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ON BOUNDEDNESS AND
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Dedicated to Jiř́ı Adámek on the occasion of his sixtieth birthday

Abstract: A characterization of locally bounded categories and a criterion to
identify small-orthogonality classes in these categories are given.

1. Introduction

In [11], P. Gabriel and F. Ulmer proved that in locally presentable cat-
egories the orthogonal subcategory N⊥ is reflective for any set N of mor-
phisms. The key point of the proof is the fact that for any object of the
base category there is some infinite regular cardinal α such that the object is
α-small, where α-smallnes means α-presentability. In [10] and [15], P. Freyd
and M. Kelly gave a generalization of this property for a wider range of cate-
gories, using a different concept of smallness for objects: boundedness. They
showed that in a locally bounded category (as defined in [14] and [17]) the
subcategory of all objects orthogonal to a set of morphisms is reflective. (In
fact they went further: they proved that N⊥ is reflective for every class N
which is the union of a set of morphisms with a class of epimorphisms.)

In a cocomplete category A an object A is said to be α-bounded if the
hom-functor A(A,−) preserves α-directed unions. A locally bounded cat-
egory (see [14]) is a complete and cocomplete category A with a proper
factorization system (E ,M) and an E-generator G such that (i) A has E-
cointersections and (ii) there is a regular cardinal α such that each object of
G is α-bounded. We call these categories locally α-bounded when they are
E-cowellpowered and α is a regular cardinal which fits the condition (ii). Lo-
cally presentable categories and epi-reflective subcategories of the category
of topological spaces are examples of locally bounded categories. We show
that a cocomplete and cowellpowered category is locally bounded precisely
when there is a regular cardinal α and a set H of α-bounded objects such

Received April 21, 2008.
Financial support by the Centre for Mathematics of the University of Coimbra and by the School

of Technology of Viseu is acknowledged.

1



2 LURDES SOUSA

that any object A of A is an α-directed union of objects of H. This charac-
terization will be useful in the study of small-orthogonality classes, that is,
subcategories of the form N⊥ for N a set of morphisms.

In [13] the α-orthogonality classes of a locally α-presentable category were
proved to be exactly the subcategories closed under limits and α-directed
colimits, for all uncountable regular cardinals α. (Recall that, following [4],
an α-orthogonality class is a subcategory of the form N⊥ for some set N
of morphisms whose domains and codomains are α-presentable.) This char-
acterization does not work for α = ℵ0, as it was shown in [20] and [12].
A description of the ℵ0-orthogonality classes in locally finitely presentable
categories in terms of closure properties was given in [5]: they are the sub-
categories A closed under products, directed colimits and A-pure subobjects.
In the context of locally bounded categories we shall adopt the terminology
α-orthogonality class as expected: the meaning is as in [4], just replacing
“presentable” by “bounded”. The motive of this paper is to characterize
the reflective subcategories of locally bounded categories which are small-
orthogonality classes. In cowellpowered locally bounded categories a subcat-
egory is a small-orthogonality class iff it is an α-orthogonality class for some
α. We are going to restrict ourselves to reflective subcategories whose re-
flector preserves M-monomorphisms. The properties of these reflectors were
studied for instance by Ringel in [18]. We show that, in locally α-bounded
categories, a reflective subcategory with an M-preserving reflector is an α-
orthogonality class iff it is closed under α-directed unions and α-B-simple
subobjects. (The notion of α-B-simple morphism is parallel to the one of
α-B-pure morphism, used in [5]: If B is a subcategory of A, a morphism
f : A → B of A is said to be α-B-simple provided that, if we have mor-
phisms e, u and v such that f · u = v · e and e is a B-epimorphism, then
there exists a morphism u′ such that u′ · e = u.) For instance, the category
Top0 of T0-spaces is an ℵ0-orthogonality class of Top, but the category Sob

of sober spaces is not an ℵ0-orthogonality class of Top0; in both cases we
have M-preserving reflectors for M = {embeddings}.

