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ponding Carathéodory function satisfies a Riccati differential equation with polyno-
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1. Introduction
A regular Hermitian linear functional defined in the linear space of Lau-

rent polynomials with complex coefficients is said to be Laguerre-Hahn if
the corresponding Carathéodory function, F , satisfies a Riccati differential
equation with polynomial coefficients

zAF ′ = BF 2 + CF + D , A 6≡ 0 . (1)

The corresponding sequence of orthogonal polynomials is said to be Laguerre-
-Hahn. We shall refer to the set of all such functionals (respectively, sequences
of orthogonal polynomials) as the Laguerre-Hahn class on the unit circle
(see [3]).

We remark that, analogously to the real line (see [10, 13, 14] for a study of
the Laguerre-Hahn class on the set of functionals defined in the linear space
of real polynomials), the Laguerre-Hahn class on the unit circle includes the
Laguerre-Hahn affine class on the unit circle, which corresponds to the case
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B = 0 in (1), and the semi-classical class on the unit circle, which corresponds
to the case B = 0 and C, D specific polynomials depending on A, B in (1)
(see [2, 4]). Other examples of Laguerre-Hahn sequences can be found in [3].

In this paper we give a characterization of Laguerre-Hahn orthogonal poly-
nomials on the unit circle in terms of matrix Sylvester differential equations.
Let u be a Hermitian Laguerre-Hahn functional such that the corresponding
Carathéodory function satisfies (1). We establish the equivalence between (1)

and the following matrix Sylvester differential equations for Yn =

[

φn −Ωn

φ∗
n Ω∗

n

]

and Qn = [−Qn Q∗
n]

T , where T denotes the transpose matrix,

{

zAY ′
n = BnYn − YnC

zAQ′
n = (Bn + (BF + C/2) I)Qn , n ∈ N ,

(2)

where {φn}, {Ωn}, {Qn} are, respectively, the sequence of orthogonal poly-
nomials with respect to u, the corresponding sequence of polynomials of the
second kind, and the sequence of functions of the second kind; Bn and C
are matrices of order two with polynomial elements (see Theorem 4). As a
consequence of the referred equivalence, a characterization for semi-classical
orthogonal polynomials on the unit circle in terms of first order differential
systems is obtained (see Theorem 5). Moreover, the equivalence between (1)
and (2) allow us to give {Yn} in terms of the solutions of two linear differen-
tial systems, zAL′ = CL and zAP ′

n = BnPn , as Yn = PnL−1 , ∀n ≥ 1 (see
Theorem 6). Furthermore, under certain conditions, we obtain {Yn} defined
in terms of sequences of semi-classical orthogonal polynomials on the unit
circle (see Theorem 8).

This paper is organized as follows. In section 2 we give the definitions
and state the basic results which will be used in the forthcoming sections.
In section 3 we establish a characterization theorem for functionals in the
Laguerre-Hahn class: we establish the equivalence between (1) and the ma-
trix Sylvester differential equations (2). In section 4 we establish a characte-
rization for semi-classical orthogonal polynomials on the unit circle in terms
of first order differential systems. In section 5 we solve the system of matrix
Sylvester differential equations obtained in section 3. Furthermore, taking
into account the characterization of semi-classical orthogonal polynomials on
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the unit circle previously obtained, we determine a representation for its so-
lution in terms of sequences of semi-classical orthogonal polynomials on the
unit circle. Finally, in section 6, an example is presented.

2. Preliminary results
Let Λ = span{zk : k ∈ Z} be the space of Laurent polynomials with

complex coefficients. Given a linear functional u : Λ → C and the sequence
of moments (cn)n∈Z of u, cn = 〈u, ξ−n〉, n ∈ Z, c0 = 1, define the minors of
the Toeplitz matrix ∆ = (cn)n∈N, by

∆−1 = 1 , ∆0 = c0 , ∆k =

∣

∣

∣

∣

∣

∣

c0 · · · ck
...

...
c−k · · · c0

∣

∣

∣

∣

∣

∣

, k ∈ N .

The linear functional u is Hermitian if c−n = cn, ∀n ∈ N, and regular (positive
definite) if ∆n 6= 0 (∆n > 0), ∀n ∈ N.

In this work we shall consider linear functionals that are Hermitian and
positive definite. We will use the notation R+ to denote this set of functio-
nals.

It is known that if u ∈ R+, then u has an integral representation defined
in terms of a probability measure, µ, with infinite support on the unit circle
T = {eiθ : θ ∈ [0, 2π[ }, i.e.,

〈

u, einθ
〉

=
1

2π

∫ 2π

0

einθdµ(θ) , n ∈ Z .

The corresponding sequence of orthogonal polynomials, called orthogonal
polynomials on the unit circle (with respect to µ), is then defined by

1

2π

∫ 2π

0

φn(e
iθ)φm(e−iθ) dµ(θ) = hnδn,m , hn 6= 0 , n, m ∈ N .

If each φn is monic, then {φn} will be called a monic orthogonal polynomial
sequence, and will be denoted by MOPS.

Given a measure µ, the function F defined by

F (z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ) (3)

is a Carathéodory function, i.e., is an analytic function on D = {z ∈ C : |z| <
1} such that F (0) = 1 and ℜe(F ) > 0 for |z| < 1. The converse result also
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holds, since any Carathéodory function has a representation (3) for a unique
probability measure µ on T (see, for example, [16]).

Given a sequence of monic polynomials {φn} orthogonal with respect to µ,
the associated polynomials of the second kind are given by

Ω0(z) = 1, Ωn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z

(

φn(e
iθ) − φn(z)

)

dµ(θ) , ∀n ∈ N ,

and the functions of the second kind associated with {φn} are given by

Qn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
φn(e

iθ) dµ(θ) , n = 0, 1, . . .

