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ABSTRACT: A characterization of locally bounded categories and a criterion to
identify small-orthogonality classes in these categories are given.

1. Introduction

In [11], P. Gabriel and F. Ulmer proved that in locally presentable cat-
egories the orthogonal subcategory Nt is reflective for any set N of mor-
phisms. The key point of the proof is the fact that for any object of the
base category there is some infinite regular cardinal o such that the object is
a-small, where a-smallnes means a-presentability. In [10] and [15], P. Freyd
and M. Kelly gave a generalization of this property for a wider range of cate-
gories, using a different concept of smallness for objects: boundedness. They
showed that in a locally bounded category (as defined in [14] and [17]) the
subcategory of all objects orthogonal to a set of morphisms is reflective. (In
fact they went further: they proved that Nt is reflective for every class N
which is the union of a set of morphisms with a class of epimorphisms.)

In a cocomplete category A an object A is said to be a-bounded if the
hom-functor A(A, —) preserves a-directed unions. A locally bounded cat-
egory (see [14]) is a complete and cocomplete category A with a proper
factorization system (£, M) and an E-generator G such that (i) A has &-
cointersections and (ii) there is a regular cardinal o such that each object of
G is a-bounded. We call these categories locally a-bounded when they are
E-cowellpowered and « is a regular cardinal which fits the condition (ii). Lo-
cally presentable categories and epi-reflective subcategories of the category
of topological spaces are examples of locally bounded categories. We show
that a cocomplete and cowellpowered category is locally bounded precisely
when there is a regular cardinal o and a set H of a-bounded objects such
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that any object A of A is an a-directed union of objects of H. This charac-
terization will be useful in the study of small-orthogonality classes, that is,
subcategories of the form N+ for A a set of morphisms.

In [13] the a-orthogonality classes of a locally a-presentable category were
proved to be exactly the subcategories closed under limits and a-directed
colimits, for all uncountable regular cardinals a. (Recall that, following [4],
an a-orthogonality class is a subcategory of the form N+ for some set N
of morphisms whose domains and codomains are a-presentable.) This char-
acterization does not work for @ = Ny, as it was shown in [20] and [12].
A description of the Ny-orthogonality classes in locally finitely presentable
categories in terms of closure properties was given in [5]: they are the sub-
categories A closed under products, directed colimits and A-pure subobjects.
In the context of locally bounded categories we shall adopt the terminology
a-orthogonality class as expected: the meaning is as in [4], just replacing
“presentable” by “bounded”. The motive of this paper is to characterize
the reflective subcategories of locally bounded categories which are small-
orthogonality classes. In cowellpowered locally bounded categories a subcat-
egory is a small-orthogonality class iff it is an a-orthogonality class for some
a. We are going to restrict ourselves to reflective subcategories whose re-
flector preserves M-monomorphisms. The properties of these reflectors were
studied for instance by Ringel in [18]. We show that, in locally a-bounded
categories, a reflective subcategory with an M-preserving reflector is an a-
orthogonality class iff it is closed under a-directed unions and a-B-simple
subobjects. (The notion of a-B-simple morphism is parallel to the one of
a-B-pure morphism, used in [5]: If B is a subcategory of A, a morphism
f: A— B of A is said to be a-B-simple provided that, if we have mor-
phisms e, © and v such that f-u = v -e and e is a B-epimorphism, then
there exists a morphism u’ such that u' - e = u.) For instance, the category
Top, of Ty-spaces is an Ny-orthogonality class of Top, but the category Sob
of sober spaces is not an Ny-orthogonality class of Topg; in both cases we
have M-preserving reflectors for M = {embeddings}.

2. Properties of locally bounded categories

Let A be a category with a proper factorization system (£, M) (where
proper means that £ and M consist of epimorphisms and monomorphisms,
respectively). Recall that & and M determine each other: & = M! and
M = &L ([10]).
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A set G is said to be an £-generator of A if for each object A there is some
subset {G;, i € I} of G and an E-morphism e : I;c;G; — A. (A detailed
study of £-generators is made in, e.g., [6] and [7].)

Let m; : A; — A, © € I, be adiagram in A with all m; € M. The M-union
(or just union) of (m;);cs is the supremum of (m;);cs, up to isomorphism, in
the class of all M-subobjects of A. It can be obtained through the (£, M)-
factorization of the canonical morphism Il;c;A; — A:

We shall often write U;eym; = m or U;c;A; = B for short.
Let a be an infinite regular cardinal. An object A is said to be a-bounded
if the hom-functor A(A, —) preserves a-directed unions.