2. Properties of locally bounded categories

Let A be a category with a proper factorization system (E ,M) (where
proper means that E and M consist of epimorphisms and monomorphisms,
respectively). Recall that E and M determine each other: E = M↑ and
M = E↓ ([10]).
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A set G is said to be an E-generator of A if for each object A there is some
subset {Gi, i ∈ I} of G and an E-morphism e : ∐i∈IGi → A. (A detailed
study of E-generators is made in, e.g., [6] and [7].)

Let mi : Ai → A, i ∈ I, be a diagram in A with all mi ∈ M. The M-union
(or just union) of (mi)i∈I is the supremum of (mi)i∈I, up to isomorphism, in
the class of all M-subobjects of A. It can be obtained through the (E ,M)-
factorization of the canonical morphism ∐i∈IAi → A:

Ai

mi

&&νi //

ni∈M ((RRRRRRRRRRRRRRRRRR ∐Ai
//_______

e∈E

!!D
DD

DD
DD

D
A

B
m∈M

??��������

We shall often write ∪i∈Imi = m or ∪i∈IAi = B for short.
Let α be an infinite regular cardinal. An object A is said to be α-bounded

if the hom-functor A(A,−) preserves α-directed unions.

2.1. Definition (1) ([14], [17]) A category A is said to be locally bounded if
it is cocomplete, has a proper factorization system (E ,M), and there is an
infinite regular cardinal α such that:

(i) A has E-cointersections;
(ii) A has an E-generator whose objects are all α-bounded.

(2) By a locally α-bounded category with respect to M we shall mean a
category under the conditions of (1), for a given α, which moreover is E-
cowellpowered. The mention to M will often be omitted.

2.2. Remark Every locally bounded category is complete. In [14] and [17],
the authors include to be complete in the definition of locally bounded cate-
gory. However the completeness comes for free, since any E-cocomplete cat-
egory with an E-generator is complete. This follows from the fact that any
such category is total (see [7]), that is, the Yoneda embedding A →֒ [Aop,Set]
has a left adjoint ([16]); and any total category is complete and M-complete
(see [7] and [8]).

2.3. Examples (1) Every locally presentable category is locally bounded
with respect to monomorphisms, and also with respect to strong monomor-
phisms (see [10] and [2]).

(2) The category Top of topological spaces is locally ℵ0-bounded with
respect to strong monomorphisms (= embeddings). And every epi-reflective
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subcategory of Top is locally ℵ0-bounded with respect to embeddings. More
generally, any E-reflective subcategory B of a locally α-bounded category
with respect to M is also locally α-bounded with respect to M ∩ Mor(B)
([10], [2]).

(3) Any topological category over Set (see [3]) is locally ℵ0-bounded with
respect to strong monomorphisms.

(4) The category Ban of Banach spaces and linear contractions is locally
ℵ1-bounded ([14], [17]).

2.4. Remark The following properties are easily verified:
(i) In a locally bounded category for each object A there is an infinite

regular cardinal α such that A is α-bounded ([10], 3.1.2).
(ii) In a cocomplete category if β and γ are regular cardinals such that

β ≤ γ, then any β-bounded object is also γ-bounded; consequently, the
fulfillment of 2.1 for α = β ensures that it also holds for α = γ.

2.5. Lemma In a cocomplete category with a proper factorization system
(E ,M) any E-quotient of an α-bounded object is α-bounded.

Proof Let B be α-bounded, let e : B → E belong to E and let

Ci

ni // C (i ∈ I)

be an α-directed M-union, that is, 1C = ∪i∈Ini. Given f : E → C, there are
some i and some morphism f ′ : B → Ci such that f · e = ni · f ′. Then, since
ni ∈ M and e ∈ M↑, there exists f ′′ : E → Ci such that f = ni · f ′′. 2

2.6. Remark The property stated in Lemma 2.5 contrasts to the case of
α-presentability: a quotient of an α-presentable object is not necessarily α-
presentable (see Remark 1.3 of [4]).

2.7. Lemma In a cocomplete category with a proper (E ,M) factorization
system:

(i) any α-small colimit of α-bounded objects is α-bounded;
(ii) any α-small union of α-bounded objects is α-bounded.

Proof (i) We are going to prove the statement for the particular case of
coproducts. Then the result follows for colimits taking into account Lemma
2.5 and the fact that M ⊆ Mono implies that RegEpi ⊆ E .