Following the ideas of [9], if we define

Yn =

[

φn −Ωn

φ∗
n Ω∗

n

]

, Qn =

[

−Qn

Q∗
n

]

, ∀n ∈ N , (4)

with p∗(z) = znp(1/z), where n is the degree of the polynomial p, and
Q∗

n(z) = znQ(1/z), then the recurrence relations satisfied by {φn} and {Ωn}
can be written in the matrix form as given in the following theorem.

Theorem 1 (cf. [7, 8, 15]). Let F be a Carathéodory function, {φn}, {Ωn},
{Qn}, respectively, the corresponding MOPS on the unit circle, the sequence
of associated polynomials of the second kind, and the sequence of the functions
of the second kind. Let {Yn} and {Qn} be the sequences defined in (4). Then,
the following relations hold, ∀n ∈ N,

Yn = AnYn−1, An =

[

z an

anz 1

]

, (5)

Qn = Yn

[

F
−1

]

, (6)

with an = φn(0), Y0 =

[

1 −1
1 1

]

, Q0 =

[

−F
−F

]

.

Moreover, ∀n ∈ N,

φ∗
n(z)Ωn(z) + φn(z)Ω∗

n(z) = 2hnz
n , (7)

φ∗
n(z)Qn(z) + φn(z)Q∗

n(z) = 2hnz
n , (8)

with hn =
∏n

k=1(1 − |ak|2).
Let H0(z) =

∑+∞
j=0 bjz

j , |z| < 1 , H∞(z) =
∑+∞

j=0 bjz
−j , |z| > 1 . We will

write H0(z) = O(zk) or H∞(z) = O(z−k) if b0 = · · · = bk−1 = 0 , k ∈ N .
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Corollary 1. Let {φn} be a MOPS on the unit circle and {Qn} be the cor-
responding sequence of functions of the second kind. Then, ∀n ∈ N ,

Qn(z) = 2hnz
n + O(zn+1), |z| < 1 ,

Qn(z) = 2an+1hnz
−1 + O(z−2), |z| > 1 ,

with an+1 = φn+1(0) , hn =
∏n

k=1(1 − |ak|2) .

Corollary 2. Let {φn} be a MOPS on the unit circle and {Ωn} be the cor-
responding sequence of associated polynomials of the second kind. Then, the
following holds:
a) If there exists k ∈ N such that φk(α) = Ωk(α) = 0, then α = 0 ;
b) If there exists k ∈ N such that φk(α) = Qk(α) = 0, then α = 0 .

Theorem 2 (Geronimus, [6]). Given a sequence of complex numbers (an)
satisfying |an| < 1, ∀n ∈ N , let {φn} and {Ωn} be the sequences of polyno-
mials defined by the recurrence relation (5), and let F be the corresponding
Carathéodory function. Then, the sequence defined for n ≥ 1 , by

Ω∗
n(z)

φ∗
n(z)

= 1 +
− 2a1z
1 + a1z

−
a2

a1
z(1 − |a1|2)

1 +
a2

a1
z

− · · · −
an+1

an
z(1 − |an|2)

1 +
an+1

an
z

,

converges uniformly to F , on compact subsets of D.

Definition 1 (cf. [17]). Let µ be a measure given by dµ = w dθ+
∑N

k=1 λkδk ,
K ∈ N . µ is semi-classical if there exist polynomials A, C such that the
absolutely continuous part of µ, w, satisfies

w′(z)

w(z)
=

C(z)

zA(z)
. (9)

The corresponding sequence of orthogonal polynomials is called semi-classi-
cal.

Lemma 1 (cf. [2, 4]). A measure µ defined by dµ = w dθ +
∑N

k=1 λkδk is
semi-classical and its absolutely continuous part satisfies (9), if and only if
the corresponding Carathéodory function F satisfies

zA(z)F ′(z) = C(z)F (z) + C3(z) ,

with C3(z) = −zA′(z) − 2

deg(A)
∑

k=2

A(k)(z)

k!

∫ 2π

0

2eiθ(eiθ − z)k−2dµ(θ) .
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3. Characterization in terms of matrix Sylvester differ-
ential equations

Hereafter, I denotes the identity matrix of order two.

Theorem 3. Let F be a Carathéodory function and {Yn} and {Qn} the cor-
responding sequences defined by (4). The following statements are equivalent:
a) F satisfies the differential equation with polynomial coefficients

zAF ′ = BF 2 + CF + D ; (10)

b) {Yn} and {Qn} satisfy the Sylvester differential equations

zAY ′
n = BnYn − YnC (11)

zAQ′
n = (Bn + (BF + C/2) I)Qn , n ∈ N , (12)

where Bn are matrices of bounded degree polynomials,

Bn =

[

l1n −Θ1
n

−Θ2
n l2n

]

, (13)

and

C =

[

C/2 −D
B −C/2

]

. (14)

Proof : a) ⇒ b).
Let F satisfy (10). Firstly we obtain (11). This will be done dividing the
proof in two parts: in the first part we deduce the equations

{

zAΩ′
n = (l1n + C/2)Ωn − Dφn + Θ1

nΩ
∗
n

zAφ′
n = (l1n − C/2)φn + BΩn − Θ1

nφ
∗
n

(15)

and in the second part we deduce the equations
{

zA(Ω∗
n)

′ = (l2n + C/2)Ω∗
n + Dφ∗

n + Θ2
nΩn

zA(φ∗
n)

′ = (l2n − C/2)φ∗
n − BΩ∗

n − Θ2
nφn

(16)

with polynomials l1n, l
2
n, Θ

1
n, Θ

2
n whose degrees do not depend on n. Then we

will write these two systems of equations in the matrix form (11), with Bn

and C given by (13) and (14), respectively.
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Part 1. If we substitute F =
Qn

φn
− Ωn

φn
(cf. (6)) in zAF ′ = BF 2 +CF +D

we obtain

zA

(

Qn

φn
− Ωn

φn

)′
= B

(

Qn

φn
− Ωn

φn

)2

+ C

(

Qn

φn
− Ωn

φn

)

+ D ,

i.e.,

zA

(

Qn

φn

)′
− B

Qn

φn

(

Qn

φn
− 2

Ωn

φn

)

− C
Qn

φn

= zA

(

Ωn

φn

)′
+ B

(

Ωn

φn

)2

− C

(

Ωn

φn

)

+ D .

