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Abstract: Given partitions R and S with the same weight, the Robinson-Schens-
ted-Knuth correspondence establishes a bijection between the class A(R, S) of (0, 1)-
matrices with row sum R and column sum S and pairs (P, Q) of Young tableaux
of conjugate shapes λ and λ∗, with S 4 λ 4 R∗. An algorithm for constructing a
matrix in A(R, S) whose insertion tableaux has a prescribed shape λ, with S 4 λ 4

R∗, is provided. We generalize some recent constructions due to R. Brualdi for the
extremal cases λ = S and λ = R∗.
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1. Preliminaries

A partition λ of weight t ≥ 0 is a decreasing sequence of integers
λ = (λ1, λ2, . . .) whose sum is t. The weight is denoted by |λ|. The number
of nonzero elements in λ is called the length of λ and is denoted by ℓ(λ).
When ℓ(λ) = n we usually write λ = (λ1, . . . , λn). The set of all partitions
with weight t is denoted by P (t), with P (0) consisting of the empty partition
∅. A partition λ is identified with its Ferrer diagram, which is the left-justified
arrangement of boxes with λi boxes in the i-th row, i = 1, 2, . . . , n (we use
“French” notation for Ferrer diagrams). The conjugate of λ is the partition
λ∗, the transpose of the Young diagram of λ. For instance, the partition
λ = (3, 2, 2, 1) has length 4 and weight 8, and corresponds to the Young
diagram

.

The conjugate partition λ∗ = (4, 3, 1) is obtained by reading the sequence of
column lengths of the Ferrer diagram of λ from left to right.
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In P (t), a partition λ is dominated by the partition µ, denoted λ 4 µ,
if

λ1 + · · · + λi ≤ µ1 + · · · + µi,

for i = 1, . . . , ℓ(λ). The set of all partitions of a given integer is partially
ordered by the relation 4 and forms a lattice (Cf. [9]). The poset (P (t), 4)
is a chain if and only if t ≤ 5. For t ≥ 6, the relation 4 is a partial order,
as there are pairs of partitions which are not comparable. For instance,
(3, 3), (4, 1, 1) and (3, 1, 1, 1), (2, 2, 2) are the only pairs in P (6) which are not
comparable, as we may check in the Hasse diagram of P (6):

•
(6)

•
(5, 1)

•
(4, 2)
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•(3, 2, 1)

.....................................................................................

.....................................................................................

•(3, 1, 1, 1)•(2, 2, 2)
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•
(2, 2, 1, 1)
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(2, 1, 1, 1, 1)
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•
(1, 1, 1, 1, 1, 1)
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From the identification of a partition with its Ferrer diagram, it is clear
that the map λ 7→ λ∗ is an anti-automorphism in P (t), with respect to the
order 4, i.e., for λ, µ ∈ P (t), λ 4 µ if and only if µ∗ 4 λ∗.

Let λ = (λ1, . . . , λm) and µ = (µ1, . . . , µn) be two partitions in P (t). A
Young tableau P of shape λ and content µ is a filling of the Ferrer diagram
of λ with µi integers i, i = 1, . . . , n, weakly increasing across each row and
strictly increasing down each column. An example of a Young tableau of
shape (3, 2, 2, 1) and content (2, 2, 2, 1, 1) is

P =

5
3 4
2 3
1 1 2

. (1.1)



ON (0, 1)-MATRICES WITH PRESCRIBED ROW AND COLUMN SUM VECTORS 3

We point out that the boxes in a Young tableau are often eliminated.
The number of Young tableaux with the shape λ and content µ, denoted

by Kλ,µ, is called a Kostka number. It is easy to see that the number Kλ,µ is
1 when λ = µ, and Kλ,µ 6= 0 if and only if µ 4 λ.

In this paper we describe a direct algorithm for constructing a matrix
with prescribed row sum partition R and column sum partition S, whose
insertion tableau has any prescribed shape λ, with S 4 λ 4 R∗.

2. The class A(R, S)
Given two partitions R = (r1, . . . , rm) and S = (s1, . . . , sn) in P (t), we

denote by A(R, S) the classe of all m×n (0, 1)-matrices with row sum vector
R and column sum vector S. By Gale-Riser Theorem (cf. [2, 4, 7]), the
class A(R, S) is nonempty if and only if S 4 R∗. Notice that this condition
implies the obvious relation r1 ≤ n, i.e., the number of ones in any row is
less than or equal to the number of columns on any matrix in A(R, S).