Let Ak (k ∈ K) be an α-small set of α-bounded objects. Let ci : Ci →
C (i ∈ I) be an α-directed union, and consider a morphism d : ∐k∈KAk → C.
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Since every Ak is α-bounded, there are morphisms fk : Ak → Cik such that
d · νk = cik · fk for all k (where νk are the injections of the coproduct). Since
K is α-small and I is α-directed, there is some i ∈ I such that ik ≤ i, k ∈ K.

Then, putting gk = ( Ak

fk // Cik
// Ci ), we obtain ci · gk = d · νk. Let

h : ∐Ak → Ci be the morphism determined by the morphisms gk and the
universality of the coproduct. Then we have d = ci · h.

(ii) Let mk : Ak → A (k ∈ K) be a union (not necessarily α-directed)
with K α-small and all Ak α-bounded. Let ci : Ci → C (i ∈ I) be an α-
directed union, and consider a morphism f : A → C. Since 1A = ∪k∈Kmk,
the induced canonical morphism e : ∐Ak → A belongs to E . Put

d = f · e

and let i and h : ∐Ak → Ci be obtained as in (i). Then, we have the following
commutative diagram:

∐Ak
e //

h
��

A = ∪Ak

f
��

Ci

ci // C

By the diagonal fill-in property, there exists a morphism t : A → Ci such
that ci · t = f . 2

2.8. Theorem Let A be a cocomplete and E-cowellpowered category with a
proper factorization system (E ,M). The following conditions are equivalent:

(i) A is locally α-bounded with respect to M.
(ii) There is a set H of α-bounded objects such that any object of A is an

α-directed M-union of objects of H.

Proof (ii) ⇒ (i): It is clear that if H is a set as in (ii), then it is an E-

generator of A. In fact, given A ∈ A, let Hi

mi // A (i ∈ I) be an α-directed
M-union, with all Hi in H. This exactly means that the induced canonical
morphism ∐Hi → A belongs to E .

(i) ⇒ (ii): Let G be an E-generator of A with all objects α-bounded. The
class of objects

H = { E-quotients of α-small coproducts of objects of G}

is essentially small, because G is small and A is E-cowellpowered. Moreover,
from 2.5 and 2.7, the objects of H are α-bounded. We show that H fulfils
(ii).
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Let A ∈ A, and let

{fi : Gi → A, i ∈ I} =
⋃

G∈G

A(G, A) .

Let

J = {J ⊆ I : J is α-small}.

Consider the following commutative diagram

Gj

νJ
j

��

fj

((QQQQQQQQQQQQQQQQQQ

GJ

eJ //

νK
J

��

QJ
mJ //

dK
J

���
�

�
A

GK eK

// QK

mK

>>}}}}}}}}

where:
• GJ = ∐j∈JGj and the morphisms νJ

j are the corresponding injections;

• for each J ⊆ K, νK
J : GJ → GK is the obvious canonical morphism;

• fJ : GJ → A is the morphism determined by fj, j ∈ J ;
• mJ · eJ is the (E ,M) factorization of fJ : GJ → A;
• for each J ⊆ K, dK

J : QJ → QK is the morphism given by the diagonal
fill-in property applied to the equality (mK · eK) · νK

J = mJ · eJ .
For J equipped with the inclusion order, both the diagrams

(

νK
J : GJ → GK

)

J⊆K, J,K∈J
and

(

dK
J : QJ → QK

)

J⊆K, J,K∈J

are α-directed. Moreover the colimit of the former one is ∐i∈IGi. Let γJ :
QJ → C = ColimQJ be the colimit cocone of the latter one. Then there is
a morphism e : ∐i∈IGi → C making the following diagram commutative.