Therefore we have
{

zA

(

Ωn

φn

)′
+ B

(

Ωn

φn

)2

− C

(

Ωn

φn

)

+ D

}

φ2
n = Θ̃n (17)

with

Θ̃n =

{

zA

(

Qn

φn

)′
− B

Qn

φn

(

Qn

φn
− 2

Ωn

φn

)

− C
Qn

φn

}

φ2
n .

From (17) it follows that Θ̃n is a polynomial. From the asymptotic expan-
sion of Qn in |z| < 1 (see Corollary 1), and since the left side of (17) is a
polynomial, we get

Θ̃n(z) = znΘ̃1
n(z) ,

with Θ̃1
n a polynomial. From the asymptotic expansion of Qn in |z| > 1 (see

Corollary 1) it follows that Θ̃1
n has bounded degree,

deg(Θ̃1
n) = max{deg(zA) − 2, deg(B) − 1, deg(C) − 1}, ∀n ∈ N .

Thus, (17) becomes
{

zA

(

Ωn

φn

)′
+ B

(

Ωn

φn

)2

− C

(

Ωn

φn

)

+ D

}

φ2
n = znΘ̃1

n .

Using (7) in previous equation we obtain
{

zA

(

Ωn

φn

)′
+ B

(

Ωn

φn

)2

− C

(

Ωn

φn

)

+ D

}

φ2
n = Θ1

n(φnΩ
∗
n + Ωnφ

∗
n) ,

where Θ1
n = Θ̃1

n/(2hn) .
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Consequently, ∀n ∈ N,
{

zAΩ′
n −

C

2
Ωn + Dφn − Θ1

nΩ
∗
n

}

φn =

{

zAφ′
n +

C

2
φn − BΩn + Θ1

nφ
∗
n

}

Ωn.

We distinguish the following cases (see Corollary 2):
a) φn and Ωn have no common roots, ∀n ∈ N, i.e., φn(0) 6= 0, ∀n ∈ N ;
b) there exists a finite number of indexes k ∈ N such that φk and Ωk have
common roots, i.e., φk(0) = Ωk(0) = 0 for a finite number of k’s ;
c) there exists n0 > 1 such that φn(0) = 0, ∀n ≥ n0 .

Case a) If φn and Ωn have no common roots, ∀n ∈ N, then we conclude
that there exists a polynomial l1n such that

{

zAφ′
n + C

2
φn − BΩn + Θ1

nφ
∗
n = l1nφn

zAΩ′
n − C

2 Ωn + Dφn − Θ1
nΩ

∗
n = l1nΩn , ∀n ∈ N ,

(18)

and we obtain (15). Moreover, l1n has bounded degree,

deg(l1n) = max{deg(zA) − 1, deg(C), deg(B)}, ∀n ∈ N .

Case b) We first assume that φ1(0) 6= 0, . . . , φk−1(0) 6= 0, and k is the
first index such that φk(0) = 0. So, φn and Ωn have no common roots for
n = 1, . . . , k−1. From case a), equations (18) hold for n = 1, . . . , k−1. Now
we write (18) to k − 1 and multiply by z, to obtain

{

z2Aφ′
k−1 + C

2 zφk−1 − BzΩk−1 + zΘ1
k−1φ

∗
k−1 = l1k−1zφk−1

z2AΩ′
k−1 − C

2 zΩk−1 + Dzφk−1 − zΘ1
k−1Ω

∗
k−1 = l1nzΩk−1 .

By substituting

φk(z) = kφk−1(z), φ∗
k(z) = φ∗

k−1(z), zφ′
k−1(z) = φ′

k(z) − φk−1(z)

and

Ωk(z) = zΩk−1(z), Ω∗
k(z) = Ω∗

k−1(z), zΩ′
k−1(z) = Ω′

k(z) − Ωk−1(z)

in previous equations, it follows that
{

zAφ′
k + C

2
φk − BΩk + zΘ1

k−1φ
∗
k =

(

l1k−1 + A
)

φk

zAΩ′
k − C

2 Ωk + Dφk − zΘ1
k−1Ω

∗
k = l1nΩk ,

and we obtain (15) to n = k with l1k = l1k−1 + A and Θ1
k = zΘ1

k−1 .
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Furthermore, if φk+1(0) = · · · = φk+k0
(0) = 0, φk+k0+1(0) 6= 0 to some

k0 ∈ N, then, using the same method as before, the differential relations (15)
are obtained for n = k + 1, . . . , k + k0, with

l1n = l1k−1 + (n − k + 1)A , Θ1
n = zn−k+1Θ1

k−1 , n = k + 1, . . . , k + k0 .

Case c) If φn(0) = 0, ∀n ≥ n0, then φn and Ωn are polynomials of the
Bernstein-Szegő type,

φn(z) = zn−n0+1φn0−1(z) , Ωn(z) = zn−n0+1Ωn0−1(z) .

Applying the same method as before, we conclude that equations (15) hold,
∀n ∈ N , and, for n ≥ n0 , l1n and Θ1

n are given by

l1n = ln0−1 + (n − n0 + 1)A , Θ1
n = zn−n0+1Θ1

n0−1 .

Part 2. If we substitute F =
Ω∗

n

φ∗
n

− Q∗
n

φ∗
n

(cf. (6)) in zAF ′ = BF 2 +CF +D

and proceed as in part one, we obtain (16) with

deg(l2n) = max{deg(zA) − 1, deg(B), deg(C)}, ∀n ∈ N .