There is a one-to-one correspondence between m×n (0, 1)-matrices and
biwords with no repeated billeters over the alphabet {1, . . . , m}×{1, . . . , n},
in lexicographic order, established by the map

A = (aij) 7→ ΘA =

(
ik
jk

)
,

where the ordered pairs (ik, jk) are the positions of A occupied by the ones
of A. For example, the matrix

A =




1 1 0 0
1 0 1 0
0 1 0 1


 ∈ A(R, S),

with R = (2, 2, 2) and S = (2, 2, 1, 1) 4 R∗ = (3, 3), corresponds to the
biword

ΘA =

(
1 1 2 2 3 3
1 2 1 3 2 4

)
. (2.1)

The Robinson-Schensted-Knuth (RSK) correspondence (cf. [3, 6]) es-
tablishes a one-to-one correspondence between biwords with no repeated
billeters and pairs of tableaux with conjugate shapes. It is based on the
column-bumping or column-insertion algorithm, described in [8], which takes
a tableau P and a positive integer x, and constructs a new tableau P ′ as fol-
lows: if x is strictly larger than all entries of first column, we put x at the
end of this column; otherwise, it bumps the smallest entry in that column
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which is larger or equal to x. This bumped entry moves to the next column,
going to the end of it if possible, and bumping an element to the next column
otherwise. The process continues until the bumped entry can go to the end
of the next column, or until it becomes the only entry of a new column.

For instance, the column-insertion of the integer 2 into the tableau
(1.1), gives:

2 →

5
3 4
2 3
1 1 2

, 2 →

5
3 4
2 3

1 1 2

, 3 →

5
3 4
2 2
1 1 2

,

5
3 4
2 2 3
1 1 2

.

The image of a biword Θ =

(
i1 i2 · · · in
j1 j2 · · · jn

)
in lexicographic order,

with no repeat billeters, by the RSK correspondence, is obtained as follows:
start with the pair (P ,Q) of empty tableaux, and recursively construct P and
Q by column-inserting in P the integer jk, and then inserting in Q the integer
ik in the conjugate position of the new element in P , for k = 1, 2, . . . , n. P
is called the insertion tableau, and Q is the recording tableau. For example,
this construction applied to the biword (2.1) gives:

1 →
2
1
→

2
1 1

→
3
2
1 1

→
3
2 2
1 1

→

4
3
2 2
1 1

and

1 → 1 1 →
2
1 1

→
2
1 1 2

→
2 3
1 1 2

→
2 3
1 1 2 3

.

Thus, ΘA is in RSK correspondence with the pair (P ,Q) of tableaux of
conjugate shape and content S = (2, 2, 1, 1) and R = (2, 2, 2), respectively,
where

P =

4
3
2 2
1 1

and Q =
2 3
1 1 2 3

. (2.2)

Reciprocally, the inverse image of a pair (P ,Q) of tableaux with con-
jugate shapes, by the RSK correspondence, is obtained by constructing a
sequence

(P ,Q) = (Pt,Qt), (Pt−1,Qt−1), . . . , (P1,Q1),
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of pairs of tableaux with conjugate shapes, each having one fewer box than
the preceding one. To construct (Pk−1,Qk−1) from (Pk,Qk), identify the box
in Qk which has the largest entry; if there are several equal entries, choose
the rightmost box. Then, Pk−1 is obtained performing the reverse column-
insertion to Pk using the conjugate of this box to start, and Qk−1 is obtained
from Qk by removing this box. If jk is the entry removed from Pk, and ik is
the entry removed from Qk, k = 1, . . . , t, we get the biword

Θ =

(
i1 i2 · · · in
j1 j2 · · · jn

)

in RSK correspondence with the pair (P ,Q).
In [5], C. Greene gave a combinatorial interpretation for the lengths of

the columns of a Young tableau, generalizing Schensted result in [8] which
states that the length of the longest strictly increasing subword of a given
word is given by the length of the first column of its insertion tableau. Given
a sequence w of nonnegative integers with length m > 1, denote by ℓ(w, k)
the maximum of the sum of the lengths of k strictly increasing subsequences
of w, for k = 1, . . . , m.

Proposition 2.1. [5] Let w be a sequence of nonnegative integers with length

≥ 1, and let us assume that its insertion tableau P has the shape λ, with

λ∗ = (λ∗
1, . . . , λ

∗
n). Then, for each k = 1, . . . , n, λ∗

k = ℓ(w, k) − ℓ(w, k − 1),
with ℓ(w, 0) = 0.

