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ON POISSON QUASI-NIJENHUIS LIE ALGEBROIDS

RAQUEL CASEIRO, ANTONIO DE NICOLA AND JOANA M. NUNES DA COSTA

Abstract: We propose a definition of Poisson quasi-Nijenhuis Lie algebroids as a
natural generalization of Poisson quasi-Nijenhuis manifolds and show that any such
Lie algebroid has an associated quasi-Lie bialgebroid. Therefore, also an associated
Courant algebroid is obtained. We introduce the notion of a morphism of quasi-Lie
bialgebroids and of the induced Courant algebroids morphism and provide some ex-
amples of Courant algebroid morphisms. Finally, we use paired operators to deform
doubles of Lie and quasi-Lie bialgebroids and find an application to generalized
complex geometry.

Introduction

The notion of Poisson quasi-Nijenhuis manifold was recently introduced by
Stiénon and Xu [14]. It is a manifold M together with a Poisson bivector
field π, a (1, 1)-tensor N compatible with π and a closed 3-form φ such
that iNφ is also closed and the Nijenhuis torsion of N , which is nonzero,
is expressed by means of φ and π. When φ = 0 one obtains a Poisson-
Nijenhuis manifold, a concept introduced by Magri and Morosi [11] to study
integrable systems and which was extended to the Lie algebroid framework by
Kosmann-Schwarzbach [6] and Grabowski and Urbanski [5] who introduced
the notion of a Poisson-Nijenhuis Lie algebroid. In this paper we propose a
definition of Poisson quasi-Nijenhuis Lie algebroid, which is a straightforward
generalization of a Poisson quasi-Nijenhuis manifold.

Quasi-Lie bialgebroids were introduced by Roytenberg [12] who showed
that they are the natural framework to study twisted Poisson structures
[13]. On the other hand, quasi-Lie bialgebroids are intimately related to
Courant algebroids [9], because the double of a quasi-Lie bialgebroid carries
a structure of Courant algebroid and conversely, a Courant algebroid E that
admits a Dirac subbundle A and a transversal isotropic complement B, can
be identified with the Whitney sum A ⊕ A∗, where A∗ is identified with B

[12]. Generalizing a result of Kosmann-Schwarzbach [6] for Poisson-Nijenhuis
manifolds and Lie bialgebroids, it is proved in [14] that a Poisson quasi-
Nijenhuis structure on a manifold M is equivalent to a quasi-Lie bialgebroid
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structure on T ∗M . Extending the result of [14], we show that a Poisson quasi-
Nijenhuis Lie algebroid has an associated quasi-Lie bialgebroid, so that it has
also an associated Courant algebroid.

In an unpublished manuscript, Alekseev and Xu [1], gave the definition of
a Courant algebroid morphism between E1 and E2 and, in the case where E1

and E2 are doubles of Lie bialgebroids (A,A∗) and (B,B∗), i.e E1 = A⊕A∗

and E2 = B ⊕ B∗, they established a relationship with a Lie bialgebroid
morphism A → B [10]. Since doubles of quasi-Lie bialgebroids are Courant
algebroids, it seems natural to obtain a relationship between Courant alge-
broid morphisms and quasi-Lie bialgebroid morphisms. This is the case when
considering Courant algebroids associated with a Poisson quasi-Nijenhuis Lie
algebroid of a certain type and with a twisted Poisson Lie algebroid, respec-
tively. In a first step towards our result, we give the definition of a morphism
of quasi-Lie bialgebroids which is, up to our knowledge, a new concept that
includes morphism of Lie bialgebroids as a particular case.

Another aspect of Poisson quasi-Nijenhuis manifolds that is exploited in
[14] is the relation with generalized complex structures. We extend to Poisson
quasi-Nijenhuis Lie algebroids some of the results obtained in [14] and also
discuss the relation of Poisson quasi-Nijenhuis Lie algebroids with paired
operators [3].

The paper is divided into three sections. In section 1 we introduce quasi-Lie
bialgebroid morphisms and discuss their relationship with Courant algebroid
morphisms. Section 2 is devoted to Poisson quasi-Nijenhuis Lie algebroids.
We prove that each Poisson quasi-Nijenhuis Lie algebroid has an associated
quasi-Lie bialgebroid and, in some particular cases, we construct a morphism
of Courant algebroids. In the last section we use paired operators to deform
doubles of Lie and quasi-Lie bialgebroids.

1. Quasi-Lie bialgebroids morphisms

1.1. Quasi-Lie bialgebroids. The main subject of this work are quasi-Lie
bialgebroids. We begin by recalling the definition and give some examples.

