depending on the mathematical form of T, and on the initial
conditions on the baseline distributions F and G. In this regard, Arendarczyk et al. (2021) recently
studied the stochastic dominance behavior of the Greenwood statistic (Greenwood, 1946) when
the baseline distributions are comparable in terms of the star order. We will show that this result is
a particular case of a much more general one, making it possible to establish dominance relations
within a wider family of statistical functionals, specifically, functionals that are compatible with a
general class of transform orders, generated by some family of reference functions (see Definition 1
below).

Our main result, Theorem 1, presented in Section 2, shows that, if the baseline dis-
tributions are ordered with respect to some transform order, the statistical functionals are
stochastically ordered, provided that the corresponding probability functional is order-preserving
with respect to the same transform order. This result has a wide range of applicability,
as our definition of transform order includes the usual stochastic order, the convex trans-
form order, the star order, the superadditive and the dispersive orders (Shaked & Shanthiku-
mar, 2007). Therefore, we are able to derive stochastic properties of several important families
of functionals.

As an immediate application of Theorem 1, in Section 3 we obtain the stochastic mono-
tonicity of many important measures of inequality, including the generalized entropy class
(Shorrocks, 1980; Shorrocks & Slottje, 2002), the well-known Gini index (Gini, 1912) and some
of its generalizations (Donaldson & Weymark, 1980; Mehran, 1976). Differently, in Section 4, we
use Theorem 1 to determine, in a simple way, the least favorable distribution, as well as the behav-
ior of some bootstrap statistics, for some goodness-of-fit testing problems, related to the convex
order or to the star order, which are relevant in areas such as survival analysis, reliability, and
shape-constrained inference (Barlow et al., 1971).

2 MAIN RESULTS

We begin by establishing some notations. The random variables X and Y have CDFs F and G
and supports SF and SG, respectively. Let us denote with F−1 the left continuous generalized
inverse, namely, the quantile function, of F. We recall that a stochastic order is a binary relation ≻

over  that is reflexive and transitive. In particular, observe that ≻ does not generally satisfy the
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LANDO et al. 1185

antisymmetry property, that is, F ≻ G and G ≻ F do not necessarily imply X =d Y , and it is
generally not total. A functional T is said to be isotonic, or order-preserving, with respect to ≻,
whenever, for every pair F,G ∈  such that F ≻ G, it holds that T(F) ≥ T(G). Let us denote by
 the class of functionals defined on  . Then, we may represent by (≻) the class of functionals
that are isotonic with respect to ≻, that is,

(≻) = {T ∈  ∶ F ≻ G ⇒ T(F) ≥ T(G), ∀F,G ∈ }.

Likewise, the class of functionals that are antitonic, or order-reversing, with respect to ≻, is
denoted as(≻) = {T ∈  ∶ F ≻ G ⇒ T(F) ≤ T(G), ∀F,G ∈ }. It is worth noticing that, given
a pair of stochastic orders, say ≻0 and ≻1, if F ≻0 G ⇒ F ≻1 G, then (≻1) ⊂ (≻0).

Given that stochastic orders and probability functionals depend only on the distribution func-
tions of the random variables, we may write F ≻ G or X ≻ Y , and T(F) or T(X), interchangeably.

2.1 A general family of orders

We now introduce the following definition of a transform order, generated by a family of functions
, whose choice enables the generalization of some well-known stochastic orders. As usual, f |E
denotes the restriction of a function f to the set E.

Definition 1. Let  be some family of nondecreasing functions. We say that X dominates Y with
respect to the -transform order, denoted by X ≥ Y , if F−1 ◦G|SG ∈ .

Note that X =d F−1 ◦G(Y ), so, basically, a transform order holds when the function that trans-
forms (distributionally) one random variable into the other satisfies some properties of interest.
Such properties fully characterize the dominance relations. It is easy to see that ≥ fulfills the
basic properties of stochastic orders, and, moreover, 0 ⊂ 1 means that F ≥0 G ⇒ F ≥1 G. As
limiting cases, if  is the class of nondecreasing functions, then≥ is always verified, whereas if 
contains just the identity function then ≥ coincides with equality in distribution, =d. The usual
stochastic order, generally defined by the relation F(x) ≤ G(x), for every x ∈ R (Shaked & Shan-
thikumar, 2007), is a transform order, obtained by choosing  as the class of functions 𝜓 such
that 𝜓(x) ≥ x. Other well-known transform orders may be obtained by appropriately choosing :
the classes of convex, star-shaped, or superadditive functions, yield the convex transform order,
the star order, or the superadditive order, respectively. Also the dispersive order can be obtained
by choosing  as the class of functions 𝜓 such that 𝜓(x) − x is nondecreasing (Shaked & Shan-
thikumar, 2007). Since these orders are particularly important, we recall their definitions below
(remember that F−1 ◦G is always nondecreasing by construction). However, Definition 1 above
is quite general and enables the possibility of defining new stochastic orders.

Definition 2. We say that X dominates Y with respect to

1. the usual stochastic order, denoted by X ≥st Y , if F−1 ◦G|SG(x) ≥ x, or equivalently, F(x) ≤ G(x),
for every x ∈ R;

2. the convex transform order, denoted by X ≥c Y , if F−1 ◦G|SG is convex;
3. the star order, denoted by X ≥∗ Y , if F−1 ◦G|SG is star-shaped;
4. the superadditive order, denoted by X ≥su Y , if F−1 ◦G|SG is superadditive;
5. the dispersive order, denoted by X ≥disp Y , if (F−1 ◦G(x) − x)|SG is increasing.
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1186 LANDO et al.

For nonnegative random variables, the following relations hold:

X ≥c Y ⇒ X ≥∗ Y ⇔ log X ≥disp log Y ⇒ X ≥su Y .

In the sequel, we will further extend Definition 2 to enable comparisons of (discrete) empirical
distributions, which is necessary to obtain the desired stochastic monotonicity between statistical
functionals.