2.1. Definition (1) ([14], [17]) A category A is said to be locally bounded if
it is cocomplete, has a proper factorization system (£, M), and there is an
infinite regular cardinal « such that:

(i) A has E-cointersections;
(ii) A has an E-generator whose objects are all a-bounded.

(2) By a locally a-bounded category with respect to M we shall mean a
category under the conditions of (1), for a given «, which moreover is &-
cowellpowered. The mention to M will often be omitted.

2.2. Remark Every locally bounded category is complete. In [14] and [17],
the authors include to be complete in the definition of locally bounded cate-
gory. However the completeness comes for free, since any £-cocomplete cat-
egory with an £-generator is complete. This follows from the fact that any
such category is total (see [7]), that is, the Yoneda embedding A — [A°, Set]
has a left adjoint ([16]); and any total category is complete and M-complete
(see [7] and [8]).

2.3. Examples (1) Every locally presentable category is locally bounded
with respect to monomorphisms, and also with respect to strong monomor-
phisms (see [10] and [2]).

(2) The category Top of topological spaces is locally Np-bounded with
respect to strong monomorphisms (= embeddings). And every epi-reflective
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subcategory of Top is locally Ny-bounded with respect to embeddings. More
generally, any &-reflective subcategory B of a locally a-bounded category
with respect to M is also locally a-bounded with respect to M N Mor(B)
([10], [2)).

(3) Any topological category over Set (see [3]) is locally Ry-bounded with
respect to strong monomorphisms.

(4) The category Ban of Banach spaces and linear contractions is locally
N;-bounded ([14], [17]).

2.4. Remark The following properties are easily verified:

(i) In a locally bounded category for each object A there is an infinite
regular cardinal o such that A is a-bounded ([10], 3.1.2).

(ii) In a cocomplete category if B and v are regular cardinals such that
B < 7y, then any (-bounded object is also v-bounded; consequently, the
fulfillment of 2.1 for a = (8 ensures that it also holds for a = 7.

2.5. Lemma In a cocomplete category with a proper factorization system
(€, M) any E-quotient of an a-bounded object is a-bounded.

Proof Let B be a-bounded, let e : B — E belong to £ and let

i

be an a-directed M-union, that is, 1¢ = U;en;. Given f : E — C, there are
some 7 and some morphism f’: B — C; such that f-e =mn,;- f’. Then, since
n; € M and e € M/, there exists " : E — C; such that f =n; - f". O

2.6. Remark The property stated in Lemma 2.5 contrasts to the case of
a-presentability: a quotient of an a-presentable object is not necessarily a-
presentable (see Remark 1.3 of [4]).

2.7. Lemma In a cocomplete category with a proper (£, M) factorization
system:

(i) any a-small colimit of a-bounded objects is a-bounded;

(ii) any a-small union of a-bounded objects is a-bounded.

Proof (i) We are going to prove the statement for the particular case of
coproducts. Then the result follows for colimits taking into account Lemma
2.5 and the fact that M C Mono implies that RegEpi C £.

Let Ax (k € K) be an a-small set of a-bounded objects. Let ¢; : C; —
C' (i € I) be an a-directed union, and consider a morphism d : e Ay — C.
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Since every Ay is a-bounded, there are morphisms fj : Ay — Cj, such that
d-v, = ¢, - fr for all k (where vy, are the injections of the coproduct). Since
K is a-small and [ is a-directed, there is some ¢ € [ such that ¢, <1, k € K.

Then, putting g, = ( Ay Ji C; C; ), we obtain ¢; - g, = d - vg. Let

h : IA; — C; be the morphism determined by the morphisms ¢, and the
universality of the coproduct. Then we have d = ¢; - h.

