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ABSTRACT: We address some key issues in designing dense linear algebra (DLA) al-
gorithms that are common for both multi/many-cores and special purpose architec-
tures (in particular GPUs). We present them in the context of an LU factorization
algorithm, where randomization techniques are used as an alternative to pivoting.
This approach yields an algorithm based entirely on a collection of small Level 3
BLAS type computational tasks, which has emerged as a common goal in designing
DLA algorithms for new architectures. Other common trends, also considered here,
are block asynchronous task execution and “Block” layouts for the data associated
with the separate tasks. We present numerical results and other specific experi-
ments with DLA algorithms on NVIDIA GPUs using CUDA. The GPU results are
also of interest themselves as we show a performance of up to 160 Glop/s on a single
Quadro FX 5600 card.

KEYWORDS: dense linear algebra, parallel algorithms, LU factorization, multicore
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1. Introduction

Parallel platforms based on multicore chips are becoming dominant sys-
tems in High Performance Computing (HPC). In the Top500 list released in
November 2007, almost 90% of the systems are based on dual-core or quad-
core architectures. Moreover, special-purpose hardware, like GPUs or the
CELL BE, and even reconfigurable hardware (e.g FPGAs), are also becom-
ing pervasive in the HPC world, as evident from many current conferences
in the field (e.g. including PARAOS) and as they are included more often
as accelerators in HPC systems. The changes introduced in these new ar-
chitectures create a need for the development of innovative algorithms that
would efficiently use the new hardware. Major common challenges here are
not only to design algorithms of high parallelism but also algorithms that
would overcome the exponentially growing gap between processor speed and
memory (e.g. CPU speeds have been improving at 59% per year, main mem-
ory bandwidth at only 23%, and main memory latency at a mere 5.5% [6]).
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In other words, we need parallel algorithms of high enough ratio of floating
point calculations to data required to mask slow memory speeds.

There is a common understanding on how to design certain DLA algorithms
for current multicores chips. As mentioned in [4], algorithms should satisfy
the following criteria to take advantage of multicore processors:

- fine granularity, as cores are associated with relatively small local
memories,
- asynchronicity, to hide the latency of access to memory.

These ideas are applied in current efforts for developing efficient DLA algo-
rithms for multicore [4, 18]. The fine granularity is achieved by splitting the
operations into tasks that operate on smaller blocks, resulting in so-called
“tiled” algorithms while asynchronicity is achieved by dynamically schedul-
ing the tasks using a Directed Acyclic Graph (DAG). Data storage is also
essential for effective computations and Block Data Layout [9] can be suc-
cessfully applied to tiled algorithms. Variations of these ideas can be also
recognized in algorithms for GPUs as we show in Section 3, the CELL BE
[13], and even FPGAs (e.g. in the case of out-of-core FPGA problems or
multi-FPGA use).

The general directions just outlined work well when an algorithm can gen-
erate a collection of independent tasks, each of high ratio of floating point
calculations to data required. A subject of current research in the field is
to design algorithms where all the tasks involved are of Level 3 BLAS. For
example, block Cholesky already has this property, but the traditional block
Householder QR and block LU with partial pivoting do not, as they have
panels involving Level 2 BLAS. For QR, certain out-of-core versions remove
this limitation [8], and for LU, the randomization techniques (among others)
lead to entirely Level 3 BLAS algorithms, as described in Section 2.

2. An Alternative to Pivoting in Algorithms for New
Architectures

2.1. Randomization Technique to Avoid Pivoting. Pivoting is a well-
known technique to ensure stability in matrix algorithms. In particular, the
commonly used method of Gaussian elimination (GE) with partial pivoting
(GEPP) is implemented in current linear algebra libraries for solving square
linear systems Az = b resulting in very stable algorithms. In the LAPACK [1]
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implementation of GE, during pivoting rows are swapped at once, which
inhibits the exploitation of more asynchronicity between block operations.