2.2 Stochastic monotonicity results

We are concerned with the problem of ranking statistical functionals in terms of the usual
stochastic order. Therefore, we are interested in determining the conditions on F, G and
T such that P(T(Fn) ≤ x) ≤ P(T(Gn) ≤ x) holds for every x ∈ R. Results of this kind are
not predictable in general. In this regard, intuitively, one may wonder whether T(F) ≥
T(G) is sufficient for T(Fn) ≥st T(Gn), or whether X ≻ Y and T ∈ (≻) imply T(Fn) ≥st
T(Gn), for a general order ≻. It is important to remark that, in general, this is not true
(see Subsection 3.3 below).

Our main result, Theorem 1, shows that transform orders provide a general framework
for deriving stochastic monotonicity of statistical functionals of the form T(Fn), conditionally
on the isotonicity properties of T. However, before proceeding, we need some further pre-
liminary definitions and notations. Indeed, some transform orders may be not defined for
realizations, Fn and Gn, of the empirical distribution functions Fn and Gn, as these real-
izations are discrete. For instance, in the empirical case, the composition F−1

n ◦Gn is a step
function, hence neither convex nor star-shaped, so these CDFs are not comparable in terms
of ≥c or ≥∗. Therefore, to prove our main results, we must extend, when needed, any trans-
form order to the class of observed empirical distributions, according to the following general
definition.

Definition 3. Let  be some family of nondecreasing functions. We say that X dominates Y with
respect to the extended -transform order, denoted as X ≥e


Y , if there exists a function 𝜙 ∈ 

such that 𝜙|SG = F−1 ◦G|SG .

Note the distinction between Definitions 1 and 3: the former requires that F−1 ◦G satis-
fies some property, described by , on the support of G, while the latter assumes the exis-
tence of some function 𝜙 ∈ , which coincides with the composition F−1 ◦G on the support
of G, formally, 𝜙|SG = F−1 ◦G|SG . This is useful because, for instance, notions such as con-
vexity and star-shapedness are generally not defined for functions whose support is a dis-
crete set of points. In such cases, Definition 3 makes it possible to consider  as the class
of convex or star-shaped functions, even when F and G are empirical distributions, which
is out of the scope of Definition 1. Indeed, with regard to the pair Fn, Gn, where SGn =
{y1,…, yn}, the ordering Fn ≥

e


Gn holds if there exists a function 𝜙 ∈  such that 𝜙(yi) =
F−1

n ◦Gn(yi), i = 1,…,n. Moreover, note that ≥e


is a weaker version of ≥ , that is, X ≥ Y implies
X ≥e


Y .

We may now establish our main result. Consider a sample y1,…, yn from Y . As X =d
F−1 ◦G(Y ), the values x∗i = F−1 ◦G(yi), i = 1,…,n, may be seen as observations from X . Now, let
us denote with Gn the realization of Gn corresponding to the sample y1,…, yn, and with F∗n the
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LANDO et al. 1187

particular realization of Fn corresponding to the sample x∗1 ,…, x∗n. Then, we obtain the following
sufficient conditions for T(Fn) ≥st T(Gn).

Theorem 1.

1. If X ≥e


Y and T ∈ (≥e

), then T(Fn) ≥st T(Gn).

2. If X ≥e


Y and T(F∗n) ≥ T(Gn), then T(Fn) ≥st T(Gn).

Proof. Let ̃Xn and ̃Y n be two random variables whose distributions are F∗n and Gn, respectively.
Obviously, F−1 ◦G( ̃Y n) =d ̃Xn. If X ≥e


Y , then there exists some 𝜙 ∈  satisfying Definition 3. Let

Z be a random variable with distribution H and support SH included in SG. X ≥e


Y implies

𝜙|SH = (𝜙|SG)|SH = (F
−1 ◦G|SG)|SH = F−1 ◦G◦H−1 ◦H|SH .

Note that the quantile function of F−1 ◦G(Z) is F−1 ◦G◦H−1, hence the latter relation is equiv-
alent to F−1 ◦G(Z)≥e


Z, for every random variable Z with support included in that of Y . Given

that the support of ̃Y n is always included in the support of Y , this yields ̃Xn =d F−1 ◦G( ̃Y n)≥e

̃Y n.

Now, in case 1), as we are assuming that T ∈ (≥e

), it follows that T(F∗n) ≥ T(Gn), while, in case

2), this holds by assumption. Note that we are not interested in comparing Gn and F∗n, however,
this result contains information about the distributional behavior of T(Fn) and T(Gn). In fact,
since T(F∗n) ≥ T(Gn) holds for every possible pair of realizations x∗1 ,…, x∗n and y1,…, yn, obtained
as above, the latter relation can be equivalently expressed as T(Fn) ≥st T(Gn) (again, this charac-
terization of the usual stochastic order is due to the probability integral transform, see theorem
1.A.1 of Shaked & Shanthikumar, 2007). ▪

Theorem 1 demonstrates the practical usefulness of our Definition 3. In fact, transform orders
may sometimes not be meaningful, especially when choosing an unusual reference class .
However, they may be employed merely as tools for deriving stochastic properties of statistical
functionals. For instance, to apply part 1 of Theorem 1, it is enough to show that the functional
of interest T belongs to some isotonic family, (≥e


), and to do so, one may use existing results

which ensure that T ∈ (≥e

). In particular, as we discuss in the next section, this approach works

when  is the class of functions that defines the star order or the convex transform order, enabling
the determination of the stochastic monotonicity of the main measures of inequality and skew-
ness. Obviously, if T is isotonic with more than one of the orders in Definition 3, we should use
the weakest one, in order to enlarge the range of applicability of the result. On the other hand, it
might happen that our functional T is not isotonic with known orders. In this case, we may try
to define a new ad hoc transform order such that T ∈ (≥e


), for instance by choosing a wider

class  or by defining  according to the properties of T. Alternatively, we may apply part 2 of
Theorem 1, replacing the isotonicity assumption, T ∈ (≥e


), with the weaker order-preserving

property T(F∗n) ≥ T(Gn).
Both approaches may be useful, depending on the situation. Several results available in the

literature assert the isotonicity of many popular probability functionals, with respect to some of
the transform orders mentioned above, hence part 1 immediately provides the ordering between
the corresponding statistical functionals, as discussed in the following section. When such
isotonicity results are not available, part 2 offers a weaker order-preserving assumption, allowing
for the same conclusion. This latter approach will be explored in Section 4.
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1188 LANDO et al.

