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ABSTRACT: Using the reflection of the category C of compact 0-dimensional topo-
logical spaces into the category of Stone spaces we introduce a concept of a fibration
in C. We show that: (i) effective descent morphisms in C are the same as the surjec-
tive fibrations; (ii) effective descent morphisms in C with respect to the fibrations
are all surjections.
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0. Introduction

Our original intention was to describe effective descent morphisms in the
category C of compact O-dimensional topological spaces by combining the
following well-known facts:

e A compact O-dimensional space is nothing but a set equipped with a
surjection into a Stone space (see Theorem 2.1 for the precise formu-
lation).

e The effective descent morphisms in the categories of sets and of Stone
spaces are just surjections.

It is still the main purpose of the paper, although it turned out that:

e Not all pullbacks exist in C. Therefore the definition of an effective
descent morphism p in C should include the requirement: all pullbacks
along p must exist (see Definition 3.2).

e When p is surjective, that requirement hold if and only if p is a fi-
bration in a suitable sense (see Definition 2.2), which is very different
from what is happening in the situations studied by H. Herrlich [1],
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and which makes the descent problem much easier. In a somewhat
different situation, this is made clear in [3].

e The surjectivity requirement does not create any problem since it is
independently forced by the reflection of isomorphisms by the pullback
functor along an effective descent morphism.

e Therefore the problem of describing effective descent morphisms in C
has an easy solution: Theorem 3.3 says that they are the same as the
surjective fibrations.

e However, this suggests a new question, namely, what are the effective
descent morphisms with respect to fibrations? Fortunately there is a
complete answer again: they are all surjections (Theorem 3.1).

e In particular, even though the spaces we consider are not necessar-
ily Hausdorff spaces, which prevents their convergence relations to be
maps, our characterization of their effective descent morphisms avoids
using the Reiterman-Tholen characterization of effective descent mor-
phisms in the category of all topological spaces [4].

Accordingly, the paper is organized as follows:

Section 1 contains preliminary categorical observations with no topology
involved. The ground category C there is constructed as a full subcategory
in the comma category (S | U), where U : X — § is a pullback preserving
functor between categories with pullbacks, using also a distinguished class E
of morphisms in §. This class is also used to define what we call fibrations
in C. The sufficient conditions for a morphism to be an effective descent
morphism (globally or with respect to the class of fibrations) given in Section
1 will become also necessary in the topological context of Sections 2 and 3.

Section 2 begins by recalling relevant topological concepts, presents the
category of compact 0-dimensional spaces as a special case of C above, in-
troduces fibrations of 0-dimendional spaces accordingly, and ends by proving
that a surjective morphism in C admits all pullbacks along morphisms with
the same codomain if and only if it is a fibration.

The purpose of Section 3 is to formulate and prove the two main results,
namely the above mentioned Theorems 3.1 and 3.3.

1. Categorical framework

We fix the following data: categories & and X with pullbacks, a pullback
preserving functor U : X — § and a class E of morphisms in S that has the
following properties:
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e contains all isomorphisms;

e is pullback stable;

e is closed under composition;

e forms a stack (=coincides with its localization), which means that if

is a pullback diagram with w being an effective descent morphism,
thenu € E = v € E.

Let C = C[X,S, U, E| be the full subcategory in the comma category (S |
U) with objects all triples A = (Ay,e4, Ap), in which ey : A1 — U(Ap) is
in E; accordingly, a morphism A — B in C is a pair f = (fi, fo), in which
f1: A1 — By and fy: Ag — By are morphisms in § and X respectively,

A —2 U(Ay)

i l |os

B1 —%> U(Bo)
such that U(fy)ea = epfi.

Definition 1.1. A morphism f: A — B in (S | U) is said to be a fibration
if the morphism

< f1,6A >: A — B XU(By) U(A())
15 1n K.
Observation 1.2. If f : A — B is a fibration, and B s in C, then, since
the class E is pullback stable, A also is in C.

Proposition 1.3. Let
D—~A (1.1)
s

EF—B

p
be a pullback diagram in (S | U) withp: E — B in C. Then:

(a) If f is a fibration, then so is g.

(b) If g is a fibration, and py is an effective descent morphism, then f also
18 a fibration.



4 G. JANELIDZE AND M. SOBRAL

(c) If p is a fibration and A is in C, then D is in C.
(d) If E has the (weak left) cancellation property (', e-¢' € E = e € E)
and p1 and U(py) are in E and D is in C, then A is in C.

