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A NOTE ON 3-QUASI-SASAKIAN GEOMETRY
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Abstract: 3-quasi-Sasakian manifolds were recently studied by the authors as a
suitable setting unifying 3-Sasakian and 3-cosymplectic geometries. In this paper
some geometric properties of this class of almost 3-contact metric manifolds are
briefly reviewed, with an emphasis on those more related to physical applications.
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1. Introduction
The class of 3-quasi-Sasakian manifolds is the analogue in the setting of

3-structures of the class of quasi-Sasakian manifolds, introduced by Blair
[3] and later studied among others by Tanno [13], Kanemaki [11], Olszak
[12]. More recent are the examples of applications of quasi-Sasakian mani-
folds to string theory found by Friedrich and his collaborators [2, 9]. Just
like quasi-Sasakian manifolds include Sasakian and cosymplectic manifolds,
so 3-quasi-Sasakian manifolds unify 3-Sasakian and 3-cosymplectic geome-
try. A 3-quasi-Sasakian manifold can arise, for example, as the product of a
3-Sasakian manifold and a hyper-Kähler manifold (see Sect. 3 or [7]). The
setting of 3-structures has been recently the object of a wider interest from
both mathematicians and physicists due to the important role acquired by
the 3-Sasakian and the related quaternionic structures in supergravity and
superstring theory, where they appear in the so called hypermultiplet solu-
tions (see e. g. [1, 2, 6, 15]). This note contains a concise review of the main
properties of 3-quasi-Sasakian manifolds, recently studied by the authors in
[7], together with some relevant properties of the two important subclasses
of 3-Sasakian and 3-cosymplectic manifolds which were compared in [8].

2. 3-quasi-Sasakian geometry
An almost contact metric manifold is a (2n+1)-dimensional manifoldM en-

dowed with a field φ of endomorphisms of the tangent spaces, a vector field ξ,
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called Reeb vector field, a 1-form η satisfying φ2 = −I+η⊗ξ, η (ξ) = 1 (where
I : TM → TM is the identity mapping) and a compatible Riemannian metric
g such that g (φX, φY ) = g (X, Y )− η (X) η (Y ) for all X, Y ∈ Γ (TM). The
manifold is said to be normal if the tensor fieldN (1) = [φ, φ]+2dη⊗ξ vanishes
identically. The 2-form Φ on M defined by Φ (X, Y ) = g (X, φY ) is called
the fundamental 2-form of the almost contact metric manifold (M,φ, ξ, η, g).
Normal almost contact metric manifolds such that both η and Φ are closed
are called cosymplectic manifolds and those such that dη = Φ are called
Sasakian manifolds. The notion of quasi-Sasakian structure unifies those of
Sasakian and cosymplectic structures. A quasi-Sasakian manifold is defined
as a normal almost contact metric manifold whose fundamental 2-form is
closed. A quasi-Sasakian manifold M is said to be of rank 2p (for some
p ≤ n) if (dη)p 6= 0 and η ∧ (dη)p = 0 on M , and to be of rank 2p + 1 if
η ∧ (dη)p 6= 0 and (dη)p+1 = 0 on M (cf. [3, 13]). Blair proved that there are
no quasi-Sasakian manifolds of even rank. Just like Blair and Tanno did, we
will only consider quasi-Sasakian manifolds of constant (odd) rank. If the
rank of M is 2p + 1, then the module Γ(TM) of vector fields over M splits
into two submodules as follows: Γ(TM) = E2p+1 ⊕ E2q, p + q = n, where
E2q = {X ∈ Γ(TM) | iXdη = 0 and iXη = 0} and E2p+1 = E2p ⊕ 〈ξ〉, E2p

being the orthogonal complement of E2q ⊕ 〈ξ〉 in Γ (TM). These modules
satisfy φE2p = E2p and φE2q = E2q (cf. [13]).

We now come to the main topic of our paper, i.e. 3-quasi-Sasakian ge-
ometry, which is framed into the more general setting of almost 3-contact
geometry. An almost 3-contact metric manifold is a (4n+ 3)-dimensional
smooth manifoldM endowed with three almost contact structures (φ1, ξ1, η1),
(φ2, ξ2, η2), (φ3, ξ3, η3) satisfying the following relations, for any even permu-
tation (α, β, γ) of {1, 2, 3},

φγ = φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ, (1)

ξγ = φαξβ = −φβξα, ηγ = ηα ◦ φβ = −ηβ ◦ φα,

and a Riemannian metric g compatible with each of them. It is well known
that in any almost 3-contact metric manifold the Reeb vector fields ξ1, ξ2, ξ3
are orthonormal with respect to the compatible metric g and that the struc-
tural group of the tangent bundle is reducible to Sp (n) × I3. Moreover, by
putting H =

⋂3
α=1 ker (ηα) one obtains a 4n-dimensional horizontal distribu-

tion on M and the tangent bundle splits as the orthogonal sum TM = H⊕V,
where V = 〈ξ1, ξ2, ξ3〉 is the vertical distribution.
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Definition 2.1. A 3-quasi-Sasakian manifold is an almost 3-contact metric

manifold (M,φα, ξα, ηα, g) such that each almost contact structure is quasi-

Sasakian.