3 STOCHASTIC BEHAVIOR OF INEQUALITY MEASURES

We now consider some important families of statistical functionals that are commonly employed
in several fields, including statistics, economics, and finance. It should be noted that functionals
that are isotonic with the usual stochastic order are generally seen as location functionals. Since
every function of the random sample, which is nondecreasing in each argument, has a stochas-
tically increasing behavior (Shaked & Shanthikumar, 2007, theorem 1.A.3), then the stochastic
monotonicity of location estimators may be easily derived. Therefore, we focus on some other
families of functionals, that are generally not isotonic with the usual stochastic order, namely
inequality measures. As discussed later in this section, inequality measures must be isotonic with
the star order, so they fit perfectly to our framework. Similarly, notice that isotonicity with the
convex transform order is a basic condition for a skewness measure (Eberl & Klar, 2021; Oja, 1981;
van Zwet, 1964), therefore our method may be also applied to skewness measures, but this is
beyond the purpose of this paper.

Hereafter, we focus on nonnegative random variables with finite mean. Let LF(p) =
∫

p
0 F−1(t) dt∕𝜇X , p ∈ [0, 1] be the Lorenz curve of F (as usual, 𝜇X represents the mean of X). The

Lorenz curve is a primary tool for representation of inequality (e.g. income inequality), as it is
typically understood that the higher of two nonintersecting Lorenz curves shows less inequality.
This gives rise to the definition of the Lorenz order.

Definition 4. We say that X dominates Y with respect to the Lorenz order, denoted by X ≥L Y ,
if LF(p) ≤ LG(p) for every p ∈ [0, 1].

Note that the reverse relation (LF(p) ≥ LG(p)) is sometimes used to define the Lorenz order.
We use the same notation as in Marshall et al. (2011), that is, X dominates Y if it exhibits higher
inequality, as measured by the Lorenz curve. Using standard arguments in the ordering theory, it
is possible to derive several classes of probability functionals that are isotonic with ≥L. In partic-
ular, any functional I(X) satisfying the following basic properties (see Shorrocks, 1980), may be
seen as an inequality measure:

1. I ∈ (≥L);
2. I(X) ≥ I(𝜇X );
3. I(aX) = I(X), a > 0;
4. I(X + b) ≤ I(X), b > 0.

Actually, properties 2–4 are redundant, as they are implied by 1, that is, the Lorenz isotonicity
of the inequality measure I is the crucial property. It is well known that the star order implies
the Lorenz order (Shaked & Shanthikumar, 2007), so that (≥L) ⊂ (≥∗). However, since the star
order is usually defined only in the continuous case, we need the following extension.

Lemma 1. (≥L) ⊂ (≥e
∗).

Proof. Choose T ∈ (≥L). The inclusion follows if we prove that Fn ≥
e
∗ Gn ⇒ Fn ≥L Gn, as

this latter implies that T(Fn) ≥ T(Gn). Let ̃Fn and ̃Gn be the linear interpolators of the jump
points of Fn and Gn, respectively. If Fn≥

e
∗ Gn, then we can take 𝜙 = ̃F−1

n ◦ ̃Gn in Definition 3.
The function 𝜙 coincides with the linear interpolator of F−1

n ◦Gn, which is star-shaped by
construction. Then, since ̃Fn, ̃Gn are continuous, ̃Fn ≥∗ ̃Gn and the ratio ̃F−1

n ∕ ̃G
−1
n is nondecreas-

ing (Shaked & Shanthikumar, 2007, p. 214), the sequence F−1
n (i∕n)∕G−1

n (i∕n) is nondecreasing
for i = 1,…,n, whereas F−1

n (p)∕G−1
n (p) is constant between (i − 1)∕n and i∕n, for i = 2,…,n.
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LANDO et al. 1189

Hence, the function R = F−1
n ∕G−1

n is a nondecreasing step function. Without loss of generality,
let 𝜇X = 𝜇Y = 1. Then LFn (p) − LGn(p) = ∫

p
0 (F

−1
n (u) − G−1

n (u)) du. If R is nondecreasing, and the
means are equal, the quantile functions must cross, and R(⋅) − 1 must have one sign change. How-
ever, R(⋅) − 1 has the same sign as F−1

n − G−1
n , therefore the argument of theorem 4.B.4 of Shaked

and Shanthikumar (2007) implies the result. ▪

Now, the following result is an immediate consequence of Theorem 1 and Lemma 1.

Corollary 1. If I ∈ (≥L) and X ≥∗ Y, then I(Fn) ≥st I(Gn).

In the next subsections, we will focus on some particularly relevant families of inequality
measures.

3.1 Expectation-type transformations

It is well known that X ≥L Y if and only if E(𝜙(X∕𝜇X )) ≥ E(𝜙(Y∕𝜇Y )), for every convex function
𝜙 (Marshall et al., 2011). Therefore, any functional of the form

T
𝜙

(F) = E

(

𝜙

(
X
𝜇X

))

=
∫

∞

0
𝜙

(
x
𝜇X

)

dF(x) =
∫

1

0
𝜙

(
F−1(p)
𝜇X

)

dp,

where𝜙 is convex, is isotonic with≥L, as it is easily seen to satisfy the properties of inequality mea-
sures (Lando & Bertoli-Barsotti, 2016). Now, the corresponding statistical functional is T

𝜙

(Fn) =
∑

𝜙(Xi∕Xn)∕n, where X1,…,Xn is a random sample from X and Xn is the sample mean. Several
well-known indices belong to this general family, among which we may note the class of gener-
alized entropy, or additively decomposable measures of inequality (Shorrocks, 1980; Shorrocks &
Slottje, 2002), obtained by setting 𝜙r(x) = xr∕(r(r − 1)), r ≠ 0, 1, 𝜙0(x) = − log x, or 𝜙1(x) = x log x,
respectively, which yield

Ir(Fn) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
r(r−1)n

∑(
Xi

Xn

)r
r ≠ 0, 1

1
n

∑
log

(
Xn
Xi

)

r = 0
1
n

∑ Xi

Xn
log

(
Xi

Xn

)

r = 1.