Finally, equations (15) and (16) can be presented in the matrix form (11).
We now obtain (12). Taking derivatives on Qn = Ωn + φnF and Q∗

n =
Ω∗

n − φ∗
nF (cf. (6)) we obtain

zAQ′
n = zAΩ′

n + zAφ′
nF + zAF ′φn ,

zA(Q∗
n)

′ = zA(Ω∗
n)

′ − zA(φ∗
n)

′F − zAF ′φ∗
n .

Using (15) and (16), respectively, in previous equations, (12) follows.
b) ⇒ a).

Taking into account (6), Qn = Yn

[

F
−1

]

, ∀n ∈ N, we see that (12) is equiva-

lent to

zAY ′
n

[

F
−1

]

+ zAYn

[

F ′

0

]

= BnYn

[

F
−1

]

+ (BF + C/2)Yn

[

F
−1

]

.

From (11) it follows that

(BnYn − YnC)

[

F
−1

]

+ zAYn

[

F ′

0

]

= BnYn

[

F
−1

]

+ (BF + C/2)Yn

[

F
−1

]

,

i.e.,

Yn

(

zA

[

F ′

0

]

− C
[

F
−1

])

= (BF + C/2)Yn

[

F
−1

]

.
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Taking into account that Yn is regular, then we obtain

zA

[

F ′

0

]

− C
[

F
−1

]

= (BF + C/2)

[

F
−1

]

.

Since C is given by (14), zAF ′ = BF 2 + CF + D follows.

Remark . Hereafter we will say that the matrices Bn are associated with the
equation zAF ′ = BF 2 + CF + D .

The following formula for tr(Bn) was given in [12] for a particular case of
a semi-classical sequence of orthogonal polynomials on the unit circle.

Corollary 3. Under the conditions of the previous theorem, the matrices Bn

given by (13) satisfy

zAA′
n = BnAn −AnBn−1 , n ≥ 2 , (19)

tr(Bn) = nA , n ∈ N , (20)

det(Bn) = det(B1) − A

n−1
∑

k=1

lk,2 , n ≥ 2 , (21)

where tr(Bn) and det(Bn) denote, respectively, the trace and the determinant
of Bn , and

det(B1) = A
(

2zAa1 − h1(D + B) + C(|a1|2 + 1)
)

/(2 h1)+BD−C2/4 , (22)

a1 = φ1(0), h1 = 1 − |a1|2 .

Proof : To obtain (19) we take derivatives on Yn = AnYn−1 and substitute
Y ′

n = A′
nYn−1 + AnY

′
n−1 in (11), zAY ′

n = BnYn − YnC. Therefore, we get

zAA′
nYn−1 + zAAnY

′
n−1 = BnYn − YnC .

Using (11) with n − 1 in previous equation we get

zAA′
nYn−1 + An (Bn−1Yn−1 − Yn−1C) = BnYn − YnC .

Using the recurrence relation (5) we obtain

zAA′
nYn−1 + An (Bn−1Yn−1 − Yn−1C) = BnAnYn−1 −AnYn−1C ,

i.e.,

zAA′
nYn−1 = (BnAn −AnBn−1) Yn−1 .

Since Yn is regular, for all n ∈ N and z 6= 0, we obtain (19).
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To deduce (20) we use equations (15) and (16),


















zAφ′
n + C/2φn − BΩn + Θn,1φ

∗
n = ln,1φn

zAΩ′
n − C/2Ωn + Dφn − Θn,1Ω

∗
n = ln,1Ωn

zA(Ω∗
n)

′ − C/2Ω∗
n − Dφ∗

n − Θn,2Ωn = ln,2Ω
∗
n

zA(φ∗
n)

′ + C/2φ∗
n + BΩ∗

n + Θn,2φn = ln,2φ
∗
n .

If we multiply previous equations by Ω∗
n, φ∗

n, φn and Ωn, respectively, we
obtain, after summing,

zA (φ′
nΩ

∗
n + φn(Ω

∗
n)

′ + (φ∗
n)

′Ωn + φ∗
nΩ

′
n) = (ln,1 + ln,2) (φnΩ

∗
n + φ∗

nΩn) ,

i.e.,

zA (φnΩ
∗
n + φ∗

nΩn)
′ = (ln,1 + ln,2) (φnΩ

∗
n + φ∗

nΩn) .

Thus,

zA (φnΩ
∗
n + φ∗

nΩn)
′ = tr(Bn) (φnΩ

∗
n + φ∗

nΩn) .

If we use (7) in previous equation then we get (20).
We now establish (21). From (19) we obtain, for n ≥ 2 ,

det(BnAn) = det(zAA′
n + AnBn−1) .

Taking into account that Bn is given by (13) and An =

[

z an

anz 1

]

, we obtain

det(Bn) det(An) = z(1 − |an|2) (det(Bn−1) + A ln−1,2) , ∀n ≥ 2 .

Since det(An) = z(1 − |an|2) , then the last equation is equivalent, if z 6= 0 ,
to

det(Bn) = det(Bn−1) + A ln−1,2 , ∀n ≥ 2 .

Consequently, we obtain (21). Moreover, if we compute det(B1) by taking
n = 1 in (11), we obtain (22).
Remark . (19) is equivalent to the following equations, for all n ∈ N,



















anln,1 − Θn,1 = −zΘn−1,1 + anln−1,2

zln,1 − anzΘn,1 = zln−1,1 − anΘn−1,2 + zA

−zΘn,2 + anzln,2 = anzln−1,1 − Θn−1,2 + anzA

−anΘn,2 + ln,2 = −anzΘn−1,1 + ln−1,2 .

(23)
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4. A characterization for semi-classical orthogonal poly-
nomials on the unit circle

The following lemma can be found in [5].

