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1. Introduction

Gaspard Monge and Erwin Schrödinger came up with two a priori unrelated problems 
that are concerned with finding a preeminent way of deforming a prescribed probability 
distribution into another one. While Monge was interested in optimizing the cost of 
transportation of goods [64,65,59], Schrödinger’s original thought experiment [60,61]
aimed for finding the most likely evolution between two subsequent observations of a 
cloud of independent particles. So, even if in both cases we are facing an interpolation 
and optimization problem, the former is deterministic in nature whereas the latter is 
strongly related to large deviations theory, and is, at the first glance, purely stochastic. 
We refer to a recent survey [22] for various formulations and aspects of the Schrödinger 
problem, and to [66,67] for a discussion of its role in Euclidean Quantum Mechanics.

Anyway, several analogies and connections exist between the two problems. They can 
be appreciated by looking carefully at the interpolation aspects of both problems, namely 
at their dynamical formulations and the underlying equations governing the respective 
evolutions. In the case of a quadratic transportation cost over a Riemannian manifold 
M , the Monge-Kantorovich optimal transport problem is solved (at least in a weak 
sense) by interpolating between the source and the target distributions with a constant-
speed, length-minimizing geodesic in the Otto-Wasserstein space of probability measures 
P2(M). This gives a curve (μt)t∈[0,1] ⊂ P2(M) which formally satisfies (in the sense of 
the celebrated Otto calculus [56,64,65])

∇μ̇t
μ̇t = 0, (1.1)
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where ∇μ̇t
is the covariant derivative along the curve t �→ μt. The Schrödinger problem 

with parameter ε (from a physical viewpoint, ε can be seen as a temperature or level of 
noise) can also be translated into such a geometric language. By analogy, when looking at 
the covariant derivative along the optimal evolution (με

t )t∈[0,1], usually called Schrödinger 
bridge or entropic interpolation, the resulting equation is surprising and can be viewed 
[23] as Newton’s second law

∇μ̇ε
t
μ̇ε
t = ε2

8 ∇I(με
t ), (1.2)

where in the right-hand side ∇ denotes the gradient in the Otto-Wasserstein pseudo-
Riemannian sense and I is the Fisher information

I(μ) = 4
ˆ

M

|∇√
ρ|2 dvol =

ˆ

M

|∇ log ρ|2ρ dvol

provided μ = ρ ·vol. A related observation is that the (scaled) heat flow, coinciding with 
the (scaled) gradient flow of the Boltzmann-Shannon entropy [41,65]

H(μ) =
ˆ

M

ρ log ρ dvol

for μ = ρ · vol, is also a solution to (1.2): a simple differentiation in time of μ̇t =
− ε

2∇H(μt) and the fact that I = |∇H|2 in the Otto-Wasserstein sense automatically 
yield

∇μ̇t
μ̇t = ε

2∇
2H(μt) ·

ε

2∇H(μt) = ε2

8 ∇|∇H(μt)|2 = ε2

8 ∇I(μt).

This shows that the Schrödinger problem lies between optimal transport and diffusion 
and is naturally intertwined with both deterministic behaviour and Brownian motion. 
It shares the same Newton’s law as the gradient flow of the entropy, but unlike the 
heat flow it has a prescribed final configuration to match: it is up to the parameter ε
to tip the balance in favour of deterministic transport or diffusion. With this heuristics 
in mind, we see that as ε → 0 the applied force ε2∇I(με

t ) in (1.2) vanishes, so that 
the Schrödinger problem may be interpreted as a noisy (entropic) counterpart of the 
Monge-Kantorovich optimal transport, corresponding to the unforced geodesic evolution 
(1.1) discussed above. This informal relationship has a rigorous counterpart, which dates 
back to the pioneering works on the asymptotic behaviour of the Schrödinger problem as 
ε → 0 of T. Mikami, M. Thieullen [51,52], and C. Léonard [45,46]. This was subsequently 
developed in [19,8,39]. Very recently [48,31], similar small-noise results were obtained for 
static Monge-Kantorovich problems regularized with more general entropies.

This first connection can be investigated further and by doing so one can remark that 
(1.2) is exactly the Euler-Lagrange optimality equation for the dynamical Benamou-
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Brenier formulation of the Schrödinger problem [18,22,46,40], which consists in minimiz-
ing the Lagrangian kinetic action perturbed by the Fisher information: In more precise 
terms,

inf
{

1
2

1ˆ

0

ˆ

M

|vt|2 dμtdt + ε2

8

1ˆ

0

I(μt) dt
}
, (1.3)

where the infimum runs over all solutions of the continuity equation

∂μt + div(vtμt) = 0

with prescribed initial and final densities. Also from this variational standpoint the reader 
can see that as ε → 0 the Schrödinger problem formally reduces to

inf 1
2

1ˆ

0

ˆ

M

|vt|2 dμtdt, (1.4)

namely to the dynamical Benamou-Brenier formulation of the (quadratic) optimal trans-
port problem [9]. This variational representation depicts in a way clearer than (1.2) the 
double nature of the Schrödinger problem, the competition between the determinism en-
coded in the kinetic energy and the unpredictability coming from the Fisher information, 
and the role played by ε in balancing these two opposite behaviours.

The double bond of the Schrödinger problem with optimal transport on the one hand 
and heat flow on the other hand results in fruitful and wide-ranging applications of both 
theoretical and applied interest. Indeed, from the connection with the heat flow the so-
lutions to the Schrödinger problem gain regularity properties which are not available in 
optimal transport, and thanks to the asymptotic behaviour of the Schrödinger problem 
as ε → 0 entropic interpolations represent an efficient way to approximate Wasserstein 
geodesics with second-order accuracy [39,25]. This approach has already turned out to 
be successful in conjunction with functional inequalities [24,35] and differential calculus 
along Wasserstein geodesics [39]. But the nice behaviour of Schrödinger bridges is impor-
tant also for computational purposes. The impact of Schrödinger problem and Sinkhorn 
algorithms (deeply related to the static formulation of the former) on the numerical 
methods used in optimal transportation theory has been impressive, as witnessed by 
several recent works (see [58] and references therein as well as [26,10,12,13,11,30]).

As a matter of fact neither the particular structure of the Wasserstein space nor the 
specific choice of the Boltzmann-Shannon functional are required to define the two prob-
lems in question (cf. a related discussion in the heuristic paper [44]): one can of course 
define length-minimizing geodesics in any metric space (X, d), and the Schrödinger prob-
lem (or at least its Benamou-Brenier formulation described above) merely involves an 
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entropy functional and a corresponding Fisher information. Given such a reasonable 
entropy functional E on X that generates a gradient flow in a suitable sense, the cor-
responding Fisher information is expected to be nothing but the dissipation rate of E
(along solutions of its own gradient flow), just as I coincides with the rate of dissipation 
of the entropy H along the heat flow. This observation is the starting point of the present 
paper, where we intend to study the abstract Schrödinger bridge problem or, in other 
words, the entropic approximation of geodesics in metric spaces.

The first main result that we achieve is the Γ-convergence (Theorems 4.3 and 4.6). 
Under very mild assumptions on X and E, we will prove the solvability of the abstract 
ε-Schrödinger problem and the Γ-convergence to the corresponding geodesic problem as 
ε → 0. We will also rigorously justify, in the metric setting, that any trajectory of a 
gradient flow solves an associated Schrödinger problem (Proposition 4.7). Leveraging a 
quantitative AC2 estimate based on a straightforward chain-rule in the smooth Rieman-
nian setting, the cornerstone of our analysis will be the systematic construction of an 
ε-regularized entropic copy (γε

t )t∈[0,1] of any arbitrary curve (γt)t∈[0,1]. These perturbed 
curves will provide recovery sequences for the Γ-convergence. Our construction is com-
pletely Eulerian and essentially consists in running the E-gradient flow for a short time 
hε(t) starting at γt for all t, for well-chosen functions hε ≥ 0. The challenge here will 
be to reproduce the (formal, differential) Riemannian chain-rule in metric spaces. This 
idea of perturbing curves “in the direction of the gradient flow” appeared first in [29]
in a slightly different context. Notably and more recently, this approach has also been 
used independently by A. Baradat and some of the authors [8,54] in order to prove the 
Γ-convergence for the classical dynamical Schrödinger problem on the Otto-Wasserstein 
space and for its counterpart on the non-commutative Fisher-Rao space, respectively. 
However, in those papers the computations were ad hoc and heavily exploited the un-
derlying structures of the particular spaces as well as the properties of the particular 
gradient flows (namely, of the classical heat flow and of its restriction to multivariate 
Gaussians), whereas here we derive everything from the existence of an abstract gradient 
flow on X driven by E.

Remark 1.1. In the smooth Riemannian setting, and given λ ∈ R, elementary calculus 
shows that the λ-convexity of E along geodesics is of course equivalent to a uniform 
lower bound HessE(x) ≥ λ Id as quadratic forms in the tangent space, but also more 
importantly to the λ-contractivity of the E-gradient flow. In the metric setting no second 
order calculus is available in general, and the very notion of gradient flow as well as its 
connection with geodesic convexity and contractivity become much more subtle. The 
key notion of gradient flow that we shall use throughout is that of Evolution Variational 
Inequality, or EVIλ flow [2]. Under reasonable assumptions it is well known that (a 
suitable variant of) convexity of E generally provides existence of an EVIλ-flow starting 
at any x ∈ X, see [2]. A natural question to ask is whether the converse also holds true, 
i.e. whether well-posedness of a reasonable gradient flow implies some convexity. This 
was proved in [15] for the specific case of the Euclidean Wasserstein space X = W2(Ω), 
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Ω ⊂ Rd, and at least for the so-called internal energies, and it is shown therein that 
0-contractivity of the gradient flow (or equivalently, of the associated nonlinear diffusion 
equation) implies 0-displacement convexity in the sense of McCann [50]. In the same 
spirit, and building up on Otto and Westdickenberg [57], Daneri and Savaré proved in a 
very general metric setting that the generation of an EVIλ-flow indeed implies λ-geodesic 
convexity [27, Theorem 3.2]. A byproduct of our analysis for the Γ-convergence will give a 
new independent proof of this latter fact by a completely different approach, essentially 
by constructing an ε-entropic regularization of geodesics and carefully examining the 
defect of optimality at order one in ε → 0.

The second group of main results has to do with the behaviour of the cost and its 
Taylor expansion (Proposition 5.5 and Theorem 5.8). As a main application of the Γ-
convergence of the Schrödinger problem to the geodesic problem as ε → 0 (and more 
generally of the ε′-Schrödinger problem to the ε-one as ε′ → ε) we investigate the 
behaviour of the optimal value of the dynamical Schrödinger problem, henceforth called 
entropic cost, as a function of the temperature parameter ε, with particular emphasis 
on the regularity and the small-noise regime. For the classical dynamical Schrödinger 
problem (1.3), it has recently been proved by the second author with G. Conforti [25] that 
the entropic cost is of class C1((0, ∞)) ∩ C([0, ∞)) (actually C1([0, ∞)) under suitable 
assumptions) and twice a.e. differentiable; once this regularity information is available, 
the formula for the first derivative is rather easy to guess, as by the envelope theorem it 
coincides with the partial derivative w.r.t. ε of the functional in (1.3) evaluated at any 
critical point. Denoting by Cε(μ, ν) the value in (1.3) with marginal constraints μ and ν
and by (με

t )t∈[0,1] the associated Schrödinger bridge, this statement reads as

d
dεCε(μ, ν) = ε

4

1ˆ

0

I(με
t ) dt, ∀ε > 0

and in [25] this identity played an important role in the study of both the large- and 
small-noise behaviour of the Schrödinger problem, obtaining in particular a Taylor ex-
pansion around ε = 0 with o(ε2)-accuracy. Since the central object in the present paper 
is an abstract and general formulation of (1.3), an analogous result is expected to hold. 
However, from a technical viewpoint the proof is much more subtle and challenging, 
because unlike (1.3) our metric version of the dynamical Schrödinger problem may have 
multiple solutions. For this reason the discussion about the regularity of the entropic 
cost in this paper is less concise than in [25]. Nonetheless, we are still able to deduce 
the same kind of Taylor expansion with the same accuracy. Given the previous inter-
pretation of the Schrödinger problem as a noisy Monge-Kantorovich problem and the 
importance of quantitative estimates in approximating optimal transport by means of 
the Schrödinger problem, it is reasonable to expect that such a Taylor expansion (valid 
in a general framework for a wide choice of functionals E) will fit to a countless variety 
of examples, some of which will be discussed here.



L. Monsaingeon et al. / Advances in Mathematics 426 (2023) 109100 7
Structure of the paper In Section 2 we give a short and formal proof of our fundamental 
AC2 estimate in the smooth Riemannian setting, and show how it can be exploited to 
establish Γ-convergence and convexity. Section 3 fixes the metric framework in which 
we work for the rest of the paper, and extends the previous estimate to this metric 
setting. In Section 4 we prove the Γ-convergence as ε ↓ 0, and offer a new proof of the 
geodesic convexity of the generators of EVI-flows. Section 5 studies the dependence of 
the optimal entropic cost on the temperature parameter ε > 0, and provides a second 
order expansion. Finally, we list in Section 6 several examples and applications covered 
by our abstract results.

2. Heuristics

Here we remain formal and the computations are carried in a Riemannian setting, 
where classical calculus and chain-rules are available. (Significant work will be required 
later on to adapt the computations in metric spaces.) All the objects and functions in this 
section are therefore considered to be smooth, and we deliberately ignore any regularity 
issue.

Let M be a Riemannian manifold with scalar product 〈., .〉q at a point q ∈ M and 
induced Riemannian distance d, and let V : M → R be a given potential. For simplicity 
we assume here that V is globally bounded from below on M , and up to replacing V by 
V −min V we can assume that V (q) ≥ 0. (In section 3 we will relax this assumption and 
allow V to be only locally bounded from below.) Given a small temperature parameter 
ε > 0, and following [44], the (dynamic) geometric Schrödinger problem consists in solving 
the optimization problem

1
2

1ˆ

0

∣∣∣∣dqtdt

∣∣∣∣2 dt + ε2

2

1ˆ

0

|∇V |2(qt) dt −→ min;

s.t. q ∈ C([0, 1],M) with endpoints q0, q1. (2.1)

For s ≥ 0 we denote by Φ(s, q0) the semi-flow corresponding to the autonomous V -
gradient flow started from q0 ∈ M ,⎧⎨

⎩
d
dsΦ(s, q0) = −∇V (Φ(s, q0)),
Φ(0, q0) = q0.

The goal of this section is to give a straightforward proof of the following two facts, 
assuming that the potential V is well behaved:

(i) the ε-Schrödinger problem converges to the geodesic problem as ε → 0;
(ii) λ-contractivity of the generated flow Φ can be turned into λ-convexity along 

geodesics.
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Fig. 1. The perturbed curve.

With this goal in mind, fix any two endpoints q0, q1 ∈ M and take an arbitrary curve 
joining them

q ∈ C([0, 1],M), q|t=0 = q0 and q|t=1 = q1.

For any function h(t) ≥ 0 with h(0) = h(1) = 0, we perturb q by defining

q̃t := Φ(h(t), qt), t ∈ [0, 1]

i.e. q̃t is the solution of the V -gradient flow at time s = h(t) ≥ 0 starting from qt at time 
s = 0. We shall refer to t ∈ [0, 1] as a “horizontal time” and to s ∈ [0, h(t)] as a “vertical 
time”, see Fig. 1. Later on we will think of the curve q̃ as a “regularized” version of q.

Note that the endpoints remain invariant, q̃0 = q0 and q̃1 = q1. Since by definition of 
the flow ∂sΦ(s, qt) = −∇V (Φ(s, qt)), the speed of the perturbed curve can be computed 
as

dq̃t
dt = d

dt

(
Φ(h(t), qt)

)
= ∂sΦ(h(t), qt)h′(t) + ∂qΦ(h(t), qt)

dqt
dt

= −h′(t)∇V (q̃t) + ∂qΦ(h(t), qt)
dqt
dt .