This class gives, for r = 1, the Theil index, that is, a shifted version of the Shannon’s entropy
measure, applied to the quantities Xi∕(nXn) instead of probabilities; for r ∈ (0, 1], a monotonic
transformation of the Atkinson’s class (Atkinson, 1970); and, for r = 2, a simple transformation of
the coefficient of variation CVn, that is, (2I2)1∕2 = CVn. Moreover, when 𝜙(x) = |x − 1|, we obtain
the relative mean absolute deviation T

𝜙

(Fn) =
∑

|Xi − Xn|∕(nXn). Then, the following result is
an immediate consequence of Corollary 1.

Corollary 2. If X ≥∗ Y, then
∑

𝜙(Xi∕Xn)∕n ≥st
∑

𝜙(Yi∕Y n)∕n, for every convex function 𝜙.

Notice that Arendarczyk et al. (2021) proved that the Greenwood statistic has a stochastic
increasing behavior with respect to the star order. However, since the Greenwood statistic is a
transformation of the coefficient of variation, namely (1 + CV2

n)∕n, theorem 1 of Arendarczyk
et al. (2021) follows as a consequence of Corollary 2.
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1190 LANDO et al.

3.2 Distorted expectations

Let H be a distortion function, that is a nondecreasing function on the unit interval, such that
H(0) = 0 and H(1) = 1, and let ̃H(p) = 1 −H(1 − p) be the corresponding dual distortion function.
Probability functionals of the form

EH(F) =
1
𝜇X ∫

∞

0
x dH ◦F(x) = 1

𝜇X ∫

1

0
F−1(p) dH(p) = 1

𝜇X ∫

∞

0
̃H(1 − F(x)) dx,

are generally referred to as distorted expectations, distortion risk measures, or Gini-type function-
als (Lando & Bertoli-Barsotti, 2020; Muliere & Scarsini, 1989; Wang & Young, 1998). It can be seen
that X ≥L Y if and only if EH(F) ≤ (≥)EH(G), for every concave (convex) distortion H. Then, EH
is antitonic with respect to ≥L, provided that H is concave. If we denote by X(1),…,X(n) the order
statistics of a random sample from X , the corresponding statistical functional is

EH(Fn) =
1

Xn

∑
X(i)

i
n

∫
i−1
n

dH(p) = 1
Xn

∑
X(i)

[

H
( i

n

)

−H
( i − 1

n

)]

.

Such linear combinations of order statistics are generally referred to as L-statistics (Serfling, 1984).
Several important indices belong to this family. For instance, by choosing H(p) = 1 − (1 − p)k,
k ≥ 1, we obtain the class of generalized Gini indices ΓH = 1 − EH , introduced by Donaldson and
Weymark (1980). In particular, the classic Gini coefficient of inequality (Gini, 1912) is given by
Γ = ΓH , with H(p) = 1 − (1 − p)2, that is

Γ(Fn) = 1 − 1
n2Xn

∑
X(i)(2n − 2i + 1) = 1 − 2

1

∫

0

LFn(p) dp =
∑n

i=1
∑n

j=1|X(i) − X(j)|

2n2Xn
.

As for the expressions above, we recall that there are several alternative ways to represent Γ (see
chapter 1 of Yitzhaki & Schechtman, 2013). For example, note that, if k is a positive integer,
∫
∞

0 (1 − F(x))k dx = E(min(X1,…,Xk)), so that Γ(F) = 1 − E(min(X1,X2))∕𝜇X .
Similarly, the functional ∫ ∞0 F−1(p)h(p) dp∕𝜇X , where h is nondecreasing and such that H(p) =

∫
p

0 h(t) dt, p ∈ [0, 1], is isotonic with respect to ≥L. If we set w(p) = h(p) − 1, p ∈ [0, 1], without
loss of generality in terms of isotonicity, we obtain the family of linear inequality measures

̃Γw(F) =
1
𝜇X ∫

1

0
F−1(p)w(p) dp,

studied by Mehran (1976). In particular, it can be shown that the weight function w(p) = 2p − 1
yields again the Gini coefficient, whereas w(p) = 0, p ∈ (0, 1), w(0) = −1, w(1) = 1 gives the rel-
ative range ̃Γw(Fn) = (X(n) − X(1))∕Xn. It is easy to see that ΓH and ̃Γw, as probability functionals,
satisfy the four properties of inequality measures discussed earlier. Again, Corollary 1 gives the
following result.

Corollary 3. If X ≥∗ Y, then ΓH(Fn) ≥st ΓH(Gn), for every concave distortion function H, and
̃Γw(Fn) ≥st ̃Γw(Gn), for every nondecreasing weight function w on [0, 1] such that ∫ 1

0 w(p) dp = 0.
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LANDO et al. 1191

3.3 Some useful remarks

One may wonder if, in Theorem 1, a transform order may be replaced by a different kind of order
≻, that is, if, in general, F ≻ G and T ∈ (≻) imply T(Fn) ≥st T(Gn), where ≻ is not a transform
order. For instance, can one replace ≥∗ by ≥L in Corollary 1? More generally, one may even won-
der if the stochastic ordering assumption between the baseline distributions could be relaxed:
for instance, would T(F) ≥ T(G) suffices to obtain T(Fn) ≥st T(Gn)? (This would also mean that
T(F) = T(G) implies T(Fn) =d T(Gn)). The following counterexample provides a negative answer
to these conjectures.