It is easy to check that the longest strictly increasing subsequence of
the bottom line w = 121324 of the biword (2.1) is given by the underlined
letters 1234. So ℓ(1) = 4 and thus ℓ(2) = 6. This means that the first and
second columns of the insertion tableau of w have lengths 4 and 2 = 6 − 4,
respectively, as shown in (2.2).

When restricted to A(R, S), the RSK correspondence establishes a bi-
jection between matrices in A(R, S) and pairs of tableaux (P ,Q) of conjugate
shape and content S and R, respectively. From this bijection, it follows that
the cardinality of A(R, S) is given by

|A(R, S)| =
∑

λ

Kλ∗,RKλ,S,
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where the sum is over all partitions in P (t). Since the Kostka number Kλ,µ

is nonzero if and only if µ 4 λ∗, it follows that

Kλ∗,RKλ,S 6= 0 if and only if R 4 λ∗ and S 4 λ,

if and only if λ 4 R∗ and S 4 λ,

if and only if S 4 λ 4 R∗,

and therefore,

|A(R, S)| =
∑

S4λ4R∗

Kλ∗,RKλ,S.

Thus, for each pair (P ,Q) of tableaux of conjugate shape λ and λ∗, re-
spectively, where P has content S and Q has content R, there is one and only
one matrix in A(R, S) in RSK correspondence with (P ,Q). Therefore, given
partitions S 4 λ 4 R∗, we may use the RSK correspondence to construct a
(0, 1)-matrix in A(R, S) whose insertion tableau has shape λ.

Example 2.1. Let R = (3, 3, 2, 2, 2) and S = (4, 3, 3, 2) 4 R∗ = (5, 5, 2). To
construct a (0, 1)-matrix in A(R, S), whose insertion tableau has shape λ

with S 4 λ = (5, 4, 3) 4 R∗, we start by considering a pair (P ,Q) of Young
tableaux with shape λ and λ∗, and contents S and R, respectively. This
may be achieved by inserting, from top to bottom, and from right to left, xk

integers k, for k = m, . . . , 1, in the boxes of the Ferrer diagram λ and λ∗,
where (x1, . . . , xm) is S and R, respectively:

P =
3 4 4
2 2 3 3
1 1 1 1 2

and Q =

5
4 5
3 3 4
2 2 2
1 1 1

.

Using now the RSK correspondence, we obtain the biword(
1 1 1 2 2 2 3 3 4 4 5 5
2 3 4 1 3 4 1 2 1 3 1 2

)
,

which corresponds to the (0, 1)-matrix



0 1 1 1
1 0 1 1
1 1 0 0
1 0 1 0
1 1 0 0




∈ A(R, S).
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In [1] R. Brualdi established two direct algorithms for the construction
of matrices AS and AR∗ in A(R, S), whose insertion tableaux have shapes S

and R∗, respectively. In next section we describe a direct algorithm for con-
structing a matrix Aλ in A(R, S) whose insertion tableaux has any prescribed
shape λ, with S 4 λ 4 R∗.

3. Fillings of Ferrer diagrams and (0, 1)-matrices

A filling of a Ferrer diagram is an assignment of positive integers to
all boxes of the diagram. Here, we restrict ourselves to those fillings with no
repetitions in the same column, and identify those fillings differing from one
another by the order in which the integers are placed inside the same column.
The content of a filling of a Ferrer diagram is the sequence formed by the
number of integers i assigned to the boxes of the diagram, for all i ≥ 0. For
example,

1
2
5 1 3
4 3 2 2

and

5
4
2 3 3
1 1 2 2

(3.1)

are equal fillings of the Ferrer diagram (4, 3, 1, 1) with content (3, 3, 2, 1, 1).
In particular, if the filling of a Ferrer diagram is weakly increasing

across each row and strictly increasing down each column, we get a Young
tableau.

Definition 3.1. An east chain, or for short e-chain, of length k, in a filling
of a Ferrer diagram is a sequence of k non-zero entries, such that each entry
is greater than or equal to and strictly to the right of the preceding entry in
the sequence.

For instance, the sequence (1, 1, 2, 2) is the only e-chain of length 4 in
(3.1), but this filling has four e-chains of length 3, namely (1, 1, 2), (1, 2, 2),
(1, 3, 3) and (2, 3, 3).