(ii)) Let my : Ay — A (k € K) be a union (not necessarily a-directed)
with K a-small and all Ay a-bounded. Let ¢; : C; — C (i € I) be an a-
directed union, and consider a morphism f : A — C. Since 14 = Ugergmy,
the induced canonical morphism e : ITA;, — A belongs to £. Put

d=f-e

and let ¢ and h : [TA; — C; be obtained as in (i). Then, we have the following
commutative diagram:

A, —> A = UA,
hl Lf
C; - C
By the diagonal fill-in property, there exists a morphism ¢ : A — C; such
that ¢; - t = f. 0

2.8. Theorem Let A be a cocomplete and E-cowellpowered category with a
proper factorization system (€, M). The following conditions are equivalent:
(i) A is locally a-bounded with respect to M.
(ii) There is a set H of a-bounded objects such that any object of A is an
a-directed M-union of objects of 'H.

Proof (ii) = (i): It is clear that if H is a set as in (ii), then it is an &-

generator of A. In fact, given A € A, let H; —~ A (i € I) be an a-directed
M-union, with all H; in H. This exactly means that the induced canonical
morphism I1H; — A belongs to &£.

(i) = (ii): Let G be an E-generator of A with all objects a-bounded. The
class of objects

H = { £-quotients of a-small coproducts of objects of G}

is essentially small, because G is small and A is E-cowellpowered. Moreover,
from 2.5 and 2.7, the objects of H are a-bounded. We show that H fulfils

(ii).
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Let A € A, and let

{fi:Gi—Aielt=|]AG A).
Geg
Let
J={JCI: Jis asmall}.

Consider the following commutative diagram

G

L l \
J
(&N m

Gy Qs A

|
K | dK
vy l v ’%:K

Gk —= Uk

where:

e (j = l;c;G; and the morphisms VJJ are the corresponding injections;

e for each J C K, v : G; — G is the obvious canonical morphism;

e f;: Gy — Ais the morphism determined by f;, j € J;

e my - ey is the (£, M) factorization of f; : G; — A;

e for each J C K, d} : Q; — Q is the morphism given by the diagonal
fill-in property applied to the equality (mg - ex) - vF =my - ey.
For J equipped with the inclusion order, both the diagrams

vy Gy — GK) jex, rxes and (45 Qs = ) scxcaxes

are a-directed. Moreover the colimit of the former one is Il;c;G;. Let ~; :
Qs — C = Colim () ; be the colimit cocone of the latter one. Then there is
a morphism e : I, ;G; — C making the following diagram commutative.

€J my

Gy Qr—— A

a lw Tm,

Mic1Gi —— C —— UsegQy

The morphism e belongs to &£, since all e; do. Let m' - e be the (£, M)
factorization of the canonical morphism from C' to A determined by the
morphisms mj. By hypothesis, m' - (¢ - e) : I;c;G; — A belongs to &
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(because G is an E-generator). Consequently, m' lies in £, and, since it also
belongs to M, is an isomorphism, that is, A is an union of the M-subobjects

my:Qy— A JeJ. O

2.9. Corollary In &-cowellpowered locally bounded categories for any infinite
reqular cardinal 3 the class of all B-bounded objects is essentially small.

Proof Let A be locally a-bounded. Without loss of generality we assume
that 3 > «. Then A is also locally $-bounded and has a set H of -bounded
objects such that any object of A is an M-union of objects of H. Given a
B-bounded object A let m; : H; — A (i € I) be that existing union. The
B-boundedness of A implies the equality m; -t = 14 for some t : A — H,.
But then A ~ H;. O

3. Small-orthogonality classes

In this section we study the following problem: When is a reflective sub-
category™ B of a locally bounded category A a small-orthogonality class, i.e.,
a category of the form N+, for N a set of morphisms? In this study we
restrict ourselves to the particular case of the reflector R : A — B preserving
M-monomorphisms. More precisely, we characterize those reflective subcat-
egories of a locally a-bounded category with an M-preserving reflector which
are of the form N'* with all morphisms of " having a-bounded domains and
codomains.

In the case of locally presentable categories the subcategories of the form
N+ for N a set of morphisms with a-presentable domains and codomains
were characterized in [13] and [5] (see Introduction).

Along this section by an «a-orthogonality class of a locally bounded cat-
egory we shall mean a subcategory of the form Nt for some set N whose
all morphisms have a-bounded domains and codomains. We borrow this
terminology from [4] using boundedness in the place of presentability.

3.1. Remark Recall that, for B a subcategory of A, a morphism g : C' — D
of A is said to be a B-epimorphism if for any pair of morphisms a, b : D — B
with B € B, the equality a - ¢ = b - g implies a = b.