Lemma 2. Let X and M be matrix functions of order two such that X ′ =
M X . Then,

(det(X))′ = tr(M) det(X) . (24)

Next theorem is a generalization of a result for semi-classical orthogonal
polynomials on the real line established in [11], by Magnus. Moreover, it
shows that the necessary condition given in [2] for a MOPS on the unit circle
to be semi-classical is also sufficient.

Theorem 4. Let {φn} be a MOPS on the unit circle with respect to a measure
µ whose absolutely continuous part is denoted by w, {Qn} be the sequence of

functions of the second kind, and Ỹn =

[

φn Qn/w
φ∗

n −Q∗
n/w

]

, ∀n ≥ 1. Then, µ is

semi-classical and w satisfies

w(z) = Ke
∫ z

z1

C(t)
tA(t)dt

, K ∈ C , (25)

if, and only if, Ỹn satisfy

zAỸ ′
n = (Bn − C/2 I)Ỹn, ∀n ∈ N , (26)

where Bn is the matrix associated with the equation

zAF ′ = CF + D , (27)

satisfied by the corresponding Carathéodory function.

Proof : If w satisfies w′/w = C/(zA) , then the corresponding F satisfies (27)
(see [2, 4]).

From Theorem 3 the following two equations hold,

zA

[

Q′
n/w

−(Q∗
n)

′/w

]

= (Bn + C/2 I)

[

Qn/w
−Q∗

n/w

]

, (28)

zA

[

φn

φ∗
n

]′
= (Bn − C/2 I)

[

φn

φ∗
n

]

. (29)

Moreover, as
w′/w = C/(zA),
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we obtain

zA

[

Qn/w
−Q∗

n/w

]′
= zA

[

Q′
n/w

−(Q∗
n)

′/w

]

− C I

[

Qn/w
−Q∗

n/w

]

. (30)

If we substitute (28) in (30) we get

zA

[

Qn/w
−Q∗

n/w

]′
= (Bn − C/2 I)

[

Qn/w
−Q∗

n/w

]

. (31)

Finally, from (29) and (31), the differential system (26) follows.
We now prove the converse.

If Ỹn =

[

φn Qn/w
φ∗

n −Q∗
n/w

]

satisfies (26) then, from Lemma 2, we obtain

(det(Ỹn))
′ =

tr(Bn − C/2 I)

zA
det(Ỹn) .

From (8) we get det(Ỹn) = 2hnz
n/w , thus last equation is equivalent to

w′

w
=

nA − tr(Bn − C/2 I)

zA
.

Using tr(Bn) = nA (cf. (20)) in previous equation, it follows that

w′

w
=

C

zA
,

and we conclude that µ is semi-classical and w is given by (25).

5. Solutions of the Sylvester differential equations
In this section we solve the Sylvester differential equations (11), zAY ′

n =
BnYn−YnC, ∀n ∈ N. In what comes next, we use a particular case of a result
on matrix Riccati equations, known as Radon’s Lemma (see [1]).

Theorem 5. Let F satisfy zAF ′ = BF 2 + CF + D and {Yn} be the corres-
ponding sequence given in (4). If Pn and L (L invertible) satisfy, ∀n ∈ N,

{

zA(z)L′(z) = C(z)L(z)

L(z0) = I
(32)

and
{

zA(z)P ′
n(z) = Bn(z)Pn(z)

Pn(z0) = Yn(z0)
(33)
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where Bn and C are given by (13) and (14), respectively, then, ∀n ∈ N ,

Yn = Pn L−1 . (34)

Proof : To zAF ′ = BF 2 + CF + D we associate (11), zAY ′
n = BnYn − YnC,

with Bn and C given by (13) and (14), respectively (see Theorem 3).
Let L and Pn satisfy (32) and (33). Then, since

zA(PnL−1)′ = zAP ′
nL−1 + zAPn(L−1)′

and (L−1)′ = −L−1L′L−1, using (33) we get

zA(PnL−1)′ = BnPnL−1 − zAPnL−1L′L−1 .

Using (32) it follows that

zA(PnL−1)′ = BnPnL−1 −PnL−1CLL−1 ,

i.e., Yn = PnL−1 satisfies

zAY ′
n = BnYn − YnC .

Thus, the assertion follows.

Remark . The solution of (32) is given by L(z) = L(z)L0, with L a fun-
damental matrix of the differential system (32) satisfying zAL′ = CL, and
L0 = L(z0)

−1. The solution of (33) is given by Pn(z) = Pn(z)P 0
n , with Pn

a fundamental matrix of (33) satisfying zAP ′
n = BnPn, and P 0

n satisfying
Pn(z0)P

0
n = Yn(z0), i.e., P 0

n = (Pn(z0))
−1Yn(z0). Then, if we substitute L

and Pn, given as above, in (34), the solution of the Sylvester differential
equations (11) becomes

Yn(z) = Pn(z)EnL
−1(z) (35)

with

En = (Pn(z0))
−1Yn(z0)L(z0) . (36)

5.1. Solution of (32). We search for a matrix L of order 2 satisfying
zA(z)L′(z) = C(z)L(z) , with C given in (14).

Lemma 3. Let L be a fundamental matrix of solutions of (32). Then,
det(L(z)) = det(L(z0)).
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Proof : From Lemma 2 (cf. (24)) we have

(det(L))′ =
tr(C)

zA
det(L) .

Since tr(C) = 0, it follows that (det(L))′ = 0, i.e.,

det(L) = c, c ∈ C .

Thus, det(L(z)) = det(L(z0)), for some z0 ∈ C.

Lemma 4. Let C be the matrix defined by (14). Then,

(a) C2 = β I, β = (C/2)2 − BD ;
(b) The eigenvalues of C are ±

√
β ;

(c) The eigenspace corresponding to
√

β is V√
β = span{

[

D
C/2 −

√
β

]

} and

the eigenspace corresponding to −
√

β is V−
√

β = span{
[

D
C/2 +

√
β

]

} .