Given two partitions S, R ∈ P (t), with S 4 R∗, there is a one-to-one
correspondence between the fillings of the Ferrer diagram S∗ with content
R, and the matrices in A(R, S) defined as follows: if (aij) ∈ A(R, S), for
i = 1, . . . , ℓ(R), and for all j ≥ 1, put the integer i in a box on column j of
the Ferrer diagram with columns lengths S whenever aij = 1. Notice that
this corresponds to a filling of the diagram with content R.
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Example 3.1. Consider the partitions R = (3, 2, 2, 2, 2) and S = (3, 3, 2, 2, 1) 4

R∗ in P (11), and the (0, 1)-matrix



1 1 1 0 0
1 0 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0




∈ A(R, S).

By the bijection defined above, this matrix corresponds to the following filling
of the Ferrer diagram with columns lengths S:

1 1
2 3 1 3
5 4 4 5 2

.

Thus, presenting a matrix in A(R, S) is equivalent to the presentation
of a filling of the Ferrer diagram with column lengths S and content R.

Definition 3.2. Given partitions R = (r1, . . . , rm) 4 λ = (λ1, . . . , λp) in
P (t), let R1

λ = R and define for each k = 2, . . . , p,

Rk
λ = (0, . . . , 0, rk

b , r
k
b+1, . . . , r

k
m),

where rk
l = rl, for l = b+1, . . . , m, 0 < rk

b ≤ rb, and r1+· · ·+rb−1+(rb−rk
b ) =

λ1 + · · · + λk−1, for some b ≤ m. Define also rk
λ := rk

b , the leftmost nonzero
entry in Rk

λ, for k = 1, . . . , p.

For example, if R = (3, 2, 2, 2, 2) and λ = (3, 3, 2, 2, 1), we have R2
λ =

(0, 2, 2, 2, 2), R3
λ = (0, 0, 1, 2, 2), R4

λ = (0, 0, 0, 1, 2) and R5
λ = (0, 0, 0, 0, 1),

and thus r1
λ = 3, r2

λ = 2 and r3
λ = r4

λ = r5
λ = 1.

Taking the equivalence between (0, 1)-matrices in A(R, S) and fillings
of the Ferrer diagram, with column lengths S and content R, into account, we
present a first algorithm for constructing a matrix in A(R, S) whose insertion
tableau has a prescribed shape λ = (λ1, . . . , λq), where the partition λ sat-
isfies S 4 λ 4 R∗, and is such that its conjugate partition λ∗ = (λ∗

1, . . . , λ
∗
p)

satisfies rk
λ∗ ≤ λ∗

k, for all k = 1, . . . , p.

Algorithm 1. Let R = (r1, . . . , rm), S = (s1, . . . , sn) and λ = (λ1, . . . , λq)
be partitions of a fixed weight with S 4 λ 4 R∗, and such that the conju-

gate partition λ∗ = (λ∗
1, . . . , λ

∗
p) of λ satisfy rk

λ∗ ≤ λ∗
k, for all k = 1, . . . , p.

Consider the Ferrer diagram with column lengths S. Set R′ := R, S ′ := S,
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λ′ := λ, and denote by r′b the leftmost nonzero entry in R′. For k = 1, . . . , p,
repeat the following steps:

(P1): If r′b = λ∗
k, search for the rightmost configuration of λ∗

k top boxes

in the Ferrer diagram with column lengths S ′, including necessar-

ily the rightmost top box, with the property that the Ferrer diagram

H∗ obtained by removing those boxes satisfies H 4 µ, where µ∗ =
(λ∗

k+1, . . . , λ
∗
p). Then, put integers b in those boxes and set R′ := Rk+1

λ∗ ,

S ′ := H, and λ′ := µ.

(P2): If r′b < λ∗
k, search for the rightmost configuration of λ∗

k top boxes in

the Ferrer diagram (S ′)∗, including necessarily the rightmost top box,

with the property that the Ferrer diagram H∗, obtained by removing

those boxes, satisfies H 4 µ, where µ∗ = (λ∗
k+1, . . . , λ

∗
p). Then, con-

struct an e-chain with length λ∗
k, filling that λ∗

k boxes with r′b integers b,

and the maximum number of integers integers j, for j = b + 1, . . . , m.

Set R′ := Rk+1
λ∗ , S ′ := H and λ′ := µ.

(P3): While applying (P1) or (P2) in step k, if at least one of the last

set of integers, say b with cardinality z, is placed in a column having

already the letter b, then let z = α + β, where α is the number of b’s

placed in step k in columns having already a letter b.

