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Abstract: This paper systematically reviews the techniques and dynamics to study uncertainty mod-
elling in the electric grids considering electric vehicles with vehicle-to-grid integration. Uncertainty
types and the most frequent uncertainty modelling approaches for electric vehicles are outlined. The
modelling approaches discussed in this paper are Monte Carlo, probabilistic scenarios, stochastic,
point estimate method and robust optimisation. Then, Scopus is used to search for articles, and
according to these categories, data from articles are extracted. The findings suggest that the prob-
abilistic techniques are the most widely applied, with Monte Carlo and scenario analysis leading.
In particular, 19% of the cases benefit from Monte Carlo, 15% from scenario analysis, and 10% each
from robust optimisation and the stochastic approach, respectively. Early articles consider robust
optimisation relatively more frequent, possibly due to the lack of historical data, while more recent
articles adopt the Monte Carlo simulation approach. The uncertainty handling techniques depend on
the uncertainty type and human resource availability in aggregate but are unrelated to the generation
type. Finally, future directions are given.

Keywords: uncertainty; uncertainty analysis; electric vehicle; smart grids; demand response; vehicle
to grid

1. Introduction

With more accelerated integration of RE feed-in, as renewables become the default
option for capacity additions in almost all countries [1], the electrical grid becomes even
more volatile. However, DSM and V2G integration strategies can smooth residual loads [2].
In particular, V2G integration allows EV batteries to be discharged when grid load is low,
and the price is therefore relatively high. However, flexible EV integration is currently not
on track to achieve smoothing on a large scale [3].

Given this importance for V2G in the future to curb volatility in electricity loads
on an aggregate level, it is important to study uncertainties related to the EVs in V2G
integration. Uncertainty can be understood as a state of doubt which requires to be
addressed [4]. Uncertainty handling approaches refer to dealing with (characterising and
managing) uncertainties, whether by incorporating them into the model or quantifying
and performing sensitivity analysis of the proposed model.

Although uncertainty handling methods for power systems [5–7] and recent tech-
niques to model for uncertainty [8] have been reviewed thoroughly and specific reviews
on probabilistic stability analysis [9] have been developed so far, no reviews specific to
uncertainties related to V2G integrated EVs are available yet.

Moreover, specific methods have been reviewed to guide researchers in the choice
of appropriate method, but fewer systematic reviews on method selection have been un-
dertaken (the exception is [10] on optimisation models under uncertainty). The authors,
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therefore, attempt to question the dynamics of the application of the uncertainty han-
dling methods and relate them to economic aggregates to inquire about the following
specific RQs:

RQ1: What is the geographical distribution of research?
RQ2: What techniques are applied to uncertainty handling for uncertainties related to

EVs in smart grids with V2G?
RQ3: What are the dynamics of the application?
RQ4: How does the method relate to the country’s aggregate data? How does it relate

to generation source? How does it relate to uncertainty considered?
To answer research questions, a search on the Scopus website (Amsterdam, Nether-

lands) is made, and articles not related to V2G in the text and articles not considering
EV-related uncertainties are excluded. In total, 87 articles are considered and 30 articles are
discussed in-depth due to their high impact (citations).

After addressing these questions, it was found that probabilistic methods are the most
popular, with MC and scenario approaches leading (the exception was the early years
of modelling with robust optimisation when sufficient historical data was unavailable).
Uncertainty handling methods show differences when it comes to the accumulation of EVs
and researcher share in the population (PEM is significantly different). There seems to be
no significant correlation with generation source, but there are differences in uncertainty
handling methods regarding the uncertainty object.

The paper is organised as follows: Section 2 provides the background on the most
common uncertainties and uncertainty handling methods, Section 3 describes the search
design and methodology overall, and Section 4 systematically describes the dynamics of
uncertainty handling methods. Section 5 overviews the most cited works, and Section 6
discusses the results. Finally, Section 7 concludes and suggests future directions.

2. Background

This section will discuss the Monte Carlo, probabilistic scenarios, stochastic, PEM and
robust optimisation methods as well as possible uncertainties.

Uncertainties can arise from basic random variables, the most considered type of un-
certainty in uncertainty-handling approaches [7]. To provide an overview of uncertainties
in DSM, the possible sources of uncertainty, along with examples, are listed in Table 1.

Table 1. Sources of uncertainty in DSM.

Source of Uncertainty Type of Uncertainty Examples Description

Uncertainty in
model inputs

Basic random
variables General uncertainty Load values

Electricity consumption of consumers
may vary, or the measurement of it

may be imprecise.

Wind speed Wind speed may vary across different
periods (hours, seasons).

Solar irradiance Solar irradiance may vary across
different periods (hours, seasons).

Power price

Power price may be
market-determined in real-time, or
fixed by the government (in which
case, uncertainty is related to policy

uncertainty).
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Table 1. Cont.