Definition 1.1. [12] A quasi-Lie bialgebroid is a Lie algebroid (A, [ , ]A , ρ)
equipped with a degree-one derivation d∗ of the Gerstenhaber algebra
(Γ(∧•A),∧, [ , ]A) and a 3-section of A, XA ∈ Γ(∧3A) such that

d∗XA = 0 and d2
∗ = [XA,−]A .
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If XA is the null section, then d∗ defines a structure of Lie algebroid on A∗

such that d∗ is a derivation of [ , ]A. In this case we say that (A,A∗) is a Lie
bialgebroid.

Examples of quasi-Lie bialgebroids arise from different well known geomet-
ric structures. We will illustrate some of them that will be needed in our
work.

Example 1.2. Let (A, [ , ]A , ρ) be a Lie algebroid and consider any closed
3-form φ. Equipping A∗ with the null Lie algebroid structure, (A∗, dA, φ) is
canonically a quasi-Lie bialgebroid.

Example 1.3. [Lie algebroid with a twisted Poisson structure] Let π ∈
Γ(∧2A) be a bivector on the Lie algebroid (A, [ , ]A , ρ) and denote by π♯

the usual bundle map

π♯ : A∗ −→ A

α 7−→ π♯(α) = iαπ.

This map can be extended to a bundle map from Γ(∧•A∗) to Γ(∧•A), also
denoted by π♯, as follows:

π♯(f) = f and
〈

π♯(µ), α1 ∧ . . . ∧ αk
〉

= (−1)kµ
(

π♯(α1), . . . , π
♯(αk)

)

,

for all f ∈ C∞(M) and µ ∈ Γ(∧kA∗) and α1, . . . , αk ∈ Γ(A∗).
Let φ ∈ Γ(∧3A∗) be a closed 3-form on A. We say that (π, φ) defines a

twisted Poisson structure on A [13] if

[π, π]A = 2 π♯(φ).

In this case, the bracket on the sections of A∗ defined by

[α, β]φπ = £π♯αβ −£π♯βα− d (π(α, β)) + φ(π♯α, π♯β,−), ∀α, β ∈ Γ(A∗),

is a Lie bracket and A∗
π,φ = (A∗, [ , ]φπ , ρ◦π

♯) is a Lie algebroid. The differential
of this Lie algebroid is given by

dφπX = [π,X]A − π♯(iXφ), ∀X ∈ Γ(A).

The pair (A,A∗) is not a Lie bialgebroid but when we consider the bracket
on Γ(A) defined by:

[X, Y ]′ = [X, Y ]A − π♯(φ(X, Y,−)), ∀X, Y ∈ Γ(A),

the associated differential d′, given by

d′f = df and d′α = dα− iπ♯αφ, ∀f ∈ C∞(M), α ∈ Γ(A∗),
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defines on A∗
π,φ a structure of quasi-Lie bialgebroid (A∗

π,φ, d
′, φ).

One should notice that when φ = 0, π is a Poisson bivector. The Lie
algebroidA∗

π,0 is simply denoted by A∗
π, and together with the Lie algebroidA

it defines a special kind of Lie bialgebroid called a triangular Lie bialgebroid.

Any bundle map Φ : A → B induces a map Φ∗ : Γ(B∗) → Γ(A∗) which
assigns to each section α ∈ Γ(B∗) the section Φ∗α given by

Φ∗α(X)(m) = 〈α(φ(m)),ΦmX(m)〉 , ∀m ∈M, X ∈ Γ(A),

where φ : M → N is the map induced by Φ on the base manifolds. We
denote by the same latter Φ∗ the extension of this map to the multisections
of B∗, where we set Φ∗f = f ◦φ, for f ∈ C∞(N).

Let A→M and B → N be two Lie algebroids. Recall that a Lie algebroid
morphism is a bundle map Φ : A → B such that Φ∗ : (Γ(∧•B∗), dB) →
(Γ(∧•A∗), dA) is a chain map.

Generalizing the notion of Lie bialgebroid morphism we propose the fol-
lowing definition of morphism between quasi-Lie bialgebroids:

Definition 1.4. Let (A, dA∗, XA) and (B, dB∗, XB) be quasi-Lie bialgebroids
over M and N , respectively. A bundle map Φ : A → B is a quasi-Lie
bialgebroid morphism if

1) Φ is a Lie algebroid morphism;
2) Φ∗ is compatible with the brackets on the sections of A∗ and B∗:

[Φ∗α,Φ∗β]A∗ = Φ∗ [α, β]B∗ ;

3) the vector fields ρB∗(α) and ρA∗(Φ∗α) are φ-related:

Tφ · ρA∗(Φ∗α) = ρB∗(α) ◦φ;

4) ΦXA = XB ◦φ,

where α, β ∈ Γ(B∗) and φ : M → N is the smooth map induced by Φ on the
base.