If the number of letters b− 1 placed in step k − 1 is greater or equal

to z, replace the z letters b placed in step k with the z rightmost letters

b − 1 placed in the previous step.

Otherwise, there are at least α letters b − 1 placed at the rightmost

positions of the e-chain obtained in step k − 2. In this case replace

the α rightmost letters b placed in step k with the α rightmost letters

b − 1 placed in step k − 2.
Repeat (P3) with the letter b−1 if necessary, that is, if in the process

some letter b − 1 is placed in a column having already a letter b − 1.

In our main result, Theorem 3.1 we shall prove that the filling of the
Ferrer diagram with column lengths S obtained from the application of our
algorithm corresponds to a (0, 1)-matrix in A(R, S) whose insertion tableau
has shape λ, when the conjugate partition λ∗ = (λ∗

1, . . . , λ
∗
p) of λ satisfies the

condition rk
λ∗ ≤ λ∗

k, for all k = 1, . . . , p. Before, however, we present some
examples.
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Example 3.2. Consider the partitions R = (4, 4, 2, 1), S = (2, 2, 2, 2, 2, 1) and
λ∗ = (6, 2, 2, 1), which satisfy S 4 λ = (4, 3, 1, 1, 1, 1) 4 R∗ = (4, 3, 2, 2).
Following the algorithm above, we have in the first step

1 1 1 1 2
2

,

since λ∗
1 = 6 and the Ferrer diagram H∗ = (5) obtained from S∗ by removing

the labeled boxes satisfies H 4 µ = (3, 2), where µ is the conjugate of (2, 2, 1).
So, we set R′ = (0, 2, 2, 1), S ′ = (5), and λ′ = (3, 2).

In the next step, we search for the rightmost configuration of 2 boxes
in (S ′)∗ in the required condition of (P1), and so we get

1 1 1 1 2
2 2 2

.

But since one of two letters 2 (in bold) is placed in a column having already
a letter 2, we replace this two letters with the two rightmost letters 1 placed
in the previous step. Thus, we get

1 1 2 2 2
1 1 2

.

Proceeding with the application of the algorithm we get

1 1 2 2 2
3 3 1 1 2

and finally 1 1 2 2 2
4 3 3 1 1 2

.

The filling of the Ferrer diagram of S∗ obtained corresponds to the
(0, 1)-matrix 



1 1 0 1 1 0
0 0 1 1 1 1
0 1 1 0 0 0
1 0 0 0 0 0


 ∈ A(R, S).

The associated biword is

(
1111 2222 33 4
1245 3456 23 1

)
and its insertion tableau

6
5
4
3
2 3 5
1 1 2 4
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has the shape λ = (4, 3, 1, 1, 1, 1).

Example 3.3. Consider now R = (3, 2, 2, 2, 2) and S = (3, 3, 2, 2, 1) 4 R∗ in
P (11).

(i) If λ = S, we have S∗ = (5, 4, 2). Following the proposed algorithm,
we have successively,

1 1
1 2

2
→ 3 3

4 4
→ 5 5 ,

since (2, 2, 1, 1) 4 (2, 2, 1, 1) and (1, 1) 4 (1, 1) (when there is no possibility
of repetition of integers in the same column, in each step we eliminate the
boxes filled in the previous step). Therefore, we get the following filling of the
Ferrer diagram with column lengths S, and the corresponding (0, 1)-matrix
in A(R, S):

1 1
3 3 1 2
5 5 4 4 2

↔ A =




1 1 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 1 0
1 1 0 0 0




.

The biword associated with A is ΘA =

(
1 1 1 2 2 3 3 4 4 5 5
1 2 3 4 5 1 2 3 4 1 2

)
, and its inser-

tion tableau
5
4 4
3 3
2 2 2
1 1 1

has the shape S.
(ii) If λ = R∗ = (5, 5, 1), then the successive steps of Algorithm 1

gives:

1 1
1

→
2 2

→
3 3

→ 4 4 → 5 5 ,

since (3, 3, 1, 1) 4 (4, 4), (3, 3) 4 (3, 3), (2, 2) 4 (2, 2) and (1, 1) 4 (1, 1).
Therefore, we get the following filling of the Ferrer diagram with column
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lengths S, and the corresponding (0, 1)-matrix in A(R, S):

3 3
4 4 1 1
5 5 2 2 1

↔ A′ =




0 0 1 1 1
0 0 1 1 0
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0




.