The class of 3-quasi-Sasakian manifolds includes as special cases the well-
known 3-Sasakian and 3-cosymplectic manifolds.

The following theorem combines the results obtained in Theorems 3.4 and
4.2 of [7].

Theorem 2.2. Let (M,φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold. Then

the 3-dimensional distribution V generated by ξ1, ξ2, ξ3 is integrable. More-

over, V defines a totally geodesic and Riemannian foliation of M and for any

even permutation (α, β, γ) of {1, 2, 3} and for some c ∈ R

[ξα, ξβ] = cξγ.

Using Theorem 2.2 we may divide 3-quasi-Sasakian manifolds in two classes
according to the behaviour of the leaves of the foliation V: those 3-quasi-
Sasakian manifolds for which each leaf of V is locally SO (3) (or SU (2))
(which corresponds to take in Theorem 2.2 the constant c 6= 0), and those
for which each leaf of V is locally an abelian group (this corresponds to the
case c = 0).

The preceding theorem also allows to define a canonical metric connection
on any 3-quasi-Sasakian manifold. Indeed, let ∇B be the Bott connection
associated to V, that is the partial connection on the normal bundle TM/V ∼=
H of V defined by ∇B

VZ := [V, Z]H for all V ∈ Γ(V) and Z ∈ Γ(H). Following
[14] we may construct an adapted connection on H putting

∇̃XY :=

{

∇B
XY, if X ∈ Γ(V);

(∇XY )H, if X ∈ Γ(H).

This connection can be also extended to a connection on all TM by requiring
that ∇̃ξα = 0 for each α ∈ {1, 2, 3}. Some properties of this global connection
have been considered in [8] for any almost 3-contact metric manifold. Now
combining Theorem 2.2 with [8, Theorem 3.6] we have:

Theorem 2.3. Let (M,φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold. Then

there exists a unique metric connection ∇̃ on M satisfying the following prop-

erties:

(i) ∇̃ηα = 0, ∇̃ξα = 0, for each α ∈ {1, 2, 3},

(ii) T̃ (X, Y ) = 2
∑3

α=1 dηα(X, Y )ξα, for all X, Y ∈ Γ (TM).
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3. The rank of a 3-quasi-Sasakian manifold
For a 3-quasi-Sasakian manifold one can consider the ranks of the three

structures (φα, ξα, ηα, g). The following theorem assures that these three
ranks coincide.

Theorem 3.1 ([7]). Let (M,φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold of

dimension 4n+3. Then the 1-forms η1, η2 and η3 have the same rank 4l+3 or

4l + 1, for some l ≤ n, according to [ξα, ξβ] = cξγ with c 6= 0, or [ξα, ξβ] = 0,
respectively.

According to Theorem 3.1, we say that a 3-quasi-Sasakian manifold
(M,φα, ξα, ηα, g) has rank 4l+3 or 4l+1 if any quasi-Sasakian structure has
such rank. We may thus classify 3-quasi-Sasakian manifolds of dimension
4n + 3, according to their rank. For any l ∈ {0, . . . , n} we have one class
of manifolds such that [ξα, ξβ] = cξγ with c 6= 0, and one class of manifolds
with [ξα, ξβ] = 0. The total number of classes amounts then to 2n+2. In the
following we will use the notation E4m := {X ∈ Γ(H) | iXdηα = 0}, while E4l

will be the orthogonal complement of E4m in Γ(H), E4l+3 := E4l ⊕ Γ(V), and
E4m+3 := E4m ⊕ Γ(V).

We now consider the class of 3-quasi-Sasakian manifolds such that [ξα, ξβ] =
cξγ with c 6= 0 and let 4l + 3 be the rank. In this case, according to [3], we
define for each structure (φα, ξα, ηα, g) two (1, 1)-tensor fields ψα and θα by
putting

ψαX =

{

φαX, if X ∈ E4l+3;
0, if X ∈ E4m;

θαX =

{

0, if X ∈ E4l+3;
φαX, if X ∈ E4m.

Note that, for each α ∈ {1, 2, 3} we have φα = ψα + θα. Next, we define a
new (pseudo-Riemannian, in general) metric ḡ on M setting

ḡ (X, Y ) =

{

−dηα (X, φαY ) , for X, Y ∈ E4l;
g (X, Y ) , elsewhere.

This definition is well posed by virtue of normality and of [7, Lemma 5.3].
(M,φα, ξα, ηα, ḡ) is in fact a hyper-normal almost 3-contact metric manifold,
in general non-3-quasi-Sasakian. We are now able to formulate the following
decomposition theorem, proven in [7].

