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ABSTRACT: In this paper we study the numerical behavior of a diffusion equation
with a discrete control source term. The equation is discretized in space by finite
differences and in time by an implicit scheme. The control variables are calculated
in order to minimize an objective function, taking into account some restrictions.
We define two strategies to obtain the optimal solution and present some numerical
results in a context of a model that describes the oxygen concentration in a single
chamber microbial fuel cell.
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1. Introduction

The purpose of this work is to study the numerical behavior of a diffusion
equation with a discrete source term and control variables. We will con-
sider a discretization of the partial differential equation and use optimization
techniques in order to obtain a numerical solution that minimizes a given
objective function.

The paper is organized as follows. In Section 2, we describe the problem
that we want to solve and, in Section 3, the numerical method used in the
discretization. At the end of this section we prove a result that indicates a
qualitative behavior of the numerical solution. In Section 4, we characterize
the optimal solution using two different approaches, with and without time
dependence. In Section 5, we apply our procedure to a model that describes
the oxygen concentration in a single chamber microbial fuel cell [2], [6]. The
idea is to obtain the optimal cost pumping of a fixed amount of oxygen by
choosing the source points. We prove that, in order to minimize the cost
function, the pumping must be done at the beginning of the chamber and,
when the sparging rate is time dependent, late in time.

Received November 14, 2007.



2 A. ARAUJO, MARIA F. PATRICIO AND JOSE L. SANTOS

2. The problem

Let us consider a diffusion equation with a discrete source term in the form
U= gy + Y 4 (H)3(z — ), @ €]0, L[t €]0,T], (1)
i=1

where L and T are two positive real constants and ¢ is the Dirac delta
function. The dependent variable u could be the concentration of a given
substance, a > 0 its diffusion coefficient and r the number of points where
we consider the “injections”. For ¢ € {1,...,r}, q,(t) is a control variable
which gives the measure of the “sparging rate” of the substance in the point
y; €]0, L[, in the instance t.

Let us now consider the boundary conditions

u(0,t) = ¢y and a—(L,t) =0, te€]0,T], (2)
x
as well as the initial condition
u(z,0) =0, =z €|0,L[. (3)

The control variables are calculated by solving an optimization problem.
In this work, we consider the problem presented in [6], which is described in
the following way:

win f(Q) = €Y / (s — ulys, ))u, (1), (4)

s.t. :
> [ autoar =k (5)
W()>0. el rhie0T]. (6)

where K and C are positive constants, and u;, is an upper bound for the
concentration.

In the next section we will consider a discrete version of this problem.
The numerical solution is obtained by solving the discrete problem with
optimization techniques.
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3. Numerical approach

Let us consider in [0, L] x [0,T] a grid {(x;,t;) :4=0,...,n,j=0,...,m}
with xg =0, z, = L, t, =0, t,,, = T, with constant step sizes Ax = z; — z;_1,

i = 1,...,nand At = t; —t;_1, j = 1,...,m. Let us also consider
{vi,...;v.} € {1,...,n — 1} the indexes of the spatial discretization nodes
where the injections are consider, ie., z,, = y;,1 < ¢ < r. Using the

second-order centered finite difference operator in space and the implicit
Euler method in time, the solution u of (1)—(3) can be approximated by the
solution of the linear systems

MU =U" 4 Rey + AtQP, je{1,....,m},

~J
N—

(
. . T . . . . . T
where U7 = (ui,...,u)_ ) , with v} = u(z;,t;), @’ = (¢f,....¢.—1) , 1 <
J < m, with ¢/ =0, for all i € {1,...,n — 1}\{vy,...,v.} and all j €
{0,....,m}, & = (0, 0,. .., O)T, M, —1)x(n—1) & tridiagonal matrix with m;; =
2R+ 1, mjy =mip; = —R (1 <i<n—2)and my_1)nm-1) = 1 + R, and
R = a%. The vector U is the null vector. Note that the control variables
are qgl, e qgr; the other components of the vector 7 were introduced in
order to write the vectorial equation (7).
According to (7), we may write

J
U) =AY NFQIMF 4 N(I = NI)(I = N)"'Ray, je{l,....m}, (8)
k=1
where N = M1,
Let us now consider the following result.