Proof: Consider the diagram

D, n A,

[ €A
h

S T
g1 s'\ / X
U(Dy

Ulqo)

) U(Ay)
nl/,
B, 7 B,
U(fo)
U(go) .
ep
U
U(Eo) (po) U(Bo)

in which:

e the enveloping cube represents the diagram (1.1);

e eps =U(gy)s' and egt = U( fy)t' are pullbacks;

e d =< gy,ep >, a =< fr,eq >, and h = p; x U(qy) are the suitable
induced morphisms.

Since the front square U(po)U(g0) = U(fo)U(qo) and the quadrilaterals
eps = U(gp)s’ and ept = U(fy)t' are pullbacks, so is the quadrilateral p;s =
th. Next, since p1g1 = fiq1 and p;s = th are pullbacks, so is hd = ag;. This
proves (a).

(b): Since p; is an effective descent morphism and p;s = th is a pullback,
h also is an effective descent morphism ([5]). Since hd = agq; is a pullback,
this proves (b).
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For (c) and (d), in order to use the same observations, let us “turn the dia-
gram (1.1) around the diagonal connecting D and B”, i.e. let us reformulate
(c) and (d) as follows:

(¢’) If f is a fibration and £ is in C, then D is in C.

(d’) If f; and U(fp) are in E and D is in C, then F is in C.

Proof of (¢’):

e Since f is a fibration, a is in E.
e Since F isin C and egs = U(go)s' is a pullback, s is in E.
e Since a and s’ arein E, so is ep, i.e. D isin C.

Proof of (d’):

e Since f; and U(fy) are in E, so are g1 and U(go).
e Since g1,U(gp) and ep are in E, the cancellation property of (d’) im-
plies that ep is in [E, as desired.

From Observation 1.2 and Proposition 1.3(a) we obtain:

Corollary 1.4. The category C is closed in (S | U) under pullbacks along
fibrations; that is, if (1.1) is a pullback diagram in (S | U) with f in C and
p being a fibration in C, then it is a pullback diagram in C.

When S has coequalizers of equivalence relations, all effective descent mor-
phisms in § are regular epimorphisms. Using this fact it is easy to show that
if p: £ — B is a morphism in (S | U), for which py and p; are effective
descent morphisms in X and in S respectively, then p itself is an effective
descent morphism. After that, using Proposition 1.3 and Corollary 1.4 we
obtain:

Proposition 1.5. If S has coequalizers of equivalence relations and p : £ —
B is a morphism in C, for which py and p1 are effective descent morphisms
in X and in S respectively, then

(a) p is an effective F-descent morphism in C, where F is the class of all
fibrations (in C).

(b) if p is a fibration, then it is an effective descent morphism in C.
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2. The category of compact 0-dimensional spaces

For a topological space A, we shall write Open(A) for the set of open
subsets in A and Clopen(A) for the set of those subsets in A that are clopen,
i.e. closed and open at the same time. Let us recall the definitions of the
following full subcategories of the category 7 op of topological spaces:

- T opy, the category of Ty-spaces; a space A is a Ty-space if, for every two
distinct points @ and a’ in A, either there exists U € Open(A) with a € U
and o’ ¢ U, or there exists U € Open(A) with @' € U and a ¢ U. Note that
T opy is a reflective subcategory in 7 op, with the reflection given by

A= Ay= A/ ~, where a ~ d & Yyeopena)(a €U & d €U).  (2.1)

- 0—Dwm7T op, the category of O-dimensional spaces; a space is 0-dimensional,
if it has a basis of clopen subsets, i.e. if every open subset in it can be pre-
sented as a union of clopen subsets.

- The category of compact 0-dimensional spaces, which is the category of
interest in this paper, will be simply denoted by C; hence

C =CompTopn0—DimTop

where CompT op is the category of compact spaces.

- Stone, the category of Stone spaces = spaces that occur as Stone spaces
of Boolean algebras = spaces that occur as limits of finite discrete spaces =
compact Hausdorff O-dimensional spaces = compact spaces A, such that for
every two distinct points @ and o’ in A, there exists U € Clopen(A) with
a € U and d' ¢ U. The Ty-reflection (2.1) of course induces a reflection

C — Stone, A — Ay (2.2)

The following theorem is a reformulation of well-known results (see also Ex-
ample 3.3 in [2] for the same result for arbitrary topological spaces, which,
together with other similar results was mentioned already in [1]):

Theorem 2.1. The category C of compact 0-dimensional spaces is equivalent
to the category C[X,S,U,E| (see Section 1), for X = Stone, S = Set,
U : Stone — Set (Set being the usual forgetful functor into the category of
sets, and E being the class of all surjective maps. Under this equivalence a
space A corresponds to the triple (Ay, ea, Ay), in which Ay is the underlying
set of A, Agy is the Ty-reflection of A, and eq : A1 — U(Ay) is the canonical
map (and we write again A = (Ay, eq, Ag)).