The corresponding biword is ΘA′ =

(
1 1 1 2 2 3 3 4 4 5 5
3 4 5 3 4 1 2 1 2 1 2

)
and it has inser-

tion tableau
5
2 2 2 4 4
1 1 1 3 3

with shape R∗.
(iii) Setting now λ = (3, 3, 3, 2), with λ∗ = (4, 4, 3), and noticing that

the rightmost configuration of 4 top boxes in the Ferrer diagram S∗, whose
removal gives a Ferrer diagram H∗ with H ≤ (2, 2, 2, 1) is

1 1
1

2
.

Following the steps of Algorithm 1, since (2, 2, 2, 1) 4 (2, 2, 2, 1) and (1, 1, 1) 4

(1, 1, 1), we get

1 1
1

2
→ 2 3 3

4
→ 4 5 5 .

Hence, we obtain the filling of the Ferrer diagram S∗ and the corresponding
(0, 1)-matrix in A(R, S):

1 1
2 3 3 1
4 5 5 4 2

↔ A′′ =




1 1 0 1 0
1 0 0 0 1
0 1 1 0 0
1 0 0 1 0
0 1 1 0 0




.

The insertion tableau associated with the biword

ΘA′′ =

(
1 1 1 2 2 3 3 4 4 5 5
1 2 4 1 5 2 3 1 4 2 3

)
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is

4 5
3 3 4
2 2 2
1 1 1

and has the shape λ.

Theorem 3.1. Let R and S be partitions in P (t) such that S 4 R∗. Then, for

each partition λ ∈ P (t) with S 4 λ 4 R∗, such that the conjugate partition

λ∗ = (λ∗
1, . . . , λ

∗
p) of λ satisfies rk

λ∗ ≤ λ∗
k, for all k = 1, . . . , p, the filling of the

Ferrer diagram S∗ obtained by Algorithm 1 corresponds to a (0, 1)-matrix in

A(R, S), whose insertion tableau has the shape λ.

Proof : It is clear that the boxes filled at each step of Algorithm 1 are such
that the remaining diagram is still a Ferrer diagram, and that the filling of
the Ferrer diagram of S∗ has no repetitions in the same column, that is,
is an admissible filling. Also, notice that the biword Θ corresponding to
the filling of the Ferrer diagram of S∗ achieved by Algorithm 1 is obtained
reading, from left to right, the columns of this filling having the integer k,
for k = 1, 2, . . . , ℓ(R).

In each step k of the algorithm, the relation H 4 µ means that the
Kostka number KH∗,µ∗ is nonzero. This means that it is possible to fill the
boxes of the Ferrer diagram with column lengths H with integers forming
e-chains of length µ∗

k+1, . . . , µ
∗
p. Since rk+1

λ∗ ≤ λ∗
k+1, we find that step k + 1 is

admissible.
Finally, from the procedure of placing the integers in the boxes of

the diagram, we find that the e-chain of length λ∗
k obtained in each step

k = 1, . . . , m, of the algorithm, is the longest e-chain in the filling of the
diagram. Notice that since rk

λ∗ ≤ λ∗
k, for each k = 1, . . . , p, we cannot have a

e-chain with leftmost letter b achieved in step k followed by another e-chain
with only letters b. Notice also that the replacements described in (P3) are
admissible since R is a partition, and that in these replacements, the length
of the e-chains obtained in each step is kept. Going back to the biword Θ, this
means that the maximum of the sum of the lengths of k strictly increasing
subsequences of the bottom word of Θ is λ∗

1 + · · · + λ∗
k, for k = 1, . . . , m.

By Proposition 2.1, the insertion tableau associated with Θ must have shape
λ.
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In next example we show that Algorithm 1 may fail when the partition
λ∗ = (λ∗

1, . . . , λ
∗
p) does not satisfy rk

λ∗ ≤ λ∗
k, for all k = 1, . . . , p. Therefore,

for the general, case we need an extra step in our algorithm.

Example 3.4. With R = (3, 2, 2, 2, 2), S = (3, 3, 2, 2, 1) and λ = (5, 2, 2, 2), we
have S 4 λ 4 R∗ = (5, 5, 1), with λ∗ = (4, 4, 1, 1, 1). Following the algorithm
we have, respectively:

1 1
1

2
→ 2 3 3

4
→ 4 → 5 → 5 ,

since (2, 2, 2, 1) 4 (4, 1, 1, 1), (1, 1, 1) 4 (3) and (1, 1) 4 (2). Observe that
in step 4, we have R′ = (0, 0, 0, 0, 2) and (λ′)∗ = (1, 1), and thus r4

λ∗ > λ∗
4.