GJ

eJ //

νJ

��

QJ
mJ //

γJ

��

A

∐i∈IGi e
// C

e′
// ∪J∈JQJ

m′

OO

The morphism e belongs to E , since all eJ do. Let m′ · e′ be the (E ,M)
factorization of the canonical morphism from C to A determined by the
morphisms mJ . By hypothesis, m′ · (e′ · e) : ∐i∈IGi → A belongs to E



ON BOUNDEDNESS AND SMALL-ORTHOGONALITY CLASSES 7

(because G is an E-generator). Consequently, m′ lies in E , and, since it also
belongs to M, is an isomorphism, that is, A is an union of the M-subobjects

mJ : QJ → A, J ∈ J . 2

2.9. Corollary In E-cowellpowered locally bounded categories for any infinite
regular cardinal β the class of all β-bounded objects is essentially small.

Proof Let A be locally α-bounded. Without loss of generality we assume
that β ≥ α. Then A is also locally β-bounded and has a set H of β-bounded
objects such that any object of A is an M-union of objects of H. Given a
β-bounded object A let mi : Hi → A (i ∈ I) be that existing union. The
β-boundedness of A implies the equality mi · t = 1A for some t : A → Hi.
But then A ≃ Hi. 2

3. Small-orthogonality classes

In this section we study the following problem: When is a reflective sub-
category∗ B of a locally bounded category A a small-orthogonality class, i.e.,
a category of the form N⊥, for N a set of morphisms? In this study we
restrict ourselves to the particular case of the reflector R : A → B preserving
M-monomorphisms. More precisely, we characterize those reflective subcat-
egories of a locally α-bounded category with an M-preserving reflector which
are of the form N⊥ with all morphisms of N having α-bounded domains and
codomains.

In the case of locally presentable categories the subcategories of the form
N⊥ for N a set of morphisms with α-presentable domains and codomains
were characterized in [13] and [5] (see Introduction).

Along this section by an α-orthogonality class of a locally bounded cat-
egory we shall mean a subcategory of the form N⊥ for some set N whose
all morphisms have α-bounded domains and codomains. We borrow this
terminology from [4] using boundedness in the place of presentability.

3.1. Remark Recall that, for B a subcategory of A, a morphism g : C → D

of A is said to be a B-epimorphism if for any pair of morphisms a, b : D → B

with B ∈ B, the equality a · g = b · g implies a = b.
Let A = Top. If B = Haus the B-epimorphisms are just the dense mor-

phisms of Top. If B = Top0 the B-epimorphisms are the b-dense morphisms,

i.e., the continuous maps f : X → Y such that {y} ∩H ∩ f(X) 6= ∅ for each

∗Along this paper all subcategories are assumed to be full and isomorphism-closed.
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y ∈ Y and each open set H of Y containing y. More generally, if A has
equalizers and a proper factorization system (E ,M), then for any subcate-
gory B of A the B-epimorphisms are the morphisms which are dense with
respect to the regular closure operator induced in A by B ([9]).

If B is reflective in A it is easy to see that the B-epimorphisms are just
those morphisms of A whose image by the reflector is an epimorphism in B.

3.2. Definition Let A be a locally bounded category and let B be a subcat-
egory of A. A morphism f : A → B of A is said to be α-B-simple provided
that in each commutative diagram

C
g

//

u
��

D

v
��

A
f

// B

with C and D α-bounded and g a B-epimorphism, u factorizes through g,
i.e., u = u′ · g for some u′.

3.3. Remark It is easy to see that (compare with the properties of B-pure
morphisms in [5]):

(i) The composition of α-B-simple morphisms is an α-B-simple morphism.
(ii) If f · g is α-B-simple than g is α-B-simple.
(iii) Every γ-B-simple morphism is α-B-simple for γ ≥ α.
(iv) All α-B-simple morphisms are monomorphisms; and every equalizer is

an α-B-simple morphism.
(v) If B is cogenerating in A, then

StrongMono(A) ⊆ {B-α-simple morphisms}.
It follows from the fact that, in this case, every B-epimorphism is an epimor-
phism in A.

3.4. Proposition Let A be a locally α-bounded category with respect to M.
Then any α-orthogonality class of A is a reflective subcategory of A which is

(i) closed under α-directed M-unions;
(ii) locally α-bounded with respect to M′ = M∩ Mor(B);
(iii) closed under α-B-simple subobjects.