Let X and Y be discrete random variables with uniform distributions on the supports
{1, 3.5, 6, 6.5, 9, 11} and {2, 3, 5, 7, 7.5, 10}, respectively. It is easily seen that F ≥L G and the Gini
indices are such that Γ(F) > Γ(G), but F ≱

e
∗ G. Note that we focus on discrete distributions,

because, using continuous parametric models, it is difficult to find instances such that F ≥L G
and F ≱

e
∗ G. In the discrete case, the distributions of Γ(Fn) and Γ(Gn) are also discrete, with finite

support included in the unit interval. Therefore, we may obtain a precise approximation of these
distributions, for small sample sizes, by using a large number of simulation runs. An approximate
representation of the CDFs ofΓ(Fn) andΓ(Gn), based on one million random samples of size n = 3
from F and G, is shown in Figure 1. The functions are clearly crossing, hence Γ(Fn) ≱st Γ(Gn). In
particular, we observe that these functions exhibit some “bumps” within different intervals, and
this represents an obstruction for the dominance relation. When the distributions are star ordered
(F≥e

∗ G), such bumps occur within some overlapping intervals, indeed the dominance relation is
guaranteed by Corollary 1. We obtained a similar behavior for other small sample sizes, such as
n = 4, 5. This result is quite unexpected, however, we may conclude that both conjectures above
are false. In particular, the behavior of the functionals is not “under control” if the sample size is
small, whereas we know that, for large sample sizes, under some conditions (which are satisfied
for probability functionals of the form ∫ t(x) dF(x), such as transformed and distorted expecta-
tions), statistical functionals converge to the constant value T(F). Therefore, transform orders
provide suitable tools for controlling the stochastic behavior of statistical functionals.

F I G U R E 1 Cumulative distribution functions of the Gini coefficient, generated by 106 samples from F
(thick) and G (thin)
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1192 LANDO et al.

4 APPLICATION TO GOODNESS- OF-FIT TESTS

In the statistical literature, tests of the null hypothesis R
0 ∶ G−1 ◦F|R ∈ , versus the alterna-

tive R
1 ∶ G−1 ◦F|R ∉ , where R ⊂ SF is some interval, F is the distribution of interest and G is

known, may be particularly interesting. Hereafter, we will focus on the case in which G(0) = 0,
to avoid some technical issues. Given G, G−1 ◦F is called the generalized hazard function of F
(Barlow et al., 1971). Tests for G ≥c F and G ≥∗ F have several applications: for example, by choos-
ing G(x) = (x) ∶= 1 − exp(−x), x ≥ 0, namely, the unit exponential distribution, we obtain tests
for the increasing hazard rate (IHR) and the increasing hazard rate average (IHRA) properties,
respectively, which are fundamental tools for survival analysis and reliability theory (Marshall
& Olkin, 2007). Nonparametric tests of these properties have been studied extensively in the
literature, most of which deal with the null hypothesis of exponentiality (F = ) versus the alter-
native that F is IHR (Barlow & Proschan, 1969; Bickel, 1969; Bickel & Doksum, 1969; Proschan
& Pyke, 1967) or IHRA (Ahmad, 1994; Deshpande, 1983; Klefsjö, 1983; Kochar, 1985; Link, 1989;
Wells & Tiwari, 1991), but not exponential. In such cases, it is clear that the distribution of the
test statistic can be obtained using F =  . Differently, we study goodness-of-fit tests where the
determination of the distribution of the test statistic under the (composite) null hypothesis is not
obvious and it represents an important issue (Durot, 2007; Gijbels & Heckman, 2004; Groene-
boom & Jongbloed, 2012; Hall & van Keilegom, 2005; Lando, 2022; Lando et al., 2021; Tenga &
Santner, 1984). As shown in the sequel, part 2 of Theorem 1 may be used to establish stochastic
ordering properties of test statistics under some circumstances of interest. These results make it
possible to control the behavior of the test for a given sample size, which is an important aspect,
comparable to asymptotic properties.

In the next subsections, we shall remove the restriction R and just consider0 ∶ G−1 ◦F ∈ 
versus1 ∶ G−1 ◦F ∉ , to simplify the notations. It is easily seen that the results in Sections 4.1
and 4.2 hold even in the restricted case. Differently, a restricted null hypothesis is considered in
Section 4.2.1.

4.1 Testing convexity

Define the greatest convex minorant of a function 𝜙 as the largest convex function 𝜙c that does
not exceed 𝜙 (see Tenga & Santner, 1984 for a formal definition of this function). An intuitive way
of testing0 ∶ G ≥c F versus1 ∶ G ≱c F consists in measuring the distance between G−1 ◦ Fn
and its greatest convex minorant (G−1 ◦ Fn)c, or, more generally,

TK
c (Fn) = sup

i=2,…,n−1
|
|K ◦G−1 ◦Fn(X(i−1)) − K ◦ (G−1 ◦Fn)c(X(i))||

= sup
i=2,…,n−1

(

K ◦G−1
( i − 1

n

)

− K ◦ (G−1 ◦Fn)c(X(i))
)

,

where K is some strictly increasing transformation defined on SG. This family of tests is quite gen-
eral. Some interesting examples are obtained by choosing K as the identity function (Durot, 2007;
Lando et al., 2021; Tenga & Santner, 1984); or setting K = G (Groeneboom & Jongbloed, 2012;
Lando, 2022), in this latter case TK

c (Fn) boils down to a Kolmogorov–Smirnov-type test statistic.
It can be seen that TK

c is scale invariant, which is a basic condition for tests of this kind. Note
that the difference is evaluated among the shifted points X(i) and X(i−1) because, by construction,
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LANDO et al. 1193

G−1 ◦ Fn(X(i−1)) ≥ (G−1 ◦ Fn)c(X(i)). A weighted version of TK
c (Fn)may also be considered with-

out loss of generality. Of course, since0 is a composite hypothesis, the determination of the least
favorable distribution of TK

c (Fn) under 0 is especially critical. With regard to the IHR hypoth-
esis, this distribution is indeed obtained by simulating from the unit exponential, as proved by
Tenga and Santner (1984). We remark that a more general result may be achieved as an applica-
tion of Theorem 1. As expected, the least favorable distribution of TK

c (Fn) under 0 ∶ G ≥c F, is
determined just by simulating from G. Let ΦG

p (F) = (G−1 ◦F)c(F−1(p)). The following lemma is a
consequence of theorem 2.2 of Tenga and Santner (1984), and it establishes the order-reversing
behavior of ΦG

p .

Lemma 2. Assume that G ≥c F. Then ΦG
i∕n(Gn) ≤ ΦG

i∕n(F
∗
n), for i = 1,…,n.