Proposition 1. Assume that @’ = 0 and U’ satisfying (7), for all j €
{1,...,m}. Then:

o U/ U7t >0, Vjed{l,..., s};

oul  >ul, Vie{l,...,s—1},Vie{l,... n}.

Proof: Let us first note that the matrix M in (7) is a M-matrix [5]. In fact,
mi; > 0, m;; <0, for all ¢ and j, and M is strictly diagonal dominant. Then,
N = M~! > 0. We may easily see that U7 — U/~! = N7-L(U! — U?). But,
U’ =0 and U' = ¢ and then, U’ — U’~! > 0, which concludes the first part
of the proof.

The second part results from the fact that D_,U’ < 0, where D_, is the
first order backward differentiation matrix. In fact, if we consider 7 = 0,
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we may write the linear system in the form A(U/™! — U’) = D_,U’*1, where
A is a negative matrix. Since U/t — U7 > 0 we may conclude the proof. [

A discrete approximation for the optimal solution of (4)—(6) can be ob-
tained by solving the optimization problem

min f(Q AtC’Z Z —ul gl 9)

7j=1 =1
s.t. :
MY =K, (10)
j=1 i=1
¢ >0, ie{l,....n—1},je{l,....,m} (11)

This strategy could be generalized to other objective functions. Replacing
(8) in (9), we obtain a quadratic programming problem and we may use
known numerical algorithms to solve it [1], [3], [4].

4. Optimal solution

To obtain an approximation to the solution of (1)—(6), we solve (8)—(11)
using two different strategies. In a first case we consider ¢, in (1), as a time
independent function. Then the goal is to know where and how the substance
must be injected in the system. In a second case, we consider ¢ as a time
dependent function and so the purpose is to know where, when e and how
the substance must be injected in the system.

We now describe the optimal solutions for the two different strategies de-
scribed above.

4.1. Time independent case. If we consider ¢, in (1), as a time inde-

pendent function, we have, in the discrete equation, ¢/ = ¢;, for all i €
{1,...,n—1} and all j € {1,...,m — 1}. So, we may write (8) in the form

j
U/ =AtQY N+ N(I—N)(I-N)"'Rey, je{l,....m}, (12)
k=1
where @ = [q;]. .
Let us now define the matrices P; = > 7 | N ¥, These matrices may be
written in the form

Pi=N(I—-N)I-N)'=U~-N)M-I)"!
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and so (12) takes the form

U’/ = Pj(AtQ + Rey), je{l,...,m}. (13)
In this case, the discrete optimization problem is
min f(Q) = AtCQT(Uy — Y Pi1(AtQ + Rey)), (14)
j=1
S.t.:

> q, =K/T, (15)
=1
¢ >0, ie{l,....n—1} (16)

where U, is a vector with all entries equal to wuy.
The following lemma shows that we minimize the total cost if we inject all
the substance in the first injection point, i.e., in y;.

Lemma 1. Let Q > 0, 1 <1 < n —1, be an admissible solution for the
control variables of the problem (14)-(16), i.e.,

=0, ie{l,....n—1}\{v,..., 0}
Let us define Q = [g] such that

@11 = qu and g = 07 Vi 7é 1.
(=1

Let (pj)ir and n; j be the (i, k)-entries of the matrices P; and N, respectively.
If
coR  n/R—mini<; p<p(Mir)

’7 = - ’
K mMing<j<m((Pj)or,1 = (Pj)vs.1)

then f(Q) < f(Q).
Proof: To obtain the expression for the (¢, k)-entry of P;, let us note that the
(i, k)-entry of (M — I)™!is min{s, k}/R. Then

n

(pj)ik = Z(&',é — 775,4) min{/, k}/R,

(=1
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where 0; ¢ is the Kronecker symbol and 77{,4 the (i,()-entry of N7. Let us
define

Py, = lim P;.

J=00
We may conclude that P,y = N(I — N)™! = (M — I)™!, because
lim N/ = 0.

J—00

This last equality results from the fact that the eigenvalues of N, of the form

(see [7])
21 —1m -1
1 + 4R sin® — e {1.. ..
( + 4Rsin (2n+12>> , 1e{l,...,n},

are all in |[1/(4R + 1),1[. But N > 0 (proved in Proposition 1), and so
N < P; < Py, ie.,

Nik < (0j)ir < (Po)ir = min{i, k}/R < n/R.