Let A = Top. If B = Haus the B-epimorphisms are just the dense mor-
phisms of Top. If B = Top, the B-epimorphisms are the b-dense morphisms,
i.e., the continuous maps f : X — Y such that {y} N H N f(X) # 0 for each

*Along this paper all subcategories are assumed to be full and isomorphism-closed.
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y € Y and each open set H of Y containing y. More generally, if A has
equalizers and a proper factorization system (£, M), then for any subcate-
gory B of A the B-epimorphisms are the morphisms which are dense with
respect to the regular closure operator induced in A by B ([9]).

If B is reflective in A it is easy to see that the B-epimorphisms are just
those morphisms of A whose image by the reflector is an epimorphism in B.

3.2. Definition Let A be a locally bounded category and let B be a subcat-
egory of A. A morphism f: A — B of A is said to be a-B-simple provided
that in each commutative diagram

c—2Dp
lv

u

f
A—B
with C' and D a-bounded and ¢ a B-epimorphism, u factorizes through g,
ie., u =u'- g for some v .

3.3. Remark It is easy to see that (compare with the properties of B-pure
morphisms in [5]):

(i) The composition of a-B-simple morphisms is an a-B-simple morphism.

(ii) If f - g is a-B-simple than g is a-B-simple.

(iii) Every y-B-simple morphism is a-B-simple for v > «.

(iv) All a-B-simple morphisms are monomorphisms; and every equalizer is
an a-B-simple morphism.

(v) If B is cogenerating in A, then

StrongMono(A) C {B-a-simple morphisms}.

It follows from the fact that, in this case, every B-epimorphism is an epimor-
phism in A.

3.4. Proposition Let A be a locally a-bounded category with respect to M.
Then any a-orthogonality class of A is a reflective subcategory of A which is
(i) closed under a-directed M-unions;

(ii) locally a-bounded with respect to M’ = M N Mor(B);
(iii) closed under a-B-simple subobjects.

Proof Let B = Nt for N a set of morphisms in A with a-bounded domains
and codomains. From [10], we know that B is reflective and has an (£, M’)
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proper factorization system, with & = (M’)!, and moreover that the cowell-
poweredness of A with respect to £ implies the £’-cowellpoweredness of B.
Let R : A — B be the reflector functor.

(i) Let

be an a-directed M-union in A with all B; € B. We want to show that
Z €B=N* Let h: X — Y be amorphism of A and let f : X — Z.
Since X is a-bounded there is some i and some f’ : X — B; such that
b; - f' = f. The morphism [’ factorizes through h, because B; € B, then so
does the morphism f. To show the uniqueness of the last factorization, let
y,y Y — Z be such that y - h =9 - h. Since Y is a-bounded, we can find
kelandt, t':Y — By such that y = by -t and 3y = by -t’. Now the equality
by -t-h =10t -h, the orthogonality of Bj to h and the fact that b, € M
imply that ¢t = ¢/, thus y = v/.

(ii) Of course B is cocomplete. Moreover:

(a) If X is an a-bounded object of A, then RX is an a-bounded object
of B. This is clear since, from (i), every a-directed M'-union in B is an
a-directed M-union in A.

(b) If G is an &-generator of A then it is well-know that R(G) is an &'-
generator of B ([10]). In fact, let A € B, and let e : II;c;G; — A be a
morphism of £ with all G; in G. Then the morphism Re : II;c;RG;, — A
belongs to &' since, as it is easily seen, R(E) C (M),

(iii) Let m : Z — B be an a-B-simple morphism with B € B. We want to
show that Z € B. Let h : X — Y lay in A/. Given a morphism [ : X — Z,
since B € N*, we get f’ such that f'- h = m - f. Because m is a-B-simple,
there is f” such that f”-h = f. The uniqueness of f” follows from the fact
that m - f factors uniquely through A and m is a monomorphism. O

3.5. Remark Let A be a locally a-bounded category with respect to M.
Let B be a subcategory of A which is locally a-bounded with respect to
MnN Mor(B) and closed under limits and under a-directed M-unions. Then
B is reflective. In fact, the inclusion functor B — A fulfils the solution set
condition: Given A € A, there is some regular cardinal A > « such that
A is Ad-bounded in A and B is a locally A-bounded category. Consequently,
there is a set {B;, i € I} of A-bounded objects of B such that every object
of B is a A-directed M N Mor(B)-union of B;’s. But, being closed in A
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under a-directed unions, B is also closed under A-directed unions. Then, any
morphism ¢g : A — B with codomain in B factorizes through some of the
objects B;.