Bringing the h′(t) term to the left-hand side and taking the half squared norm (in the 
tangent space Tq̃tM) gives

1
2

∣∣∣∣dq̃tdt

∣∣∣∣2 + 1
2 |h

′(t)|2|∇V (q̃t)|2 + h′(t) 〈∇V (q̃t),
dq̃t
dt 〉q̃t︸ ︷︷ ︸

= d
dtV (q̃t)

= 1
2

∣∣∣∣∂qΦ(h(t), qt)
dqt
dt

∣∣∣∣2 . (2.2)

Assume now that, for whatever reason, the gradient flow satisfies the following quantified 
contractivity estimate w.r.t. the Riemannian distance d

d(Φ(s, p0),Φ(s, p′0)) ≤ e−λsd(p0, p
′
0), ∀s ≥ 0, p0, p

′
0 ∈ M (2.3)
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for some fixed λ ∈ R. Then it is easy to check that the linear map v �→ ∂qΦ(s, p) ·v (from 
TpM to TΦ(s,p)M) has norm less than e−λs, and therefore (2.2) gives

1
2

∣∣∣∣dq̃tdt

∣∣∣∣2 + 1
2 |h

′(t)|2|∇V (q̃t)|2 + h′(t) d
dtV (q̃t) ≤

1
2e

−2λh(t)
∣∣∣∣dqtdt

∣∣∣∣2 . (2.4)

Integration by parts yields next

1
2

1ˆ

0

∣∣∣∣dq̃tdt

∣∣∣∣2 dt + 1
2

1ˆ

0

|h′(t)|2|∇V (q̃t)|2 dt−
1ˆ

0

h′′(t)V (q̃t) dt

≤ 1
2

1ˆ

0

e−2λh(t)
∣∣∣∣dqtdt

∣∣∣∣2 dt +
(
h′(0)V (q0) − h′(1)V (q1)

)
,

(2.5)

where the invariance q̃0 = q0, q̃1 = q1 was used in the last boundary terms. This funda-
mental estimate gives a quantified bound on the kinetic energy (namely the L2 speed) 
of q̃ in terms of that of the original curve q, and will be the cornerstone of the whole 
analysis.

Both the convexity and the convergence of the Schrödinger problem will actually 
follow by setting h(t) = εH(t) for suitable choices of H(t) ≥ 0, and then letting ε ↓ 0. 
Note that in this case we have h(t) = εH(t) ↓ 0 uniformly, hence the perturbed curve

qεt := Φ(εH(t), qt) (2.6)

will converge uniformly to q as ε ↓ 0 too.

2.1. Convergence of the Schrödinger problem

A first use of (2.5) will be crucial in proving the Γ-convergence of the Schrödinger 
functional

Aε(q) := 1
2

1ˆ

0

∣∣∣∣dqtdt

∣∣∣∣2 dt + ε2

2

1ˆ

0

|∇V (qt)|2 dt

towards the kinetic action

A(q) := 1
2

1ˆ

0

∣∣∣∣dqtdt

∣∣∣∣2 dt

as ε ↓ 0.
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Theorem 2.1 (formal Γ-limit). For any q0, q1 ∈ M it holds

A = Γ − lim
ε→0

Aε

for the uniform convergence on the space of curves with fixed endpoints q0, q1.

Proof. We check separately the Γ − lim inf and the Γ − lim sup properties. As for the 
former, given any curve q joining q0, q1 and any qε → q uniformly, since the kinetic 
energy functional q �→ A(q) is always lower semicontinuous for the uniform convergence 
we get first

A(q) ≤ lim inf
ε↓0

A(qε) ≤ lim inf
ε↓0

Aε(qε).

For the Γ − lim sup, let H(t) = min{t, 1 − t} be the hat function centred at t = 1/2
with height 1/2 and vanishing at the boundaries, set h(t) = εH(t), and let qε be the 
regularized curve constructed in (2.6). In this simple smooth setting it is not difficult to 
check that qε → q uniformly. Moreover, our choice of h(t) results in |h′(t)|2 = ε2 with 
h′(0) = ε, h′(1) = −ε, and h′′(t) = −2εδ1/2(t) in the distributional sense. Therefore (2.5)
gives immediately

Aε(qε) + 2εV (qε1/2) = 1
2

1ˆ

0

∣∣∣∣dqεtdt

∣∣∣∣2 dt + ε2

2

1ˆ

0

|∇V (qεt )|2 dt + 2εV (qε1/2)

≤ 1
2

1ˆ

0

e−2ελH(t)
∣∣∣∣dqtdt

∣∣∣∣2 dt + ε
(
V (q0) + V (q1)

)
.

The singularity of h′′ at t = 1/2 can be easily and rigorously worked around, simply 
integrating by parts (2.2) separately on each interval t ∈ [0, 1/2] and t ∈ [1/2, 1] and 
keeping track of the boundary terms resulting ultimately in the above 2εV (qε1/2) ≥ 0
contribution. Discarding this latter non-negative term finally gives

lim sup
ε↓0

Aε(qε) ≤ lim sup
ε↓0

⎧⎨
⎩1

2

1ˆ

0

e−2ελH(t)
∣∣∣∣dqtdt

∣∣∣∣2 dt + ε
(
V (q0) + V (q1)

)⎫⎬
⎭ = A(q)

and concludes the proof. �
2.2. Quantifying the convexity

The second consequence of our fundamental estimate (2.5) is the quantification of the 
convexity of the potential V in terms of the quantified contractivity (2.3). The point 
here is that the result can be obtained directly from (2.2), which can be established in 
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a purely metric setting without relying on differential calculus (see the next section for 
details).

Theorem 2.2. Assume that V satisfies (2.3). Then V is λ-geodesically convex, i.e.

V (qθ) ≤ (1 − θ)V (q0) + θV (q1) −
λ

2 θ(1 − θ)d2(q0, q1), θ ∈ (0, 1)

for any geodesic (qθ)θ∈[0,1] in M .

Proof. Let (qt)t∈[0,1] be an arbitrary geodesic with endpoints q0, q1. For fixed θ ∈ (0, 1)
let

Hθ(t) :=

⎧⎪⎨
⎪⎩

1
θ
t if t ∈ [0, θ],

− 1
1 − θ

(t− 1) if t ∈ [θ, 1],

be the hat function centred at t = θ with height 1 and vanishing at t = 0, 1, and for 
any ε > 0 let qε be the regularized curve constructed in (2.6) with h(t) = εHθ(t). Note 
moreover that

h′(0) = ε

θ
, h′(1) = − ε

1 − θ
, h′′(t) = −ε

(
1
θ

+ 1
1 − θ

)
δθ(t)

in the distributional sense. Discarding the non-negative term |h′(t)|2|∇V (q̃t)|2 in (2.5), 
the optimality of the geodesic q from q0 to q1 gives

0 ≤ 1
2

1ˆ

0

∣∣∣∣dqεtdt

∣∣∣∣2 dt− 1
2

1ˆ

0

∣∣∣∣dqtdt

∣∣∣∣2 dt

(2.5)
≤

1ˆ

0

h′′(t)V (qεt ) dt + 1
2

1ˆ

0

(
e−2λh(t) − 1

) ∣∣∣∣dqtdt

∣∣∣∣2 dt +
(
h′(0)V (q0) − h′(1)V (q1)

)

= −ε

(
1
θ

+ 1
1 − θ

)
V (qεθ) + d2(q0, q1)

2

1ˆ

0

(
e−2λεHθ(t) − 1

)
dt

+ ε

(
1
θ
V (q0) + 1

1 − θ
V (q1)

)
,

where the last equality follows from the constant speed property |dqtdt |2 = d2(q0, q1)
of the geodesic (qt)t∈[0,1] connecting q0, q1 as well as from the explicit properties of 
h(t) = εHθ(t) listed above. Multiplying by θ(1−θ) > 0 and rearranging gives
ε
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V (qεθ) ≤ (1 − θ)V (q0) + θV (q1) + θ(1 − θ)d
2(q0, q1)

2

1ˆ

0

e−2λεHθ(t) − 1
ε

dt

︸ ︷︷ ︸
:=Iε

.

Since 
´ 1
0 Hθ(t)dt = 1

2 for all θ we see that Iε → −2λ ́ 1
0 Hθ(t) dt = −λ as ε ↓ 0, and the 

result immediately follows since V (qεθ) → V (qθ) as well in the left-hand side. �
3. Estimates in metric spaces

Before trying to adapt the previous computations to the metric context we need to 
fix once and for all the framework to be used in the sequel.

3.1. Preliminaries and setting

• By C([0, 1], (X, d)), or simply C([0, 1], X), we denote the space of continuous curves 
with values in the metric space (X, d). The collection of absolutely continuous curves 
on [0, 1] is denoted by AC([0, 1], (X, d)), or simply by AC([0, 1], X). For any curve 
(γt) ∈ AC([0, 1], X), its length is well defined as


(γ) :=
1ˆ

0

|γ̇t|dt,

where |γ̇t| denotes the metric speed of γ. If |γ̇t| ∈ L2(0, 1), then we shall say that 
(γt) ∈ AC2([0, 1], X). For these notions of absolutely continuous curves and metric 
speed in a metric space, see for instance [2, Section 1.1].

• A curve γ : [0, 1] → X is called geodesic provided d(γt, γs) = |t − s|d(γ0, γ1) for all 
t, s ∈ [0, 1].

• The slope |∂E| of a functional E : X → R ∪ {+∞} at a point x ∈ X is set as +∞ if 
x /∈ D(E), 0 if x is isolated, and defined as

|∂E|(x) := lim sup
y→x

[E(x) − E(y)]+

d(x, y)

if x ∈ D(E).
• A curve (γt)t>0 ⊂ X is said to be a gradient flow of E in the EVIλ sense (with λ ∈ R) 

provided (γt) ∈ ACloc((0, ∞), X) and

1
2

d
dtd

2(γt, y) + λ

2 d2(γt, y) + E(γt) ≤ E(y), ∀y ∈ X, a.e. t > 0. (EVIλ)

If γt → x as t ↓ 0 with x ∈ D(E), then we say that the gradient flow (γt) starts at x.
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After this premise, let us fix the framework we shall work within.

Setting 3.1. On the space (X, d) and on the functional E : X → R ∪ {+∞} we make the 
following assumptions:

(A1) (X, d) is a complete and separable metric space;
(A2) E is lower semicontinuous with dense domain, i.e. D(E) = X, and locally bounded 

from below in the following sense: for any d-bounded set B ⊂ X there exists cB ∈ R

such that E(x) ≥ cB for all x ∈ B;
(A3) there exists λ ∈ R such that for any x ∈ X there exists an EVIλ-gradient flow of 

E starting from x. In view of (3.3), the corresponding 1-parameter semigroup shall 
be denoted St.

Sometimes, and always explicitly indicated, we will also use the following extra hy-
pothesis.

Assumption 3.2. There exists a Hausdorff topology σ on X such that d-bounded sets are 
sequentially σ-compact. Moreover, the distance d and the slope |∂E| are σ-sequentially 
lower semicontinuous.

Remark 3.3. Assumption 3.2 is in particular valid provided (X, d) is a locally compact 
space. Indeed, in this case the metric topology of (X, d) is an admissible candidate 
for σ, since bounded sets are relatively compact (by [17, Proposition 2.5.22]) and the 
lower semicontinuity of the slope |∂E| w.r.t. the metric topology is a consequence of the 
forthcoming identity (3.1). �

Remark 3.4. Assumption 3.2 implies that d-converging sequences are also σ-converging. 
Indeed, given (xn) ⊂ X with d(x, xn) → 0 as n → ∞ for some limit x ∈ X, by Assump-
tion 3.2 and by the boundedness of (xn)n there exist a subsequence (xnk

)k and y ∈ X
such that

xnk

σ→ y as k → ∞.

Since d is σ-sequentially lower semicontinuous (again by Assumption 3.2) we deduce that

d(x, y) ≤ lim inf
k→∞

d(x, xnk
) = lim

n→∞
d(x, xn) = 0,

whence x = y. This classically implies that the whole sequence converges, xn
σ→ x. �

We list now some useful properties of EVI-gradient flows, which hold true in Setting 3.1
and that we shall use extensively in the sequel. First of all, whenever x ∈ X is the 
starting point of an EVIλ flow, the slope there (a local object, a priori) admits the global
representation



14 L. Monsaingeon et al. / Advances in Mathematics 426 (2023) 109100
|∂E|(x) = sup
y �=x

(E(x) − E(y)
d(x, y) + λ

2 d(x, y)
)+

, (3.1)

see [55, Proposition 3.6]. Since we assume that any x ∈ X is the starting point of an EVIλ-
gradient flow, this means in particular that |∂E| : X → [0, ∞] is lower semicontinuous, 
since so is the right-hand side above (as a supremum of lower semicontinuous functions). 
This also implies by [2, Theorem 1.2.5] that |∂E| is a strong upper gradient for E in the 
sense of [2, Definition 1.2.1], namely: for every (γt) ∈ AC([0, 1], X), the map t �→ E(γt)
is Borel and

|E(γt1) − E(γt0)| ≤
t1ˆ

t0

|∂E|(γt)|γ̇t|dt, ∀0 ≤ t0 ≤ t1 ≤ 1, (3.2)

the right-hand side being possibly infinite. In addition, if (γt) is an EVIλ-gradient flow 
of E then the following hold [55, Theorem 3.5]:

(i) If (γt) starts from x ∈ D(E) and (γ̃t) is a second EVIλ-gradient flow of E starting 
from y ∈ D(E) respectively, then

d2(γt, γ̃t) ≤ e−2λtd2(x, y), ∀t ≥ 0. (3.3)

This means that EVI-gradient flows are unique (provided they exist) and thus if 
there exists an EVI-gradient flow (γt) starting from x, then a 1-parameter semi-
group (St)t>0 is unambiguously associated to it via Stx = γt.

(ii) The maps t �→ γt and t �→ E(γt) are locally Lipschitz in (0, ∞) with values in X
and R, respectively, and satisfy the Energy Dissipation Equality

− d
dtE(γt) = 1

2 |γ̇t|
2 + 1

2 |∂E|2(γt) = |γ̇t|2 = |∂E|2(γt), for a.e. t > 0. (3.4)

(iii) The map

t �→ eλt|∂E|(γt) is non-increasing. (3.5)

(iv) If (γt) starts from x and y ∈ D(|∂E|), then

|∂E|2(γt) ≤
1

2eλt − 1 |∂E|2(y) + 1
Iλ(t)2 d2(x, y), provided − λt < log 2, (3.6)

where Iλ(t) :=
´ t

0 eλs ds.

We emphasize that these properties directly follow from the very definition (EVIλ) of 
gradient flows, and a priori do not require E to be geodesically λ-convex. Although 
analogous statements can be found in [2] and [1] under convexity assumptions on E, the 
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latter are essentially needed to grant existence of EVI-gradient flows. It is important 
to stress this fact because in Setting 3.1 we assume that for any x ∈ X there exists 
an EVIλ-gradient flow of E starting there, which from [27] is known to imply that E is 
geodesically convex. In Section 3 we also provide an alternative proof of this latter fact, 
whence the necessity for us to avoid all properties of EVI-gradient flows actually relying 
on geodesic convexity.

We conclude this preliminary part with a general integrability result about EVIλ-
gradient flows, which we could not find explicitly written in the literature and will be 
used later on in the proof of Lemma 3.6.

Lemma 3.5. With the same assumptions and notations as in Setting 3.1, let x ∈ X. Then

t �→ E(Stx) is integrable in [0, T ], for all T > 0,

regardless of whether E(x) is initially finite or not.

On intervals [ε, T ] this computation is easily justified by the fact that t �→ E(Stx)
is locally Lipschitz in (0, ∞), hence locally integrable therein. But this computation is 
legitimate even if ε = 0, as we are going to see.