Example 1.5. A Lie bialgebroid morphism [10] is a Lie algebroid morphism
which is also a Poisson map, when we consider the Lie-Poisson structures
induced by their dual Lie algebroids. We can easily see that in case we are
dealing with Lie bialgebroids, the definition of quasi-Lie bialgebroid mor-
phism coincides with the one of Lie bialgebroid morphism.
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Example 1.6. Consider (A, dA∗, XA) and (B, dB∗, XB) two quasi-Lie bial-
gebroids over the same base manifold M . We can see that a base preserv-
ing quasi-Lie bialgebroid morphism (such that φ = id) is a bundle map
Φ : A→ B such that Φ∗

◦dB = dA ◦Φ∗, Φ ◦dA∗ = dB∗ ◦Φ and ΦXA = XB.

Other examples of quasi-Lie bialgebroid morphisms will appear in the next
section associated with quasi-Nijenhuis structures.

1.2. Courant algebroids. A Courant algebroid E →M is a vector bundle
over a manifold M equipped with a nondegenerate symmetric bilinear form
〈 , 〉, a vector bundle map ρ : E → TM and a bilinear bracket ◦ on Γ(E)
satisfying:

C1) e1 ◦(e2 ◦e3) = (e1 ◦e2) ◦e3 + e2 ◦(e1 ◦e3)
C2) e ◦e = ρ∗d 〈e, e〉
C3) £ρ(e) 〈e1, e2〉 = 〈e ◦e1, e2〉 + 〈e1, e ◦e2〉
C4) ρ(e1 ◦e2) = [ρ(e1), ρ(e2)]
C5) e1 ◦fe2 = f(e1 ◦e2) + £ρ(e1)fe2,

for all e, e1, e2, e3 ∈ Γ(E), f ∈ C∞(M).
Associated with the bracket ◦ , we can define a skew-symmetric bracket on

the sections of E by:

[[e1, e2]] =
1

2
(e1 ◦e2 − e2 ◦e1)

and the properties C1)-C5) can be expressed in terms of this bracket.

Example 1.7. [Standard Courant algebroid] Let (A, [ , ]A , ρA) be a Lie al-
gebroid. The double A⊕ A∗ equipped with the skew-symmetric bracket

[[X + α, Y + β]] = [X, Y ]A +

(

£Xβ −£Y α+
1

2
d(α(Y ) − β(X))

)

,

the pairing 〈X + α, Y + β〉 = α(Y )+β(X) and the anchor ρ(X+α) = ρA(X)
is a Courant algebroid.

A standard Courant algebroid is a simple example of a Courant algebroid
which is a the double of a Lie bialgebroid. The construction of Courant
algebroids as doubles of Lie bialgebroids is implicit in the next example,
where we explicit the construction of the double of a quasi-Lie bialgebroid.

Example 1.8. [Double of a quasi-Lie bialgebroid] Let (A, d∗, XA) be a quasi-
Lie bialgebroid. Its double E = A⊕A∗ is a Courant algebroid if it is equipped
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with the pairing 〈X + α, Y + β〉 = α(Y ) + β(X), the anchor ρ = ρA + ρA∗

and the bracket

[[X + α, Y + β]] = [X, Y ]A + £
∗
αY −£

∗
βX −

1

2
d∗(α(Y ) − β(X)) +XA(α, β,−)

+

(

[α, β]∗ + £Xβ −£Y α +
1

2
d(α(Y ) − β(X))

)

,

Taking XA = 0 we have the Courant algebroid structure of a double of a
Lie bialgebroid.

Another particular case that worths to be mentioned is the double of the
quasi-Lie bialgebroid (A∗, d, φ) illustrated in Example 1.2. In this case the
anchor is simply ρE = ρA and the skew-symmetric bracket is a twisted version
of the standard Courant bracket given by:

[[X + α, Y + β]]φ = [X, Y ]A +£Xβ−£Yα+
1

2
d(α(Y )− β(X))+φ(X, Y,−).

(1)

1.3. Dirac structures supported on a submanifold. Dirac structures
play an important role in the theory of Courant algebroids. Let us recall
them before proceed.

A Dirac structure on a Courant algebroid E is a subbundle A ⊂ E, which
is maximal isotropic with respect to the pairing 〈 , 〉 and it is integrable in
the sense that the space of the sections of A is closed under the bracket on
Γ(E). Restricting the skew-symmetric bracket of E and the anchor to A, we
endow the Dirac structure with a Lie algebroid structure (A, [[ , ]]|A , ρE|A

). A
Courant algebroid together with a Dirac structure is called a Manin pair.

As a way to generalize Dirac structures we have the concept of generalized
Dirac structures or Dirac structures supported on a submanifold of the base
manifold.

Definition 1.9. [1] On a Courant algebroid E → M , a Dirac structure
supported on a submanifold P of M or a generalized Dirac structure is a
subbundle F of E|P such that:

D1) for each x ∈ P , Fx is maximal isotropic;
D2) F is compatible with the anchor, i.e. ρ|P (F ) ⊂ TP ;
D3) For each e1, e2 ∈ Γ(E), such that e1|P , e2|P ∈ Γ(F ), we have (e1 ◦e2)|P ∈

Γ(F ).
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Obviously, a Dirac structure supported on the whole base manifold M is
an usual Dirac structure of the Courant algebroid.