In what follows, L1, L2 are column vectors of size 2 .

Lemma 5. Let L = [L1 L2] be a fundamental matrix of (32). Then,

zAL′
1 =

√

βL1 + zAc1V−
√

β , (37)

zAL′
2 = −

√

βL2 + zAc2V√
β , (38)

with c1, c2 functions.

Proof : From (32) it follows that

(C +
√

β I)

(

L′
1 −

√
β

zA
L1

)

= 02×1 , (39)

(C −
√

β I)

(

L′
2 +

√
β

zA
L2

)

= 02×1 . (40)

Since the eigenvalues of C are ±
√

β, and the corresponding eigenvectors are
V√

β and V√
−β, from (39) and (40) we obtain, respectively,

L′
1 −

√
β

zA
L1 = c1(z) V−√

β

L′
2 +

√
β

zA
L2 = c2(z) V√

β

where c1, c2 are functions. Thus, (37) and (38) follow.
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5.2. Solution of (33). We search for matrices Pn of order two satisfying,
for each n ∈ N ,

zAP ′
n = BnPn . (41)

Hereafter we will consider z1 ∈ C and C̃ be an analytic function such that
∫ z

z1

C̃/2
tA dt is defined (in suitable domains).

Lemma 6. P̃n is a solution of

zAP̃ ′
n = (Bn − C̃/2 I)P̃n (42)

if, and only if, Pn = e
∫ z

z1

C̃/2
tA dt

P̃n is a solution of (41).

Proof : Let P̃n be a solution of (42). We have that

zA(e
∫ z

z1

C̃/2
tA dt

P̃n)
′ =

C̃

2
e
∫ z

t1

C̃/2
tA dt

P̃n + zAP̃ ′
n e

∫ z

t1

C̃/2
tA dt

.

Since P̃n satisfies (42), we obtain

zA(e
∫ z

t1

C̃/2
tA dt

P̃n)
′ = BnP̃ne

∫ z

z1

C̃/2
tA dt

thus Pn = P̃ne
∫ z

t1

C̃/2
tA dt

is a solution of (41). Analogously one can see that the
converse holds.

Taking into account previous lemma, we will solve (41) searching for a

solution {Pn} given by Pn = e
∫ z

z1

C̃/2
tA dt P̃n , n ∈ N . Furthermore, taking

into account Theorem 4, we will consider C̃ as a polynomial and P̃n =
[

φ̃n −Q̃n/w̃

(φ̃n)
∗ Q̃∗

n/w̃

]

, ∀n ∈ N , where {φ̃n} is a MOPS on the unit circle, or-

thogonal with respect to a measure µ̃ with weight function

w̃ = K e
∫ z

z1

C̃
tAdt

, K ∈ C , (43)

and {Q̃n} is the corresponding sequence of functions of the second kind.
Hence,

Pn = e
∫ z

z1

C̃/2
tA dt

[

φ̃n −Q̃n/w̃

(φ̃n)
∗ Q̃∗

n/w̃

]

, n ∈ N . (44)

Lemma 7. Let F be a Carathéodory function satisfying zAF ′ = BF 2+CF +
D and {φn} the corresponding MOPS. For all n ∈ N, let Pn be a fundamental
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matrix of the corresponding differential system (33). If Pn is given by (44),
then the following equations hold:

Pn = ÃnPn−1, Ãn =

[

z ãn

ãnz 1

]

, n ∈ N , (45)

zAÃ′
n = BnÃn − ÃnBn−1 , n ≥ 2 . (46)

Proof : To establish (45) we recall that {P̃n} satisfies the recurrence relations
in the matrix form (see Theorem 1)

P̃n = ÃnP̃n−1, Ãn =

[

z ãn

ãnz 1

]

, n ∈ N ,

with ãn = φ̃n(0). Thus Pn given by (44) satisfies (45), ∀n ∈ N.
We now establish (46).
Since Pn satisfies zAP ′

n = BnPn, then by substituting Pn = ÃnPn−1 in
previous equation, there follows

zAÃ′
nPn−1 + ÃnzAP ′

n−1 = BnÃnPn−1 , n ≥ 2 .

Using zAP ′
n−1 = Bn−1Pn−1 in last equation we get

zAÃ′
nPn−1 + ÃnBn−1Pn−1 = BnÃnPn−1 .

Thus,

(zAÃ′
n + ÃnBn−1)Pn−1 = BnÃnPn−1 .

Since Pn is regular (det(Pn) 6= 0, ∀n ∈ N, ∀z 6= 0) then

zAÃ′
n + ÃnBn−1 = BnÃn

follows, and we obtain (46).

Remark . From (19) and (46) we get the equations

zA(An − Ãn)
′ = Bn(An − Ãn) − (An − Ãn)Bn−1 , n ≥ 2 .

Hence,


















λnΘn,1 = λnΘn−1,2

λnln,1 = λnln−1,2

λnΘn−1,1 = λnΘn,2

λnln,2 − λnln−1,1 = λnzA

(47)

where λn = an − ãn, an = φn(0), ãn = φ̃n(0) , ∀n ∈ N .
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Hereafter we will denote linear fractional transformations T (F ) =
a + bF

c + dF
by T(a,b;c,d)(F ) .

Theorem 6. Let F be a Carathéodory function satisfying zAF ′ = BF 2 +
CF + D, {φn} the corresponding MOPS, and for all n ∈ N, let Pn be a fun-
damental matrix of the corresponding differential system (33), given by (44).
Let F̃ be the Carathéodory function associated with {φ̃n} given in (44).
Then, there exists a unique linear fractional transformation, T(a,b;c,d), with

a, b, c, d ∈ P and ad − bc 6≡ 0, such that F = T(a,b;c,d)(F̃ ).