Proof. Let x ∈ X and T > 0 be as in our statement. Since E is bounded from below 
on d-bounded sets by (A2), and because (Stx)t∈[0,T ] is bounded, there exists c ∈ R such 
that E(Stx) ≥ c for all t ∈ [0, T ]. Combining with (EVIλ) this gives

c ≤ E(Stx) ≤ E(y) − 1
2

d
dtd

2(Stx, y) −
λ

2 d2(Stx, y)

for any y ∈ D(E) and t ∈ (0, T ]. Integrating from t = η > 0 to t = T gives

c(T − η) ≤
T̂

η

E(Stx) dt ≤ (T − η)E(y) − 1
2

(
d2(STx, y) − d2(Sηx, y)

)

− λ

2

T̂

η

d2(Stx, y) dt.

As t �→ E(Stx) is bounded from below on [0, T ] and the right-hand side has a finite limit 
as η ↓ 0 (thanks to the fact that t �→ Stx is d-continuous on [0, ∞) by the very definition 
of EVIλ-gradient flow), we deduce the desired integrability. �



16 L. Monsaingeon et al. / Advances in Mathematics 426 (2023) 109100
3.2. A pseudo-Riemannian computation

In this section the formal Riemannian computations carried out at the beginning 
of Section 2, and more precisely (2.4), will be reproduced rigorously in the abstract 
Setting 3.1. To this aim, a key role will be played by the following purely metric estimate:

Lemma 3.6. With the same assumptions and notations as in Setting 3.1, let (γt) ∈
AC([0, 1], X) with E(γ0), E(γ1) < ∞. For any fixed absolutely continuous function 
h : [0, 1] → R with h(t) > 0 for all t ∈ (0, 1) let

γ̃t := Sh(t)γt, t ∈ [0, 1],

and for any 0 ≤ t0 < t1 ≤ 1 write

t+ :=
{

t1 if h(t1) ≥ h(t0)
t0 otherwise

and t− :=
{

t0 if h(t1) ≥ h(t0)
t1 otherwise

. (3.7)

Then we have the exact estimate

1
2

∣∣∣∣d(γ̃t1 , γ̃t0)
t1 − t0

∣∣∣∣2 + 1
2λ2 |∂E|2(γ̃t+)e

λ(h(t1)−h(t0)) + eλ(h(t0)−h(t1)) − 2
(t1 − t0)2

+ 1 − e−λ(h(t+)−h(t−))

λ(t+ − t−) · E(γ̃t1) − E(γ̃t0)
t1 − t0

≤ 1
2e

−λ(h(t1)+h(t0))
∣∣∣∣d(γt1 , γt0)

t1 − t0

∣∣∣∣2 .
(3.8)

Here we use the convention that (+∞) × 0 = 0 whenever |∂E|(γ̃t+) = +∞ and 
h(t0) = h(t1) in the second term on the left-hand side of (3.8). Since we assume that 
h(t) > 0 for t ∈ (0, 1), and because any EVIλ-gradient flow immediately falls within 
D(|∂E|) by standard regularizing effects, this latter case is in fact only possible if t0 = 0, 
t1 = 1, and h(t0) = h(t1) = 0. In that case γ̃0 = γ0 and γ̃1 = γ1, the third term in the 
left-hand side also cancels owing to e−λ(h(t+)−h(t−)) = 1, and (3.8) then holds as a trivial 
equality.

We shall rely on this lemma later on in two different ways: First, fixing t0 = 0 and 
letting t1 ↓ 0 (resp. fixing t1 = 1 and letting t0 ↑ 1) to control in Lemma 3.10 the 
continuity of t �→ E(γ̃t) at the boundaries t = 0, 1, and second, fixing t0 ∈ (0, 1) and 
letting t1 → t0 to obtain in Proposition 3.11 a pointwise differential estimate similar to 
(2.4).

Remark 3.7. The times t± are just a convenient notation, ordered as h(t−) ≤ h(t+). 
Note that in our estimate (3.8) the Fisher information |∂E|2(γ̃t+) is evaluated at the 
time t = t+ for which the “smoothing time” s = h(t0) or s = h(t1) is the largest, i.e. 
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Fig. 2. The horizontal and vertical curves.

where the regularizing vertical flow has been run for the longest time. This is somehow 
natural, as this specific point is “better” than the other one in terms of regularity. �

Proof. By symmetry we only discuss the case h(t1) ≥ h(t0), i.e. t+ = t1 and t− = t0. As 
already mentioned, if h(t0) = h(t1) = 0 our statement is actually vacuous, thus it is not 
restrictive to further assume h(t1) > 0. Let us write for simplicity

γ̂t1 := Sh(t0)γt1 .

From an intuitive point of view, this corresponds to freezing a “vertical time” s = h(t0)
and “translating” γ̃t0 in the “horizontal” t direction parallel to the curve γ until t1. Here, 
in the “vertical” direction above t1 the smoothing semigroup Ss associated with E has 
been run at least for a strictly positive time h(t1) > 0, so that by (3.6) the solution of 
the “vertical” gradient flow at that time lies within the regular domain X1 = D(|∂E|) ⊂
X0 = D(E) ⊂ X, see Fig. 2.

The first step is to write (EVIλ) for s �→ Ss(γt1) with γ̃t0 as a reference point, namely

1
2

d
dsd2(Ssγt1 , γ̃t0) + λ

2 d2(Ssγt1 , γ̃t0) + E(Ssγt1) ≤ E(γ̃t0),

which holds true for a.e. s ∈ [0, h(t1)] in the “vertical” direction. This inequality can be 
equivalently rewritten as

1
2

d
ds

(
eλsd2(Ssγt1 , γ̃t0)

)
≤ eλs

(
E(γ̃t0) − E(Ssγt1)

)
. (3.9)

Note that this estimate carries significant information if and only if the reference point 
has finite entropy, i.e. E(γ̃t0) < ∞ in the right-hand side. This holds true for t0 ∈ (0, 1)
because γ̃t0 is the EVIλ-gradient flow of E starting from γt0 at a strictly positive time 
s = h(t0) > 0, but also for h(t0) = 0 if t0 = 0 since in this case γ̃0 = γ0 is assumed to 
have finite entropy.
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Integrating (3.9) from s = h(t0) to s = h(t1) gives

1
2e

λh(t1)d2(γ̃t1 , γ̃t0) −
1
2e

λh(t0)d2(γ̂t1 , γ̃t0)

≤
h(t1)ˆ

h(t0)

eλs
(
E(γ̃t0) − E(Ssγt1)

)
ds

=
h(t1)ˆ

h(t0)

eλs
((

E(γ̃t0) − E(γ̃t1)
)

+
(
E(γ̃t1) − E(Ssγt1)

))
ds

=
h(t1)ˆ

h(t0)

eλs
(
E(γ̃t1) − E(Ssγt1)

)
ds

− eλh(t1) − eλh(t0)

λ

(
E(γ̃t1) − E(γ̃t0)

)
.

(3.10)

If h(t0) > 0 this computation is legitimate because s �→ Ssγt1 and s �→ E(Ssγt1) are 
locally Lipschitz in (0, ∞), hence s �→ d2(Ssγt1 , ̃γt0) and s �→ E(Ssγt1) are locally in-
tegrable therein. But this computation is also justified when h(t0) = 0 by Lemma 3.5. 
More specifically s �→ E(Ssγt1) is absolutely integrable on [0, T ] for any T > 0 and a 
fortiori so is s �→ eλsE(Ssγt1).

Now let us estimate the terms in (3.10) to get (3.8). First, since γ̂t1 = Sh(t0)γt1 , 
γ̃t0 = Sh(t0)γt0 , and Sh(t0)(·) is λ-contractive by (3.3), we observe that the second term 
in the left-hand side of (3.10) can be controlled as

d2(γ̂t1 , γ̃t0) = d2(Sh(t0)γt1 ,Sh(t0)γt0) ≤ e−2λh(t0)d2(γt1 , γt0). (3.11)

On the right-hand side, let us define

I :=
h(t1)ˆ

h(t0)

eλs
(
E(γ̃t1) − E(Ssγt1)

)
ds.

This integral is clearly non-positive by (3.4), but we need a finer analysis. To this aim, 
for fixed 0 < s < h(t1) let us write

E(γ̃t1) − E(Ssγt1) = E(Sh(t1)γt1) − E(Ssγt1)

=
h(t1)ˆ d

dτ E(Sτγt1) dτ = −
h(t1)ˆ

|∂E|2(Sτγt1) dτ,

s s
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where the second equality holds due to τ �→ E(Sτγt1) being Lipschitz on [s, h(t1)], and 
the third one stems from (3.4) for the gradient flow τ �→ Sτγt1 . By (3.5)

−
h(t1)ˆ

s

|∂E|2(Sτγt1) dτ ≤ −
h(t1)ˆ

s

|∂E|2(Sh(t1)γt1)e
2λ(h(t1)−τ) dτ

= −e2λh(t1)|∂E|2(Sh(t1)γt1)
h(t1)ˆ

s

e−2λτ dτ

= 1
2λ

(
1 − e2λ(h(t1)−s)

)
|∂E|2(Sh(t1)γt1),

so that, as a consequence,

I ≤ 1
2λ

h(t1)ˆ

h(t0)

eλs
(
1 − e2λ(h(t1)−s)

)
|∂E|2(Sh(t1)γt1) ds

= 1
2λ |∂E|2(Sh(t1)γt1)

h(t1)ˆ

h(t0)

(
eλs − e2λh(t1) · e−λs

)
ds

= − 1
2λ2 |∂E|2(γ̃t1)eλh(t1)

(
eλ(h(t1)−h(t0)) + eλ(h(t0)−h(t1)) − 2

)
.

Plugging this estimate together with (3.11) into (3.10) and dividing by (t1 − t0)2 > 0
entails our claim. �

We also need to study the behaviour of the “regularized” curve γ̃t := Sh(t)γt and of 
the entropy E along it: this is the content of the following two results.

Lemma 3.8. With the same assumptions and notations as in Setting 3.1, if (γt) ∈
AC([0, 1], X) and h : [0, 1] → R is absolutely continuous with h(t) > 0 for all t ∈ (0, 1), 
then the curve γ̃t := Sh(t)γt belongs to ACloc((0, 1), X) ∩ C([0, 1], X).

Proof. Fix δ ∈ (0, 1/2), t0, t1 ∈ [δ, 1 − δ] with t0 ≤ t1 and define

mδ := min
t∈[δ,1−δ]

h(t), Mδ := max
t∈[δ,1−δ]

h(t), (3.12)

paying attention to the fact that mδ > 0 by construction. Write as before γ̂t1 := Sh(t0)γt1
for the “horizontal” translation of γ̃t0 (see Fig. 2). By triangular inequality and the 
contraction estimate (3.3) we get

d(γ̃t0 , γ̃t1) ≤ d(γ̃t0 , γ̂t1) + d(γ̂t1 , γ̃t1) ≤ eλ
−Mδd(γt0 , γt1) + d(γ̂t1 , γ̃t1), (3.13)
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where λ− := max{−λ, 0}. Since (γt) is absolutely continuous the first term in the right-
hand side can be controlled as d(γt0 , γt1) ≤

´ t1
t0

|γ̇t|dt. As regards the second one, by (3.4)
and up to assuming h(t0) ≤ h(t1) (which is not restrictive, as otherwise it is sufficient 
to swap the boundary values of integration below) it holds

d(γ̂t1 , γ̃t1) = d(Sh(t0)γt1 ,Sh(t1)γt1) ≤
h(t1)ˆ

h(t0)

∣∣∣ d
dsSsγt1

∣∣∣ds =
h(t1)ˆ

h(t0)

|∂E|(Ssγt1) ds, (3.14)

where, to avoid possibly ambiguous notations, | d
dsSsγt1 | denotes the metric speed of the 

“vertical” curve s �→ Ssγt1 . In order to control the slope in the right-most term uniformly 
both in s ∈ [h(t0), h(t1)] ⊂ [mδ, Mδ] and in t1 ∈ [δ, 1 − δ], for fixed δ, let ε be such that 
−λε < log 2 (if λ ≥ 0, choose ε = mδ) and define ε′ := min{mδ, ε}. Then by (3.5) and 
the fact that s ≥ h(t0) ≥ mδ ≥ ε′ we have

|∂E|(Ssγt1) ≤ eλ(ε′−s)|∂E|(Sε′γt1) ≤ eλ
−(Mδ−ε′)|∂E|(Sε′γt1), ∀s ∈ [mδ,Mδ]

and by (3.6) for any reference point x ∈ D(|∂E|) it holds

|∂E|2(Sε′γt1) ≤
1

2eλε′ − 1 |∂E|2(x) + 1
Iλ(ε′)2 d2(x, γt1).

The squared distance in the right-hand side above is bounded uniformly in t1 ∈ [δ, 1 −δ], 
since by triangular inequality

d(x, γt1) ≤ d(x, γ0) + d(γ0, γt1) ≤ d(x, γ0) + 
(γ).

Therefore there exists Cδ > 0 such that

|∂E|(Ssγt1) ≤ Cδ for all t1 ∈ [δ, 1 − δ] and s ∈ [mδ,Mδ], (3.15)

and plugging this bound into (3.14) yields

d(γ̂t1 , γ̃t1) ≤ Cδ|h(t1) − h(t0)| ≤ Cδ

t1ˆ

t0

|h′(t)|dt.

It is now sufficient to combine this inequality with d(γt0 , γt1) ≤
´ t1
t0

|γ̇t|dt and (3.13) to 
get

d(γ̃t0 , γ̃t1) ≤
t1ˆ (

eλ
−Mδ |γ̇t| + Cδ|h′(t)|

)
dt. (3.16)
t0
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As eλ−Mδ |γ̇t| +Cδ|h′(t)| ∈ L1(δ, 1 −δ) and δ is arbitrary, the fact that (γ̃t) ∈ ACloc((0, 1))
is thus proved.

Turning now to the continuity of (γ̃t) at the endpoints, let t0 = 0 and t1 ∈ (0, 1). 
Arguing as for (3.13) but with a crucial difference in the choice of the third point in the 
triangular inequality, it holds

d(γ̃0, γ̃t1) ≤ d(γ̃0,Sh(t1)γ0) + d(Sh(t1)γ0, γ̃t1)

≤ d(Sh(0)γ0,Sh(t1)γ0) + e−λh(t1)d(γ0, γt1).

The second term on the right-hand side vanishes as t1 ↓ 0 by (absolute) continuity of γ
and so does the first one, since s �→ Ssγ0 is continuous in [0, ∞) with values in X and 
h(t1) → h(0). The continuity at t = 1 is obtained similarly and the proof is complete. �
Remark 3.9. If h(t) > 0 also in t = 0, 1, then the previous argument can be extended to 
the whole interval [0, 1] and therefore (γ̃t) ∈ AC([0, 1], X). �

Lemma 3.10. With the same assumptions and notations as in Lemma 3.8, the entropy is 
locally absolutely continuous in (0, 1) along the regularized curve γ̃t, i.e.

t �→ E(γ̃t) ∈ ACloc((0, 1)).

If in addition (γt) ∈ AC2([0, 1], X), E(γ̃0), E(γ̃1) < ∞ and h is differentiable at t = 0 and 
t = 1 with h′(0) > 0 and h′(1) < 0, then

t �→ E(γ̃t) ∈ C([0, 1]).

Note that E(γ̃0), E(γ̃1) < ∞ is automatically satisfied if h(t) > 0 also in t = 0, 1.