Generalizing the Theorem 6.11 on [1] to quasi-Lie bialgebroids we have:

Theorem 1.10. Let E = A ⊕ A∗ be the double of a quasi-Lie bialgebroid
(A, d∗, XA) over the manifold M , L → P a vector subbundle of A over a
submanifold P of M and F = L⊕L⊥. Then F is a Dirac structure supported
on P if and only if the following conditions hold:

1) L is a Lie subalgebroid of A;
2) L⊥ is closed for the bracket on A∗ defined by d∗;
3) L⊥ is compatible with the anchor, i.e., ρA∗|P (L⊥) ⊂ TP ;
4) XA|

L⊥
= 0.

Proof : Since F = L ⊕ L⊥, this is a Lagrangian subbundle of E. Suppose F
is a Dirac structure supported on P . By definition, we immediately deduce
that L is a Lie subalgebroid of A and, for α, β sections of A∗ such that α|P ,

β|P ∈ Γ(L⊥), we have

(α ◦β)|P = XA(α, β,−)|P + [α, β]A∗|P
∈ Γ(L⊕ L⊥),

and this means that [α, β]A∗|P
∈ L⊥ and XA(α, β,−)|P ∈ L, or equivalently,

L⊥ is closed with respect to the bracket of E and XA|
L⊥

= 0.
Moreover, since F is compatible with the anchor,

ρA∗|P (α|P ) = ρA∗(α)|P = ρE(α)|P ∈ TP,

so L⊥ is compatible with ρA∗.
Conversely, suppose L is a Lie subalgebroid of A, L⊥ ⊂ A∗ is closed for

[ , ]A∗, ρA∗ |P (L⊥) ⊂ TP and QA|
L⊥

= 0. Obviously F is compatible with the
anchor. We are left to prove that F is closed with respect to the bracket on
E. Let X, Y ∈ Γ(A) and α, β ∈ Γ(A∗) such that X +α and Y + β restricted
to P are sections of F , then

(X + α) ◦(Y + β)E = [X, Y ]A + iαd∗Y − iβd∗X + d∗ (α(Y )) +XA(α, β,−)

+ [α, β]A∗ + £Xβ − iY dα.

By hypothesis, we immediately have that

[X, Y ]A|P =
[

X|P , Y|P
]

L
∈ Γ(L),

[α, β]A∗|P
=

[

α|P , β|P
]

L⊥ ∈ Γ(L⊥)
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and
XA(α, β,−)|P ∈ Γ(L).

Now, notice that α(Y )|P = 0, so dα(Y )|P ∈ ν∗(P ) = (TP )0. Since

ρA∗|P (L⊥) ⊂ TP , we have that

d∗α(Y )|P = ρ∗A∗|P
dα(Y ) ∈ Γ(L).

Analogously, dα(Y )|P = ρ∗Adα(Y )|P ∈ Γ(L⊥).
Also,

d∗Y (α, β)|P = (ρA∗(α) · β(Y ) − ρA∗(β) · α(Y ) − [α, β]A∗ (Y ))|P = 0,

so iαd∗Y ∈ Γ(L). Analogously, iXdβ ∈ Γ(L⊥).
All these conditions allow us to say that (X + α) ◦(Y + β) ∈ Γ(L ⊕ L⊥)

and, consequently, F is a Dirac structure supported on P .

Corollary 1.11. [1] Let E = A⊕A∗ be the double of a Lie bialgebroid then
F = L⊕L⊥ is a Dirac structure supported on P if and only if L and L⊥ are
Lie subalgebroids of A and A∗.

Notice that when P = M we obtain Proposition 7.1 of [9].

Corollary 1.12. [1] Let E = TM ⊕ T ∗M be the standard Courant algebroid
twisted by the 3-form φ ∈ Ω3(M) (see equation (1) in Example 1.8). For any
submanifold P of M , F = TP ⊕ ν∗P is a Dirac structure supported on M iff
i∗φ = 0, where i : P →֒M is the inclusion map.

Like Lie bialgebroids morphisms, quasi-Lie bialgebroid morphisms give rise
to Courant algebroid morphisms. Let us recall what is a Courant algebroid
morphism.

Definition 1.13. [1] A Courant algebroid morphism between two Courant

algebroids E → M and E ′ → M ′ is a Dirac structure in E × E
′
supported

on graphφ, where φ : M →M ′ is a smooth map and E
′
denotes the Courant

algebroid obtained from E ′ by changing the sign of the bilinear form.