Source of Uncertainty Type of Uncertainty Examples Description

Feed-in tariff

Feed-in tariffs may be
market-determined in real-time, or
fixed by the government (in which
case, uncertainty is related to policy

uncertainty).

Initial conditions State of charge
The initial state of charge for the

battery may not be known with high
precision and is subject to change.

Boundary conditions Solar radiation
intensity

The intensity may vary depending on
the season and cloud cover.

Forcings Solar radiation
intensity

Radiation intensity due to changes in
climate is uncertain.

Model
discrepancy or

inadequacy

Form of probabilistic
sub-model

Uncertain model
error

The model may not consider
non-linearities or dependencies.

Selection of the
physical sub-models

Uncertain modelling
error

The model may exclude relevant
variables.

Estimation of
parameters of

physical sub-models
Statistical uncertainty

The model may exclude relevant
variables and/or may be incorrectly

specified.

Estimation of
parameters of
probabilistic
sub-models

Statistical uncertainty
The model may exclude relevant

variables and/or may be incorrectly
specified.

Measurement of
observations Uncertain errors Measurements of observations may

have an uncertain error.

Computational
costs, solution

and coding
errors

Correspondence
between random

modelling variables
and derived variables

Uncertain errors

There may be computational errors,
numerical approximations or

truncations when deriving the
variables using computational

methods.

Source: based on categorisation by [2,3].

As can be seen from Table 1, uncertainties have different types depending on the
source. Of the three uncertainty source groups, the least uncertain component is the
numerical errors [7].

The three settings in which validation of physical models takes place are testing of
theory, analysing data obtained from experiments, and making predictions [11]. Corre-
sponding to this setting, the classical setting of uncertainty handling in power systems
involves identifying sources of uncertainty, quantifying uncertainty, propagating it through
the model, and mitigating or addressing it. However, in severe uncertainty, when the model
is unknown, events are transitive, among other cases of uncertainty, alternative approaches
are better suited.

The uncertainty handling methods, as commonly segregated, are described in Figure 1.
Further, approaches for handling uncertainties, as defined in the meta-analysis,

are discussed.
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Figure 1. Uncertainty handling approaches. Source: based on [5,7]. Notes: this partitioning of
uncertainty handling methods is debated. One may add historical data-based (probability fitting) to
probabilistic methods. Stochastic optimisation is also distinguished in the subsequent meta-analysis.
The probabilistic methods can also be distinguished as methods dealing with objective (Objective
probabilities, or the classical aleatory [12] frequentist approach, has a long research tradition and is
based on historical data. This probability is a feature of the world, independent of beliefs about it.)
and subjective (Subjective, or the belief-based, epistemic, probabilities emerged later and are now
applied widely in social sciences whereby person’s degree of confidence about the event’s likelihood
to occur describe it.) probabilities.

2.1. Monte Carlo Simulation

The general process of standard Monte Carlo simulation involves the static model
generation, input distribution identification, random sample generation, evaluation of a
predictive model for the current set of inputs, and after repetitions of the previous steps,
the analysis of output distribution and computation of variance and statistical confidence
intervals [13]. The classical Monte Carlo method relies on simple random sampling, in
which the samples are generated as independent and identically distributed realisations
on sample space are then applied to the model, and statistically evaluated. The steps of
the standard Monte Carlo are introduced in [14], and the recent advances in Monte Carlo
techniques are reviewed by [15]; these will not be discussed here.

2.2. Probabilistic Scenarios

In scenario design, whereby scenarios refer to any instance of the uncertainty param-
eter, a finite number of constructed scenarios representing the future possible states are
optimised. To generate the scenarios and every scenario’s weight, scenario simulation may
be performed, and to select the scenarios, scenario reduction can be applied. Overall, this
method, compared to probabilistic Monte Carlo, is more robust to distributional assump-
tions and has reduced computational complexity. Therefore, it can be applied better to
real-time problems.

2.3. Stochastic Optimisation Approach

When uncertainty is too difficult to model deterministically, a stochastic approach
may be applied, whereupon the uncertainty is considered as a random variable follow-
ing probability distribution. To carry out stochastic optimisation, a model with random
variables or stochastic processes is built, which is then used to generate random samples
in order to estimate the objective function and update the solution iteratively to find an
optimal solution. Alternatively, a deterministic model can be solved by replacing stochastic
constraints by deterministic ones that should be satisfied with a predetermined probability.
This approach, compared to Monte Carlo, is more suitable for less complex problems.
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2.4. PEM

Point estimation methods use the probability density function to solve for the un-
certainty of output random variables. With n uncertain parameters, 2n calculations are
performed, obtaining expected values, and the point estimation method replaces the proba-
bilistic distribution with discrete points, matching the distributions until the third statistical
moment and providing the information on central moments (concentrations). When point
and model information is used in conjunction, uncertainty about outputs can be obtained.
See [16] (p. 17) for a more detailed process description.