Theorem 1 and Lemma 2 imply the following result. Note that this is a slight generalization of
existing results (Lando et al., 2021; Tenga & Santner, 1984), however, here we show it to illustrate
our method, as an immediate application of part 2 of Theorem 1.

Proposition 1. Under 0 ∶ G ≥c F, TK
c (Gn) ≥st TK

c (Fn).

Proof. Clearly, by Lemma 2, ΦG
i∕n(Gn) ≤ ΦG

i∕n(F
∗
n). Note that

TK
c (Fn) = sup

i=2,…,n−1

(

K ◦G−1
( i − 1

n

)

− K ◦ΦG
i∕n(Fn)

)

,

then Theorem 1 implies the result, since K is increasing. ▪

Therefore, we reject0 when TK
c (Fn) ≥ c

𝛼,n, where c
𝛼,n is the solution of P(TK

c (Gn) ≥ c
𝛼,n) = 𝛼.

Proposition 1 ensures that the size of the test is 𝛼, that is, under 0, P(TK
c (Fn) ≥ c

𝛼,n) ≤ 𝛼. More-
over, under the alternative “G−1 ◦F is concave,” reversing Proposition 1, we can similarly obtain
P(TK

c (Fn) ≥ c
𝛼,n) ≥ P(TK

c (Gn) ≥ c
𝛼,n) = 𝛼, that is, the test is unbiased under concave alternatives.

The p-value of the test is p = P(TK
c (Gn) ≥ TK

c (Fn)).
As well known, the determination of the least favorable distribution of TK

c yields conserva-
tive tests. In order to improve the power of the test against nonconvex alternatives (1 ∶ G ≱c F),
a more modern approach consists in performing bootstrap resampling from the distribution
FG

n = G◦ (G−1 ◦Fn)c, that is an isotonic estimate of F, instead of sampling from G (Groeneboom
& Jongbloed, 2012). In particular, denote with ̂F

G
n the (bootstrap) empirical distribution obtained

by sampling from FG
n . The following result holds.

Proposition 2. Under 0 ∶ G ≥c F, TK
c (Gn) ≥st TK

c ( ̂F
G
n ).

Proof. Let FG
n be the estimate of F which corresponds to the empirical distribution F∗n. FG

n is a
realization of ̂F

G
n . Lemma 2 yields ΦG

i∕n(Gn) ≤ ΦG
i∕n(F

∗
n), for i = 1,…,n. Note that FG

n is a minorant
of F∗n (equivalently, (F∗n)−1 is a minorant of (FG

n )−1). Then, since G−1 ◦FG
n = (G−1 ◦F∗n)c, we obtain

ΦG
i∕n(Gn) ≤ ΦG

i∕n(F
∗
n) = (G−1 ◦F∗n)c

(

(F∗n)−1
( i

n

))

≤ (G−1 ◦F∗n)c
(

(FG
n )−1

( i
n

))

= G−1 ◦FG
n ◦ (FG

n )−1
( i

n

)

= ΦG
i∕n(F

G
n ).

Hence, as shown in the proof of Proposition 1, we obtain that TK
c (Gn) ≥st TK

c ( ̂F
G
n ). ▪
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1194 LANDO et al.

Since quantiles are isotonic with ≥st, Proposition 2 ensures that, with this method, we obtain
a smaller critical value and, correspondingly, a higher value of the power function under1. On
the other hand, a test obtained by this method does not satisfy anymore the properties implied by
Proposition 1 (size and unbiasedness).

4.2 Testing star-shapedness

Now, let us consider tests for 0 ∶ G ≥∗ F versus 1 ∶ G ≱∗ F. Note that G ≥∗ F requires that
F(0) = 0. Define the greatest star-shaped minorant of a function 𝜙, as the largest star-shaped
function 𝜙∗ that does not exceed 𝜙 (see section 2 of Wang, 1987 for a formal definition). The
same arguments used earlier may determine the least favorable distribution, under0, of the test
statistic

TK
∗ (Fn) = sup

i=2,…,n−1

(

K ◦G−1
( i − 1

n

)

− K ◦ (G−1 ◦Fn)∗(X(i))
)

.

Let ΨG
p (F) = (G−1 ◦F)∗(F−1(p)). The following lemma establishes the order-reversing behavior of

ΨG
p , corresponding to Lemma 2.

Lemma 3. Assume that G ≥∗ F. Then ΨG
i∕n(Gn) ≤ ΨG

i∕n(F
∗
n), for i = 1,…,n.

Proof. To simplify notations, let y1,…, yn be ordered realizations from G. The function u =
F−1 ◦G is, by assumption, anti-star-shaped, and recall that x∗i = u(yi) are the observations which
determine F∗n. Note that G−1 ◦Gn(yi) = G−1(i∕n). We now describe explicitly (G−1 ◦Gn)∗ (see
Wang, 1988). Let

ai =
1
yi

G−1
( i − 1

n

)

, i = 1,…,n,

be the slope of the line connecting the origin to the point (yi,G−1((i − 1)∕n)). The analytical expres-
sion of the greatest star-shaped minorant is given by (G−1 ◦Gn)∗(x) = 𝛼ix, for x ∈ [yi−1, yi), where
y0 = 0 and 𝛼i = min{aj, j = i,…,n} (note that 𝛼1 = 0, and, moreover, star-shapedness requires
that the slopes are increasing). (G−1 ◦F∗n)∗ is defined similarly. Note that the two functions have
different domains, but coincide at corresponding points: G−1 ◦F∗n(x∗i ) = G−1 ◦Gn(yi) = G−1((i −
1)∕n). We want to prove that (G−1 ◦F∗n)∗(u(yi)) ≥ (G−1 ◦Gn)∗(yi), for i = 1,…n. It is sufficient to
prove

G−1
(

k−1
n

)

u(yk)
u(yi) ≥

G−1
(

k−1
n

)

yk
yi ⇔

u(yi)
yi
≥

u(yk)
yk

,

for k = i,…,n, which follows form the anti-star-shapedness of the function u, that is, u(x)∕x is
decreasing. ▪

Using Lemma 3 and similar arguments as those used in the previous subsection, we can
ensure that the least favorable distribution of TK

∗ , under 0, is determined by simulating from
G. Accordingly, the test determined by P(TK

∗ (Gn) ≥ c
𝛼,n) = 𝛼 has size 𝛼 and it is unbiased against

anti-star-shaped alternatives. Moreover, the bootstrap estimator which arises from the isotonic
estimate G◦ (G−1 ◦Fn)∗, denoted as ̃F

G
n , satisfies an equivalent property to that established by

Proposition 2. We summarize these results as follows (the proof is omitted).
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LANDO et al. 1195

Proposition 3. Under 0 ∶ G ≥∗ F,

1. TK
∗ (Gn) ≥st TK

∗ (Fn);
2. TK

∗ (Gn) ≥st TK
∗ ( ̃F

G
n ).