Theorem 1.14. Let E1 = A⊕ A∗ and E2 = B ⊕B∗ be doubles of quasi-Lie
bialgebroids (A, dA∗, XA) and (B, dB∗, XB) and (Φ, φ) : A → B a quasi-Lie
bialgebroid morphism, then

F = {(a+ Φ∗b∗,Φa+ b∗)|a ∈ A and b∗ ∈ B∗over compatible fibers} ⊂ E1×E2

is a Dirac structure supported on graphφ, i.e. F is a Courant algebroid
morphism.
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Proof : The idea of the proof is analogous to the idea of the proof of Theorem
6.10 in [1] for Lie bialgebroid morphisms.

Consider M and N the base manifolds of A and B, respectively. Consider
the following subbundles over graphφ

L = graphΦ = {(a,Φa)| a ∈ A} ⊂ A× B

and

L⊥ = {(Φ∗b∗,−b∗)| b∗ ∈ B∗} ⊂ A∗ ×B∗.

Since Φ is a Lie algebroid morphism, L is clearly a Lie subalgebroid ofA×B.
Analogously, we can also conclude that L⊥ is closed for the bracket on A∗×B∗

(where B∗ denotes the bundle B∗ with bracket [ , ]B∗ = − [ , ]B∗) and it is
compatible with the anchor ρA∗×B∗ = (ρA∗,−ρB∗). Also, since ΦXA = XB ◦φ,
we have that (XA, XB)|L⊥ = 0. So, Theorem 1.10 guarantees that L⊕ L⊥ is

a Dirac structure supported on graphφ of the double A×B⊕A∗×B∗ which
is the Courant algebroid A⊕A∗ ×B ⊕B∗. Finally, observe that the bundle
morphism b + b∗ 7→ b − b∗ induces a canonical isomorphism between F and
L⊕ L⊥ and the result follows.

2. Poisson Quasi-Nijenhuis Lie algebroids

Let (A, [ , ] , ρ) be a Lie algebroid over a manifold M . The torsion of a
bundle map N : A→ A (over the identity) is defined by

TN(X, Y ) := [NX,NY ] −N [X, Y ]N , X, Y ∈ Γ(A), (2)

where [ , ]N is given by:

[X, Y ]N := [NX, Y ] + [X,NY ] −N [X, Y ], X, Y ∈ Γ(A).

When TN = 0, the bundle map N is called a Nijenhuis operator, the triple
AN = (A, [ , ]N , ρN = ρ ◦N) is a new Lie algebroid and N : AN → A is a Lie
algebroid morphism.

Remark 2.1. Let A be a Lie algebroid and φ a closed 3-form. We have
that (A∗, d, φ) is quasi-Lie bialgebroid (see Example 1.2). If N : A → A

is a Nijenhuis operator, then AN = (A, [ , ]N , ρ ◦N) is a Lie algebroid and
N : AN → A is a Lie algebroid morphism. So,

dNN
∗φ = N∗dφ = 0,

(A∗, dN , N
∗φ) is a quasi-Lie bialgebroid and N∗ : (A∗, d, φ) → (A∗, dN , N

∗φ)
is a quasi-Lie bialgebroid morphism.
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Definition 2.2. On a Lie algebroid A with a Poisson structure π ∈ Γ(∧2A),
we say that a bundle map N : A → A is compatible with π if Nπ♯ = π♯N∗

and the Magri-Morosi concomitant vanishes:

C(π,N)(α, β) = [α, β]Nπ − [α, β]N
∗

π = 0,

where [ , ]Nπ is the bracket defined by the bivector field Nπ ∈ Γ(∧2A), and

[ , ]N
∗

π is the Lie bracket obtained from the Lie bracket [ , ]π by deformation
along the tensor N∗.

As a straightforward generalization of the definition of quasi-Poisson Ni-
jenhuis manifolds presented in [14], we have:

Definition 2.3. A Poisson quasi-Nijenhuis Lie algebroid (A, π,N, φ) is a Lie
algebroid A equipped with a Poisson structure π, a bundle map N : A → A

compatible with π and a closed 3-form φ ∈ Γ(∧3A∗) such that

TN(X, Y ) = −π♯ (iX∧Y φ) and diNφ = 0.

Theorem 2.4. If (A, π,N, φ) is a Poisson quasi-Nijenhuis Lie algebroid then
(A∗

π, dN , φ) is a quasi-Lie bialgebroid.

Proof : First notice that dφ = 0 and diNφ = 0 imply that

dNφ = [iN , d]φ = iNdφ− diNφ = 0.

Secondly, we notice that since the bundle morphism N and the Poisson
structure π are compatible, then dN is a derivation of the Lie bracket [ , ]π.
In fact, first one directly sees that d is a derivation of [ , ]Nπ and, since C(π,N)
vanishes and

d(C(π,N)(α, β)) = dN [α, β]π − [dNα, β]π − [α, dNβ]π
− d [α, β]Nπ + [dα, β]Nπ + [α, dβ]Nπ ,

we immediately conclude that dN is a derivation of [ , ]π (the particular case
where A = TM can be found in [6]).