For distributed memory computers, [7] describes a pivoting strategy that
minimizes the number of messages exchanged during the panel factorization
and shows that this approach is stable in practice. For multicore, pairwise
pivoting is often considered (e.g in [4]) but this generates a significant over-
head since the rows are swapped in pairs of blocks. Still for multithreaded
architecture, [18] describes an algorithm by blocks for LU factorization that
uses a pivoting technique referred to as incremental pivoting based on prin-
ciples used for out-of-core solvers [11]. For implementation of GE on GPUs,
the cost of pivoting may represent more than 30% of the global computa-
tion. To achieve higher performance on the new architectures like multicore
or GPUs, it is worth investigating other forms of GE, possibly less stable
than GEPP.

This study is experimental and based on statistical results and observa-
tions.

The first question we may ask is: do we have to pivot for random matrices?
In Figure 1, we consider matrices normally distributed AV (0, 1) of various sizes
(sample of 100 matrices for each size) and we compare the error in the LU
factorization obtained when we do partial pivoting (GEPP) and no pivoting
at all (GENP). We observe that the error obtained with GENP is almost
always between 107! and 10711 and thus, following [19] and [10, p. 239], we
could get a solution as accurate as GEPP just by adding iterative refinement
in fixed precision. Then a first empirical result here is that there would be
no need for pivoting when the matrix is AM'(0,1). Moreover, it is observed
in [20] that for many distributions of matrices, the matrix elements after the
first few steps of GE (using partial or complete pivoting) are approximately
normally distributed.

Then the case without pivoting was studied in [22] where satisfying proba-
bilistic bounds on growth factors are given for the occurrence of small pivots
and for the growth factors when the entries of A are A(0,1).

The idea of [16, 17] was to transform the original matrix into a matrix that
would be sufficiently “random” so that, with probability close to 1, pivoting is
not needed. These transformations are in general chosen as unitary because
they are numerically stable and they keep the condition number of the matrix
unchanged (when using the 2-norm). The random transformation proposed
in [17] is based on the Discrete Fourier Transform and the transformation
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stability of LU with or without pivoting on random matrices
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FIGURE 1. Pivoting vs nonpivoting in LU on matrices ~ N (0, 1)

proposed in [16] is referred to as Random Butterfly Transformation (RBT)
which consists of preconditioning a given matrix A using particular random
matrices referred to as butterfly matrices or products of them. Having the
butterfly matrices U and V', then GENP is performed on the matrix U*AV
and, to solve Az = b, we instead solve (U*AV )y = U*b followed by x = Vy,
where U* denotes the conjugate transpose of U. Both transformations use
complex arithmetic and require efficient implementations of FFT-like com-
putations. In addition to the drawback of handling complex-valued matri-
ces, resulting in extra-storage and extra-computation, we may also have an
overhead due to random numbers generation. This is why, in Section 2.3,
we perform numerical experiments with real-valued butterfly matrices. For
better stability, we add systematically iterative refinement (in the working
precision) when we do GENP on a randomized matrix.

2.2. Using QR Factorization for Solving Linear Systems. Another
element that we would like to point out is that, if we want to avoid pivoting,
this is always possible to use the QR factorization to solve linear systems.
We recall here the following theorem from [10, p. 361] that shows the interest
in terms of backward stability for using the Householder QR factorization for
linear systems.

Theorem 1. Let A € R™" be non singular. Suppose we solve the system
Ax = b with the aid of a QR factorization computed by the Householder



DENSE LINEAR ALGEBRA FOR NEW ARCHITECTURES )

algorithm. The computed T satisfies
(A4+ AA)T = b+ Ab,

where
[Aajlla < Anellaglle, 7 =1:n, ||Abll2 < F2|b]o-

In Theorem 1, Aa; denotes the jth column of A and 7,2 is an integer
constant of the form 12’;% where c is a small integer constant and « is the unit
roundoff. This theorem implies a small column-wise relative backward error
but not a small component-wise relative backward error w. However, [10]
shows also that w will be small after one step of iterative refinement, provided
that A is not too ill conditioned and |A||Z| is not too badly scaled. Contrary
to GEPP, we do not have to worry here about large element growth.