Proof. Let us first prove that t �→ E(γ̃t) is locally absolutely continuous. Since |∂E| is a 
strong upper-gradient, the chain rule (3.2) holds and it suffices to show that |∂E|(γ̃t)| ˙̃γt| ∈
L1
loc(0, 1), namely

1−δˆ

δ

|∂E|(γ̃t)| ˙̃γt|dt < ∞, ∀δ ∈ (0, 1/2), (3.17)

as this would imply that E ◦ γ̃ ∈ ACloc((0, 1)) with
∣∣∣∣ d
dt (E ◦ γ̃)(t)

∣∣∣∣ ≤ |∂E|(γ̃t) · | ˙̃γt|, for a.e. t ∈ (0, 1).

To this aim, observe from (3.16) that | ˙̃γt| ∈ L1
loc(0, 1) with | ˙̃γt| ≤ eλ

−Mδ |γ̇t| + Cδ|h′(t)|
a.e. on [δ, 1 − δ], with Mδ defined in (3.12). Moreover from (3.15) we also know that 
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|∂E|(Ssγt) ≤ Cδ uniformly in t ∈ [δ, 1 − δ] and s ∈ [mδ, Mδ], so that by choosing s = h(t)
we get in particular |∂E|(γ̃t) ≤ Cδ for all t ∈ [δ, 1 − δ]. This shows that t �→ |∂E|(γ̃t)
belongs to L∞

loc(0, 1), whence (3.17).
Now assume that (γt) ∈ AC2([0, 1], X), E(γ̃0) < ∞, h is differentiable at t = 0 with 

h′(0) > 0 and let us prove that t �→ E(γ̃t) is continuous at t = 0. (The argument is 
identical for t = 1.) On the one hand, as (γ̃t) is continuous at t = 0 by Lemma 3.8
and E is lower semicontinuous, we see that E(γ̃0) ≤ lim inft↓0 E(γ̃t). On the other hand, 
choosing t0 = 0 in (3.8), our assumption that h′(0) > 0 gives h(t1) > h(0) for t1 > 0
small, hence t− = 0 and t+ = t1. Discarding the first two (non-negative) terms on the 
left-hand side, and multiplying by (t1 − t0) = t1 yield

1 − e−λ(h(t1)−h(0))

λ(t1 − 0) ·
(
E(γ̃t1) − E(γ̃0)

)
≤ t1

2 e−λ(h(t1)+h(0))
∣∣∣∣d(γt1 , γ0)

t1

∣∣∣∣2

≤ t1
2 e−λ(h(t1)+h(0))

( 1
t1

t1ˆ

0

|γ̇t|dt
)2

≤ 1
2e

−λ(h(t1)+h(0))
t1ˆ

0

|γ̇t|2 dt.

.

Letting t1 ↓ 0, the right-hand side vanishes owing to our assumption that (γt) ∈
AC2([0, 1], X), and clearly the exponential difference quotient in the left-hand side con-
verges to h′(0). Rearranging gives

h′(0) lim sup
t1↓0

E(γ̃t1) ≤ h′(0)E(γ̃0),

since h′(0) > 0 the desired upper semicontinuity follows and the proof is complete. �
Gathering the results proven so far, we deduce the following:

Proposition 3.11. With the same assumptions and notations as in Lemma 3.8, for a.e. 
t ∈ (0, 1) it holds

1
2
∣∣ ˙̃γt∣∣2 + 1

2 |h
′(t)|2|∂E|2(γ̃t) + h′(t) d

dtE(γ̃t) ≤
1
2e

−2λh(t) |γ̇t|2 . (3.18)

Proof. The argument simply consists in taking the limit t1 → t0 in (3.8), which should 
clearly lead (at least formally) to (3.18) by Taylor-expanding the various exponential 
difference quotients. In order to make this rigorous, note that the first and third terms 
in the left-hand side of (3.18) are well defined for a.e. t ∈ (0, 1) by Lemma 3.8 and 
Lemma 3.10, respectively. The second term is also unambiguously defined because h(t) >
0, hence the “vertical” EVIλ-gradient flow starting from γt and defining γ̃t = Sh(t)γt falls 
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immediately within the domain X1 = D(|∂E|). The right-hand side is well defined for 
a.e. t since γ ∈ AC([0, 1], X).

After this premise, let t ∈ (0, 1) be any differentiation point for h, t �→ γt, t �→ γ̃t and 
t �→ E(γ̃t), choose t0 = t in (3.8) and let us take the right limit t1 ↓ t0 (since we are 
considering a differentiability point the left and right limits exist and are equal, so there 
is no need to address the left limit). From the very definition (3.7) of t± it clearly holds 
t± → t0 as t1 ↓ t, hence the convergence of the right-hand side of (3.8) to the right-hand 
side of (3.18) is clear and so is the convergence of the two difference quotients of h. By 
Lemma 3.8 the first term in the left-hand side also passes to the limit, as does the third 
one according to Lemma 3.10. The only term left to handle is the Fisher information 
|∂E|2(γ̃+). From the continuity of t �→ γ̃t (cf. Lemma 3.8) we see that γ̃t+ → γ̃t in (X, d), 
and the lower semicontinuity of the slope (3.1) results in

|∂E|(γ̃t) ≤ lim inf
t1↓0

|∂E|(γ̃t+).

Thus rigorously taking the liminf t1 ↓ t0 in (3.8) entails (3.18) and achieves the proof. �
The interesting consequence for our purpose is then:

Theorem 3.12. With the same assumptions and notations as in Setting 3.1, fix ε > 0, 
and set hε(t) := ε min{t, 1 − t}. Let (γt) ∈ AC2([0, 1], X) be such that E(γ0), E(γ1) < ∞
and define

γε
t := Shε(t)γt, t ∈ [0, 1].

Then (γε
t ) ∈ AC2([0, 1], X), t �→ E(γε

t ) belongs to AC([0, 1]) and it holds

1
2

1ˆ

0

|γ̇ε
t |2 dt + ε2

2

1ˆ

0

|∂E|2(γε
t ) dt ≤ 1

2e
λ−ε

1ˆ

0

|γ̇t|2 dt− 2εE(γε
1/2)

+ ε
(
E(γ0) + E(γ1)

)
.

(3.19)

Note here that hε(0) = hε(1) = 0, so that the endpoints γε
0 = γ0 and γε

1 = γ1 remain 
unchanged.

Proof. The strategy of proof simply consists in integrating (3.18) between 0 and 1 while 
integrating by parts of the term h′

ε(t) d
dtE(γε

t ), separately on [0, 1/2] and [1/2, 1]. Note 
carefully that our specific choice gives h′

ε = ε and h′
ε = −ε on these two time inter-

vals, respectively. Taking into account e−2λhε(t) ≤ eλ
−ε, where λ− := max{−λ, 0}, this 

procedure yields
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1
2

1ˆ

0

|γ̇ε
t |2 dt + ε2

2

1ˆ

0

|∂E|2(γε
t ) dt ≤ 1

2e
λ−ε

1ˆ

0

|γ̇t|2 dt− 2εE(γε
1/2)

+ ε
(
E(γε

0) + E(γε
1)
)
.

The term 2εE(γε
1/2) simply arises from the two boundary terms at t = 1/2 in the two 

integrations by parts. (Alternatively, it can be seen as the result of − ́ 1
0 E(γε

t )h′′(t)
arising from the integration by parts in the whole interval [0, 1], with the singularity 
h′′(t) = −2εδ1/2(t)). However, this argument is not fully rigorous because all the terms 
on the left-hand side of (3.18) are only locally integrable, hence we may not be allowed 
to integrate them all the way to t = 0 and t = 1.

In order to circumvent this slight issue, choose δ ∈ (0, 1/2) and carry out the same 
argument on [δ, 1/2] and [1/2, 1 − δ] rather than on [0, 1/2] and [1/2, 1]: Integration by 
parts is now justified by Lemma 3.10 and this provides us with

1
2

1−δˆ

δ

|γ̇ε
t |2 dt + ε2

2

1−δˆ

δ

|∂E|2(γε
t ) dt ≤ 1

2e
λ−ε

1−δˆ

δ

|γ̇t|2 dt

+ ε
(
E(γε

δ ) − 2E(γε
1/2) + E(γε

1−δ)
)
.

(3.20)

It is then sufficient to pass to the limit as δ ↓ 0. By monotonicity the left-hand side above 
converges to the left-hand side in (3.19) and for the same reason so does the first term 
on the right-hand side, while by the current choice of h and by Lemma 3.10 t �→ E(γε

t )
is continuous on the whole interval [0, 1], so that

lim
δ↓0

ε
(
E(γε

δ ) + E(γε
1−δ)

)
= ε

(
E(γε

0) + E(γε
1)
)

= ε
(
E(γ0) + E(γ1)

)

and (3.19) follows.
Finally, since the right-hand side of (3.19) is finite we see that |γ̇ε| ∈ L2(0, 1) and 

|∂E|(γε) ∈ L2(0, 1). As a consequence |γ̇ε| · |∂E(γε)| ∈ L1(0, 1) in the strong upper-chain 
rule (3.2), and E ◦ γε ∈ AC([0, 1]) as desired. �
4. Small-temperature limit and convexity

4.1. Γ-convergence of the Schrödinger problem

Relying on the results of the previous section, we can now turn to Theorem 2.1 and 
make it rigorous in the metric setting. To this end, let us first introduce two action 
functionals: the kinetic energy A and the (halved) Fisher information I along a curve, 
respectively defined as
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A(γ) := 1
2

1ˆ

0

|γ̇t|2 dt and I(γ) := 1
2

1ˆ

0

|∂E|2(γt) dt

for all (γt) ∈ C([0, 1], X), where it is understood that A(γ) = +∞ whenever γ is not 
absolutely continuous. Given two points x, y ∈ X and a temperature/slowing-down pa-
rameter ε > 0, the (metric) Schrödinger problem reads as

inf
(γt) :x�y

{
A(γ) + ε2I(γ)

}
, (Schε)

where (γt) : x � y is a short-hand notation meaning that the infimum runs over all 
(γt) ∈ C([0, 1], X) such that γ0 = x and γ1 = y. For sake of brevity we also introduce

Aε(γ) := A(γ) + ε2I(γ).

From (Schε) it is thus clear that the Fisher information I acts as a perturbation of A and 
this has a regularizing effect, since minimizers of (Schε) live within the regular domain 
X1 = D(|∂E|).

Remark 4.1. The smoothing effect is well understood for the classic Schrödinger problem 
in a regular setting, namely when E is the Boltzmann-Shannon relative entropy and X
is the Wasserstein space over a smooth Riemannian manifold. In this case, under mild 
assumptions on the end-points, minimizers of (Schε) are curves of absolutely continu-
ous measures whose densities are bounded, smooth, Lipschitz, with exponentially fast 
decaying tails.

In the current metric framework the properties above are meaningless, but still min-
imizers of (Schε) are “regular” from a metric point of view, since as just said they live 
within D(|∂E|). Moreover, in Proposition 4.2 we are going to see that E is absolutely 
continuous along optimal curves. �

Let us first deal with the solvability of (Schε).

Proposition 4.2. With the same assumptions and notations as in Setting 3.1 and under 
Assumption 3.2, for any fixed x, y ∈ X and ε > 0 the Schrödinger problem (Schε) is 
solvable if and only if E(x), E(y) < ∞ and there exists (γt) ∈ AC([0, 1], X) such that 
γ0 = x and γ1 = y.

As the condition characterizing the solvability of the Schrödinger problem does not 
depend on ε, it is clear that if (Schε) is solvable for some ε > 0, then it is actually 
solvable for all ε > 0.

Proof. Assume that the endpoints have finite entropy and that there exists an absolutely 
continuous curve γ connecting x to y. Up to reparametrization, we can assume that (γt) ∈
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AC2([0, 1], X). Theorem 3.12 thus guarantees that Aε is finite along the regularization 
(γε

t )t∈[0,1] of this curve and therefore the variational problem (Schε) is proper. Let then 
(γn

t ) be any minimizing sequence and observe that the kinetic action A is bounded 
uniformly in n, say A(γn) ≤ C for all n. We now observe that for any pair 0 ≤ t0 < t1 ≤ 1
it holds

d(γn
t0 , γ

n
t1) ≤

t1ˆ

t0

|γ̇n
t |dt ≤ |t0 − t1|1/2

( t1ˆ

t0

|γ̇n
t |2 dt

)1/2
≤ C|t0 − t1|1/2. (4.1)

Since the endpoints are fixed, this implies that the set of points γn
t is bounded in (X, d)

uniformly in n, t, thus it is σ-relatively sequentially compact by Assumption 3.2. By the 
refined Arzelà-Ascoli lemma [2, Proposition 3.3.1], there exists a limiting d-continuous 
(actually 1/2-Hölder continuous) curve γ such that

γn
t

σ→ γt, ∀t ∈ [0, 1].

We now observe that the kinetic action is lower semicontinuous for this pointwise-in-
time convergence w.r.t. σ, cf. [3, Section 2.2] (indeed, d is lower semicontinuous w.r.t. σ, 
hence the 2-energies of the finite partitions of γ are lower semicontinuous w.r.t. σ too, 
whence the lower semicontinuity of the 2-energy of γ itself). Moreover |∂E|2 is also lower 
semicontinuous w.r.t. σ by hypothesis, and this fact together with Fatou’s lemma gives

1ˆ

0

|∂E|2(γt) dt ≤
1ˆ

0

lim inf
n→∞

|∂E|2(γn
t ) dt ≤ lim inf

n→∞

1ˆ

0

|∂E|2(γn
t ) dt.

Therefore γ is a minimizer of (Schε).
Conversely, assume that there exists a minimizer, denoted by γ (the following argu-

ment actually works for any curve along which Aε is finite and without Assumption 3.2). 
Then in particular t �→ |γ̇t| and t �→ |∂E|(γt) belong to L2(0, 1) and by (3.2) we see that 
t �→ E(γt) is globally absolutely continuous with∣∣∣∣ d

dt(E ◦ γ)(t)
∣∣∣∣ ≤ |∂E|(γt) · |γ̇t| ∈ L1(0, 1).

The fact that (|γ̇t|) ∈ L2(0, 1) ⊂ L1(0, 1) trivially implies (γt) ∈ AC([0, 1], X), whereas 
the fact that t �→ |∂E|(γt) belongs to L2(0, 1) also implies that |∂E|(γt) is finite for a.e. 
t ∈ [0, 1] and a fortiori so is E(γt), since D(|∂E|) ⊂ D(E). Hence let t∗ ∈ (0, 1) be any 
point satisfying E(γt∗) < ∞ and note that together with (3.2) this gives the following 
global upper bound valid for all t < t∗

E(γt) ≤ E(γt∗) +
t∗ˆ ∣∣∣∣ d

dt (E ◦ γ)(t)
∣∣∣∣dt ≤ E(γt∗) +

1ˆ ∣∣∣∣ d
dt(E ◦ γ)(t)

∣∣∣∣dt =: E < ∞.
t 0



L. Monsaingeon et al. / Advances in Mathematics 426 (2023) 109100 27
As a consequence, and taking also into account the facts that t �→ γt is d-continuous and 
E is lower semicontinuous, we get

E(γ0) = E
(

lim
t→0

γt
)
≤ lim inf

t→0
E(γt) ≤ E

and the proof is thus complete, as the same argument applies mutatis mutandis for t = 1
too. �

We now fix x, y ∈ X and let C([0, 1], X) � γ �→ ι01(γ) denote the convex indicator of 
the endpoint constraints, i.e.

ι01(γ) =
{

0 if γ0 = x and γ1 = y,

+∞ otherwise.

With this said, we can finally state our Γ-convergence result, where the finite-entropy 
assumption on the endpoints is motivated by the previous proposition.

Theorem 4.3. With the same assumptions and notations as in Setting 3.1, if x, y ∈ X
are such that E(x), E(y) < ∞, then

Γ − lim
ε→0

{
Aε + ι01

}
= A + ι01

for the uniform convergence on C([0, 1], X). If Assumption 3.2 holds, then the Γ-
convergence also takes place w.r.t. the pointwise-in-time σ-topology.