2.5. Other Methods

Possibilistic (fuzzy) methods, joint probabilistic—possibilistic, interval analysis and
IGDT are the other methods used in uncertainty handling.

2.5.1. Robust Optimisation

Robust optimisation is applicable to mathematical programming problems. Here, the
uncertainty model is deterministic and set-based and contrary to previous methods, the
decision-maker optimises to find a solution that is immune to any realisation of uncertainty
in the set [17]. In other words, the unknown is represented by its expected profile and
associated confidence intervals as an interval number [18]. Then, the generic uncertain w
can be represented as in ibid:

wmn∈[E (wmn) − ∆wmn, E (wmn) + ∆wmn]; ∀m,n ∈ Jm (1)

Various settings can be adopted—worst-case hedge, interval uncertainty, min-max
regret, or uncertainty sets. For a detailed setting overview, see [19]. Robust optimisation
drawback lies in being a bi-level problem, and is thus difficult to solve. Moreover, it makes
no distinction concerning how likely the different uncertainty realisations are.

2.5.2. Possibilistic Approaches

For the scope of this review, quantitative possibility theory in the sense of physical
possibility, as introduced by [20], will be discussed. Fuzzy sets, viewed as possibility
distributions, allow one to flexibly constrain variables in natural language sentences [21].
The possibility measure estimates the consistency of information with the statement that x is
in subset A. The duality referring to complement events (when “not A” is impossible, “A”
is thus certain) is used to define the degree of necessity of A. The duality relation describing
how A becomes more certain as a possibility of “not A” is less consistent with the available
logic, which allows one to estimate to what extent the complement of A has a low degree
of possibility with a property that an event is completely possible before being somewhat
certain, and “A and B” are all the more certain as each A and B are certain [21]. Other
set functions, as a measure of guaranteed possibility and potential certainty, affords intuition
between consistency–certainty and feasibility–possibility relations. Further consideration
of the quantitative possibility theory, including the assumption of possibility distribution
to range in the unit interval, must be introduced.

A similar question to one used for the probability approach is asked: if membership
functions of input variables are known, what is the membership function of output? To use
the possibilistic approach, a membership function is assigned to each uncertain parameter
(for example, fuzzy trapezoidal number function), and distribution of output variable can
be obtained using the α-cut method. Alternatively, defuzzification can be applied via the
centroid method (but also max-min, centre of gravity and other methods), converting fuzzy
number to crisp one. We now give a short description of the two methods.

For a given input variable, the α-cut of epistemic uncertain input variables X is
defined as

Aα = {x ∈ U|πX (x) ≥ α, 0 ≤ α ≤ 1} (2)
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where U denotes universe of possible values of X and πX is a possibility distribution on U.

Aα = {Aα, Aα} (3)

where Aα is the lower limit and Aα the upper limit of Aα. When the α-cut is obtained for
each input variable, then the α-cut of the output variable’s Y upper and lower bounds are
calculated as:

Yα = {Yα, Yα} (4)

Yα = min f (Xα) (5)

Yα
= max f (Xα) (6)

Defuzzification allows to obtain a crisp number form the fuzzy number obtained in
Equation (4). This can be performed by the centroid method as in:

Y∗ =

∫
X(x)xdx∫
πX(x)dx

(7)

2.5.3. Probabilistic-Possibilistic Approaches

Fuzzy scenario combines possibilistic and probabilistic approaches, and some parame-
ters are handled by fuzzy arithmetic, and others by scenario-based approach, or unscented
transformation method and fuzzy arithmetic, both with α-cut methods (as reviewed by [7]).

A Fuzzy Monte Carlo of a system with possibilistic and probabilistic uncertainties and
variables are categorised into probabilistic and possibilistic (sets X and Z), where these
are then solved based on two loops. On the first outer loop, the Monte Carlo simulation
is applied for the probabilistic variable based on its probability density function Ze. On
the second inner loop, the fuzzy α-cut method is applied, and uncertainty diagnosis for
possibilistic variables is made, calculating minimum and maximum values:

Yα = min f (Xα, Ze) (8)

Yα
= max f (Xα, Ze) (9)

2.5.4. Interval Analysis

Interval analysis can only be applied when the upper and lower bounds of the un-
certain input parameters are known, yielding the result of upper and lower bounds for
the output. Specifically, following [22], if f : D ⊆ R → R, given by model f(x) composed of
operations and functions ϕ ∈ F. Replacing variable x by interval [x] ⊆ D, and evaluating
the expression according to basic operations (addition, subtraction, multiplication, and
division rules, assuming 0 is not included in the denominator set for division) and standard
interval functions (ϕ ∈ F = {sin; cos; tan; arctan; exp; ln; abs; sqr; sqrt}, which are defined
via their range) then interval is again obtained, denoted by f ([x]).