Differently from the tests discussed in the Section 4.1, which have been studied extensively
in the literature, tests of the null hypothesis G ≥∗ F are relatively unexplored, so it is worth dis-
cussing them further. In fact, our results can be useful for testing goodness-of-fit to the IHRA
family, which is particularly relevant in reliability and survival analysis, or some generalizations
of this property, as described by Barlow et al. (1971).

4.2.1 An example: testing the IHRA property

A CDF F is said to be IHRA if the hazard function H = − ln(1 − F) is star-shaped, or equivalently,
if the hazard rate average (HRA) function H(x)∕x is increasing (Marshall & Olkin, 2007). Tests of
the IHRA property have already been considered in the literature, however, these are based on the
null hypothesis that F is exponential, versus IHRA alternatives (Ahmad, 1994; Deshpande, 1983;
Klefsjö, 1983; Kochar, 1985; Link, 1989; Wells & Tiwari, 1991), which is clearly different from our
approach.

Plugging G = K =  into the expression of TK
∗ , we obtain a Kolmogorov–Smirnov-type test

statistic, which can be used to test goodness-of-fit to the IHRA family. More generally, we
may consider the following restricted hypotheses 𝜈

0 ∶ H|S
𝜈

is star-shaped versus 𝜈

1 ∶ H|S
𝜈

is
not star-shaped, where S

𝜈

= {x ∶ x ≤ F−1(1 − 𝜈)}, 𝜈 ∈ [0, 1] (clearly 0 coincides with 𝜈

0 ). Let
us define n

𝜈

by X(n
𝜈

) = F
−1
n (1 − 𝜈), and Sn,𝜈 = {x ≤ X(n

𝜈

)}. Accordingly, we have the following
restricted test statistic:

T𝜈

∗(Fn) = sup
i=2,…,n

𝜈

−1

( i − 1
n

−  ◦
(
Hn|Sn,𝜈

)

∗ (X(i))
)

,

where Hn = − ln(1 − Fn) is the empirical hazard function. It is easy to see that this restricted test
still satisfies the properties established by Proposition 3, for every 𝜈 ∈ [0, 1]. Therefore, the dis-
tribution of T𝜈

∗ is obtained by simulating from G =  . We reject 0 when T𝜈

∗(Fn) ≥ c
𝛼,n,𝜈 , where

c
𝛼,n,𝜈 is the solution of P(T𝜈

∗(Gn) ≥ c
𝛼,n,𝜈) = 𝛼, giving the size of the test. The test is unbiased

against alternatives that exhibit a decreasing hazard rate average (DHRA), corresponding to an
anti-star-shaped behavior of H, in S

𝜈

. Moreover, for every 𝜈 ∈ (0, 1], it is possible to establish the
following consistency property.

Theorem 2. If 𝜈

0 is false, limn→∞ P(T𝜈

∗(Fn) ≥ c
𝛼,n,𝜈) = 1, for every 𝜈 > 0.

Proof. Note that T𝜈

∗(Fn) = supSn,𝜈

|
|
|
Fn(x) −  ◦ (Hn|Sn,𝜈 )∗(x)

|
|
|
− 1∕n, so we may equivalently con-

sider the “sup” on the right-hand side, which is easier to manipulate, instead of T𝜈

∗ . By the
Glivenko–Cantelli Theorem, Fn converges a.s. and uniformly to F, whereas −1(p) = − ln(1 − p)
is uniformly continuous in [0, 1 − 𝜈] (for 𝜈 > 0), then Hn = −1 ◦Fn converges a.s. and uniformly
to H = −1 ◦ F in S

𝜈

. If𝜈

0 is true, we can apply lemma 3.1 of Wang (1988), which yields

sup
Sn,𝜈

|Hn(x) −H(x)| ≥ sup
Sn,𝜈

|
|
|
(Hn|Sn,𝜈 )∗(x) −H(x)||

|
,
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1196 LANDO et al.

implying strong uniform consistency of (Hn|Sn,𝜈 )∗ in S
𝜈

(clearly, if 𝜈 > 0, F
−1
n (1 − 𝜈) converges

a.s. to F−1(1 − 𝜈)). Since  is absolutely continuous, then F


n,𝜈 ∶=  ◦ (Hn|Sn,𝜈 )∗ converges a.s. and
uniformly to F in S

𝜈

, for every 𝜈 > 0. Now, it can be easily seen that, under𝜈

0 , c
𝛼,n,𝜈 → 0 a.s. for

n → ∞.
Define F

𝜈

=  ◦ (−1 ◦F|S
𝜈

)∗. Suppose that 𝜈

0 is false, that is,  ◦F is not star-shaped in
S
𝜈

, and let d = supS
𝜈

|F − F
𝜈

| = supS
𝜈

(F − F
𝜈

). Then, Fn converges uniformly to F, whereas F


n,𝜈
converges uniformly to F

𝜈

on S
𝜈

, with probability 1. Moreover, by assumption, d > 0. There-
fore, given some 𝜖 ∈ (0, d), there exists some n0 such that, for n > n0, supSn,𝜈

|Fn − F| < 𝜖∕2 and
supSn,𝜈

|Fn,𝜈 − F
𝜈

| < 𝜖∕2, with probability 1. Then, for n > n0,

Fn(x) − F


n,𝜈(x) > F(x) − 𝜖

2
−
(

F
𝜈

(x) + 𝜖

2

)

= F(x) − F
𝜈

(x) − 𝜖,

almost surely, for every x ∈ Sn,𝜈 , which implies

sup
Sn,𝜈

|
|
|
Fn(x) − F



n,𝜈(x)
|
|
|
> sup

Sn,𝜈

|
|
|
F(x) − F



n,𝜈(x) − 𝜖

|
|
|
= sup

Sn,𝜈

(
F(x) − F



n,𝜈(x)
)
− 𝜖 = d − 𝜖 > 0.