The computational cost for solving a linear system with Householder QR is
about twice that of an LU factorization (4n3/3+n? vs 2n3/3+2n?) but QR is
well suited for tiled algorithms since it is rich in Level 3 BLAS operations. In
the worst case where pivoting requires half the time of the whole factorization,
QR is a very competitive option because of its stability properties.

2.3. Numerical Experiments. Experiments on accuracy were performed
using Matlab on matrices of size 1024 from Matlab gallery and Higham’s
Matrix Computation Toolbox [10] (matrix gfpp for which the growth factor
for GEPP is maximum). The right-hand side is generated from a uniform
distribution on [0,1]. We use here a simple form of real-valued butterfly,

also given in [16], of the form <Z g), where P, (), R and S are diagonal

random n/2 X n/2 matrices.

In Table 1, we compare the linear system solution obtained using GEPP (as
it is implemented in LAPACK), GENP, GENP followed by RBT, and QR. In
each case we have the possibility to add iterative refinement, depending on
the stopping criterion given below. We report the component-wise relative
backward error from [15] expressed by

o lAE -,
w = max - ,
i (|A[-[Z] + [b])s

and, similarly to [2, 19], the iterative refinement algorithm is activated while
w > (n+ 1)u. We also report the number of iterations in the iterative
refinement process. For the 3 first matrices, using RBT is not useful because
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GENP gives a good solution. However this shows that these matrices are not
degenerated by the randomization applied to them. We observe that GENP
fails on the 3 last matrices. Iterative refinement turns out to be necessary
when using RBT and in each case, it gives a backward error that is similar
or better than GEPP except for the matrix “chebspec”. This latter case is in
accordance with [16] who mentioned that RBT is less accurate than GEPP
for ill-conditioned matrices. Note also that even though iterative refinement
was not necessary for QR on the matrices of Table 1, it may be useful in
some cases [10, p. 240].

Matrix chebspec | circul condex | fiedler orthog gfpp
Cond 6-10" | 5.10° 1-102 | 2-10° 1-10% | 2-10?
GEPP 5-107 [1.107®|2-107®[2-107[2.1071° | 2.1072
# iter 0 0 0 0 0 10
GENP 5-1071 [1-107® [ 4107 | Fail Fail Fail
# iter 0 1 0 — — —
QR 9-10°% [2.107" [3.1070®|6-107P[3-10716[1.10716
# iter 0 0 0 0 0
RBT+GENB 6-10~™ [ 1-107 [4-107 [ 1-107 [ 4-10715]2.10716
# iter 3 1 1 1 2 1

TABLE 1. Comparison of linear system solutions using GEPP
and RBT on some matrices.

In Figure 2 we report performance in Gflop/s for the LU factorization on
GPU where GEPP and GENP are LAPACK-like implementations in which
we have changed BLAS routines by CUDA BLAS ones. RBT+GENP gets
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F1GURE 2. Performance of single precision LU factorization us-
ing GEPP and RBT4+GENP on GPUs

the performance of GENP since the cost of the random transformation is
negligible on GPU for this particular type of butterfly matrices. We observe
that performance of the LU factorization is improved by more than 30%
by using randomization before GENP with LAPACK-like implementations.
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However, since by using randomization we know that we are not going to
pivot, we can optimize GENP by using only Level 3 BLAS (contrary to what
is done in LAPACK). In that case, as shown in Figure 2, the performance of
GENP-+RBT is more than twice that of GEPP. More GPU implementation

details and performance related issues will be discussed in the next section.

3. DLA Experiments Using GPUs

We have done a series of experiments using NVIDIA GPUs, trying to fur-
ther develop the methodology in efficiently using these architectures for DLA.
The computations presented here are on a Quadro FX 5600 installed on 4 x
Dual Core AMD Opteron(tm) Processor 256 (1800 MHz, 1024 KB cache)
with PClex16. For most part we used CUDA 1.0 and an optimized sgemm
kernel from V. Volkov [21] running at about 180 Gflop/s. We also used LA-
PACK and ATLAS. The techniques discovered during our work tend to have
common ground with algorithm design principles for other new architectures,
as we show in this section.

