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Universidade de Coimbra
Preprint Number 08–38

DESCENT FOR COMPACT 0-DIMENSIONAL SPACES

GEORGE JANELIDZE AND MANUELA SOBRAL

Dedicated to Walter Tholen on the occasion of his 60th birthday

Abstract: Using the reflection of the category C of compact 0-dimensional topo-
logical spaces into the category of Stone spaces we introduce a concept of a fibration
in C. We show that: (i) effective descent morphisms in C are the same as the surjec-
tive fibrations; (ii) effective descent morphisms in C with respect to the fibrations
are all surjections.
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0. Introduction

Our original intention was to describe effective descent morphisms in the
category C of compact 0-dimensional topological spaces by combining the
following well-known facts:

• A compact 0-dimensional space is nothing but a set equipped with a
surjection into a Stone space (see Theorem 2.1 for the precise formu-
lation).

• The effective descent morphisms in the categories of sets and of Stone
spaces are just surjections.

It is still the main purpose of the paper, although it turned out that:

• Not all pullbacks exist in C. Therefore the definition of an effective
descent morphism p in C should include the requirement: all pullbacks
along p must exist (see Definition 3.2).

• When p is surjective, that requirement hold if and only if p is a fi-
bration in a suitable sense (see Definition 2.2), which is very different
from what is happening in the situations studied by H. Herrlich [1],
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and which makes the descent problem much easier. In a somewhat
different situation, this is made clear in [3].

• The surjectivity requirement does not create any problem since it is
independently forced by the reflection of isomorphisms by the pullback
functor along an effective descent morphism.

• Therefore the problem of describing effective descent morphisms in C
has an easy solution: Theorem 3.3 says that they are the same as the
surjective fibrations.

• However, this suggests a new question, namely, what are the effective
descent morphisms with respect to fibrations? Fortunately there is a
complete answer again: they are all surjections (Theorem 3.1).

• In particular, even though the spaces we consider are not necessar-
ily Hausdorff spaces, which prevents their convergence relations to be
maps, our characterization of their effective descent morphisms avoids
using the Reiterman-Tholen characterization of effective descent mor-
phisms in the category of all topological spaces [4].

Accordingly, the paper is organized as follows:
Section 1 contains preliminary categorical observations with no topology

involved. The ground category C there is constructed as a full subcategory
in the comma category (S ↓ U), where U : X → S is a pullback preserving
functor between categories with pullbacks, using also a distinguished class E

of morphisms in S. This class is also used to define what we call fibrations
in C. The sufficient conditions for a morphism to be an effective descent
morphism (globally or with respect to the class of fibrations) given in Section
1 will become also necessary in the topological context of Sections 2 and 3.

Section 2 begins by recalling relevant topological concepts, presents the
category of compact 0-dimensional spaces as a special case of C above, in-
troduces fibrations of 0-dimendional spaces accordingly, and ends by proving
that a surjective morphism in C admits all pullbacks along morphisms with
the same codomain if and only if it is a fibration.

The purpose of Section 3 is to formulate and prove the two main results,
namely the above mentioned Theorems 3.1 and 3.3.

1. Categorical framework

We fix the following data: categories S and X with pullbacks, a pullback
preserving functor U : X → S and a class E of morphisms in S that has the
following properties:
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• contains all isomorphisms;
• is pullback stable;
• is closed under composition;
• forms a stack (=coincides with its localization), which means that if

· //

u
��

·

v
��

·
w

// ·

is a pullback diagram with w being an effective descent morphism,
then u ∈ E ⇒ v ∈ E.

Let C = C[X ,S, U, E] be the full subcategory in the comma category (S ↓
U) with objects all triples A = (A1, eA, A0), in which eA : A1 → U(A0) is
in E; accordingly, a morphism A → B in C is a pair f = (f1, f0), in which
f1 : A1 → B1 and f0 : A0 → B0 are morphisms in S and X respectively,

A1
eA

//

f1

��

U(A0)

Uf0

��

B1 eB

// U(B0)

such that U(f0)eA = eBf1.

Definition 1.1. A morphism f : A → B in (S ↓ U) is said to be a fibration
if the morphism

< f1, eA >: A1 → B1 ×U(B0) U(A0)

is in E.

Observation 1.2. If f : A → B is a fibration, and B is in C, then, since
the class E is pullback stable, A also is in C.

Proposition 1.3. Let

D
q

//

g
��

A

f
��

E p
// B

(1.1)

be a pullback diagram in (S ↓ U) with p : E → B in C. Then:
(a) If f is a fibration, then so is g.
(b) If g is a fibration, and p1 is an effective descent morphism, then f also

is a fibration.
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(c) If p is a fibration and A is in C, then D is in C.
(d) If E has the (weak left) cancellation property (e′, e · e′ ∈ E ⇒ e ∈ E)

and p1 and U(p0) are in E and D is in C, then A is in C.