It remains to prove that d2
N = [φ,−]π. Using the definition of dN , we have:

d2
Nα(X, Y, Z) = TN(X, Y ) 〈α, Z〉 − 〈α, [TN(X, Y ), Z] + TN([X, Y ] , Z)〉 + c.p.
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The fact that TN(X, Y ) = −π♯iX∧Y φ yields:

d2
Nα(X, Y, Z) = −φ(X, Y, π♯d 〈α, Z〉) −

〈

α,£Z

(

π♯iX∧Y φ
)

− π♯i[X,Y ]∧Zφ
〉

+ c.p.

= −φ(X, Y, π♯d 〈α, Z〉) −
〈

α, (£Zπ)♯ iX∧Y φ+ π♯ (£ZiX∧Y φ)
〉

+φ([X, Y ] , Z, π♯α) + c.p.

= −φ(X, Y, π♯d 〈α, Z〉) −
〈

α, (£Zπ)♯ iX∧Y φ+ π♯ (iX∧Y£Zφ) − π♯i[Z,X∧Y ]φ
〉

+φ([X, Y ] , Z, π♯α) + c.p.

= −φ(X, Y, π♯d 〈α, Z〉) − φ(X, Y, (£Zπ)♯ α) −£Zφ(X, Y, π♯α)

−φ(X, [Z, Y ] , π♯α) + c.p..

Since

[φ, α]π (X, Y, Z) = −£π♯(α)φ(X, Y, Z)

−
{

φ(X, Y, π♯d 〈α, Z〉) − φ(X, Y,£Zπ
♯(α)) + c.p.

}

,

and by hypothesis, φ is closed, we finally have that

(d2
Nα− [φ, α]π)(X, Y, Z) = −dφ(X, Y, Z, π♯α) = 0.

Suppose (A, π,N, φ) is a Poisson quasi-Nijenhuis Lie algebroid. The double
of the quasi-Lie bialgebroid (A∗

π, dN , φ) is a Courant algebroid (see Example
1.8) that we denote by Eφ

π .
An interesting case is when the 3-form φ is the image by N∗ of another

closed 3-form ψ:

φ = N∗ψ and dψ = 0.

In this case (A,Nπ, ψ) is a twisted Poisson Lie algebroid because

[Nπ,Nπ] = 2π♯(φ) = 2π♯(N∗ψ) = 2Nπ♯(ψ)

and A∗ has a structure of Lie algebroid: A∗ψ
Nπ = (A∗, [ , ]ψNπ , Nπ

♯) (see Exam-
ple 1.3). Equipping A with the differential d′ given by

d′f = df, and d′α = dα− iNπ♯αψ,

for f ∈ C∞(M) and α ∈ Γ(A∗), we obtain a quasi-Lie bialgebroid: (A∗ψ
Nπ, d

′, ψ).

Its double is a Courant algebroid and we denote it by Eψ
Nπ.
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Theorem 2.5. Let (A, π,N, φ) be a Poisson quasi-Nijenhuis Lie algebroid
and suppose that φ = N∗ψ, for some closed 3-form ψ, then

F = {(a+N∗α,Na+ α) |a ∈ A and α ∈ A∗} ⊂ E
ψ
Nπ ×E

φ
π

defines a Courant algebroid morphism between E
ψ
Nπ and Eφ

π .

In order to prove the theorem, we need to remark the following property.

Lemma 2.6. Let (A, π,N, φ) be a Poisson quasi-Nijenhuis Lie algebroid,
then

〈TN∗(α, β), X〉 = φ(π♯α, π♯β,X),

for all X ∈ Γ(A) and α, β ∈ Γ(A∗).

Proof : The compatibility between N and π implies that (see [7])

〈TN∗(α, β), X〉 =
〈

α, TN(X, π♯β)
〉

,

so

〈TN∗(α, β), X〉 =
〈

α,−π♯
(

iX∧π♯βφ
)〉

= −φ(X, π♯β, π♯α) = φ(π♯α, π♯β,X).

Proof of the Theorem: First notice that N∗ : A∗ψ
Nπ → A∗

π is a Lie algebroid
morphism because it is obviously compatible with the anchors and

N∗ [α, β]ψNπ = N∗ [α, β]Nπ +N∗ψ(π♯α, π♯β,−)

= [N∗α,N∗β]π − TN∗(α, β) + φ(π♯α, π♯β,−) = [N∗α,N∗β]π .