2.5.5. IGDT

When there is severe uncertainty due to insufficient information to select probability
distribution, or even when information is plentiful but the past is a weak indication of
a future under structural changes, IGDT can be applied, as it has no measure functions
and concentrates on disparity between what is known and what could be known, placing
little emphasis on the structure of the uncertainty, and organising the uncertainty by
clustering events of two consequences: failure (robustness immunity function) and success
(opportuneness immunity function), rather than in probability distributions [23].
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The IGDT consists of decision space Q, uncertainty space S including all uncertain
elements, a reward function R measuring how successful the decision is, and a non-
probabilistic model U for the uncertain quantities in the reward function, parametrised
by uncertainty measuring parameter [24]. Robustness and opportunity provide the basis
for making decisions. Robustness refers to the decision to be the maximum amount of
uncertainty for the minimum reward associated with the decision to be greater than the
critical reward, while opportunity refers to the minimum amount of uncertainty enabling
the possibility of outcomes to exceed the critical reward [24].

To apply IGDT, first, the system model, which indicates the input-output structure,
must be identified. Next, the uncertainty of parameters must be stated. Multiple types of
models exist for uncertain parameters, including energy-bound models, envelope-bound
models, Minkowski norm models, and others. The structure of an info-gap model is chosen
to “define the smallest and strictest family of sets whose elements are consistent with
prior information” [23]. Next, the desired strategy (robustness or opportuneness) must be
defined, and the extent to which uncertain parameters can deviate from their forecasted
amounts according to the objective function can be analysed [25].

For a comparison of the methods with their advantages and disadvantages, see Table 2.

Table 2. Uncertainty handling method comparison.

Uncertainty Handling
Method Advantages Disadvantages Applications

Probabilistic
Ease of implementation, and

accuracy for complex and
non-linear problems.

Extensive historical data is
needed, computationally

expensive.

EV parking pattern, load
pattern.

Possibilistic

Ability to model uncertainty with
missing or imprecise historical
data, extract numerical values

from language.

Complex and time-expensive
implementation, cannot

model dependency.

Probabilistic-possibilistic Model both types of uncertainty. Computationally and
time-expensive.

Battery state of charge,
parking pattern.

Interval analysis Can obtain output bounds from
input bounds.

Intra-interval correlation
cannot be modelled.

Electricity price, state of
charge.

RO Optimisation with uncertainty.

Complex use for non-linear
models, do not consider

intra-uncertainty set
correlations.

Solar generation, wind
generation, line outage.

IGDT Useful for severe uncertainties. Highly complex. Line outage.

Source: based on [7].

3. Methodology

To answer the research questions presented in the Introduction, a search on the Scopus
website was conducted, including the keywords uncertainty, electric vehicles, demand side, or
PHEV or EV. The search was limited to articles in the English language, and exact keywords:
Electric Vehicles, Uncertainty Analysis, Electric Vehicle, or Uncertainty. The search yielded
406 articles (see Figure 2). Because of the interest in the V2G technology, 255 articles were
excluded after a search in the article text and references for the term V2G, and if positive,
search for discharg–, if these two subsequent searches yielded no result. As the next step,
the articles to which the authors did not have access (n = 4), and which did not handle
uncertainty explicitly (n = 12) were excluded, as well as articles which were not primary
research (n = 2). These exclusion criteria yielded 133 articles, and after excluding articles
which did not consider uncertainty in EV, the final set of 87 articles was obtained. Inclusion
and exclusion criteria of search-returned articles are summarised in Table 3.
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Of these articles, the articles which exceed the 90th percentile CiteScore citations in
Scopus (n = 29, see Table A1), were analysed and discussed in detail in a semi-narrative
way, systematised by the uncertainty handling items considered and uncertainty handling
methods of the respective items. Articles which had made less impact (n = 36: [26–61]) or
for which the CiteScore was unavailable (n = 22: [62–82]), were not discussed in-depth, but
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4. Dynamics of Uncertainties in EVs

The considered temporal period is not constrained, and the included article set con-
cerns the years 2014–2023. As for the origins of the research, the first authors are most
frequently affiliated with Chinese (22%), Iranian (18%) and Indian (13%) institutions. Pub-
lished articles in proportion to the average populations of these countries in the middle
of the considered period (in 2018) Qatar, Iran and Canada are leading (see Figure 3). In
proportion to these countries’ average GDP per capita, China, the United Kingdom and
the United States lead the research. Yet, when evaluated by the population share (Data
for population working in R&D (per million people) is not available for Brazil, Australia,
Switzerland, Pakistan and Iran. Therefore, these countries are excluded from the Figure 3c)
working in R&D, India, China, and Egypt are the leaders in research output. (There are no
data available for Turkey and Taiwan from the cited source (see Figure 3). Therefore, these
countries are excluded from Figure 2).
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Figure 3. Leading countries in research in proportion to the total population (a), GDP per capita
in current local currency units (b), and per researchers in R&D (per million people) (c). Note: For
representation purposes, data in (a) are multiplied by 1,000,000. Data for the population working in
R&D is per million people. All calculations were made with data for 2018 (the middle of the study
period). Data source: [83].