Therefore, we get the filling of the diagram of S∗ and the associated (0, 1)-
matrix in A(R, S):

1 1
2 3 3 1
5 5 4 4 2

↔




1 1 0 1 0
1 0 0 0 1
0 1 1 0 0
0 0 1 1 0
1 1 0 0 0




,

whose biword is

(
111 22 33 44 55
124 15 23 34 12

)
. We remark that the two e-chains of

length 1 given in the last two steps of the algorithm are in fact one single e-
chain of length 2 in the filling of the diagram of S∗. The associated insertion
tableau

4 5
3 3
2 2 4
1 1 2 2

has shape (4, 3, 2, 2), which is different from λ.

4. The general procedure

Consider now the general case, that is, let R = (r1, . . . , rm), S =
(s1, . . . , sn) and λ = (λ1, . . . , λq) be partitions with weight t and such that
S 4 λ 4 R∗, with λ∗ = (λ∗

1, . . . , λ
∗
p). The general algorithm follows from the

procedure established in the previous section with an extra step.
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Algorithm 2. Consider the Ferrer diagram with column lengths S, and set

R′ := R, S ′ := S and λ′ := λ. Let ε := ζ := 0. For each k = ε + 1, . . . , p− ζ,

repeat the following steps:

(P ′
1): equal to (P1).

(P ′
2): equal to (P2).

(P ′
3): equal to (P3).

(P ′
4): If in step k this procedure provides an e-chain with a letter b placed

to the left of a previously constructed e-chain with leftmost letter b′ <

b, and the letters of these e-chains form an e-chain with greater length,

then remove all entries placed until step 2. Apply (P ′
1), (P

′
2) and (P ′

3)
to construct an e-chain with length λ∗

p−ζ. Let R′ and S ′ be obtained by

removing the integers, respectively, the boxes used to construct the e-

chain of length λ∗
p−ζ, and let λ′∗ be obtained eliminating the last entry

λ∗
p−ζ. Let ζ := ζ + 1, ε := 1 and re-initiate the algorithm.

If it is necessary to apply (P ′
4) more than once, then on each time, place the

respective e-chain to the left of the last e-chain constructed by (P ′
4), and using

distinct integers each time.

Theorem 4.1. Let R and S be partitions in P (t) such that S 4 R∗. Then, for

each partition λ ∈ P (t) with S 4 λ 4 R∗, the filling of the Ferrer diagram of

S∗ obtained by Algorithm 2 corresponds to a (0, 1)-matrix in A(R, S), whose

insertion tableau has shape λ.

Proof : It follows the proof of Theorem 3.1, noticing that by (P ′
4), each e-

chain of length λ∗
k constructed by Algorithm 2 is the longest e-chain in the

filling of the Ferrer diagram of S∗ after removing the boxes corresponding
to the e-chains of lengths λ∗

l , for ℓ = 1, . . . , k − 1. Henceforth, the result is
immediately from Proposition 2.1.

Example 4.1. Consider the partitions R = (3, 2, 2, 2, 2) and S = (3, 3, 2, 2, 1) 4

λ = (5, 2, 2, 2) 4 R∗ in P (11), with λ∗ = (4, 4, 1, 1, 1). Notice that R4
λ∗ =

(0, 0, 0, 0, 2), and so r4
λ∗ > λ∗

4 = 1. Following the algorithm above for
k = 1, . . . , 5, we get

1 1
1

2
→

1 1
2 3 3 1

4 2
→

1 1
2 3 3 1

4 4 2
→

1 1
2 3 3 1

5 4 4 2
→



16 C.M. DA FONSECA AND RICARDO MAMEDE

→
1 1
2 3 3 1
5 5 4 4 2

.

Since the e-chain of length 1 placed in step 5 is formed by the letter 5 and
its on the left of a previous constructed e-chain with leftmost letter 5, we
must follow (P ′

4) and remove all entries placed until step 2. Next we build
an e-chain with length λ∗

5 = 1 following (P ′
1), (P

′
2) and (P ′

3):

1 1
1

2
→

1 1
2 1

2

Set ζ := 1, and re-initiate the algorithm for k = 2, . . . , 4. We get

1 1
2 1

2
→

1 1
3 3 2 1

4 4 2
→

1 1
3 3 2 1

5 4 4 2
→

1 1
3 3 2 1
5 5 4 4 2

.