Let [ , ]′ be the bracket on the sections of A induced by the differential d′.
Notice that

[X, f ]′ = 〈d′f,X〉 = 〈df,X〉 ,

so N∗d′f = dNf , for all f ∈ C∞(M) and X ∈ Γ(A).
And since

[X, Y ]′ = [X, Y ] − (Nπ)♯(ψ(X, Y,−)),

we have:

N [X, Y ]N = [NX,NY ] − TN(X, Y ) = [NX,NY ] + π♯(iX∧YN
∗ψ)

= [NX,NY ] + ψ(NX,NY,Nπ♯−) = [NX,NY ]′ ,

for all X, Y ∈ Γ(A).

This way we conclude that N∗ : A∗ψ
Nπ → A∗

π is a quasi-Lie bialgebroid
morphism (see definition 1.4) and the result follows from Theorem 1.14.
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3. Paired operators

Let (A, dA∗, XA) be a quasi-Lie bialgebroid over M and consider a bundle
map over the identity, N : A⊕A∗ → A⊕A∗. This bundle map can be written

in the matrix form N =

(

N π

σ NA∗

)

with N : A → A, NA∗ : A∗ → A∗,

π : A∗ → A and σ : A→ A∗.

Definition 3.1. The operator N is called paired if

〈X + α, N (Y + β)〉 + 〈N (X + α), Y + β〉 = 0,

for all X + α, Y + β ∈ A⊕A∗, where 〈·, ·〉 is the usual pairing on the double
A⊕A∗.

As it is observed in [3], N is paired if and only if π ∈ Γ(∧2A), σ ∈ Γ(∧2A∗)
and NA∗ = −N∗.

3.1. Paired operators on the double of Lie bialgebroids. Let us now
take the Lie bialgebroid (A,A∗), where A∗ has the null Lie algebroid struc-
ture. In this case, the double A ⊕ A∗ is the standard Courant algebroid of
Example 1.7.

Now we consider, on the sections of A⊕ A∗, the bracket deformed by N ,

[[X + α, Y + β]]N = [[N (X + α), Y + β]] + [[X + α,N (Y + β)]]

−N [[X + α, Y + β]]

and the Courant-Nijenhuis torsion of N ,

TN (X + α, Y + β) := [[N (X + α),N (Y + β)]] −N [[X + α, Y + β]]N .

A simple computation shows that for all α, β ∈ Γ(A∗),

[[α, β]]N = [α, β]π.

Proposition 3.2. Let N be a paired operator on A⊕A∗. If TN |A∗ = 0, then
the vector bundle A∗ is equipped with the Lie algebroid structure A∗

π.

Proof : A straightforward computation shows that

TN (α, β) = 0 ⇒ [π#α, π#β] = π#[α, β]π,

for all sections α and β of A∗. This means that π is a Poisson bivector on A
and the result follows.
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Now we give sufficient conditions for a paired operator to define a Poisson
quasi-Nijenhuis structure on a Lie algebroid.

Theorem 3.3. Let N =

(

N π

σ −N∗

)

be a paired operator on A⊕ A∗ such

that

Nπ# = π#N∗ and iNXσ = N∗(iXσ), ∀X ∈ Γ(A).

If TN |A∗ = 0 and TN |A = 0, then (A, π,N, dσ) is a Poisson quasi-Nijenhuis
Lie algebroid.

Proof : First, notice that the condition iNXσ = N∗(iXσ) means that

σ(NX, Y ) = σ(X,NY ), ∀X, Y ∈ Γ(A),

and implies that Nσ defined by Nσ(X, Y ) = σ(NX, Y ) is a 2-form on M .
The condition Nπ# = π#N∗ ensures that Nπ is a bivector field on A.

For all α, β ∈ Γ(A∗),

TN (α, β) = 0 iff π is a Poisson bivector and [α, β]N
∗

π = [α, β]Nπ.

So we have that π and N are compatible. On the other hand, if X and Y

are sections of A, then

TN (X, Y ) = 0 iff TN(X, Y ) = π#(dσ(X, Y,−)) and d(Nσ) = iNdσ.

According to Definition 2.3, (A, π,N, dσ) is a Poisson quasi-Nijenhuis Lie
algebroid.

From Theorem 2.4, we obtain:

Corollary 3.4. (A∗
π, dN , dσ) is a quasi-Lie bialgebroid.

Remark 3.5. We note that a paired operator N that satisfies N 2 = −IdA⊕A∗,
also satisfies

〈N (X + α), N (Y + β)〉 = 〈X + α, Y + β〉, ∀X + α, Y + β ∈ Γ(A⊕A∗).

In this case N defines a generalized complex structure on the Lie algebroid A.
From N 2 = −IdA⊕A∗ we deduce that Nπ# = π#N∗, N2X + π#(iXσ) = −X
and iNXσ = N∗(iXσ), with X ∈ Γ(A).