As for the influential articles (see Table A1 in Appendix A), the most highly cited
(per Scopus CiteScore) article-producing countries (mainly the US, Iran, but also Italy, and
Belgium) are not necessarily the largest ones (as in the case with US, Italy and Belgium),
but are among the most prosperous (US) and with a productive workforce in the R&D (US)
(see Figures 3 and 4).

As seen from Figure 3, most of the considered articles lie within the first quartile of
citation score on Scopus. This shows the importance of the topic under review. As for the
countries contributing the most research within the first quartile of articles, the US, Iran,
China and India are leading. South Korea, Egypt and the UK are lagging in their published
article citation scores.



Energies 2023, 16, 4983 10 of 25

Energies 2023, 16, x FOR PEER REVIEW 10 of 27 
 

 

 
Figure 4. Publication citation distribution by the country of the lead author’s institution. Notes: 95th 
corresponds to articles within the range 95th–100th percentiles, 90th corresponds to 90th–94th per-
centile, 75th corresponds to 75th–89th percentile, 50th corresponds to 50th–74th percentile, 25th cor-
responds to 25th–49th percentile. No articles represent lower percentiles of CiteScore. 

As seen from Figure 3, most of the considered articles lie within the first quartile of 
citation score on Scopus. This shows the importance of the topic under review. As for the 
countries contributing the most research within the first quartile of articles, the US, Iran, 
China and India are leading. South Korea, Egypt and the UK are lagging in their published 
article citation scores. 

5. Meta-Analysis of Uncertainty Handling Method Selection 

Figure 4. Publication citation distribution by the country of the lead author’s institution. Notes:
95th corresponds to articles within the range 95th–100th percentiles, 90th corresponds to 90th–94th
percentile, 75th corresponds to 75th–89th percentile, 50th corresponds to 50th–74th percentile, 25th
corresponds to 25th–49th percentile. No articles represent lower percentiles of CiteScore.

5. Meta-Analysis of Uncertainty Handling Method Selection

The most frequently used uncertainty handling methods are MC simulation (n = 19),
scenario analysis (n = 15), robust optimisation (n = 10), stochastic optimisation (n = 10),
PEM (n = 6; see Figure 5a). Thus, one can conclude that probabilistic methods (such as MC,
scenario-based analysis, and PEM) are more popular than possibilistic or hybrid approaches.

The MC simulation, scenario analysis and robust optimisation have been used most fre-
quently throughout the years, but the MC has been ranking first more recently
(see Figure 5b,c).

For the five most popular uncertainties considered in the studies (solar generation,
electricity price, EV arrival, EV demand and EV departure), the same MC technique is
again leading, followed by scenarios, RO and stochastic techniques and PEM.
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5.1. Uncertainty Handling Techniques by Uncertainty Considered

Regarding specific uncertainties, studies considering V2G load flows, that is, EV
battery discharge into the grid (V2G), home or building (V2H, V2B) [31,34,48,54,60,84–87]
or to another vehicle (V2V) [31,66,88], considered different uncertainty handling methods.
RE generation was most frequently handled by MC simulation techniques, followed by
PEM and scenario approach (see Figure 6).

Electricity price is also handled most commonly by using MC simulation, but it is
also distinctively common to use a robust optimisation framework. Robust optimisation
has also found its way in EV demand uncertainty handling, for which the PEM is more
frequent than other uncertainty items.
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5.2. Uncertainty Handling, Data Availability and Human Resource

To analyse the variances between the uncertainty handling method groups in rela-
tion to aggregate data, such as the aggregate income of the country of the lead author’s
institution and HR in R&D (for data used, see Table A3 in Appendix A), ANOVA can be ap-
plied (for tests on ANOVA assumptions for accumulation of (sales of) EVs and researchers
in R&D, see Tables A4 and A5, respectively). These are proxies for data availability to
researchers and research human resources.

Although test results are not uniform, as the Shapiro-Wilk test [89] reports non-
normality in EV sales data, the Kolmogorov-Smirnov test [90] allows us to conclude that
the EV sales distribution against Student’s t 5-degree distribution cannot be distinguished.

As for the assumption of homogeneity of variance, Bartlett’s test [91] does not gen-
erally allow to reject the assumption that the variances are homogeneous in relation to
accumulated EV sales or researchers in R&D (except for the stochastic method).

As for the correlations between the uncertainty handling techniques and external
data, ANOVA results (see Table 5) show that concerning the EV accumulation, differences
between group means are only statistically significant for PEM. Additionally, when re-
searchers working in R&D are compared between the groups of uncertainty handling
techniques, the model appears to be statistically significant overall, with the PEM uncer-
tainty handling technique differing in their means from the sample.
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Table 5. ANOVA for EV sales per capita, researchers in R&D, by groups of uncertainty handling
techniques used.