According to this theorem and Definition 1.1, we introduce:
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Definition 2.2. A morphism f: A — B in C is said to be a fibration if so
is the corresponding morphism in C|X,S,U,E| of Theorem 2.1, i.e. if for
every a in A and b in B with f(a) ~ b there exists a’ in A with ' ~ a and

fla) =b.
After that Proposition 1.3 helps to prove:

Theorem 2.3. Let p : E — B be a morphism in C. If p is surjective, then
the following conditions are equivalent:

(a) every morphism f: A — B in C admits pullback along p;

(b) p is a fibration.

Proof: (a)=-(b): Suppose p is not a fibration. This means that there are e
in £ and b in B with

ple) ~band (z € pt(b) = 3v,ecCiopen(p)(z € U, and e ¢ U,)). (2.3)

We choose U, as in (2.3) for each z in p~'(b), and consider two cases:
Case 1. There exists a finite subset Y in X, for which

p_l(b) g UgceyUx-

Case 2. There is no such Y.
In Case 1 we take

V = Neey(E\ Uy),

and observe that since Y is finite, V' is clopen; and of course V' contains e
and has empty intersection with p~1(b). After that we take

A={n""ln=1,2,3,---}U{0}

with the topology induced from the real line, and define f : A — B by
f(n™!) = b and f(0) = p(e). Suppose the pullback of p and f does exist,
and let us write it as the diagram (1.1). Using the universal property of this
pullback with respect to maps from a one-point space, we easily conclude
that it is preserved by the forgetful functor into the category of sets. In
particular, since V contains e and has empty intersection with p~1(b), we
have

q(g_l(E\V)) - {n_l‘n =123, }

This is a contradiction since g1 (E\ V') being clopen in D must be compact
in it, while {n"1jn = 1,2,3,---} is not compact in A.
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In Case 2 we take A = {a} to be a one-point space, and define f: A — B
by f(a) = b. Then, using (1.1) as above, we observe that g(D) = p~1(b) -
which is again a contradiction because now p~!(b) is not compact.

That is, whenever p is not a fibration, there exists a morphism f: A — B
in C that has no pullback along p.

(b)=-(a) follows from Corollary 1.4 and Theorem 2.1. |

3. F-Descent and global descent
Let C be as in Section 2.

Theorem 3.1. The following conditions on a morphism p: E — B in C are
equivalent:

(a) p is an effective F-descent morphism in C;

(b) p is a surjective map.

Proof: (a)=(b): Suppose p is not surjective, and choose b € B\ p(E). Let A

be the equivalence class of b with respect to the equivalence relation ~ (see
(2.1)). We take

Al = (A\{b}) U {b} x {1,2}
equipped with indiscrete topology, and define o : A" — A by a(a) = a, for
a € A, and a(b,1) = b = «a(b,2); then o becomes a morphism (A’ af) —
(A, f), where f : A — B is the inclusion map, in the category F(B) of
fibrations over B (in C). Since the image of this morphism under the pullback
functor p* : F'(B) — F(F) is an isomorphism, p cannot be effective F-descent
morphism in C.

(b)=(a): Let (p1,po) : (E1,ep, Ey) — (Bi,ep, By) be the morphism in
C|X,S, U, E| corresponding to p under the category equivalence of Theorem
2.1, where X = Stone, S = Set, U : Stone — Set being the usual forgetful
functor into the category of sets, and E being the class of all surjective maps.
Then p; is surjective and this makes py surjective too. Since in both Stone
and Set surjections are effective descent morphisms, this makes p an effective
[F-descent morphism by Proposition 1.5(a). ]

Since C does not admit some pullbacks, we define effective (global-)descent
morphisms in C as follows:

Definition 3.2. A morphism p : E — B in C is said to be an effective
descent morphism if every morphism f : A — B in C admits pullback along
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p, and the pullback functor
px:(C|B)—(C|E)
18 monadic.

Theorem 3.3. The following conditions on a morphism p: E — B i C are
equivalent:

(a) p is an effective descent morphism;

(b) p is a surjective fibration.

Proof: (a)=-(b): Surjectivity can be proved in the same way as in the proof
of Theorem 3.1 (or even much simpler by considering the empty and one-
point space instead of A" and A there). The fact that p must be a fibration
follows from the implication (a)=-(b) of Theorem 2.3.

(b)=-(a) can be deduced from Proposition 1.5(b) and Theorem 2.1 with
the same arguments as in the proof of Theorem 3.1(b)=-(a). |
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