Therefore, since 𝜖 can be arbitrarily small, P(supSn,𝜈
|
|Fn(x) − F



n,𝜈(x)|| ≥ d) → 1, for n → ∞. But
since c

𝛼,n,𝜈 → 0, then P(T𝜈

∗(Fn) ≥ c
𝛼,n,𝜈) → 1. ▪

The value of 𝜈 should be chosen as small as possible, for example, 𝜈 = 0.01, 0.05. One might
even choose 𝜈 as a function of n, for example 𝜈 = n−1∕2. Yet, smaller 𝜈’s yield slower convergence,
as we will need more observations in order to get c

𝛼,n,𝜈 close enough to 0. In the limit case 𝜈 = 0,
we cannot ensure uniform a.s. consistency of F



n,0 in S0, accordingly, the consistency of the test
T0
∗ cannot be established.

4.2.2 Simulations

The numerical performance of the test T𝜈

∗ can be depicted by a simulation study. We focus on
some critical alternatives, obtained using popular parametric families. By scale invariance, the
scale parameters are always set to 1. We consider DHRA, bathtub-shaped (decreasing-increasing)
HRA, and bell-shaped (increasing-decreasing) HRA models. The Weibull distribution with CDF
F(x) = 1 − e−xa , a, x > 0, is DHRA for a < 1 and IHRA for a ≥ 1; the beta distribution, with CDF
F(x) = ∫ x

0 ta−1(1 − t)b−1 dt∕B(a, b), a, b > 0, x ∈ [0, 1], is bathtub-shaped HRA for a < 1 < b and
IHRA for a, b ≥ 1; the Burr distribution with CDF F(x) = 1 −

(
1 + xb)−a, x, a, b > 0, is DHRA for

b ≤ 1 and bell-shaped HRA for b > 1.
The results are reported in Figure 2, which contains the plots of the rejection probabilities at

level 𝛼 = 0.1, estimated using 2000 simulation runs. To cover a large number of alternatives, for
each distribution considered we fixed a grid of parameters within some intervals of interest. We
considered sample sizes n = 10, 50, 100, 200, 300, setting 𝜈 = 0.05, so the restriction has an effect
just for n ≥ 50. The figures show that the test has a remarkable performance in terms of empirical
power, coherently with the behavior of the HRA. In fact, some alternatives considered are partic-
ularly difficult to detect, as the HRA may exhibit a very slight decrease (Weibull with a ∈ [0.8, 1))
or a subtle nonmonotonic behavior (beta with a ≥ 0.7; Burr with b ≥ 1.5). In the first case, the
power is always larger than 𝛼, independently of the sample size, confirming the unbiasedness
property implied by Proposition 3; in the latter case, the power may be smaller than 𝛼, for small
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LANDO et al. 1197

F I G U R E 2 Rejection rates of T0.05
∗ and J0.5 for increasing hazard rate average (Weibull a ≥ 1), decreasing

hazard rate average (Weibull a < 1), bathtub-shaped hazard rate average (HRA) (beta) and bell-shaped HRA
(Burr) distributions. Sample size: n = 10 (○), n = 50 (△), n = 100 (□), n = 200 (▴), n = 300 (◼)

values of n (beta with a ≥ 0.7), confirming that unbiasedness of tests of this type holds just against
DHRA alternatives, but when the HRA has a nonmonotonic behavior, this is not guaranteed.
Under the null hypothesis, the size is always bounded by 𝛼, even when the HRA is close to the
boundary of DHRA (Weibull with a > 1). Clearly, as the test is consistent, the empirical power
increases with sample size, when 0.05

0 is false, even under the most critical alternatives (this
should be evaluated just for n ≥ 50, as remarked earlier; the beta with a ≥ 0.7 is the most criti-
cal case and the power may be increased by increasing the sample size, or by choosing a larger
value of 𝜈).
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The test is compared with the one proposed by Deshpande (1983) and later studied by Bandy-
opadhyay and Basu (1989), aimed at testing the null hypothesis ̃0 ∶ F =  versus ̃1: “F is IHRA
and not exponential”, as in Klefsjö (1983), Kochar (1985), Link (1989), Wells and Tiwari (1991),
Ahmad (1994). This approach is quite different from ours, in fact, such tests are supposed to
reject the IHRA hypothesis more easily, when it is false, compared to T𝜈

∗ . However, our simulation
results reveal some possible issues of these kinds of tests. Actually, Deshpande (1983) introduced a
family of rank-based test statistics, denoted as Jp, where the parameter p ranges in (0, 1). As proved
by Bandyopadhyay and Basu (1989), the choice for p does not have consequences on the proper-
ties of the test, therefore, in the plots we show the results of J0.5, which is the test recommended
by Deshpande (1983). This test is unbiased and consistent, for every p, under IHRA alternatives.
However, deviations from exponentiality should not necessarily imply that ̃1 is true, as tests of
this type are not intended to deal with bathtub or bell-shaped HRA models; indeed Jp may be mis-
leading when F has a nonmonotone HRA, as it can be seen in the case of the beta distribution
(a ≥ 0.7) or Burr distribution. In such cases, by increasing the sample size we also increase the
power, that is, the probability of rejecting ̃0, suggesting that the (false) strict IHRA alternative
may be true (we obtained similar results for several values of p). In other words, in some critical
bathtub and bell-shaped HRA situations, Jp might lead to the wrong decision. So, given that non-
monotone HRA distributions may be quite common, we recommend using T𝜈

∗ . Looking at the
plots, it is important to remember that T𝜈

∗ and Jp cannot be compared in terms of power, since
they deal with reversed hypotheses, hence one may only compare their overall performance. This
example also shows why it is important to study and understand the behavior of the test statistics
using ordering constraints.
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