EV Accumulated Researchers in R&D
Source df F df F

Model 5 1.14 5 1.51
RO 1 1.99 1 0.30

Stochastic 1 2.12 1 1.49
MC 1 0.61 1 0.02

PEM 1 2.79 * 1 4.42 **
Scenario 1 0.00 1 0.61
Residual 61 69

Note: ** and * denotes 5% and 10% significance levels. The last available datapoint was used for the subsequent
years. EV accumulation was obtained from data starting in 2010 and is not available entirely for Iran, Turkey,
Taiwan, Qatar, Egypt, Thailand and United Arab Emirates. Source: [83,92].

5.3. Uncertainty Handling and Energy Generation

Regarding the generation source and uncertainty handling methods, there is no explicit
relation between these two variables (see Figure 7). However, one can deduce that when
EVs are integrated into distributed generation systems with PV (more common than WT),
it is less likely to apply stochastic methods. Moreover, when integrated with distributed
generation, the EV is more likely to have PV and WT simultaneously than power it with
another generation source (such as a diesel engine or hydrogen).
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6. A Narrative Review of Uncertainty Handling Methods

In the following subsection, uncertainty handling methods of the most influential
articles will be discussed in relation to the type of electricity market covered and the type
of uncertainties considered.

Uncertainty Handling Techniques

The early influential works [88,93] consider the optimal scheduling and operation and
problems, modelling for price uncertainty with the robust optimisation approach. More
recently, hybrid robust–stochastic approaches have been applied in order to model EV
behaviour, electricity price, electrical demand, and WT output [94].

Later on, probabilistic approaches emerge, notably in the work of [95], where the
authors use a scenario reduction approach to address uncertainties of different charging
policies, parking availability, renewable energy generation, and load patterns. In addi-
tion, [85] in a highly cited work model for uncertainties in PV and WT generation and EV
availability via scenario reduction, and [96] model for aggregate EV arrival, EV departure
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and SoC with scenario reduction as well. The probabilistic scenario approach has been
used by [97] to model for uncertainties in EV arrival, EV departure, parking pattern and
electricity price. Load, electricity price, PV and WT generation are considered uncertainties
in [98] using the scenario approach.

The deterministic scenario approach is also used in case of lack of historical data and
due to the reduction in run-time of live optimisation for frequency among other parameters,
EV frequency load [99], which by authors is deemed feasible when small aggregations of
EV fleets are present, more likely in the near term.

Probabilistic MC simulation is applied in a highly influential work by [84], where the
uncertainties in PV generation and EV driving schedule are considered. Additionally, [100]
model uncertainties in the presence of EVs in the parking lot, SoC of EVs, and PV and WT
generation. MC is used to model load and PV generation in [101].

The probabilistic PEM has been applied by [102] to address the uncertainties in EV
arrival, EV demand and SoC. Ref. [103] fit the historical data to probability distribution
functions to model for PV generation, EV arrival and departure, and EV distance uncertain-
ties. This method has been deemed as one of the most accurate and efficient methods [9]
and one that requires less historical data compared to other probabilistic techniques, such
as MC.

As a less popular approach, [104] uses the fuzzy approach to model for uncertainties
in RGV and RVG; [105] also use a fuzzy approach to model for power availability, parking
pattern, and SoC of the battery. To model for PV, WT generations and load demand, the
fuzzy approach is applied [106].

Ref. [107] use MDP to address the randomness of electricity price and commuting
behaviour, and [108] use the Markov game to address uncertainties in electricity price, load
consumption and EV demand.

Ref. [109] models PV and WT generation, as well as EV battery charge/discharge
status by using simulation. The driver’s experience, charging preference and charging
location is considered uncertain in [110] where the simulation is applied as well as EV
battery charge/discharge status

The interval technique, another less used uncertainty modelling approach, is applied
in [111] to model demand and electricity price. Ref. [112] uses a hybrid interval and
stochastic approach to model demand, PV generation, electricity price, and EV departure.

Yet another way to handle uncertainty is to model via dynamic optimisation [113]
when considering EV load. Relatively newer techniques, such as DQN and MARL, are
considered in the works of [114] and [115]. These works handle uncertainties in electricity
price and V2G power, as well as travel pattern [114], PV and WT generation, demand SoC
and EV departure [115].

Overall, it can be concluded that various methods are applied, but in the most cited
works, the probabilistic scenarios are the most common, followed by the probabilistic MC
simulation and general simulation (see Figure 8). This aligns with findings from the overall
set of articles, which also consider probabilistic MC and scenario methods with the highest
frequency, followed by simulation (see Figure 5a).
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7. Discussion and Future Directions

The main findings of the current work will be presented by the research question
addressed. That is, this paper attempted to address four research questions: what is the
geographical distribution of research? What techniques are applied to uncertainty handling
for uncertainties related to EVs in smart grids with V2G? What are the dynamics of the
application? How does the method relate to the country’s aggregate data and generation
source and uncertainty considered? This was all intending to question the applicability
of uncertainty handling methods in the case of EV integration and the capability of V2G
discharge, which is considered a future staple addition to demand response.