The main challenges to effectively program DLA for GPUs, similarly to
many-cores and other new architectures, is to design algorithms of high
parallelism and high ratio of floating point calculations to data required
(also known as high computational intensity). And indeed, algorithms for
GPUs, with processors count much higher than for current multicores (e.g.
NVIDIA’s Quadro FX 5600 has 128), have to be designed to split the compu-
tation into many parallel tasks and each task to have high enough computa-
tional intensity (CI) in order to be efficiently executed on a single processing
element (PE). Figure 3 shows NVIDIA GPU’s hardware model and a typ-
ical programming pattern [14] where blocks of data are “pooled” into the
fast shared memory followed by computation. Usually many more treads of
execution (than number of PE available) are encouraged in order to over-
lap computation and communication (hide high latencies to get data from
the main memory). We outlined in Section 1 one general idea that seems
promising for current multicores, namely to design algorithms of

- fine granularity (through task splitting), and
- asynchronicity.
Here, as GPUs are better suited for data-parallel computations,

(1) The tasks splitting has to be done within the BLAS level (BLAS level
parallelism), and



8 M. BABOULIN, J. DONGARRA AND S. TOMOV

Device

[ A B C
pry—— HEEEN a \
HEEEN [ ]

1. Get data into shared memory

2. Compute

For DLA the Cl is about 32 (on IBM Cell about 64)
* not enough to get close to peak (346 GFlop/s)
* CUBLAS sgemm is about 120 GFlop/s

FIiGURE 3. Hardware model and a programming example model
for NVIDIA GPU.

(2) Asynchronicity can be added in hybrid CPU-GPU computations
where a large computationally intensive task is run on the GPU and
small tasks, independent of the task being run on the GPU and usu-
ally sequential part of an algorithm (that we would like to “hide”),
are asynchronously started on the CPU or other fast computational
devices, and in particular FPGAs.

In view of this broad design direction, our first experiment is to test the
performance of LAPACK routines by just replacing their BLAS calls with
BLAS for GPUs (e.g. CUBLAS ). Figure 4, Left shows the performance of
LAPACK’s LU, QR, and Cholesky factorizations on NVIDIA’s Quadro FX
5600 using CUBLAS. In this experiment memory is allocated on the GPU,
the CPU runs the LAPACK code which is a sequence of BLAS calls that
get executed on the GPU. There is no large memory transfers as the matrix
to be factored and the work space stay only on the GPU throughout the
computation. Note that the programming efforts here are insignificant and
we get a “good” performance for large problems, but still, we are not getting
close to the peak (e.g. sgemm in CUBLAS 1.0 runs at 120 Gflop/s). Similar
deficiency about this approach, just based on BLAS level parallelism, has also
been observed for multicores. Finally, to underline the importance of having
entirely Level 3 BLAS algorithms, note that the block Cholesky factorization
is the fastest of the three.

Our next experiment shows the effect of asynchronicity in hybrid CPU-
GPU algorithm designs. An easy way to demonstrate it is using the left-
looking Cholesky factorization [5, p. 86]. A step of the algorithm involves
two tasks that are independent and can be asynchronously scheduled, namely

*See http://www.nvidia.com/object/cuda_home.html



DENSE LINEAR ALGEBRA FOR NEW ARCHITECTURES 9

180
/ 160
120 /
0 &
-E. / E 100 -
5. gy R
5 / / N G . 5 \ CUBLAS
0 \ar32) CPUSCUBLAS
/ 1\ Choesky (128) g \ CPUSV.V Sgemm
3 / / ., CPU+V.V SgemmsBlock
/ h "\ V.V Sgemm (V. Volkoy)
i 4 20 -
123 4 56 7 8 9 101112131415 16171819

0 .
G 123456 78 910111341516 171819
Matrix Size x 1,000 Mabix lzexi,O(}

FIGURE 4. Left: Performance of LAPACK’s single precision LU,
QR, and Cholesky factorizations using NVIDIA’s CUDA BLAS