Proof Let B = N⊥ for N a set of morphisms in A with α-bounded domains
and codomains. From [10], we know that B is reflective and has an (E ′,M′)
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proper factorization system, with E ′ = (M′)↑, and moreover that the cowell-
poweredness of A with respect to E implies the E ′-cowellpoweredness of B.
Let R : A → B be the reflector functor.

(i) Let

bi : Bi → Z (i ∈ I)

be an α-directed M-union in A with all Bi ∈ B. We want to show that
Z ∈ B = N⊥. Let h : X → Y be a morphism of N and let f : X → Z.
Since X is α-bounded there is some i and some f ′ : X → Bi such that
bi · f ′ = f . The morphism f ′ factorizes through h, because Bi ∈ B, then so
does the morphism f . To show the uniqueness of the last factorization, let
y, y′ : Y → Z be such that y · h = y′ · h. Since Y is α-bounded, we can find
k ∈ I and t, t′ : Y → Bk such that y = bk · t and y′ = bk · t′. Now the equality
bk · t · h = bk · t′ · h, the orthogonality of Bk to h and the fact that bk ∈ M
imply that t = t′, thus y = y′.

(ii) Of course B is cocomplete. Moreover:
(a) If X is an α-bounded object of A, then RX is an α-bounded object

of B. This is clear since, from (i), every α-directed M′-union in B is an
α-directed M-union in A.

(b) If G is an E-generator of A then it is well-know that R(G) is an E ′-
generator of B ([10]). In fact, let A ∈ B, and let e : ∐i∈IGi → A be a
morphism of E with all Gi in G. Then the morphism Re : ∐i∈IRGi → A

belongs to E ′ since, as it is easily seen, R(E) ⊆ (M′)↑.

(iii) Let m : Z → B be an α-B-simple morphism with B ∈ B. We want to
show that Z ∈ B. Let h : X → Y lay in N . Given a morphism f : X → Z,
since B ∈ N⊥, we get f ′ such that f ′ · h = m · f . Because m is α-B-simple,
there is f ′′ such that f ′′ · h = f . The uniqueness of f ′′ follows from the fact
that m · f factors uniquely through h and m is a monomorphism. 2

3.5. Remark Let A be a locally α-bounded category with respect to M.
Let B be a subcategory of A which is locally α-bounded with respect to
M∩Mor(B) and closed under limits and under α-directed M-unions. Then
B is reflective. In fact, the inclusion functor B →֒ A fulfils the solution set
condition: Given A ∈ A, there is some regular cardinal λ ≥ α such that
A is λ-bounded in A and B is a locally λ-bounded category. Consequently,
there is a set {Bi, i ∈ I} of λ-bounded objects of B such that every object
of B is a λ-directed M ∩ Mor(B)-union of Bi’s. But, being closed in A
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under α-directed unions, B is also closed under λ-directed unions. Then, any
morphism g : A → B with codomain in B factorizes through some of the
objects Bi.

Next we want to characterize the reflective subcategories of a locally bounded
category which are small-orthogonality classes. We restrict ourselves to re-
flective subcategories whose reflector preserves M-monomorphisms. This
kind of reflectors were studied by Ringel in [18]. Top0 and Sob are ex-
amples of subcategories of Top whose reflector preserves embeddings. Let
Sobα denote the limit-closure in Top of the ordinal α regarded as a topo-
logical space with the Alexandrov topology. Both Top and Top0 have an
{embeddings}-preserving reflector into Sobα (see [19]).

3.6. Theorem Let A be a locally α-bounded category with respect to M.
Let B be a reflective subcategory of A whose reflector preserves morphisms of
M. Then B is an α-orthogonality class in A iff it is closed under α-directed
M-unions and α-B-simple objects.

Proof The necessity was proved in 3.4.
In order to prove the sufficiency, we first show that the reflector R : A → B

preserves α-directed M-unions. Given an α-directed M-union mi : Xi →
X (i ∈ I), we have commutative diagrams

Xi

rXi //

mi

��

νi

##H
HHHHHHHH

RXi
Rνi

yyssssssssss

Rmi

��

∐i∈IXi
r //

e
zzvvvvvvvvv

∐i∈IRXi

Re %%LLLLLLLLLL

X rX

// RX

where e ∈ E . But, as it is easy to see, R(E) ⊆ E ′ = (M′)↑ for M′ =
M∩ Mor(B). Then Rmi : RXi → RX forms an M′-union in B.