Proof. The Γ − lim inf inequality is rather clear, since the kinetic energy A is lower 
semicontinuous both w.r.t. uniform-in-time d-convergence and pointwise-in-time σ-
convergence: for the former topology the fact is well known, for the latter it has been 
discussed in the proof of Proposition 4.2. An analogous claim is also true for the convex 
indicator ι01. As a consequence, we have that for any γε converging to γ uniformly in 
time in the metric topology or pointwise in time in the topology σ (if applicable) it holds

A(γ) + ι01(γ) ≤ lim inf
ε↓0

A(γε) + lim inf
ε↓0

ι01(γε) ≤ lim inf
ε↓0

{
A(γε) + ι01(γε)

}
≤ lim inf

ε↓0

{
A(γε) + ε2I(γε) + ι01(γε)

}
= lim inf

ε↓0

{
Aε(γε) + ι01(γε)

}
,

whence the desired Γ − lim inf inequality.
For the Γ −lim sup, take any (γt) ∈ AC2([0, 1], X) connecting x to y (if it does not exist, 

then there is nothing to prove). Then Theorem 3.12 precisely provides a recovery sequence 
γε
t := Shε(t)γt with hε defined as therein, both for the uniform-in-time d-convergence and 

the pointwise-in-time σ-convergence (the latter is an easy consequence of the former by 
Remark 3.4). To prove this claim, note that for any n ∈ N there exist t1, ..., tk ∈ [0, 1]
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such that, for any t ∈ [0, 1], d(γt, γti) < 1/n for at least one ti; in addition, since γε
t → γt

for all t ∈ [0, 1] there exists εn small enough such that d(γti , γε
ti) < 1/n for all ε < εn

and i = 1, ..., k. As a consequence, taking (3.3) into account,

d(γt, γε
t ) ≤ d(γt, γti) + d(γti ,Shε(t)γti) + d(Shε(t)γti , γ

ε
t )

≤ d(γt, γti) + d(γti ,Shε(t)γti) + e−λhε(t)d(γt, γti)

≤ 1
n

(2 + eλ
−ε/2)

for all t ∈ [0, 1] and ε < εn and by the arbitrariness of n we conclude that γε → γ

uniformly. Furthermore, the lim sup inequality can be proved as follows:

lim sup
ε↓0

{
Aε(γε) + ι01(γε)

}
= lim sup

ε↓0

{
A(γε) + ε2I(γε) + 0

}
(3.19)
≤ lim sup

ε↓0

{
eλ

−εA(γ) − 2εE(γε
1/2) + ε

(
E(x) + E(y)

)}
≤ lim sup

ε↓0

{
eλ

−εA(γ) + ε
(
E(x) + E(y)

)}
− 2 lim inf

ε↓0
εE(γε

1/2)

≤ A(γ) = A(γ) + ι01(γ),

where the third inequality comes from the fact that, for any ε ↓ 0, (γε
1/2) is contained 

in a bounded set and by assumption E is bounded from below on bounded sets, whence 
E(γε

1/2) ≥ c for some c ∈ R. The proof is thus complete. �
As an easy consequence of this result we obtain the following:

Corollary 4.4. With the same assumptions and notations as in Setting 3.1 and under 
the further requirements that Assumption 3.2 holds and the Schrödinger problem (Schε)
relative to x, y ∈ X is solvable, let εk ↓ 0 and ωk be a minimizer of the corresponding 
Schrödinger problem (Schε) with ε = εk.

Then

lim
k→∞

{
A(ωk) + ε2

kI(ωk)
}

= inf
(γt) : x�y

A(γ).

Moreover, there exists ω0 ∈ C([0, 1], X) such that, up to a subsequence, ωk → ω0 in the 
pointwise-in-time σ-topology and

A(ω0) = inf
(γt) :x�y

A(γ).

Proof. Recall that, under a mild equicoercivity condition, Γ-convergence precisely guar-
antees that the limit of the optimal values of the approximating problems is the optimal 
value of the limit problem and limits of minimizers are minimizers, cf. [16, Theorem 
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1.21]. In view of Theorem 4.3 and [16, Theorem 1.21], for the mild equi-coercivity condi-
tion to hold it suffices to prove that the set of minimizers {ωk} is relatively compact in 
the pointwise-in-time σ-topology. To this aim, the kinetic energies of the curves ωk are 
uniformly bounded since

A(ωk) ≤ A(ωk) + ε2
kI(ωk) ≤ A(ωε) + ε2

kI(ωε) ≤ A(ωε) + ε2I(ωε) < +∞,

where ωε is the minimizer for the problem with ε = ε := supk εk. Arguing as in the proof 
of Proposition 4.2, we deduce that there exists a continuous curve (ω0

t )t∈[0,1] connecting 
x and y such that, up to extracting a suitable subsequence, ωk

t → ω0
t w.r.t. σ as k → ∞

for all t ∈ [0, 1]. �
Remark 4.5. Note that in Corollary 4.4 the curve ω0 is length-minimizing but not nec-
essarily distance-minimizing, namely it needs not be a geodesic between x and y, since 
we only know that

inf
(γt) :x�y

A(γ) ≥ 1
2d2(x, y)

and the inequality might be strict, e.g. if X is a non-convex subset of Rd. However, if (X, d)
is a length metric space, i.e. for all x, y ∈ X and ε > 0 there exists (γt) ∈ AC([0, 1], X)
such that γ0 = x, γ1 = y and 
(γ) ≤ d(x, y) + ε, then the inequality above turns out 
to be an identity and, as a consequence, ω0 is a geodesic. This means that for any two 
points having finite energy there always exists a geodesic connecting them. �

When the endpoints have infinite entropy, the following variant of Theorem 4.3 may 
be useful:

Theorem 4.6. With the same assumptions and notations as in Setting 3.1, let x, y ∈
X with possibly E(x), E(y) = +∞ and for any fixed (εn)n∈N , εn ↓ 0, let (ηn)n∈N be 
converging to 0 slowly enough so that

εn (E(γn
0 ) + E(γn

1 )) → 0 with γn
0 := Sηn

x, γn
1 := Sηn

y.

Then

Γ − lim
n→∞

{
Aεn + ιn01

}
= A + ι01,

for the uniform convergence on C([0, 1], X). If Assumption 3.2 holds, then the Γ-
convergence also takes place w.r.t. the pointwise-in-time σ-topology. Here ιn01 and ι01
are the convex indicators of the endpoint constraints for γn

0 , γ
n
1 and x, y, respectively.

Proof. The proof of the Γ − lim inf is almost identical to that in Theorem 4.3, with the 
only extra observation that
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ι01(γ) ≤ lim inf
n→∞

ιn01(γn).

For the Γ − lim sup, observe that if there does not exist (γt) ∈ AC2([0, 1], X) joining 
x and y, then there is nothing to prove. Hence let us suppose that at least one curve 
(γt) ∈ AC2([0, 1], X) connecting x and y exists, fix it and note that Theorem 3.12 applied 
to the curve Sηn

γt still provides a recovery sequence γεn
t := Sηn+hεn (t)γt with the same 

choice hεn(t) = εn min{t, 1 − t} as before. Indeed, on the one hand

lim sup
n→∞

{
Aεn(γεn) + ιn01(γεn)

}
= lim sup

n→∞

{
A(γεn) + ε2

nI(γεn) + 0
}

(3.19)
≤ lim sup

n→∞

{
eλ

−εnA(Sηn
γ) − 2εnE(γεn

1/2) + εn
(
E(γn

0 ) + E(γn
1 )
)}

≤ lim sup
n→∞

{
eλ

−εnA(Sηn
γ) + εn

(
E(γn

0 ) + E(γn
1 )
)}

− 2 lim inf
ε↓0

εE(γε
1/2)

≤ lim sup
n→∞

A(Sηn
γ) ≤ lim sup

n→∞
e−2ληnA(γ) = A(γ),

where the third inequality follows by the same argument adopted in the proof of the 
previous theorem and the last one is due to (3.18) with h(t) ≡ ηn. On the other hand, 
γεn
t → γt uniformly in t ∈ [0, 1] in the d-topology and, if Assumption 3.2 holds, for 

all t ∈ [0, 1] w.r.t. σ: the argument described in the previous proof applies also here 
verbatim. �

As conclusion, in the next proposition we show that any EVI-gradient flow is a solution 
of the Schrödinger problem with suitable endpoints. Intuitively this is clear, because up 
to a rescaling factor ε2 both the trajectories of the gradient flow of E and the solutions 
to (Schε) must formally satisfy the same Newton equation, namely γ̈t = −∇Φ(γt) where 
the potential Φ is given by (minus) the Fisher information −|∂E|2, cf. [34, Remark 6]. 
This is also in complete analogy with the standard Schrödinger problem, which includes 
the heat flow as a particular entropic interpolation.

Proposition 4.7. With the same assumptions and notations as in Setting 3.1, fix ε > 0. 
Then for all x, y ∈ X the following lower bound on the optimal value of (Schε) holds

inf
(γt) :x�y

Aε(γ) ≥ ε
∣∣E(x) − E(y)

∣∣. (4.2)

If either y = Sεx or x = Sεy, then equality is achieved. In the former case the curve 
[0, 1] � t �→ γ̂t := Sεtx is a minimizer in the Schrödinger problem and the optimal value 
is

inf
(γt) :x�y

Aε(γ) = ε
(
E(x) − E(Sεx)

)
.

An analogous statement holds when x = Sεy.
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Proof. By (3.2) and Young’s inequality it follows that for any (γ̃t) ∈ AC2([0, ε], X)
joining x and y (if it exists; if not, (4.2) is trivial) it holds

∣∣E(γ̃0) − E(γ̃ε)
∣∣ ≤ 1

2

εˆ

0

| ˙̃γt|2 dt + 1
2

εˆ

0

|∂E|2(γ̃t) dt.

By setting γt := γ̃εt, t ∈ [0, 1], and by the arbitrariness of γ̃ we thus see that for all 
(γt) ∈ AC2([0, 1], X) joining x and y we have

ε
∣∣E(γ0) − E(γ1)

∣∣ ≤ 1
2

1ˆ

0

|γ̇t|2 dt + ε2

2

1ˆ

0

|∂E|2(γt) dt,

so that

ε
∣∣E(γ0) − E(γ1)

∣∣ ≤ inf
(γt) : x�y

Aε(γ).

Now assume that y = Sεx: integrating (3.4) for the EVIλ-gradient flow γ̂ (paying atten-
tion to the rescaling factor ε) between 0 and 1 we get

Aε(γ̂) = 1
2

1ˆ

0

| ˙̂γt|2 dt + ε2

2

1ˆ

0

|∂E|2(γ̂t) dt = ε
(
E(x) − E(y)

)
= ε

∣∣E(x) − E(y)
∣∣,

where the last equality comes from the fact that t �→ E(Stx) is non-increasing, as a 
consequence of (3.4). Combining this identity with (4.2) yields the conclusion. �
4.2. Displacement convexity

In analogy with Section 2.2, in this short section we establish the geodesic λ-convexity 
of E. As already explained in the Introduction, here we do not claim any novelty of the 
result (cf. [27, Theorem 3.2]). Our proof is however independent and new, being a further 
evidence of the wide range of applications of the Schrödinger problem. Let us stress once 
more that all the properties of EVIλ-gradient flows stated in Section 3.1 and used so far 
do not rely on geodesic λ-convexity, whence the genuine independence of our approach.

Theorem 4.8. With the same assumptions and notations as in Setting 3.1, the potential 
E is λ-convex along any geodesic.

Proof. Let (γt) be any constant-speed geodesic. We want to prove that

E(γθ) ≤ (1 − θ)E(γ0) + θE(γ1) −
λ
θ(1 − θ)d2(γ0, γ1), ∀θ ∈ [0, 1].
2
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We will establish this inequality by carefully estimating at order one as ε ↓ 0 the defect 
of optimality, in the geodesic problem from γ0 to γ1, of a suitably regularized version 
(γε

t ) of the geodesic.
If E(γ0) = +∞ or E(γ1) = +∞ there is nothing to prove, so we can assume without 

loss of generality that both endpoints have finite entropy. If θ = 0 or θ = 1 the inequality 
is trivial as well. Fix then an arbitrary parameter θ ∈ (0, 1) and let

Hθ(t) :=

⎧⎪⎨
⎪⎩

1
θ
t if t ∈ [0, θ],

− 1
1 − θ

(t− 1) if t ∈ [θ, 1],

be the hat function centred at t = θ with height 1 and vanishing at t = 0, 1. Setting 
h(t) := εHθ(t) for small ε > 0, let (γε

t ) be the curve constructed as in Lemma 3.6, i.e.

γε
t := Sh(t)γt, for all t ∈ [0, 1].

Arguing as in the proof of Theorem 3.12, it is easily verified that with the current 
choice of h it is still true that t �→ |γ̇ε

t | and t �→ |∂E|(γε
t ) belong to AC2([0, 1], X) and 

t �→ E(γε
t ) to AC([0, 1]), so that we can integrate (3.18) in time on the whole interval 

[0, 1]. Discarding the non-negative term |h′(t)|2|∂E|2(γε
t ) and using the optimality of the 

geodesic γ (namely its optimality between γ0 and γ1) give

0 ≤ 1
2

1ˆ

0

|γ̇ε
t |2 dt− 1

2

1ˆ

0

|γ̇t|2 dt

(3.18)
≤ −

1ˆ

0

h′(t) d
dtE(γε

t ) dt + 1
2

1ˆ

0

(
e−2λh(t) − 1

)
|γ̇t|2 dt

= −ε

1ˆ

0

H ′
θ(t)

d
dtE(γε

t ) dt + d2(γ0, γ1)
2

1ˆ

0

(
e−2ελHθ(t) − 1

)
dt,

where the last equality follows from the constant speed property of the geodesic γ, namely 
|γ̇t| = d(γ0, γ1). Dividing by ε > 0 and leveraging the explicit piecewise constant values 
of H ′

θ(t) on each interval (0, θ) and (θ, 1) gives

0 ≤ −
1ˆ

0

H ′
θ(t)

d
dtE(γε

t ) dt + d2(γ0, γ1)
2

1ˆ

0

e−2ελHθ(t) − 1
ε

dt

︸ ︷︷ ︸
:=Iε

= −
θˆ 1
θ

d
dtE(γε

t ) dt +
1ˆ 1

1 − θ

d
dtE(γε

t ) dt + d2(γ0, γ1)
2 Iε
0 θ
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= 1
θ

(
E(γ0) − E(γε

θ)
)

+ 1
1 − θ

(
E(γ1) − E(γε

θ)
)

+ d2(γ0, γ1)
2 Iε.

Now let us multiply by θ(1 − θ) > 0 and rearrange the terms in order to get

E(γε
θ) ≤ (1 − θ)E(γ0) + θE(γ1) + θ(1 − θ)d2(γ0, γ1)

2 Iε.

It is easy to check that 
´ 1
0 Hθ(t)dt = 1

2 for all θ, so that

lim
ε↓0

Iε = −2λ
1ˆ

0

Hθ(t) dt = −λ.