(CUBLAS) on a Quadro FX 5600; Right: hybrid CPU + GPU
computation on Cholesky factorization.

a “large” sgemm-type update of the trailing matrix can be started on the
GPU and at the same time a Cholesky factorization of a “small” block (from
the diagonal of the matrix) on the CPU (using LAPACK’s spotf2), resulting
in overlapping (or hiding) the sequential small task with the large highly par-
allel task. Adding this optimization more than doubles overall performance
on smaller problems, as shown on Figure 4, Right (the pink line 'CPU +
CUBLAS’ vs the blue line '"CUBLAS’). The sequence of starting the kernels
from the CPU is as follows:

(1) cublasGetMatrix to get the data for spotf2 from the GPU to the CPU,
(2) cublasSgemm, which is asynchrononous so the CPU can start

(3) spotf2, and finally

(4) cublasSetMatrix to move the result of spotf2 back to the GPU.

On current NVIDIA cards communications steps (1) and (4) can not be over-
lapped with computations but in future cards will be provided. We note that
we have also tried to code small tasks (like the diagonal block factorizations
in Cholesky) directly in CUDA but there is not enough parallelism available
in these small problems, and as a result even if no overlap was possible per-
formance is slower compared to performance of transferring and factoring
them on the CPU. The same is true for Level 2 BLAS panel factorizations,
up to certain size, when the GPU would become more efficient to execute
them. The same observations were made also in [3, 21]. Another idea that
we are currently exploring, and that is related to this observation, is to use
reconfigurable computing, and in particular FPGAs, in hybrid calculations
of this type.
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The approach, as described so far involves very little programming de-
velopment efforts since we are using LAPACK which plugs into the CUDA
BLAS. The performance though greatly depend on having optimized BLAS.
For example, Figure 4, Right shows the effect of using better sgemm for the
Cholesky factorization. Namely, we used a code from V. Volkov [21] that
achieves 180 Gflop/s on sgemm wvs the 120 Gflop/s of CUBLAS T. We note
that based on optimized sgemm other kernels can be easily derived [12], e.g.
it is trivial (two if statements) to get a ssyrk implementation from sgemm
that achieves around 120 Gflop/s vs 36 Gflop/s in CUBLAS 1.0.

As stressed before, we are able to apply efficiently the techniques mentioned
because we can represent the Cholesky factorization as a collection of small
Level 3 BLAS type computational tasks. The techniques from Section 2
allows us to do the same for the LU factorization, and as a result we see
performance of the new algorithm comparable to that of Cholesky (the blue
curve “GEPP (LAPACK)” from Figure 2 and the orange “CPU+CUBLAS”
from Figure 4, Right, both done using CUBLAS 1.0).

Related to data structures, we found that Block Data Layout (BDL) can
give performance benefits in several ways. First, when using hybrid CPU +
GPU computations small blocks of data have to be transferred between the
CPU and GPU. This operation is much faster when performed on contiguous
data, which is the case when using BDL (and pinned memory). Example is
given again on Figure 4, Right, where the dotted line 'CPU+V.V.Sgemm +
Block’ shows a performance improvement of about 10 Gflop/s. The BDL
can also help to speed up BLAS kernels. Finally, we want to point out
that mixed precision iterative refinement is important for hybrid CPU+GPU
computations since, similarly to [13], it enables us to improve the performance
while maintaining the accuracy.

4. Conclusions

We addressed some key issues in designing DLA algorithms and showed
that they are common for both multi/many-cores and special purpose archi-
tectures. We extended these common ideas in an innovative way to GPUs
where we designed an LU and a Cholesky factorization algorithms to obtain
an impressive performance of up to 160 GFlop/s. The approach relied on
third party optimized BLAS for GPUs and required insignificant program-
ming efforts. Crucial for the speedups obtained was the use of a hybrid

TCUDA Beta 2.0 includes sgemm from V. Volkov, achieving 206 Gflop/s.
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CPU-GPU calculation and a randomization technique as an alternative to
pivoting that allowed us to cast the LU factorization as an entirely Level 3
BLAS computation.
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