To finish the proof, we show that, for

N = {h : X → Y in A, h ⊥ B, X, Y α-bounded},

N⊥ ⊆ B, and thus B = N⊥. Let X ∈ N⊥. We show that the reflection
rX : X → RX of X in B is α-B-simple; consequently, as B is closed under
α-B-subobjects, X ∈ B. Let f : Y → Z be a B-epimorphism with Y and
Z α-bounded. Given morphisms s : Y → X and t : Z → RX such that
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t · f = rX · s, let mi : Xi → X be an α-directed M-union in A with all Xi α-
bounded. Then there is some i ∈ I and s′ : Y → Xi such that mi ·s′ = s. The
closedness of B under α-directed M-unions and the fact that Z is α-bounded
implies the existence of some j ∈ I and a morphism t′ : Z → RXj such that
Rmj · t′ = t. Since I is α-directed, we can then find k ∈ I and morphisms s

and t such that the following diagram is commutative (the commutativity of
the upper quadrilateral derives from the fact that Rmk is monic):

Y
f

//

s

��

s

  B
BB

BB
BB

B
Z

t

��

t

{{wwwwwwwww

Xk

rXk //

mk~~||
||

||
||

RXk

Rmk ##G
GG

GG
GG

GG

X rX

// RX

Let Xk

f ′

// W Z
s′oo be the pushout of f along s. Since rXk

⊥ B, any

morphism g : Xk → B with B ∈ B is factorizable through f ′. Furthermore,
as it is easily seen, the pushout of a B-epimorphism is also a B-epimorphism.
Hence f ′ ⊥ B. The domain of f ′ is α-bounded, and from Lemma 2.7, also its
codomain is α-bounded, then f ′ ∈ N . Hence there is a morphism n : W → X

such that n · f ′ = mk. Therefore, n · s′ is the needed diagonal morphism,
since (n · s′) · f = n · f ′ · s = mk · s = s. 2

3.7. Examples (1) The category Top0 is an ℵ0-orthogonality class in Top.
In fact Top0 = {h}⊥ where h is the map h : {0, 1} → {0}, considering the
two-elements set with the trivial topology.

(2) Sob is not an ℵ0-orthogonality class in Top0. It follows from the above
theorem taking into account that Sob is not closed under ℵ0-Sob-simple
subobjects.

To see that, we show that every Sob-epimorphism e : X → Y with X and
Y finite is a surjection. (We recall that the Sob-epimorphisms of Top0 are
the b-dense morphisms, see 3.1.) Let y ∈ Y , let {Hi, i ∈ I} be the set of all
open neighbourhoods of y, and put H =

⋂

i∈I Hi. Since I is finite, H is an

open containing y, and, then, H ∩ e(X) ∩ {y} 6= ∅. Let y′ be an element of

that intersection. Thus {y′} ⊆ {y}. But for all Hi we have y′ ∈ Hi, hence

{y} = {y′}. Since Y ∈ Top0, we conclude that y = y′, then y ∈ e(X).
As a consequence we have that
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{embeddings} ⊆ { ℵ0-Sob-simple morphisms}.
But then, if Sob were closed under ℵ0-Sob-subobjects, it would be also

closed under embeddings, what is obviously false (since the reflections are
embeddings).
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[2] J. Adámek, M. Hébert and L. Sousa, The Orthogonal Subcategory Problem and the Small

Object Argument, Preprints of the Department of Mathematics of the University of Coimbra

07-40 (2007), submitted.
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[13] M. Hébert, J. Rosický, Uncountable orthogonality is a closure property, Bull. London Math.

Soc. 33 (2001) 685-688.
[14] G. Janelidze and G. M. Kelly, The reflectiveness of covering morphisms in Algebra and Ge-

ometry, Theory and Applications of Categories, 3 (1997) 132-159.
[15] M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids,

colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), 1-84.
[16] M. Kelly, A survey of totality for enriched and ordinary categories, Cahiers Topologie Géom.
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