Again the same situation occurs with the e-chains of length 1. Thus, we
remove all entries placed until step 2, and, following the algorithm, obtain:

1 1
2 1

2
→

1 1
3 2 1

2
→

1 1
3 3 2 1

4 4 5 2
→

1 1
3 3 2 1
5 4 4 5 2

.

The corresponding filling of S∗ corresponds to the following (0, 1)-matrix in
A(R, S):

1 1
3 3 2 1
5 4 4 5 2

↔ Ã =




1 1 0 1 0
0 0 1 0 1
1 1 0 0 0
0 1 1 0 0
1 0 0 1 0




.

The insertion tableau associated with the biword Θ
Ã

=

(
1 1 1 2 2 3 3 4 4 5 5
1 2 4 3 5 1 2 2 3 1 4

)

is
4 5
3 3
2 2
1 1 1 2 4

and has the shape λ.
A final example is now presented, showing that there are partitions

R 4 λ∗ 4 S∗, where although λ does not satisfies rk
λ∗ ≤ λ∗

k, for all k, the
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resulting (0, 1)-matrix is obtained using algorithm 1, that is, step (P ′
4) of

algorithm 2 is not used.

Example 4.2. Consider now partitions R = (4, 3, 3, 3, 3) 4 λ∗ = (5, 5, 2, 2, 2) =
S∗ in P (16), noticing that r3

λ∗ = 3 > λ∗
3 = 2. Following the proposed algo-

rithm we get

1 1

1 1 2
→

1 1
2 2

1 1 2
3 3 3

→

1 1
2 2
4 4

1 1 2
3 3 3

→

1 1
2 2
4 4
4 5 1 1 2

3 3 3

.

Since the last letter 4 was placed in a column having already a letter
4, we use (P ′

3) to obtain

1 1
2 2
3 4
4 5 1 1 2

3 3 4

and then

1 1
2 2
3 4
4 5 1 1 2
5 5 3 3 4

.

But now we have a letter 5 in a column having already a letter 5. Thus,
again by (P ′

3), we get, successively:

1 1
2 2
3 4
4 4 1 1 2
5 5 3 3 5

and

1 1
2 2
3 3
4 4 1 1 2
5 5 3 4 5

.

The corresponding filling of S∗ corresponds to the following (0, 1)-matrix in
A(R, S):

A =




1 1 1 1 0
1 1 0 0 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1




.

The insertion tableau associated with the biword

ΘA =

(
1111 222 333 444 555
1234 125 123 124 125

)
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is

5 5
4 4
3 3
2 2 2 2 2
1 1 1 1 1

and has the shape λ = (5, 5, 2, 2, 2). Notice that although the partitions R

and λ∗ satisfy r3
λ∗ = 3 > λ∗

3 = 2, we did not use (P ′
4) of Algorithm 2. Thus,

in this case, the required (0, 1)-matrix was achieved by Algorithm 1.

5. Relation with other algorithms

We finish this paper showing that the output of our algorithm differs
from the output of the algorithm given by Brualdi in [1] for the case where
the partition λ is equal to R∗. When λ = S the two algorithms seem to
provide the same output, as we may check applying Brualdi’s algorithm to
our examples 4.2 and 3.3 (i). It would be interesting to check if the two
algorithms give, in fact, the same output when λ = S.

In fact, let us consider Example 2 given in [1], setting λ∗ = R =
(4, 4, 3, 3, 2) and S = (4, 3, 3, 3, 3). The construction described by Brualdi
yields the following (0, 1)-matrix in A(R, S):

A =




0 1 1 1 1
1 0 1 1 1
1 0 1 0 1
1 1 0 1 0
1 1 0 0 0




,

while the application of Algorithm 1 originates the following filling of the
Ferrer diagram of S∗, and the corresponding (0, 1)-matrix in A(R, S):

2
3 1 1 1 1
4 4 2 2 2
5 5 4 3 3

↔ A′ =




0 1 1 1 1
1 0 1 1 1
1 0 0 1 1
1 1 1 0 0
1 1 0 0 0




.
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The insertion tableaux associated with the matrices A and A′ are, respec-
tively,

5 5
4 4 4 5
2 2 3 3 3
1 1 1 1 2

and

5 5
3 4 4 5
2 2 3 3 4
1 1 1 1 2

,

having both the shape λ = (5, 5, 4, 2).
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