Proof : To prove that F is a linear fractional transformation of F̃ , we begin by
establishing that the reflection coefficients of {φn} and {φ̃n}, i.e., an = φn(0)
and ãn = φ̃n(0), differ only in a finite number of indexes.

Let us write λn = an − ãn, ∀n ∈ N . First we establish that Z = {n ∈ N :
λn 6= 0} is a finite set. In fact, if Z was not finite, for example, Z ≡ N, then
λn 6= 0, ∀n ∈ N. But from (47) we would obtain

ln,1 = ln−1,2, ∀n ∈ N .

Substituting in (23), we would obtain

Θn,1 = zΘn−1,1, ∀n ∈ N ,

hence

Θn,1 = znΘ1,1, ∀n ∈ N .

But this is a contradiction with the fact that deg(Θn) is bounded. Therefore,
Z 6≡ N . On the other hand, if we consider, without loss of generality, the
case

{

an = ãn , n = 1, 2, . . . , n0 ,

an 6= ãn , n ≥ n0 ,

then we will obtain the same conclusion.
To conclude that F is a rational transformation of F̃ of the referred type, we

take into account its representation in continued fraction given in Theorem
2. To establish the uniqueness of T(a,b;c,d) we remind that the inverse of
T(a,b;c,d) , ad − bc 6= 0 , is given by T(a,−c;−b,d) . Therefore, if T1 and T2 are

two linear fractional transformations such that T1(F̃ ) = T2(F̃ ), then the
composition T−1

2 ◦T1 satisfies (T−1
2 ◦T1)(F̃ ) = F̃ , and thus we obtain T−1

2 ◦T1 =
id, i.e., T1 = T2. Thus, the uniqueness of T is established.
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5.3. Determination of the polynomial C̃. In what follows we determine
the polynomial C̃ which defines {Pn} given in (44).

Lemma 8. Under the conditions of previous theorem, let F be a Carathéodory
function satisfying zAF ′ = BF 2 + CF + D, let C̃ be a polynomial which de-
fines a weight w̃ given by (43), and F̃ the Carathéodory function associated
with w̃. Let T(α1,−β1;−α2,β2) , αi, βi ∈ P, i = 1, 2, α1β2 − α2β1 6≡ 0 , such that

F = T (F̃ ) . Let us consider the first order linear differential equation for F̃ ,

zAF̃ ′ = C̃F̃ + D̃ , D̃ ∈ P . (48)

Then, the following relations hold:

B = (α2β
′
2 − α′

2β2)zA + α2β2C̃ + β2
2D̃ , (49)

C = (α2β
′
1 + α1β

′
2 − α′

2β1 − α′
1β2)zA + (α1β2 + α2β1)C̃ + 2β1β2D̃ , (50)

D = (α1β
′
1 − α′

1β1)zA + α1β1C̃ + β2
1D̃ , (51)

where we have considered, without lost of generality, α2β1 − α1β2 = 1.

Proof : Since w̃′/w̃ = C̃/(zA) (cf. (43)), then w̃ is semi-classical. There-
fore, (48) is a consequence of Lemma 1.

Let us write F =
α1 − β1F̃

−α2 + β2F̃
, i.e., F̃ =

α1 + α2F

β1 + β2F
. Using F̃ =

α1 + α2F

β1 + β2F
in (48), it follows that

zA(α2β1 − α1β2)F
′ = B2F

2 + C2F + D2 , (52)

with

B2 = (α2β
′
2 − α′

2β2)zA + α2β2C̃ + β2
2D̃ ,

C2 = (α2β
′
1 + α1β

′
2 − α′

2β1 − α′
1β2)zA + (α1β2 + α2β1)C̃ + 2β1β2D̃ ,

D2 = (α1β
′
1 − α′

1β1)zA + α1β1C̃ + β2
1D̃ .

Hence, F satisfies zAF ′ = BF 2 + CF + D and (52), thus it follows that

zA(α2β1 − α1β2)

zA
=

B2

B
=

C2

C
=

D2

D
.

Therefore, if α2β1 − α1β2 = 1, then

B = B2, C = C2, D = D2,

and (49)-(51) follow.
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According with Theorem 6, for each polynomial C̃ defining a weight w̃
by (43) and {Pn} as in (44), there exists a unique linear fractional transfor-
mation T such that F = T (F̃ ), with F̃ the Carathéodory function associated
with w̃. In this issue, we pose the question: being C̃1 and C̃2 polynomials
(defining weights of the same type as in (43)) and F̃1, F̃2 the corresponding
Carathéodory functions such that F is a linear fractional transformation of
F̃i , i = 1, 2, to obtain relations between C̃1 e C̃2. Next lemma gives us an
answer.

Lemma 9. Under the same conditions of previous lemma, let F be a
Carathéodory function satisfying zAF ′ = BF 2 + CF + D. Let C̃1, C̃2 be
polinomials defining semi-classical weights of the type (43), and let F1 and
F2 be the corresponding Carathéodory functions, non rational, satisfying

zAF ′
1 = C̃1F1 + D̃1 , (53)

zAF ′
2 = C̃2F2 + D̃2 . (54)

Let T1 = T(α1,−β1;−α2,β2) , T2 = T(γ1,−η1;−γ2,η2) be the transformations such
that T1(F1) = F, T2(F2) = F. If we assume, without loss of generality, that
α2β1 − α1β2 = 1, γ2η1 − γ1η2 = 1 , then the following relations take place:

(α2β
′
2 − α′

2β2)zA + α2β2C̃1 + β2
2D̃1

= (γ2η
′
2 − γ ′

2η2)zA + γ2η2C̃2 + η2
2D̃2 , (55)

(α2β
′
1 + α1β

′
2 − α′

2β1 − α′
1β2)zA + (α1β2 + α2β1)C̃1 + 2β1β2D̃1

= (γ2η
′
1 + γ1η

′
2 − γ ′

2η1 − γ ′
1η2)zA + (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 , (56)