The main findings are as follows:

• The leading countries in research are not necessarily the ones with the highest potential
for EV V2G integration.

• MC simulation, scenario analysis and robust optimisation have been used most fre-
quently throughout the years.

• RO is leading in the early years, outranked by MC later.
• There are differences with respect to the accumulated EVs in the country and a share of

the population working in R&D, with PEM differing significantly. As for the generation
source, there seems to be no significant correlation. For the uncertainty considered,
there are differences in application frequencies: for electricity price, MC and RO are the
most applied; for EV behaviour, these are the MC, scenario and stochastic approaches,
and for EV demand, the PEM is most applied. The MC and scenario approaches are
mainly considered for the most frequently considered uncertainty, that is, uncertainty
in RE generation.

These results indicate differences in uncertainty handling methods applied concerning
different uncertainties considered. The choice of the method also depends on the human
resources available and historical data availability.

Regarding RQ1, the leading countries in research are not necessarily the ones with the
highest potential for EVs V2G integration, as it has the greatest absolute potential in China,
European Union and the United States [3], but the most output per researcher is observable
in India and China, and most output relative to income level is observed in China, the UK,
and the US. On an absolute level as well, the research output absolute leaders are affiliated
with Chinese, Iranian and Indian institutions. We, therefore, expect more research to be
conducted in the European Union and the US in the future.

In particular, regarding RQ2, MC simulation is accurate but comes at a high com-
putational cost and requires historical data. Probabilistic scenario analysis comes next,
and its accuracy depends on the number of selected scenarios but can only give the mean
values of output variables [5]. This result is in line with the previous studies, which have
similar conclusions, with probabilistic techniques being the ones mainly applied to power
system uncertainties [6]. The descriptive simulation approach describes how a power
system behaves, while optimisation models prescribe optimal strategies for efficient use
of resources (i.e., routing and scheduling to minimise operational cost). Given that most
research articles had used optimisation and applied the simulation to handle uncertainty,
it can be concluded that optimality is the key concern. Regarding RQ3, the result of the
robust optimisation being used at the relative start of the time period of review aligns with
the rationale that this method does not require large amounts of historical data, and is based
on a forecast interval range [116]; however, because the forecasts are often conservative,
anti-risk techniques should be used. At least with the most cited articles, this is not the
case. This could come as a detriment to the optimal operation planning quantity if too
conservative solutions are considered.

As for the RQ4, the share of the population working in R&D does differ for applications
of PEM, which requires fewer data when compared to MC. The same can be said about
the accumulated sales of EVs. This suggests that method selection may differ with respect
to available data. More research could be directed towards the explanatory variables
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of the choice of the uncertainty handling method. This would require a more in-depth
categorisation of methods according to data requirements, computing expense, and others.

As for the generation source, there seems to be no significant interlinkage between the
type of generation considered and the type of uncertainty handling method applied. This
implies that researchers do not, in general, distinguish between uncertainty arising from
wind or solar RE sources.

The differences in frequencies of application of uncertainty handling methods for the
uncertainty considered are relatively large. Although most studies do not distinguish be-
tween the method for different uncertainties, there may be gains in differentiating between
the uncertainty handling methods within a study respective to different uncertainties.

In general, the main criticism of moving towards the MC approach lies in its time-
consuming implementation. Although many markets only require day optimisation, there
are markets which require real-time (that is, optimisation with up to 15 min frequency; many
times, as frequent as every 5 min.) This poses a challenge to implementing big and complex
problems at which the MC is well suited for [5]. This is concerning, because as multi-
objective optimisation of several home units, or several EV charging industrial stations are
integrated in the system, the optimisation problem can become complex fairly quickly.

Still, as computers are becoming increasingly capable of undertaking computationally
expensive tasks in a short amount of time, and more and more data on EVs with V2G
integration is accumulating, it can be expected that probabilistic methods, in particular,
straightforward and accurate method as MC, are going to continue to lead. Still, as recog-
nised by [9], the implementation, development, or proposition of accurate and efficient
modelling techniques for probabilistic analysis will continue.

As for the secondary research, it is also expected that because of the increasing avail-
ability of aggregate data, the macroeconomic view is emerging in both secondary and
primary research on, for instance, economic and regulatory uncertainties [117]. What can be
expected in the future is a further merging of micro and macro views in secondary research.