Proof : Consider the diagram

D1
q1

//

g1

��

d

��
33

33
33

33
33

3

eD

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
A1

f1

��

a

��
33

33
33

33
33

3

eA

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

S
h

//

s′ ''OOOOOOOOOOO

s

		��
��
��
��
��
��
��
��
��
�

T

t′ ''OOOOOOOOOOO

t

		��
��
��
��
��
��
��
��
��
�

U(D0)
U(q0)

//

U(g0)

��

U(A0)

U(f0)

��

E1
p1

//

eE

""FFFFFFFFFFFFFFFFFFFFFFF
B1

eB

""FFFFFFFFFFFFFFFFFFFFFFF

U(E0)
U(p0)

// U(B0)

in which:

• the enveloping cube represents the diagram (1.1);
• eEs = U(g0)s

′ and eBt = U(f0)t
′ are pullbacks;

• d =< g1, eD >, a =< f1, eA >, and h = p1 × U(q0) are the suitable
induced morphisms.

Since the front square U(p0)U(g0) = U(f0)U(q0) and the quadrilaterals
eEs = U(g0)s

′ and eBt = U(f0)t
′ are pullbacks, so is the quadrilateral p1s =

th. Next, since p1g1 = f1q1 and p1s = th are pullbacks, so is hd = aq1. This
proves (a).

(b): Since p1 is an effective descent morphism and p1s = th is a pullback,
h also is an effective descent morphism ([5]). Since hd = aq1 is a pullback,
this proves (b).
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For (c) and (d), in order to use the same observations, let us “turn the dia-
gram (1.1) around the diagonal connecting D and B”, i.e. let us reformulate
(c) and (d) as follows:

(c’) If f is a fibration and E is in C, then D is in C.
(d’) If f1 and U(f0) are in E and D is in C, then E is in C.

Proof of (c’):

• Since f is a fibration, a is in E.
• Since E is in C and eEs = U(g0)s

′ is a pullback, s′ is in E.
• Since a and s′ are in E, so is eD, i.e. D is in C.

Proof of (d’):

• Since f1 and U(f0) are in E, so are g1 and U(g0).
• Since g1, U(g0) and eD are in E, the cancellation property of (d’) im-

plies that eE is in E, as desired.

From Observation 1.2 and Proposition 1.3(a) we obtain:

Corollary 1.4. The category C is closed in (S ↓ U) under pullbacks along
fibrations; that is, if (1.1) is a pullback diagram in (S ↓ U) with f in C and
p being a fibration in C, then it is a pullback diagram in C.

When S has coequalizers of equivalence relations, all effective descent mor-
phisms in S are regular epimorphisms. Using this fact it is easy to show that
if p : E → B is a morphism in (S ↓ U), for which p0 and p1 are effective
descent morphisms in X and in S respectively, then p itself is an effective
descent morphism. After that, using Proposition 1.3 and Corollary 1.4 we
obtain:

Proposition 1.5. If S has coequalizers of equivalence relations and p : E →
B is a morphism in C, for which p0 and p1 are effective descent morphisms
in X and in S respectively, then

(a) p is an effective F-descent morphism in C, where F is the class of all
fibrations (in C).

(b) if p is a fibration, then it is an effective descent morphism in C.
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2. The category of compact 0-dimensional spaces

For a topological space A, we shall write Open(A) for the set of open
subsets in A and Clopen(A) for the set of those subsets in A that are clopen,
i.e. closed and open at the same time. Let us recall the definitions of the
following full subcategories of the category T op of topological spaces:

- T op0, the category of T0-spaces; a space A is a T0-space if, for every two
distinct points a and a′ in A, either there exists U ∈ Open(A) with a ∈ U
and a′ /∈ U , or there exists U ∈ Open(A) with a′ ∈ U and a /∈ U . Note that
T op0 is a reflective subcategory in T op, with the reflection given by

A 7→ A0 = A/ ∼, where a ∼ a′ ⇔ ∀U∈Open(A)(a ∈ U ⇔ a′ ∈ U). (2.1)

- 0−DimT op, the category of 0-dimensional spaces; a space is 0-dimensional,
if it has a basis of clopen subsets, i.e. if every open subset in it can be pre-
sented as a union of clopen subsets.

- The category of compact 0-dimensional spaces, which is the category of
interest in this paper, will be simply denoted by C; hence

C = CompT op ∩ 0 −DimT op

where CompT op is the category of compact spaces.
- Stone, the category of Stone spaces = spaces that occur as Stone spaces

of Boolean algebras = spaces that occur as limits of finite discrete spaces =
compact Hausdorff 0-dimensional spaces = compact spaces A, such that for
every two distinct points a and a′ in A, there exists U ∈ Clopen(A) with
a ∈ U and a′ /∈ U . The T0-reflection (2.1) of course induces a reflection

C 7→ Stone, A 7→ A0 (2.2)

The following theorem is a reformulation of well-known results (see also Ex-
ample 3.3 in [2] for the same result for arbitrary topological spaces, which,
together with other similar results was mentioned already in [1]):

Theorem 2.1. The category C of compact 0-dimensional spaces is equivalent
to the category C[X ,S, U, E] (see Section 1), for X = Stone, S = Set,
U : Stone → Set (Set being the usual forgetful functor into the category of
sets, and E being the class of all surjective maps. Under this equivalence a
space A corresponds to the triple (A1, eA, A0), in which A1 is the underlying
set of A, A0 is the T0-reflection of A, and eA : A1 → U(A0) is the canonical
map (and we write again A = (A1, eA, A0)).