(α1β
′
1 − α′

1β1)zA + α1β1C̃1 + β2
1D̃1

= (γ1η
′
1 − γ ′

1η1)zA + γ1η1C̃2 + η2
1D̃2 . (57)

Proof : Since F = T1(F1) with F1 satisfying (53), from previous lemma we
obtain

B = (α2β
′
2 − α′

2β2)zA + α2β2C̃1 + β2
2D̃1 ,

C = (α2β
′
1 + α1β

′
2 − α′

2β1 − α′
1β2)zA + (α1β2 + α2β1)C̃1 + 2β1β2D̃1 ,

D = (α1β
′
1 − α′

1β1)zA + α1β1C̃1 + β2
1D̃1 .
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Also, since F = T2(F2) with F2 satisfying (54), from previous lema we obtain

B = (γ2η
′
2 − γ ′

2η2)zA + γ2η2C̃2 + η2
2D̃2 ,

C = (γ2η
′
1 + γ1η

′
2 − γ ′

2η1 − γ ′
1η2)zA + (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 ,

D = (γ1η
′
1 − γ ′

1η1)zA + γ1η1C̃2 + η2
1D̃2 .

Therefore, (55)-(57) follow.

We now state the main result of this section, a representation formulae for
{Yn}, defined in (4), associated with a Caratéodory function F that satisfies
zAF ′ = BF 2 + CF + D.

Theorem 7. Let F be a Carathéodory function satisfying zAF ′ = BF 2 +
CF + D , A, B, C, D ∈ P, and let {Yn} be the corresponding sequence given
by (4). Then, there exists a polynomial C̃ (defined by Lemmas 8 and 9), and

a weight w̃(z) = K e
∫ z

z1

C̃
tAdt

, K ∈ C , such that

Yn =

[√
w̃φ̃n −Q̃n/

√
w̃√

w̃φ̃∗
n Q̃∗

n/
√

w̃

]

En L−1 , n ∈ N ,

where {φ̃n} is the MOPS with respect to w̃, {Q̃n} is the sequence of functions
of the second kind associated with {φ̃n}, En are the matrices defined in (36),
and L is a fundamental matrix of (32).

Proof : These equations are a direct application of Theorem 6, namely for-
mulae (35).

6. Example
Let us consider the sequence of Jacobi orthogonal polynomials on the unit

circle, {φn}, with parameters α = β, F̃ the corresponding Carathéodory
function. Let {Ωn} be the sequence of associated polynomials of the second
kind and F be the corresponding Carathéodory function. F satisfies (see [3])

z(z2 − 1)F ′(z) = −2αc0(z
2 − 1)F 2(z) − 2α(z2 + 1)F (z) ,

where c0 is the moment of order zero of the Jacobi measure on the unit circle.
Taking into account Theorem 6, firstly we will solve the following differen-

tial systems:

z(z2 − 1)L′(z) =

[

−α(z2 + 1) 0
−2αc0(z

2 − 1) α(z2 + 1)

]

L(z) , (58)

z(z2 − 1)P ′
n(z) = Bn(z)Pn(z) . (59)
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In what follows we consider a complex domain G such that {0, 1,−1}  G,
and a z0 in G.

Lemma 10. The fundamental matrix of solutions of (58) is given by

L(z) = z−α(z2 − 1)α

×
[

z2α(z2 − 1)−2α z2α(z2 − 1)−2α

1 − 2αc0

∫ z

z1
t2α−1(t2 − 1)−2αdt 1 − 2αc0

∫ z

z2
t2α−1(t2 − 1)−2αdt

]

with z1 6= z2.

Now we obtain a solution of (59). Takin into account Theorem 4, hence-
forth we will consider C̃ as polynomial and we will solve (59) searching for

a solution P̃n given by (44), Pn = e
∫ z

z1

C̃/2
tA dt

[

φ̃n −Q̃n/w̃

φ̃∗
n Q̃∗

n/w̃

]

, ∀n ∈ N , with

A = z2 − 1, {φ̃n} the MOPS with respect to w̃, {Q̃n} the corresponding

sequence of functions of the second kind, and w̃ = Ke
∫ z

z1

C̃
tAdt

.
On the other hand, F is a linear fractional transformation of F̃ given by

F = 1/F̃ (see, for example, [15, 16]), with F̃ satisfying (see [17])

z(z2 − 1)F̃ ′ = 2α(z2 + 1)F̃ + 2αc0(z
2 − 1) .

Therefore, by Lemma 8, C̃ = 2α(z2 +1) follows, and consequently we obtain

w̃ =
(

(z2 − 1)/z
)2α

.

From Theorem 8, the following representation for Yn =

[

φn −Ωn

φ∗
n Ω∗

n

]

holds,

∀n ∈ N:

Yn K =

[

φ̃n −
(

(z2 − 1)/z
)−2α

Q̃n

(φ̃n)
∗ (

(z2 − 1)/z
)−2α

(Q̃n)
∗

]

En

×
[

1 − 2αc0

∫ z

z2
t2α−1(t2 − 1)−2αdt −z2α(z2 − 1)−2α

−1 + 2αc0

∫ z

z1
t2α−1(t2 − 1)−2αdt z2α(z2 − 1)−2α

]

,

where K = 2αc0

∫ z2

z1

t2α−1(t2 − 1)−2α dt , En = (Pn(z0))
−1Yn(z0)L(z0).
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Villars, Paris, 1962.
[6] J. Geronimus, On the trignometric moment problem, Annals of Mathematics 47 (4) (1946),

742-761.
[7] Ya.L. Geronimus, Polynomials orthogonal on a circle and interval , vol 18, International Series

on Applied Mathematics, Consultants Bureau, New York, 1961.
[8] Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications, American Mathe-

matical Society Translations, Series 1, Vol. 3, Providence R. I., 1962.
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