8. Conclusions

In this paper, a comprehensive systematic review of uncertainty handling approaches
for electric grids considering electric vehicles with V2G technology was carried out, and
inquiry was made to research questions: what is the geographical distribution of research?
What techniques are applied to uncertainty handling for uncertainties related to EVs in
smart grids with V2G? What are the dynamics of the application? How does the method
relate to the country’s aggregate data and generation source and uncertainty considered?

First, the Scopus was searched for applicable terms, and articles were excluded for the
final set to address uncertainties in EVs, yielding 87 articles to be reviewed systematically.
During the systematic review, applied uncertainty handling methods were classified and
ranked according to their frequency of application. Then these methods were correlated
with the generation, and method variances were compared for accumulated EV sales
and population in R&D data. Finally, a narrative overview of the most influential works
was given.

The findings suggest that changes in historical data availability and the computing
power of computers may have influenced the choice of the uncertainty handling method.
An overwhelming majority of articles apply probabilistic techniques, with MC leading in
the recent years. Robust optimisation is common in the first years of the period reviewed.
There are differences in PEM application with respect to the share of researchers working
in R&D in population and accumulated EV sales (a proxy for data availability).

These results allow one to follow the dynamics of modelling techniques for large
and/or complex systems (such as home energy management systems or EV charging
station network) which have since the start developed in complexity and data availability.
These findings can be informative to researchers, policymakers or other stakeholders when
modelling for complex systems with social, economic and technical aspects.
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In the future, more integration of machine learning and further development of non-
parametric approaches can be expected. Suggested by [118], machine learning techniques
have been applied in works by [74,110,118–120], among others.
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Appendix A

Table A1. The most influential articles.

Ref. Year Country Optimisation
Timeframe

Market
Operation of
the Country

Uncertainty Handling Technique

MC Scen RO Stoch PEM Other

[93] 2014 US DA Mixed X
[88] 2015 US DA Mixed X
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Table A1. Cont.

Ref. Year Country Optimisation
Timeframe

Market
Operation of
the Country

Uncertainty Handling Technique

MC Scen RO Stoch PEM Other

[95] 2016 US RT Mixed X
[121] 2018 Canada RT RT Simulation
[99] 2018 US DA Mixed X
[84] 2018 Belgium DA DA X
[85] 2018 Italy NA DA X

[104] 2018 Canada NA RT Fuzzy
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[105] 2019 South
Korea NA DA Fuzzy

[109] 2019 Iran DA NA Simulation
[100] 2019 Iran DA NA X
[96] 2019 Canada RT RT X

[101] 2019 India RT DA X

[103] 2020 Iran NA NA Probability
fitting

[97] 2020 Turkey RT NA X
[94] 2021 China DA NA X
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Table A2. Cont.

Ref. Year Country Optimisation
Timeframe

Market
Operation

of the
Country

Uncertainty Handling Technique

MC Scen RO Stoch PEM Other

[40] 2020 China RT NA LHS

[41] 2020 China RT NA Probability
fitting, MDP

[42] 2021 China RT NA Probability
fitting

[43] 2021 China RT NA X
[44] 2021 Taiwan RT NA X
[45] 2021 China RT NA X
[46] 2021 China RT NA X
[47] 2021 Egypt RT NA ANN,MDP
[48] 2021 Iran DA NA X
[49] 2021 US RT DA X
[50] 2021 Canada NA RT X
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Table A4. Tests applied for ANOVA assumptions for variable EV.

Assumption Test Obs

Normality
Shapiro-
Wilk
test

62 W V z Prob

0.7069 16.356 6.035 0.0000

Kolmogorov-
Smirnov
test

62 D Prob

0.0000 1.0000

Homogeneity
of variance

Analysis of
variance

RO Stochastic MC PEM Scenario
0.94 0.2685 0.06 1.85 0.23

Bartlett’s
test RO Stochastic MC PEM Scenario

2.2732 4.2912 ** 0.0344 24.0911 0.6326
Note: Stata commands swilk, ksmirnov, and oneway were used. ** denotes 5% significance level. The Kolmogorov-
Smirnov test was performed using for comparison the Student’s t distribution with five degrees of freedom. For
variance test, standard deviation 1.96 was tested for.

Table A5. Tests applied for ANOVA assumptions for variable HR.

Assumption Test Obs

Normality
Shapiro-
Wilk
test

W V z Prob

75 0.8499 9.775 4.977 0.0000

Kolmogorov-
Smirnov
test

D Prob

0.0000 1.0000

Homogeneity
of variance

Analysis of
variance

RO Stochastic MC PEM Scenario
0.75 1.91 0.03 5.07 0.27

Bartlett’s
test RO Stochastic MC PEM Scenario

0.0616 1.4266 0.3548 3.2374 1.5781
Note: Stata commands swilk, ksmirnov, and oneway were used. Note 2: The Kolmogorov-Smirnov test was
performed using for comparison the Student’s t distribution with five degrees of freedom. For variance test,
standard deviation 1.96 was tested for.
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