Let us denote by (A ⊕ A∗)N the vector bundle map equipped with the
nondegenerate symmetric bilinear form 〈·, ·〉N given by

〈X + α, Y + β〉N = 〈N (X + α),N (Y + β)〉,
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the bundle map ρN given by ρN (X + α) = a(NX) + π#(α) and the bracket
[[ , ]]N on its space of sections.

We can now establish a result that generalizes the one of [14], for the case
where the Lie algebroid A is TM .

Theorem 3.6. Let N =

(

N π

σ −N∗

)

be a paired operator on A⊕ A∗ such

that N 2 = −IdA⊕A∗. If TN |A∗ = 0 and TN |A = 0, then (A ⊕ A∗)N is a
Courant algebroid and it is identified with the double of the quasi-Lie bialge-
broid (A∗

π, dN , dσ).

Proof : From Corollary 3.4 and Remark 3.5 we have a Courant algebroid
Edσ
π which is the double of the quasi-Lie bialgebroid (A∗

π, dN , dσ). An easy
computation shows that the bracket on Γ(Edσ

π ) coincides with the bracket
[[ , ]]N on Γ((A ⊕ A∗)N ), the anchor of Edσ

π is ρN and the nondegenerate
bilinear form on Edσ

π is exactly 〈·, ·〉N .

3.2. Paired operators on the double of quasi-Lie bialgebroids. Now
we consider the quasi-Lie bialgebroid (A∗, dA, φ) of Example 1.2 and the
Courant algebroid structure on its double: the standard Courant bracket

twisted by φ, [[ , ]]φ, and the anchor ρA. Let N =

(

N π

σ −N∗

)

be a paired

operator and consider the bracket on Γ(A⊕A∗) deformed by N :

[[X + α, Y + β]]φN = [[N (X + α), Y + β]]φ + [[X + α,N (Y + β)]]φ

−N [[X + α, Y + β]]φ .

The Theorem 3.6 admits a direct extension for the case of quasi-Lie bial-
gebroids.

Theorem 3.7. Let N be a paired operator on the double A ⊕ A∗ of the
quasi-Lie bialgebroid (A∗, dA, φ), such that N 2 = −IdA⊕A∗. If TN |A∗ = 0 and

TN |A = 0, then (A⊕A∗)φN = (A⊕A∗, [[ , ]]φN , ρN , 〈·, ·〉N ) is a Courant algebroid
and it is identified with the double of the quasi-Lie bialgebroid (A∗

π, d
′, dσ +

iNφ), where d′ the differential given by d′f = dNf and d′α = dNα− iπ#(α)φ,
for f ∈ C∞(M) and α ∈ Γ(A∗).
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Proof : Let α, β ∈ Γ(A∗) and X, Y ∈ Γ(A). Then,

TN (α, β) = 0 iff







π is a Poisson bivector

[α, β]Nπ − [α, β]N
∗

π = φ(π#(α), π#(β),−)

and TN (X, Y ) = 0 iff















TN(X, Y ) = π#((dσ + iNφ)(X, Y,−))−Nπ#(φ(X, Y,−))

d(Nσ)(X, Y,−) + φ(X, Y,−)
= φ(NX,NY,−) + φ(NX, Y,N−) + φ(X,NY,N−) + (iNdσ)(X, Y,−).

A straightforward generalization for Lie algebroids of the results presented
in [15] and in [8] in the case of a manifold, establishes that the four equations
corresponding to TN |A∗ = 0 and TN |A = 0 are equivalent to the vanishing

of the Courant-Nijenhuis torsion of N with respect to the bracket [[ , ]]φ.
Therefore, we have a new Courant algebroid structure on the vector bundle
A⊕A∗, (A⊕ A∗)φN = (A⊕A∗, [[ , ]]φN , ρN , 〈·, ·〉N ).

The restriction of the bracket [[ , ]]φN to the sections of A∗ is the bracket [ , ]π
and since TN |A∗ = 0, we have that A∗

π is a Dirac structure of the Courant

algebroid (A⊕A∗)φN . On the other hand, the restriction of the bracket [[ , ]]φN
to the sections of A gives

[[X, Y ]]φN = [X, Y ]N − π#(φ(X, Y,−)) + dσ(X, Y,−) + iNφ(X, Y,−)

and the anchor ρN restricted to Γ(A) is ρA ◦N . If we consider the bracket

[X, Y ]′ = [X, Y ]N − π#(φ(X, Y,−))

on the sections of A and the bundle map ρA◦N , the differential corresponding
to this structure on A is d′ given by,

d′f = dNf and d′α = dNα− iπ#(α)φ,

with f ∈ C∞(M) and α ∈ Γ(A∗).
The vector bundle A is obviously a transversal isotropic complement of A∗,

so that (A∗
π, d

′, dσ + iNφ) is a quasi-Lie bialgebroid [12]. Finally, a simple
computation shows that the double of this quasi-Lie bialgebroid is naturally
identified with the Courant algebroid (A⊕A∗)φN .
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