Let U’ (respectively, U7) be the vector obtained from @ (respectively, Q) by
(13). Then

U/ = Pj(Rco+ AtQ)  and U’ = Pj(Rey + AtQ).

If we prove that @, >/, 1<i<r1<j<m, then f(Q) < f(Q) follows
immediately. We have

r
ﬂil — RCO(pj)Ul,l + At(pj)vl,vl Z v,

(=1
and
-
U%Z = Rco(pj)vi,l + At Z qve(pj)vi,w'
(=1
Then,
-
ﬁf;l - uil - RCO((pj)Uhl - (pj)vi,l) + Atz QW((pj>U1,v1 - (pj)Ui7Ué>'
(=1
For: =1,

,
ﬁil - U%l = AtZ%e((pj)vl,vl - (pj)vl,w) > 0,
/=1
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because (p;)v,.0, — (Pj)v.0, > 0. For @ > 2, Proposition 1 tells us that (p;)y, 1,
..+, (pj)v,1 is a monotonically decreasing sequence. Then

(pj)vlal - (pj)UiJ > (pj)vl,l - (pj)vz,l >0 (2 <1 < 7“)

and so
. : : (p')v-v _(p')v v
w —u >0« Rey > At Qp, ~ L J/ 00
o o ; ’ (pj)vl,l - (pj)vi,l
Once
(D)oo = Pjlosen < /R~ min ik
and

(D)o — (i)t = @)1 — (Dj)un (2<i<r),

we conclude that if
COR
K 7
then @/ —w) > 0, which concludes the proof. O
According to this lemma, it is possible to obtain an analytical solution for

the problem (14)—(16).
Proposition 2. The optimal solution of (14)-(16) is given by
G, = K/T and ¢ =0, Vie{l,...,n—1}\{v}.

Then the numerical solution obtained by (13) is an approzimate solution to
the exact solution of (1)-(3) with truncation error O(Ax?, At).

Proof: It follows immediately from Lemma 1 and from known results for the
finite difference scheme used in the discretization. ]

We are now in position to present the following result which is a corollary
of the previous proposition.

Corollary 1. For the problem (14)-(16), the optimal source location is v =
1.

4.2. Time dependent case. For this case we cannot obtain an analytical
solution to the optimization problem. Nevertheless, our numerical tests show
that the best location to feed the system is still the point x; (i.e., r = 1 and
v1 = 1), which agrees with the previous case: only Q! is non null, in spite of
the last components of this vector be positive (i.e., the K units of substance
available are injected in a short period of time, near to the final time).
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5. Numerical results

5.1. Computational aspects. Once the vectors ()’ are obtained, we must
compute u] in the given mesh in order to obtain an approximation to the
solution of the problem that we want to solve. We may obtain these values
using (8), in spite of its computational inefficiency. An alternative approach
consists in avoiding the inversion of the matrix M factorizing M = LDLT and
solving the linear systems. This approach is computationally more efficient.
In fact, when we compute U’ using (8) we need O(m x n3) floating-point
operations, while, if we use the factorization of M in (7) we only need O(m x
n) operations.

Note that, for the first strategy (time independent ¢), the values of @
are obtained without any computational effort (Proposition 2) while for the
second one (time dependent ¢), the solutions )7 are obtained applying the

quadprog routine of the MatLab Optimization Toolbox

5.2. Example. Let us consider the problem (1)—(3), with a = 20, L =
310, T' = 50 and ¢y = 40. This equation may be viewed as a model for
the oxygen diffusion in a microbial fuel cell [2], [6]. A microbial fuel cell
converts chemical energy, available in a bio-convertible substrate, directly
into electricity. To achieve this, bacteria are used as a catalyst to convert
substrate into electrons.

We admit that, in (9)—(11), K = 350 and u, = 50. In order to compute
the numerical solution, we consider the strategies explained before.