Theorem 3.2. Let (M4n+3, φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold of

rank 4l+3 with [ξα, ξβ] = 2ξγ. Assume [θα, θα] = 0 for some α ∈ {1, 2, 3} and
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ḡ positive definite on E4l. Then M4n+3 is locally the product of a 3-Sasakian

manifold M4l+3 and a hyper-Kählerian manifold M4m with m = n− l.

We now consider the class of 3-quasi-Sasakian manifolds such that [ξα, ξβ] =
0 and let 4l + 1 be the rank. In this case we define for each structure
(φα, ξα, ηα, g) two (1, 1)-tensor fields ψα and θα by putting

ψαX =

{

φαX, if X ∈ E4l;
0, if X ∈ E4m+3;

θαX =

{

0, if X ∈ E4l;
φαX, if X ∈ E4m+3.

Note that for each α the maps −ψ2
α and −θ2

α + ηα ⊗ ξα define an almost
product structure which is integrable if and only if [−ψ2

α,−ψ
2
α] = 0 or, equiv-

alently, [ψα, ψα] = 0. Under this assumption the structure turns out to be
3-cosymplectic:

Theorem 3.3 ([7]). Let (M,φα, ξα, ηα, g) be a 3-quasi-Sasakian manifold of

rank 4l+ 1 such that [ξα, ξβ] = 0 for any α, β ∈ {1, 2, 3} and [ψα, ψα] = 0 for

some α ∈ {1, 2, 3}. Then M is a 3-cosymplectic manifold.

As we have remarked before, 3-Sasakian and 3-cosymplectic manifolds be-
long to the class of 3-quasi-Sasakian manifolds, having respectively rank
4n + 3 = dim(M) and rank 1. We now briefly collect some additional
properties of these two important subclasses. We have seen that the ver-
tical distribution V is integrable already in any 3-quasi-Sasakian manifold.
Ishihara ([10]) has shown that if the foliation defined by V is regular then
the space of leaves is a quaternionic-Kählerian manifold. Boyer, Galicki and
Mann have proved the following more general result.

Theorem 3.4 ([5]). Let
(

M4n+3, φα, ξα, ηα, g
)

be a 3-Sasakian manifold such

that the Killing vector fields ξ1, ξ2, ξ3 are complete. Then

(i): M4n+3 is an Einstein manifold of positive scalar curvature equal to

2 (2n+ 1) (4n+ 3).
(ii): Each leaf of the foliation V is a 3-dimensional homogeneous spher-

ical space form.

(iii): The space of leaves M4n+3/V is a quaternionic-Kählerian orbifold

of dimension 4n with positive scalar curvature equal to 16n (n+ 2).

We consider now the horizontal distribution: on the one hand, in the
3-Sasakian subclass H is never integrable. On the other hand, in any 3-
cosymplectic manifold H is integrable since each ηα is closed. Furthermore,
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the projectability with respect to V is always granted, as the following theo-
rem shows.

Theorem 3.5 ([8]). Every regular 3-cosymplectic manifold projects onto a

hyper-Kählerian manifold.

As a corollary, it follows that every 3-cosymplectic manifold is Ricci-flat.
In [8] the horizontal flatness of such structures has been studied. In par-

ticular it has been proven to be equivalent to the existence of Darboux-like
coordinates, that is local coordinates {x1, . . . , x4n, z1, z2, z3} with respect to
which, for each α ∈ {1, 2, 3}, the fundamental 2-forms Φα = dηα have con-
stant components and ξα = a1

α
∂

∂z1

+a2
α

∂
∂z2

+a3
α

∂
∂z3

, aβ
α being functions depend-

ing only on the coordinates z1, z2, z3. Consequently, in view of Theorem 3.4
and Theorem 3.5 we have the following result.

Theorem 3.6 ([8]). A 3-Sasakian manifold does not admit any Darboux-like

coordinate system. On the other hand, a 3-cosymplectic manifold admits a

Darboux-like coordinate system around each of its points if and only if it is

flat.

4. Final Remarks
A number of natural questions arose during the development of our work on

3-quasi-Sasakian manifolds. We have seen that 3-Sasakian manifolds do not
admit any Darboux coordinate system, while on 3-cosymplectic manifolds
such coordinate exist if and only if the manifold is flat, so it is natural
to wonder whether these coordinates do not exist on any 3-quasi-Sasakian
manifold of rank greater than one. Another important topic would be to
study the projectability of 3-quasi-Sasakian manifolds for understanding the
general relation between this class and the quaternionic structures, since the
3-Sasakian manifolds project over quaternionic-Kähler structures while the
structure of the leaf space turns out to be globally hyper-Kählerian in the 3-
cosymplectic case. Finally, as both 3-Sasakian and 3-cosymplectic manifolds
are Einstein manifolds a natural question would be to ask whether all 3-quasi-
Sasakian manifolds are Einstein. However, since we have already found an
example of an η-Einstein, non-Einstein 3-quasi-Sasakian manifold in [7], the
natural problem now becomes to establish if there is any 3-quasi-Sasakian
manifolds which is not η-Einstein. We will try to address some of these
questions in the next future.
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