On the other hand, by definition of γε and since h(θ) = ε → 0 it is clear that γε
θ =

Sh(θ)γθ = Sεγθ → γθ in X (an EVIλ-gradient flow is continuous up to t = 0). By lower 
semicontinuity of E this yields

E(γθ) ≤ lim inf
ε↓0

E(γε
θ) ≤ (1 − θ)E(γ0) + θE(γ1) −

λ

2 θ(1 − θ)d2(γ0, γ1),

whence the conclusion. �
5. Derivative of the cost

As a main application of the Γ-convergence results contained in Theorem 4.3 and 
Corollary 4.4 (and, in a wider sense, of their strategy of proof), in this section we in-
vestigate the dependence of the optimal value of the Schrödinger problem (Schε) on the 
regularization parameter ε, focusing in particular on the regularity as a function of ε and 
on the behaviour in the small-time regime. More precisely, and denoting

Cε(x, y) := inf
(γt) : x�y

{
A(γ) + ε2I(γ)

}
, ∀ε ≥ 0

the optimal entropic cost, we show that ε �→ Cε(x, y) is (locally) absolutely continuous 
and admits explicit left and right derivatives in a pointwise sense. The strategy of proof 
follows an interpolation argument due to De Giorgi. Moreover, since Cε(x, y) → C0(x, y)
as ε ↓ 0 by Corollary 4.4, we aim at measuring the error Cε(x, y) −C0(x, y) and studying 
the minimizers of the unperturbed problem C0(x, y) selected by Γ-convergence. Since we 
focus here on the dependence on ε we will assume throughout the whole Section 5 and 
without further mention the well-posedness of the ε-Schrödinger problem:

Assumption 5.1. Fix x, y ∈ X and suppose that for some (hence for any, by Proposi-
tion 4.2) ε > 0 the Schrödinger problem (Schε) admits at least one minimizer, in other 
words the infimum is attained in the definition of Cε(x, y).
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We accordingly denote the set of ε-minimizers as

Λε(x, y) :=
{
ω ∈ AC2([0, 1],X) : ω0 = x, ω1 = y and Aε(ω) = Cε(x, y)

}
.

Let us start the analysis with a preliminary monotonicity statement for the Fisher in-
formation and the entropic cost, which generalizes [25, Lemma 3.3].

Lemma 5.2. With the same assumptions and notations as in Setting 3.1 and for any 
0 ≤ ε1 < ε2 < ∞ there holds

inf
Λε1 (x,y)

I ≥ sup
Λε2 (x,y)

I,

with possibly infΛ0(x,y) I = +∞. Moreover, ε �→ Cε(x, y) is monotone non-decreasing on 
[0, ∞).

Proof. Let ε1, ε2 as in the statement and choose ωi ∈ Λεi(x, y) for i = 1, 2, so that by 
optimality

A(ω1) + ε2
1I(ω1) ≤ A(ω2) + ε2

1I(ω2),

A(ω2) + ε2
2I(ω2) ≤ A(ω1) + ε2

2I(ω1).

Summing these inequalities and dividing by ε2
2 − ε2

1 we obtain I(ω1) ≥ I(ω2), and since 
ω1 ∈ Λε1 and ω2 ∈ Λε2 are arbitrary the desired conclusion follows. As regards the 
last part of the statement, it is sufficient to note that since ωi are minimizers of their 
respective problems and ε1 < ε2,

Cε1(x, y) = A(ω1) + ε2
1I(ω1) ≤ A(ω2) + ε2

1I(ω2) ≤ A(ω2) + ε2
2I(ω2) = Cε2(x, y). �

Let us then extend Theorem 4.3 and Corollary 4.4 from ε = 0 to any ε ≥ 0.

Proposition 5.3. With the same assumptions and notations as in Setting 3.1 and under 
the additional Assumption 3.2, for any ε > 0 there holds

Γ − lim
ε′→ε

{
Aε′ + ι01

}
= Aε + ι01 (5.1)

for the pointwise-in-time σ-topology and

lim
ε′→ε

Cε′(x, y) = Cε(x, y).

Moreover, for any εk → ε and any minimizer ωk ∈ Λεk(x, y), there exists a minimizer 
ω ∈ Λε(x, y) such that, up to a subsequence,

ωk
t

σ→ ωt, ∀t ∈ [0, 1]
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as k → ∞.

Proof. It is sufficient to prove (5.1), as the other properties follow by a verbatim appli-
cation of the arguments in the proof of Corollary 4.4.

Fix ε and take ε′ → ε. The Γ − lim sup inequality is trivial: if γε is such that the 
right-hand side of (5.1) is finite (otherwise there is nothing to prove), then the constant 
sequence γε′ ≡ γε is an admissible recovery sequence. For the Γ − lim inf inequality, note 
that the kinetic action A and the Fisher information I are lower semicontinuous w.r.t. 
pointwise-in-time σ-convergence (see the proof of Proposition 4.2), and clearly so is the 
convex indicator. Hence for any γε′ converging to γε for the pointwise-in-time σ-topology 
it holds

Aε(γε) + ι01(γε) ≤ lim inf
ε′→ε

{
Aε(γε′) + ι01(γε′)

}
= lim inf

ε′→ε

{
A(γε′) + ε2I(γε′) + ι01(γε′)

}
= lim inf

ε′→ε

{
A(γε′) + (ε′)2I(γε′) + ι01(γε′)

}
= lim inf

ε′→ε

{
Aε′(γε′) + ι01(γε′)

}
. �

As an immediate consequence of this result we deduce the following

Lemma 5.4. With the same assumptions and notations as in Setting 3.1 and under As-
sumption 3.2, the function ε �→ Cε(x, y) is continuous on [0, ∞).

Moreover, if ε �→ ωε is a continuous (w.r.t. the pointwise-in-time σ-topology) selection 
of minimizers, then ε �→ A(ωε) and ε �→ I(ωε) are also continuous, on [0, ∞) and (0, ∞)
respectively.

Note that if the minimizers are unique, then ε �→ ωε is automatically continuous 
w.r.t. the pointwise-in-time σ-topology, simply by Proposition 5.3, as any sequence of 
minimizers admits a subsequence converging to a minimizer and the limit is in fact 
unique. Also, the continuity of the Fisher information can be strengthened up to ε = 0, 
see later on Theorem 5.8.

Proof. The continuity of Cε(x, y) for ε > 0 is granted by Proposition 5.3, while continuity 
at ε = 0 has already been proved in Corollary 4.4.

As regards the kinetic energy A and the Fisher information I, recall that they are 
both lower semicontinuous in [0, ∞) w.r.t. the pointwise-in-time σ-topology, as already 
discussed in the proof of Proposition 4.2. Thus, if ε �→ ωε is as in the statement, we are 
left to prove that ε �→ A(ωε) and ε �→ I(ωε) are upper semicontinuous. To this aim, it 
is sufficient to observe that
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lim sup
ε′→ε

A(ωε′) = lim sup
ε′→ε

{
Cε′(x, y) − (ε′)2I(ωε′)

}
≤ lim sup

ε′→ε
Cε′(x, y) − lim inf

ε′→ε
(ε′)2I(ωε′)

≤ Cε(x, y) − ε2I(ωε) = A(ωε),

where the last inequality holds by the continuity of ε �→ Cε(x, y) and the lower semicon-
tinuity of ε �→ I(ωε). Thus ε �→ A(ωε) is upper semicontinuous in [0, ∞). Interchanging 
A and I and writing now I = 1

ε2 (Cε − A), the same argument shows that ε �→ I(ωε)
is upper semicontinuous in (0, ∞) (continuity at ε = 0 will require a special treatment 
later). �

We have now all the ingredients to discuss the regularity of the cost Cε(x, y) as a 
function of the noise parameter ε and explicitly compute its left and right derivatives.

Proposition 5.5. With the same assumptions and notations as in Setting 3.1 and if As-
sumption 3.2 holds, the map ε �→ Cε(x, y) is ACloc([0, ∞)), left and right differentiable 
everywhere in (0, ∞) and, for any ε > 0, the left and right derivatives are given by

d−

dε Cε(x, y) = 2ε max
Λε(x,y)

I, d+

dε Cε(x, y) = 2ε min
Λε(x,y)

I (5.2)

respectively, and the former (resp. latter) is left (resp. right) continuous.

Note that it is part of our statement that the maximum and the minimum are attained.

Remark 5.6. Heuristically, (5.2) is nothing but the envelope theorem. Indeed, if ε �→
Cε(x, y) were differentiable, then its derivative would be given by ∂εAε = 2εI evaluated 
at any critical point, i.e. at any ωε ∈ Λε(x, y). However, since we do not know in our 
general metric framework that Schrödinger problem has a unique solution, we are not 
able to prove pointwise differentiability as in [25] and we have to face the possibility 
of a gap between the left and right derivatives. In any case, for a.e. ε > 0 this gap is 
zero, because ε �→ Cε(x, y) is locally absolutely continuous in (0, ∞) and therefore a.e. 
differentiable. This means that, up to a negligible set of temperatures, the left and right 
derivatives match and I is constant on Λε(x, y). All these facts as well as the strategy 
of proof closely follow a variational interpolation argument which adapts the envelope 
theorem to the non-smooth setting and, to the best of our knowledge, dates back to De 
Giorgi.

If for whatever reason the Schrödinger problem (Schε) were uniquely solvable (which 
is in particular true for the classic Schrödinger problem, as proved in [40, Theorem 4.2]), 
then the left and right derivatives would be trivially equal and Lemma 5.4 would give 
that ε �→ Cε(x, y) is actually C1((0, ∞)). �

Proof. The continuity of ε �→ Cε(x, y) follows by Lemma 5.4, so let us focus on left and 
right differentiability/continuity and local absolute continuity.
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Right differentiability. Fix ε > 0, let δ > 0, and choose ωε ∈ Λε(x, y), ωε+δ ∈ Λε+δ(x, y). 
Then write

Cε+δ(x, y) − Cε(x, y)
δ

= Aε+δ(ωε+δ) −Aε(ωε)
δ

= Aε+δ(ωε+δ) −Aε+δ(ωε)
δ

+ Aε+δ(ωε) −Aε(ωε)
δ

(5.3)

and note that the second term on the right-hand side can be rewritten as

Aε+δ(ωε) −Aε(ωε) = (2εδ + δ2)I(ωε).

The first one is non-positive by optimality of ωε+δ for Aε+δ, hence we obtain

lim sup
δ↓0

Cε+δ(x, y) − Cε(x, y)
δ

≤ lim sup
δ↓0

(2ε + δ)I(ωε) = 2εI(ωε).

As this inequality holds for any ωε ∈ Λε(x, y), we infer that

lim sup
δ↓0

Cε+δ(x, y) − Cε(x, y)
δ

≤ 2ε inf
Λε(x,y)

I. (5.4)

On the other hand we can also write

Cε+δ(x, y) − Cε(x, y)
δ

= Aε+δ(ωε+δ) −Aε(ωε)
δ

= Aε+δ(ωε+δ) −Aε(ωε+δ)
δ

+ Aε(ωε+δ) −Aε(ωε)
δ

.

(5.5)

Using now the optimality of ωε for Aε, we observe that the second term on the right-hand 
side is non-negative, whence

Aε+δ(ωε+δ) −Aε(ωε)
δ

≥ Aε+δ(ωε+δ) −Aε(ωε+δ)
δ

= (2ε + δ)I(ωε+δ).

For any sequence δn ↓ 0, Proposition 5.3 guarantees (up to extraction of a subsequence 
if needed) that ωε+δn → ωε in the pointwise-in-time σ-topology for some ωε ∈ Λε(x, y). 
By lower semicontinuity of I this implies

lim inf
n→∞

Cε+δn(x, y) − Cε(x, y)
δn

≥ lim inf
n→∞

(2ε + δn)I(ωε+δn) ≥ 2εI(ωε) ≥ 2ε inf
Λε(x,y)

I,

and together with (5.4) this yields

∃ lim
n→∞

Cε+δn(x, y) − Cε(x, y) = 2εI(ωε) = 2ε inf I.

δn Λε(x,y)
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As the right-hand side does not depend on the particular sequence δn ↓ 0 we conclude 
that

∃ lim
δ↓0

Cε+δ(x, y) − Cε(x, y)
δ

= 2ε min
Λε(x,y)

I,

in particular I is minimized by any accumulation point ωε of {ωε+δ}δ>0.

Left differentiability. The argument is very similar. Indeed, if δ < 0, then the first term 
on the right-hand side of (5.3) is non-negative and the second one can be handled in the 
same way. Hence there holds

lim inf
δ↑0

Cε+δ(x, y) − Cε(x, y)
δ

≥ 2εI(ωε),

for any ωε ∈ Λε(x, y), and therefore

lim inf
δ↑0

Cε+δ(x, y) − Cε(x, y)
δ

≥ 2ε sup
Λε(x,y)

I.

Applying the same considerations to (5.5) and following the same argument as above we 
retrieve the lim sup inequality, first along some subsequence δn ↑ 0 and then along any
δ ↑ 0. Combining with the inequality above gives

∃ lim
δ↑0

Cε+δ(x, y) − Cε(x, y)
δ

= 2ε max
Λε(x,y)

I, ∀ε > 0,

whence the pointwise left differentiability of ε �→ Cε(x, y).

Left and right continuity. In order to prove the right continuity of the right derivative 
of ε �→ Cε(x, y), note that on the one hand by Lemma 5.2 for any εn ↓ ε it holds

inf
Λε(x,y)

I ≥ lim sup
n→∞

sup
Λεn (x,y)

I ≥ lim sup
n→∞

inf
Λεn (x,y)

I.

On the other hand, we can assume up to a subsequence if needed that

lim inf
n→∞

inf
Λεn (x,y)

I = lim
n→∞

inf
Λεn (x,y)

I.

As shown in the proof of right differentiability, infΛε′ (x,y) I is attained for any ε′ > 0, 
hence in particular infΛεn (x,y) I = I(ωn) for some ωn ∈ Λεn(x, y), for all n. Up to 
extracting a further subsequence, by Proposition 5.3 we can assume that ωn → ωε w.r.t. 
the pointwise-in-time σ-topology for some ωε ∈ Λε(x, y), and moreover by Lemma 5.4

lim
n→∞

I(ωn) = I(ω) ≥ inf I.

Λε(x,y)
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Putting all these inequalities together provides us with the right continuity of ε �→
infΛε(x,y) I and, a fortiori, of the right derivative. Left continuity for the left derivative 
follows along an analogous reasoning.

Local absolute continuity. Let 0 < ε1 < ε2 < ∞ and, for any 0 < δ < 1, define

fδ(ε) := Cε+δ(x, y) − Cε(x, y)
δ

.

The monotonicity of ε �→ Cε(x, y) from Lemma 5.2 gives fδ ≥ 0. Arguing as in the very 
beginning of the proof of the right differentiability we see that fδ(ε) ≤ (2ε + 1)I(ωε) for 
any ωε ∈ Λε(x, y), and by Lemma 5.2

fδ(ε) ≤ (2ε2 + 1) sup
Λε1 (x,y)

I < ∞, ∀ε ∈ (ε1, ε2].

Hence |fδ| ≤ M uniformly in δ and fδ converges pointwise to the right derivative of 
ε �→ Cε(x, y) as δ ↓ 0, whence by the dominated convergence theorem

ε2ˆ

ε1

d+

dε Cε(x, y) dε = lim
δ↓0

ε2ˆ

ε1

fδ(ε) dε.

The right-hand side can be rewritten as

lim
δ↓0

ε2ˆ

ε1

fδ(ε) dε = lim
δ↓0

(1
δ

ε2ˆ

ε1

Cε+δ(x, y) dε− 1
δ

ε2ˆ

ε1

Cε(x, y) dε
)

= lim
δ↓0

(1
δ

ε2+δˆ

ε2

Cε(x, y) dε− 1
δ

ε1+δˆ

ε1

Cε(x, y) dε
)

= Cε2(x, y) − Cε1(x, y),

where the last equality holds by the Lebesgue differentiation theorem for the continuous 
function ε �→ Cε(x, y) (cf. Lemma 5.4). We have thus proved that the cost belongs to 
ACloc((0, ∞)), since

Cε2(x, y) − Cε1(x, y) =
ε2ˆ

ε1

d+

dε Cε(x, y) dε, ∀ 0 < ε1 < ε2.

For the full ACloc([0, ∞)) regularity it is then sufficient to let ε1 ↓ 0: the left-hand side 
converges to Cε2(x, y) − C0(x, y) by Lemma 5.4, and by the monotonicity d+

dε Cε ≥ 0 the 
right-hand side also converges by monotone convergence. �

As a consequence we get
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Corollary 5.7. The map ε �→ Cε(x, y) is locally semiconcave, and more precisely for any 
ε0 > 0 there holds

d2

dε2 Cε(x, y) ≤ 2 max
Λε0 (x,y)

I < +∞

in the sense of distributions in (ε0, +∞). In particular ε �→ Cε(x, y) is twice differentiable 
almost everywhere.