Next we want to characterize the reflective subcategories of a locally bounded
category which are small-orthogonality classes. We restrict ourselves to re-
flective subcategories whose reflector preserves M-monomorphisms. This
kind of reflectors were studied by Ringel in [18]. Top, and Sob are ex-
amples of subcategories of Top whose reflector preserves embeddings. Let
Sob,, denote the limit-closure in Top of the ordinal « regarded as a topo-
logical space with the Alexandrov topology. Both Top and Top, have an
{embeddings}-preserving reflector into Sob,, (see [19]).

3.6. Theorem Let A be a locally a-bounded category with respect to M.
Let B be a reflective subcategory of A whose reflector preserves morphisms of
M. Then B is an a-orthogonality class in A iff it is closed under a-directed
M-unions and a-B-simple objects.

Proof The necessity was proved in 3.4.

In order to prove the sufficiency, we first show that the reflector R : A — B
preserves a-directed M-unions. Given an a-directed M-union m; : X; —
X (i € I), we have commutative diagrams

TXi

X RX;
3 =
mi ;e X; — ;e RX; Rm;
/ k
X - RX

where e € £. But, as it is easy to see, R(§) C & = (M')! for M’ =
MnN Mor(B). Then Rmi : RX; — RX forms an M’-union in B.
To finish the proof, we show that, for

N={h:X—=Y in A h 1B, X,Y a-bounded},

N+t C B, and thus B = N*. Let X € N'*. We show that the reflection
rx : X — RX of X in B is a-B-simple; consequently, as B is closed under
a-B-subobjects, X € B. Let f : Y — Z be a B-epimorphism with Y and
Z a-bounded. Given morphisms s : ¥ — X and ¢t : Z — RX such that
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t-f=rx-s, let m; : X; — X be an a-directed M-union in A with all X; a-
bounded. Then there issome € I and s’ : Y — X such that m;-s’ = s. The
closedness of B under a-directed M-unions and the fact that 7 is a-bounded
implies the existence of some j € I and a morphism t' : Z — RX; such that
Rm; -t =t. Since [ is a-directed, we can then find £ € I and morphisms 35
and 7 such that the following diagram is commutative (the commutativity of
the upper quadrilateral derives from the fact that Rmy is monic):

Y ! — 7
5 /
: \Xk ™ RX, ;
Ak Rk
X — RX

/!

Let X} I W S Z be the pushout of f along 5. Since rx, L B, any
morphism ¢ : X, — B with B € B is factorizable through f’. Furthermore,
as it is easily seen, the pushout of a B-epimorphism is also a B-epimorphism.
Hence f L B. The domain of f"is a-bounded, and from Lemma 2.7, also its
codomain is a-bounded, then f € A/. Hence there is a morphismn : W — X
such that n - f/ = my. Therefore, n - s’ is the needed diagonal morphism,
since (n-s)-f=n-f-s=my-5=s. O

3.7. Examples (1) The category Top, is an Xy-orthogonality class in Top.
In fact Top, = {h}* where h is the map h : {0,1} — {0}, considering the
two-elements set with the trivial topology.

(2) Sob is not an Rp-orthogonality class in Top,. It follows from the above
theorem taking into account that Sob is not closed under Ry-Sob-simple
subobjects.

To see that, we show that every Sob-epimorphism e : X — Y with X and
Y finite is a surjection. (We recall that the Sob-epimorphisms of Top,, are
the b-dense morphisms, see 3.1.) Let y € Y, let {H;, i € I} be the set of all
open neighbourhoods of y, and put H = (),.; H;. Since [ is finite, H is an
open containing y, and, then, H Ne(X) N @ # (). Let ¢/ be an element of
that intersection. Thus {y'} C {y}. But for all H; we have y € H;, hence
{y} = {y/}. Since Y € Top,, we conclude that y = 3/, then y € e(X).

As a consequence we have that
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{embeddings} C { Nyp-Sob-simple morphisms}.

But then, if Sob were closed under Ny-Sob-subobjects, it would be also
closed under embeddings, what is obviously false (since the reflections are

embeddings).
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