According to this theorem and Definition 1.1, we introduce:
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Definition 2.2. A morphism f : A → B in C is said to be a fibration if so
is the corresponding morphism in C[X ,S, U, E] of Theorem 2.1, i.e. if for
every a in A and b in B with f(a) ∼ b there exists a′ in A with a′ ∼ a and
f(a′) = b.

After that Proposition 1.3 helps to prove:

Theorem 2.3. Let p : E → B be a morphism in C. If p is surjective, then
the following conditions are equivalent:

(a) every morphism f : A → B in C admits pullback along p;
(b) p is a fibration.

Proof : (a)⇒(b): Suppose p is not a fibration. This means that there are e
in E and b in B with

p(e) ∼ b and (x ∈ p−1(b) ⇒ ∃Ux∈Clopen(E)(x ∈ Ux and e /∈ Ux)). (2.3)

We choose Ux as in (2.3) for each x in p−1(b), and consider two cases:
Case 1. There exists a finite subset Y in X, for which

p−1(b) ⊆ ∪x∈Y Ux.

Case 2. There is no such Y .
In Case 1 we take

V = ∩x∈Y (E \ Ux),

and observe that since Y is finite, V is clopen; and of course V contains e
and has empty intersection with p−1(b). After that we take

A = {n−1|n = 1, 2, 3, · · · } ∪ {0}

with the topology induced from the real line, and define f : A → B by
f(n−1) = b and f(0) = p(e). Suppose the pullback of p and f does exist,
and let us write it as the diagram (1.1). Using the universal property of this
pullback with respect to maps from a one-point space, we easily conclude
that it is preserved by the forgetful functor into the category of sets. In
particular, since V contains e and has empty intersection with p−1(b), we
have

q(g−1(E \ V )) = {n−1|n = 1, 2, 3, · · · }.

This is a contradiction since g−1(E\V ) being clopen in D must be compact
in it, while {n−1|n = 1, 2, 3, · · · } is not compact in A.
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In Case 2 we take A = {a} to be a one-point space, and define f : A → B
by f(a) = b. Then, using (1.1) as above, we observe that g(D) = p−1(b) -
which is again a contradiction because now p−1(b) is not compact.

That is, whenever p is not a fibration, there exists a morphism f : A → B
in C that has no pullback along p.

(b)⇒(a) follows from Corollary 1.4 and Theorem 2.1.

3. F-Descent and global descent

Let C be as in Section 2.

Theorem 3.1. The following conditions on a morphism p : E → B in C are
equivalent:

(a) p is an effective F-descent morphism in C;
(b) p is a surjective map.

Proof : (a)⇒(b): Suppose p is not surjective, and choose b ∈ B \p(E). Let A
be the equivalence class of b with respect to the equivalence relation ∼ (see
(2.1)). We take

A′ = (A \ {b}) ∪ {b} × {1, 2}

equipped with indiscrete topology, and define α : A′ → A by α(a) = a, for
a ∈ A, and α(b, 1) = b = α(b, 2); then α becomes a morphism (A′, αf) →
(A, f), where f : A → B is the inclusion map, in the category F(B) of
fibrations over B (in C). Since the image of this morphism under the pullback
functor p∗ : F (B) → F (E) is an isomorphism, p cannot be effective F-descent
morphism in C.

(b)⇒(a): Let (p1, p0) : (E1, eE, E0) → (B1, eB, B0) be the morphism in
C[X ,S, U, E] corresponding to p under the category equivalence of Theorem
2.1, where X = Stone,S = Set, U : Stone → Set being the usual forgetful
functor into the category of sets, and E being the class of all surjective maps.
Then p1 is surjective and this makes p0 surjective too. Since in both Stone
and Set surjections are effective descent morphisms, this makes p an effective
F-descent morphism by Proposition 1.5(a).

Since C does not admit some pullbacks, we define effective (global-)descent
morphisms in C as follows:

Definition 3.2. A morphism p : E → B in C is said to be an effective
descent morphism if every morphism f : A → B in C admits pullback along
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p, and the pullback functor

p∗ : (C ↓ B) → (C ↓ E)

is monadic.

Theorem 3.3. The following conditions on a morphism p : E → B in C are
equivalent:

(a) p is an effective descent morphism;
(b) p is a surjective fibration.

Proof : (a)⇒(b): Surjectivity can be proved in the same way as in the proof
of Theorem 3.1 (or even much simpler by considering the empty and one-
point space instead of A′ and A there). The fact that p must be a fibration
follows from the implication (a)⇒(b) of Theorem 2.3.

(b)⇒(a) can be deduced from Proposition 1.5(b) and Theorem 2.1 with
the same arguments as in the proof of Theorem 3.1(b)⇒(a).
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