Proof. From Proposition 5.5 we know that, being absolutely continuous, the map ε �→
Cε(x, y) is differentiable a.e., in particular the left and right derivatives agree and thus

Iε(x, y) := max
Λε(x,y)

I = min
Λε(x,y)

I

for a.a. ε > 0 with

d
dεCε(x, y) = 2εIε(x, y)

in the sense of distributions. From Lemma 5.2 Iε is non-increasing in ε, hence one can 
legitimately compute in the distributional sense

d2

dε2 Cε(x, y) = d
dε {2εIε(x, y)} = 2Iε(x, y) + 2ε d

dεIε(x, y) ≤ 2Iε(x, y)

and the conclusion follows again by monotonicity for ε ≥ ε0. The a.e. twice differentia-
bility follows by Alexandrov’s theorem. �

Relying on our previous auxiliary results and on Proposition 5.5, we are finally in 
position of estimating the error Cε(x, y) − C0(x, y) with o(ε2) precision. We will also 
significantly refine Corollary 4.4 by proving that any accumulation point of any sequence 
of minimizers is not only optimal for the unperturbed problem C0(x, y), but also I-
minimizing among all competitors in Λ0(x, y).

Theorem 5.8. With the same assumptions and notations as in Proposition 5.5, if there 
exists ω0 ∈ Λ0(x, y) such that I(ω0) < ∞, then the map ε �→ Cε(x, y) is right differen-
tiable also at ε = 0 with

d+

dε Cε(x, y)
∣∣∣
ε=0

= 0,

the right derivative is right continuous for any ε ≥ 0, and

Cε(x, y) − C0(x, y) = ε2 inf I + o(ε2). (5.6)

Λ0(x,y)
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Moreover, for any εn ↓ 0 and any minimizer ωn ∈ Λεn(x, y) there exists ω∗ ∈ Λ0(x, y)
such that (up to a subsequence) ωn → ω∗ for the pointwise-in-time σ-topology, and ω∗

has minimal Fisher information in Λ0(x, y)

I(ω∗) = min
Λ0(x,y)

I.

Proof. The right differentiability of ε �→ Cε(x, y) at ε = 0 follows by the same argument 
carried out in Proposition 5.5. Indeed, given ω0 as in the statement, by (5.3) with ε = 0
it holds

lim sup
δ↓0

Cδ(x, y) − C0(x, y)
δ

≤ lim sup
δ↓0

δI(ω0) = 0.

The liminf inequality is straightforward, since I ≥ 0 and thus by (5.5) with ε = 0

lim inf
δ↓0

Cδ(x, y) − C0(x, y)
δ

≥ lim inf
δ↓0

δI(ωδ) ≥ 0

for any ωδ ∈ Λδ(x, y). This also shows that the right derivative vanishes at ε = 0.
As regards the right continuity of the right derivative, the case ε > 0 has already been 

discussed in Proposition 5.5. For ε = 0 the same strategy still works, with the only minor 
difference that we cannot rely on Lemma 5.4 anymore. Nonetheless, if ωn ∈ Λεn(x, y)
is as in Proposition 5.5, ω ∈ Λ0(x, y) and ωn → ω for the pointwise-in-time σ-topology 
(the existence of such ω is granted by Corollary 4.4) it is still true that

lim inf
n→∞

I(ωn) ≥ I(ω),

simply by lower semicontinuity of I. With this single change in the proof we deduce 
that ε �→ infΛε(x,y) I is right continuous and finite also at ε = 0, thanks to the present 
assumptions, and so is the right derivative of the cost due to ε infΛε(x,y) I → 0 as ε ↓ 0.

The last part of the statement is a slight modification of these lines of thought. Indeed, 
given any sequence εn ↓ 0 and ωn ∈ Λεn(x, y), the existence of ω∗ ∈ Λ0(x, y) such that, 
up to subsequences, ωn → ω∗ is ensured by Corollary 4.4. The fact that ω∗ has minimal 
Fisher information among all elements in Λ0(x, y) follows from

inf
Λ0(x,y)

I ≥ lim sup
n→∞

sup
Λεn (x,y)

I ≥ lim sup
n→∞

I(ωn) ≥ lim inf
n→∞

I(ωn) ≥ I(ω∗) ≥ inf
Λ0(x,y)

I,

where we used once again Lemma 5.2 and the lower semicontinuity of I.
Thus, it only remains to establish (5.6). As ε �→ Cε(x, y) belongs to ACloc([0, ∞))

and the right derivative coincides a.e. with the full derivative, (5.2) and the fundamental 
theorem of calculus yield
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Cε(x, y) − C0(x, y) = 2
εˆ

0

s inf
Λs(x,y)

I ds ≤ 2
εˆ

0

s inf
Λ0(x,y)

I ds = ε2 inf
Λ0(x,y)

I. (5.7)

Here we used the monotonicity of the Fisher information from Lemma 5.2 in the middle 
inequality. By the same monotonicity and the right continuity at ε = 0 of ε �→ infΛε(x,y) I
we also deduce that

Cε(x, y) − C0(x, y) ≥ 2
εˆ

0

s inf
Λε(x,y)

I ds = ε2 inf
Λε(x,y)

I

= ε2 inf
Λ0(x,y)

I + ε2
(

inf
Λε(x,y)

I − inf
Λ0(x,y)

I
)

= ε2 inf
Λ0(x,y)

I + o(ε2)

.

Combining this lower bound with the previous upper one entails (5.6). �
Remark 5.9. It is worth stressing that the upper bound (5.7) on Cε(x, y) − C0(x, y)
is not asymptotic, but pointwise, in the sense that it holds for all ε > 0. Since in 
addition Cε(x, y) −C0(x, y) is always non-negative, we can rewrite (5.6) in the following 
quantitative way:

|Cε(x, y) − C0(x, y)| ≤ ε2 inf
Λ0(x,y)

I. (5.8)

A possible way to further improve (5.6) would rely on a refined analysis of ε �→
infΛε(x,y) I, its derivative (which exists a.e. by monotonicity), and possibly absolute 
continuity. �

Remark 5.10. The I-minimizing property of the accumulation point ω∗ is not specific 
of the choice ε = 0, but of the particular “backward” direction of the sequence εn ↓. 
Repeating the argument in the proof of Theorem 5.8 it is indeed not difficult to check 
that, given any ε > 0, a sequence εn ↓ ε, and ωn ∈ Λεn(x, y) there exists ωε ∈ Λε(x, y)
such that, up to a subsequence, ωn → ωε for the pointwise-in-time σ-topology and

I(ωε) = inf
Λε(x,y)

I.

In a symmetric fashion, a closer look into the proof of Proposition 5.5 suggests that an 
opposite behaviour appears in the “forward” direction. More precisely, if εn ↑ ε instead 
of εn ↓ ε, then any accumulation point ωε of (ωn) is such that

I(ωε) = sup I.

Λε(x,y)
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However, the “backward” direction and the case ε = 0 are usually more interesting, 
because of the connection with the unperturbed problem C0(x, y) for which there might 
be multiple solutions even if the Schrödinger problem (Schε) has a unique minimizer for 
all ε > 0. It is therefore natural to look for the (properties of the) solutions selected via 
Schrödinger regularization. �

Remark 5.11. In the present work, the metric Schrödinger problem has been essentially 
studied in the ε ↓ 0 regime, where it connects to the geodesic problem. In a forthcoming 
paper, the second author [63] will investigate the problem at ε fixed and in the long-time 
regime ε → ∞, with focus on ergodicity and energy estimates. �

6. Examples

In this section we collect several and heterogeneous situations where our abstract 
approach (in particular Theorem 4.3, Corollary 4.4, and Theorem 5.8) applies. We shall 
also comment the novelty of the results thus obtained in comparison with the existing 
literature. In this perspective, it is worth discussing first in more detail the role played 
by Assumption 3.2 so far, singling out when the sequential lower semicontinuity of |∂E|
w.r.t. σ is needed and when it is not:

• to prove existence of a solution to the Schrödinger problem (Schε) (cf. Proposition 4.2) 
it is crucial, in order to apply the direct method of the calculus of variations;

• in Theorem 4.3 and Corollary 4.4 it is not used;
• unlike Corollary 4.4, in Proposition 5.3 it is needed for the Γ-liminf inequality and so 

is in Lemma 5.4;
• Proposition 5.5 relies on Proposition 5.3 and Lemma 5.4, hence it is implicitly used;
• in Theorem 5.8 the continuity of ε �→ infΛε(x,y) I at ε = 0 requires the lower semicon-

tinuity of |∂E| and also Proposition 5.5 is used in the proof of (5.6); hence the lower 
semicontinuity of |∂E| is really needed.

This means that if one is able to show the solvability of the Schrödinger problem (Schε)
by means other than those used in Proposition 4.2, then Theorem 4.3 and Corollary 4.4
are still valid under the following weaker hypothesis.

Assumption 6.1. There exists a Hausdorff topology σ on X such that d-bounded sequences 
contain σ-converging subsequences. Moreover, the distance d is sequentially lower semi-
continuous w.r.t. σ.

Theorem 5.8, instead, requires the full validity of Assumption 3.2.
Let us now discuss some specific instances where our results apply.



44 L. Monsaingeon et al. / Advances in Mathematics 426 (2023) 109100
6.1. Hadamard spaces

As a first example, we consider as an entropy functional the squared distance (to 
an arbitrary point), whose convexity is ensured by a non-positive sectional curvature 
assumption.

Setting
• Let (X, d) be a complete and separable CAT(0) space (i.e. a separable Hadamard 

space) that satisfies a (rather mild) geometric Q4 condition [43].
• Let E(·) := 1

2d2(x0, ·), where x0 ∈ X is a fixed point.
• We employ the half-space topology [42] as σ. The corresponding convergence is known 

as the Δ-convergence [47]. If X is locally compact, it coincides with the strong metric 
convergence.

Applicability of our results
• The example fits into Setting 3.1. Indeed, by a basic property of CAT(0) spaces, E is a 

(continuous) 1-convex functional; consequently, [55, Theorem 3.14] provides existence 
of an EVI1-gradient flow of E starting from any x ∈ X. Note that E is always finite.

• Assumption 3.2 is also true. Indeed, d-bounded sequences contain Δ-converging sub-
sequences [47,42]. Bounded closed convex sets (in particular, balls) are Δ-closed [43], 
which easily implies that d is Δ-lower semicontinuous. Moreover, it is easy to see from 
(3.1) that |∂E(x)| = d(x0, x), thus the slope is Δ-lower semicontinuous too.

Hence, in this framework, all our results are applicable.

6.2. The Boltzmann-Shannon relative entropy

Let us consider now the Boltzmann-Shannon relative entropy on the Wasserstein space 
built over a (locally compact) RCD space:

Setting
• Let M be a complete, separable, and locally compact length space endowed with a 

Radon measure m, and assume that it is an RCD(K, ∞) space [4] for some K ∈ R. We 
consider the 2-Wasserstein space X := P2(M) over M , namely the space of probability 
measures with finite second moments, equipped with d := W2, the 2-Wasserstein 
distance.

• The Boltzmann-Shannon relative entropy E on X is defined as

E(μ) :=

⎧⎪⎨
⎪⎩
ˆ

M

ρ log(ρ) dm if μ = ρm,

+∞ if μ �� m.
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• For the σ topology we choose the metric topology of (X, Wp), where Wp is the p-
Wasserstein istance, 1 ≤ p < 21

With this choice of (X, d) and E we recover the dynamical formulation of the “clas-
sical” Schrödinger problem [46]. Indeed, taking into account the equivalence between 
W2-absolutely continuous curves and distributional solutions of the continuity equation 
(see [38]) and the fact that the slope |∂E|2 coincides with the Fisher information [3, 
Theorem 9.3], (Schε) reads as

inf
{

1
2

1̈

0

|vt|2ρt dtdm + ε2

2

1̈

0

|∇ log ρt|2ρt dtdm
}
,

where the infimum runs over all couples (μt, vt), μt = ρtm, solving the continuity equation

∂tμt + div(vtμt) = 0

with the constraint μ0 = μ and μ1 = ν.

Applicability of our results
In order to see that our abstract metric results hold for this specific example, let us 

check separately the validity of Setting 3.1 and Assumption 6.1.

• Setting 3.1 fully holds. Indeed, (X, d) is a complete and separable metric space 
[14]. Moreover, by [62, Theorem 4.24] there exist C > 0, x ∈ M such that ´
M

e−Cd2(·,x)dm < ∞. Consequently, E can be equivalently rewritten as

E(μ) =
ˆ

M

ρ̃ log(ρ̃) dm̃

︸ ︷︷ ︸
≥0

−C

ˆ

M

d2(·, x) dμ− logZ,

where ρ̃ is the Radon-Nikodym derivative of μ w.r.t. m̃, with the normalization

Z :=
ˆ

M

e−Cd2(·,x)dm, m̃ := 1
Z
e−Cd2(·,x)m.

From this very definition, it is easy to see that E is a proper lower semicontinuous 
functional, bounded from below on W2-bounded sets. Finally, by (one of the equiv-
alent) definition of RCD spaces, cf. [4, Theorem 5.1], for any μ ∈ X there exists an 

1 (X, W2) is not locally compact unless M is compact, so that in general the metric topology of (X, W2)
is not an admissible candidate for σ.
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EVIK-gradient flow of E starting from it (in particular, this implies that E has a dense 
domain).

• Assumption 6.1 also holds. Indeed, W2-bounded sequences in X are uniformly tight 
(the second moments are uniformly bounded and the balls in M are relatively com-
pact, so that the claim follows from [2, Remark 5.1.5]) and thus relatively compact 
w.r.t. the narrow topology. Passing to a subsequence, we may assume that such a 
sequence is narrowly convergent. Leveraging on its tightness and applying the Hölder 
inequality, it is easy to deduce that the p-th moments w.r.t. any fixed reference point, 
p < 2, converge to the corresponding limiting p-th moment. Hence, this sequence 
is σ-converging. Moreover, W2 is lower semicontinuous w.r.t. narrow convergence of 
measures [1, Proposition 3.5] and thus w.r.t. Wp-convergence, p < 2.

Therefore, given any μ, ν ∈ X for which the dynamical Schrödinger problem (Schε) is 
solvable, the Γ-convergence results of Section 4 are fully applicable. This is for instance 
the case if μ, ν � m have bounded densities and supports (in [39,40] this is proved 
for RCD∗(K, N) spaces, N < ∞, but the argument can be adapted to locally compact 
RCD(K, ∞) spaces thanks to the existence of “good” cut-off functions [53]).

The more demanding Assumption 3.2 is satisfied for example if

• either M is a convex domain in Rd; see [36, Lemma 2.4] for a proof of the narrow 
(and hence Wp-) lower semicontinuity of |∂E|).

• or under the assumption that M is compact (e.g. the torus, the sphere or any convex 
closed bounded subset of a smooth weighted Riemannian manifold). In this case we 
can even choose the topology σ to be the strong one induced by W2, and |∂E| is lower 
semicontinuous by Remark 3.3.

In these two situations all our abstract results are applicable.

Novelty and related literature
A thorough study of the “classical” Schrödinger problem and its equivalent formula-

tions (at the static, dual, and dynamical levels) has been carried out by the second author 
in [40], but in the more restrictive framework of RCD∗(K, N) spaces, and only for ε fixed. 
The behaviour of the (unique) minimizers as ε ↓ 0 was instead studied in [39, Proposi-
tion 5.1], again only in RCD∗(K, N) spaces, but the Γ-convergence of the corresponding 
variational problems was not investigated. Hence Theorem 4.3 and Corollary 4.4 are new 
in the RCD framework.

As regards the validity of the results of Section 5 in the two situations described above, 
this partly extends the recent work [25], where an analogue of Theorem 5.8 is proved in 
the Riemannian setting.
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6.3. Internal energies and the Rényi entropy

As a next class of examples, we consider generalized entropy functionals (usually called 
internal energies) on the Wasserstein space built over an RCD∗(0, N) space, N < ∞. 
The setting is therefore the following.

Setting
• Let (X, d) := (P2(M), W2) be the 2-Wasserstein space over M . The underlying space 

M is assumed to be an RCD∗(0, N) space2 with reference measure m, hence in par-
ticular M is complete and separable.

• The (generalized) entropy/internal energy E on X is defined as

E(μ) :=
ˆ

M

U(ρ) dm + U ′(∞)μ⊥(M), if μ = ρm + μ⊥, μ⊥ ⊥ m (6.1)

where U ′(∞) := limr→∞ U ′(r). The function U : [0, ∞) → R is assumed continuous 
and convex, with U(0) = 0 and U ′ locally Lipschitz in (0, ∞) satisfying McCann’s 
[50] condition3 for some N ′ ∈ [N, +∞).

• The topology σ will be again the metric topology of (X, Wp), 1 ≤ p < 2.

Note that in the case U is chosen equal to

UN ′(r) := −N ′(r1−1/N ′ − r), N ′ ≥ N or Um(r) := 1
m− 1r

m, m ≥ 1 − 1
N

(UN ′ being more linked to Lott-Sturm-Villani theory of curvature-dimension bounds, Um

with the porous medium equation of power m), the famous Rényi entropy is recovered. 
Detailed discussions of the internal energies associated to non-linear diffusion semigroups 
and evolution variational inequalities in connection with curvature-dimension conditions 
can be found in [5] and in [65, Chapters 16 and 17].

Applicability of our results
Let us verify that all the conditions in Setting 3.1 and Assumption 6.1 hold.

• We are within Setting 3.1. Indeed, by the discussion carried out in the previous section 
and by the fact that RCD∗(K, N) spaces are in particular locally compact RCD(K, ∞)
spaces, X is a complete and separable metric space and σ is an admissible topology. 

2 The notion of an RCD∗(K, N) space was introduced in [37]; for comparison between RCD and RCD∗

conditions see [6] and [21], in particular, these notions coincide when m(M) < ∞ and are expected to always 
coincide.
3 This means that the corresponding pressure function P (r) := rU ′(r) − U(r) is such that P (0) :=

limr↓0 P (r) = 0 and r �→ r−1+1/N ′
P (r) is non-decreasing or, equivalently, r �→ rN

′
U(r−N ′

) is convex and 
non-increasing on (0, +∞).
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Moreover, since U(0) = 0, M is locally compact and U is continuous, it is clear that 
E is well defined and finite on all probability measures with bounded support, so that 
E is proper and has a dense domain in X. Actually, D(E) is dense in energy in X, 
i.e. for all μ ∈ X there exist μn ∈ D(E) with W2(μn, μ) → 0 and E(μn) → E(μ) as 
n → ∞. By the properties of U it is also easy to see that E is lower semicontinuous 
[65, Theorem 30.6] and bounded from below on W2-bounded sets. Finally, from [5, 
Theorem 9.21] with K = 0 (since M is assumed to be an RCD∗(0, N) space) and 
the fact that D(E) is dense in energy in X, we see that for all μ ∈ X there exists an 
EVI0-gradient flow of E starting from it.

• Assumption 6.1 holds by what we said in Section 6.2.

Hence, whenever the dynamical Schrödinger problem (Schε) is solvable, the Γ-
convergence results of Section 4 can be applied.

As for Assumption 3.2, there are at least two cases of interest when its full validity 
can be verified:

• if M = Rd and U is superlinear at ∞ (which is the case for Um defined just below 
with m > 1), then by [2, Theorem 10.4.6] the slope of E can be represented as

|∂E|2(μ) =
ˆ

Rd

|∇U ′(ρ)|2 dμ, if μ = ρLd,

and by [36, Proposition 2.2] it is sequentially lower semicontinuous w.r.t. narrow and 
thus Wp-topology (so the latter can be used as σ).

• if M is compact, by Remark 3.3 we see that the W2-topology is an admissible candi-
date for σ.

We conclude that all our results are applicable in the two situations that we have just 
described.

Novelty and related literature
To the best of our knowledge, up to now the dynamical Schrödinger problem (Schε)

with the slope of a general internal energy in place of the slope of the Boltzmann entropy 
has been considered only in [34] from a purely formal point of view. Static Monge-
Kantorovich problems regularized by means of the Rényi entropy or more general internal 
energies have recently been introduced in [33,49,48,31] (see also the references therein). 
Remarkably, [48] establishes the Γ-convergence of the regularized problems towards the 
optimal transport one (cf. [31] where the convergence of the optimal values and minimiz-
ers is discussed). However, in [31] only bounded costs are considered (the quadratic cost 
function associated to (1.4) is thus ruled out for non-compact sample spaces), while in 
[48] the discussion is restricted to sample spaces which are compact subset of Rd. Other 
questions our paper is concerned with have not been examined in these references. Note 
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also that the issue of the equivalence between static and dynamical formulations is far 
from being clear at this level of generality. In view of this discussion, in all the applica-
bility situations presented in this section our results are new.

The case of a (possibly) negatively curved base space M is not discussed since, as 
already argued above, [5, Theorem 9.21] allows to deduce (EVIλ) with λ = 0 only for 
K ≥ 0. Moreover, it has recently been proved [28, Theorem 2.5 and Remark 2.6] that 
in the hyperbolic space the porous medium equation cannot be seen as the Wasserstein 
gradient flow of some λ-convex functional in the EVI-sense, hence the Rényi entropy 
cannot generate an EVIλ-gradient flow there.

6.4. Mean-field Schrödinger problem

In the seminal thought experiment proposed by Schrödinger [60,61] the physical sys-
tem, whose evolution between two subsequent observations has to be determined, consists 
of independent Brownian particles. An important generalization has been recently pro-
posed in [7], where particles are allowed to interact through a pair potential W . This 
leads to the so-called Mean Field Schrödinger Problem (MFSP henceforth), which can 
be cast as a metric Schrödinger problem by choosing the following setting.

Setting
• Let X := P2(Rd) be the 2-Wasserstein space over Rd, equipped with the 2-Wasserstein 

distance d := W2.
• The role played by the Boltzmann-Shannon relative entropy in the “classical” 

Schrödinger problem is here taken by the functional E : X → R defined (up to a 
shift by a constant) by

E(μ) :=

⎧⎪⎨
⎪⎩

H(μ | Ld) +
ˆ

Rd

W ∗ ρ dμ if μ = ρLd

+∞ if μ �� Ld

where H(μ | Ld) is the Boltzmann-Shannon relative entropy of μ w.r.t. the Lebesgue 
measure Ld, already introduced in Section 6.2, and W is the pair potential, describ-
ing via convolution the interaction between the particles of the system. On such a 
potential the following assumptions are made: it is of class C2(Rd, R), is symmetric, 
i.e. W (x) = W (−x) for all x ∈ Rd, and satisfies the two-sided bound

ΛId ≥ ∇2W ≥ λId

for some Λ, λ > 0 (actually λ ∈ R is enough, but in [7] the authors are interested in 
the ergodic behaviour of MFSP). While the upper bound is technical, the lower one 
is geometric and crucial.

• As topology σ we shall use the metric topology of (X, Wp), 1 ≤ p < 2.
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Indeed, the fact that the MFSP coincides with (Schε) with the above choice of (X, d)
and E follows from [7, Theorem 1.2] and the fact that the slope of E is explicitly given 
by

|∂E|2(μ) =

⎧⎪⎨
⎪⎩
ˆ

Rd

|∇ log ρ + 2∇W ∗ ρ|2 dμ if μ = ρLd, ∇ log ρ ∈ L2
μ,

+∞ otherwise,

cf. [7, Section 1.4.2] and [2, Theorem 10.4.13].

Applicability of our results
In order to see that our abstract metric results hold for this specific example, let us 

check separately the validity of Setting 3.1 and Assumption 3.2.

• Setting 3.1 fully holds. As already said in Section 6.2, X := P2(Rd) is a complete 
and separable metric space. The lower semicontinuity of E is easily seen to hold: the 
relative entropy has already been discussed, whereas the continuity of the convolution 
term follows from the fact that if μn → μ in P2(Rd), then μn⊗μn → μ ⊗μ in P2(R2d), 
cf. [2, Example 9.3.4]. The fact that E is proper and the density of its domain are also 
clear. Moreover, the assumptions on W guarantee that E is bounded from below on 
W2-bounded sets. As concerns the existence of EVIλ-gradient flows starting from any 
μ ∈ X, this is ensured by [2, Theorem 11.2.1] in conjunction with [2, Remark 9.2.5 
and Proposition 9.3.5], granting the λ-convexity of E along generalized geodesics (see 
[2, Definitions 9.2.2 and 9.2.4]).

• Assumption 3.2 is fully satisfied as well. Indeed, by the discussion in Section 6.2 we 
have the validity of Assumption 6.1, so that it only remains to discuss the sequential 
lower semicontinuity of |∂E| w.r.t. Wp, 1 ≤ p < 2. To this end, one can rely on the 
previous explicit expression for |∂E|, on [36, Proposition 2.2], the fact that ΔW is 
continuous and bounded (as a consequence of the boundedness of ∇2W ) and the 
regularization properties of the convolution to show that |∂E| is sequentially narrowly 
lower semicontinuous, so that a fortiori it is also sequentially Wp-lower semicontinuous.

Hence all the results of Sections 4 and 5 are applicable.

Novelty and related literature
From the novelty standpoint, a first interesting remark is the fact that in [7] the 

approach is purely stochastic, while our point of view is completely analytic. For instance, 
in [7, Proposition 1.1] the existence of solutions to MFSP is proved under the same 
assumptions we have in Proposition 4.2, namely μ, ν ∈ X with E(μ), E(ν) < ∞. However, 
already at this basic level the reader may appreciate the difference between the two 
approaches.
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But more than anything else, our abstract results are completely new when specialized 
to MFSP: indeed, only the ergodic behaviour in the long time regime ε → ∞ is studied in 
[7], so that the Γ-convergence results of Section 4 are entirely novel. The same is true for 
Section 5, since in [25] the derivative of the cost associated to MFSP is not investigated 
nor is the Taylor expansion (5.6).

6.5. Non-linear mobilities

While in the previous examples the distance d was always the 2-Wasserstein distance, 
we now turn our attention to the so-called non-linear mobility Wasserstein distance, first 
introduced in [32] as Benamou-Brenier-like generalization of the quadratic Wasserstein 
distance, and further studied in [20]. Making the discussion below completely rigorous 
would require a tedious and lenghty distinction between various possible structural as-
sumptions on the mobility function m(ρ) (cases A and B in [20]), hence for the sake of 
presentation we deliberately remain partially informal in this last example.

Setting
• Given a non-linear mobility function m : R+ → R+ satisfying some structural condi-

tions from [32,20], and a convex, smooth, bounded Euclidean domain Ω, the nonlinear 
Wasserstein distance Wm is defined on the space of probability measures P(Ω) as

Wm(μ, ν) := inf

⎧⎨
⎩

1ˆ

0

ˆ

Rd

|vt(x)|2m(ρt(x))dxdt

⎫⎬
⎭ ,

where the infimum runs over all distributional solutions of the non-linear continuity 
equation

∂tρt + div(vtm(ρt)) = 0

with the constraints ρ0Ld = μ, ρ1Ld = ν and supp(ρt) ⊂ Ω. We consider the metric4

space (X, d) := (P(Ω), Wm).
• For the entropy functional E(μ) we consider the internal energy 

´
Ω U(ρ)dLd defined 

in Section 6.3 with M = Ω and m = Ld|Ω. We assume that the function U defining E
is non-negative and satisfies the generalized McCann condition GMC(m, d) from [20, 
Definition 4.5].

• The classical narrow convergence of measures plays the role of σ.

4 Note that, depending on the structural assumptions on m and the particular measures μ, ν, it can happen 
that Wm(μ, ν) = +∞. In this case, instead of taking the whole X = P(Ω) as a pseudo-metric space, one 
should rather work on the finite components X := P[ν] = {μ ∈ P(Ω) s.t. Wm(μ, ν) < ∞ for fixed ν. This 
becomes indeed a complete and separable metric space [20, Prop. 3.2] but for simplicity we shall ignore this 
subtle issue.
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Applicability of our results
Let us first discuss the validity of our main assumptions.

• First of all, completeness and separability for our assumption (A1) are known from 
[32,20]. Secondly, by [20, Section 4.1] E is narrowly lower semicontinuous, and since 
by [32, Theorem 5.5] the Wm-topology is stronger than the narrow one, the lower 
semicontinuity of E w.r.t. Wm follows. The non-negativity of U implies that E is 
(globally) bounded from below. The density of the domain D(E) is ensured by [20, 
Corollary 4.11], hence our condition (A2) fully holds. As regards our more fundamental 
assumption (A3), the generation of an EVIλ-flow is exactly the purpose of [20] for 
λ = 0 under the generalized McCann condition. As a consequence our Setting 3.1 is 
fully applicable here.

• We come now to the more delicate Assumption 3.2, whose validity would readily 
make all our results of Sections 4 and 5 rigorously applicable. First of all, the σ-
compactness of bounded sets holds, simply because P(Ω) is always narrowly compact. 
The narrow lower semicontinuity of the distance Wm is known from [32, Theorem 5.6]. 
As for the lower semicontinuity of the slope |∂E|, this is where our discussion becomes 
informal: contrarily to the previous examples, and despite the Euclidean structure 
and the additional compactness of the domain, we are not aware of a rigorous explicit 
expression for the slope. Yet from a purely formal point of view, and given the pseudo-
Riemannian structure induced by [20, Eq. 3.2], this metric slope is clearly expected 
to be

|∂E|2(ρ) =
ˆ

Ω

|∇U ′(ρ)|2m(ρ) dx =
ˆ

Ω

|∇P (ρ)|2
m(ρ) dx, (6.2)

a generalized Fisher information. Here the pressure P is defined as P (r) =´ r

0 U ′′(s)m(s) ds. Under additional conditions on U, m, one may be able to check by 
hand the narrow lower semicontinuity of (6.2), thus validating our Assumption 3.2. 
The stringent computation of the metric slope |∂E|(ρ) is actually listed as an open 
problem in [20, Section 7], and this issue is the main obstacle to making the particular 
application of our abstract results to nonlinear mobilities completely rigorous.

Regardless of the issue that Assumption 3.2 cannot be completely validated here, let 
us point out that the above discussion does fully entail Assumption 6.1, thus as already 
discussed our main Γ-convergence results (Theorem 4.3 and Corollary 4.4) would hold, 
provided one could establish the existence of minimizers for the ε-problems.

Nonetheless, in this setting and from a PDE perspective, (Schε) should look like

inf
ρ,v

{
1
2

1ˆ ˆ
|vt|2m(ρt) dxdt + ε2

2

1ˆ ˆ |∇P (ρ)|2
m(ρ) dxdt

}
, (6.3)
0 Ω 0 Ω
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with the infimum running over all distributional solutions of the non-linear continuity 
equation.

Novelty and related literature
To the best of our knowledge, the approximation of the Wm-geodesic problem by 

the dynamical Schrödinger-like problem (6.3) has never been considered before in the 
literature. Therefore, the Γ-convergence results of Section 4 recast in the current setting 
are entirely new, and a fortiori so are the derivative of the entropic cost and its Taylor 
expansion at ε = 0 discussed in Section 5. Instead, we would like to stress once more 
that identity (6.2) is purely formal, and turning it into a rigorous statement falls out 
of scope of the paper. Establishing a rigorous connection between our abstract metric 
framework and the hands-on PDE formulation (6.3) is thus an interesting question, which 
will require additional technical work and is left for future developments.
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