5.2.1. Time independent case. We consider, in [0, L], different meshes with
Az € {0.125,0.25,0.5,1}. In Table 1 we compare two situations that cor-
respond to the case where we consider r = 2 and r = 5 sources, equally
distributed in the spatial domain. The temporal step sizes considered in the
discretization were At = 0.5 and At = 1. In Table 1 we include the values
of ¢;, 1 € {1,...,r} that minimizes the pumping costs and, for ¢ = T, the
percentage of the error given by

jom —om|
.

100 (17)

where || - || is the euclidian norm and U the reference solution.
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r=2
step optimal pumping quality of the numerical solution
At Ax |i 1 2 cost error (%)
05 1 |q 7 0 159791.2 5.8477
05 |qg 7 0 166992.8 3.5439
025 |qi 7 0 170594.3 1.6706
0.125)¢q;, 7 0 172395.1 —
1 1 |qg 7 0 159940.2 5.8478
05 |qg 7 0 167060.1 3.5440
0.25 |qi 7 0 170620.8 1.6706
0.125)¢q;, 7 0 172401.2 —
v; 100 200
r=2>5
step optimal pumping quality of the numerical solution

At Az |+ 1 2 3 4 5 cost error (%)

05 1 |¢ 7 0 0 0 0 |1446714 5.5700
05 |¢gg 7 0 0 0 0 |151850.4 3.3757
025 |¢ 7 0 0 0 0 |155440.3 1.5913
0.125(¢; 7 0 0 0 0 |157235.2 —

1 1 g 7 0 0 0 0 |145035.8 5.5666
05 |¢g 7 0 0 0 0 |152132.2 3.3736
025 |¢ 7 0 0 0 0 |155680.7 1.5903
0125|¢; 7 0 0 0 0 |157455.0 —

v; 50 100 150 200 250
TABLE 1. Results for time independent ¢ and r equally dis-

tributed source terms in [0, L].

For a better visualization of the behavior of u(z,t) in space, we present,
in Figure 1, the value of u(x,T) (considering At = 1) and for the spatial
discretizations with Az € {0.5,1}.

From the analysis of these results, we may conclude that, in the optimal
case, the injection of the substance is always done in the first point (position
v1). We may also conclude that, increasing the value of r (i.e., putting the
injection points closer the origin), we decrease the cost. Decreasing the step
size At, the cost decreases slightly. The error is not substantially affected
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FIGURE 1. Values of u for different locations (vy) of the
pump(At = 1).

with r» and At. Finally, decreasing the step size Az, we improve the quality
of the solution (the error decreases faster than Ax) but the cost increases.

The results obtained confirm that the only interesting case is when the
injection is done in the position vy (first point available). Then, according to
the previously exposed, we force v; = 1, independently of the discretization
(i.e., Az). In Table 2 we present the computational results for the same
problem but with a different diffusion coefficient o = 86.4. We also consider
Ax = 4 and At = 0.05 in order to compare our results with the ones obtained
by Zielke [6]. As we may see, our results are in agreement with the ones
reported in Zielke’s work. In fact, when we increase the diffusion coefficient
a the cost and error decrease (except for Az = 4 where we obtain a worse
cost). We may also conclude that the results presented in Table 2 are in
concordance with the corresponding ones presented in Table 1 in respect to
the variation of Az and At (except the case a = 20, Az = 4). The cost
obtained by Zielke [6] with 80 nodes (Ax =~ 4), At = 0.05 and o = 86.4 is
around 75000 and we obtained a better cost: 40261.74.

5.2.2. Time dependent case. The previous study was also done for the case
where ¢ is time dependent using the technique described above. According
to the results presented in Tables 3 and 4, the computational results present
similar behavior when compared to the previous case. Note that the cost
is reduced and, on the other hand, the percentage of error increased due to
a great among of substance is injected late in time. This fact also leads to
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Ax
Q At 4 2 1 0.5 0.25 0.125
U1 4 2 1 0.5 0.25 0.125
n 77 155 310 620 1240 2480

20 0.5 cost 38379.1 41537.8 40124.6 38566.9 37561.6 37000.6
error (%) 2.3493  0.8491 0.3003  0.1017  0.0289 —

1.0 cost 39831.7 42921.6 41505.1 39954.1 38954.5 38396.8
error (%) 2.3490 0.8490 0.3003  0.1017  0.0289 —

86.4 0.05 cost 40261.4 38784.7 372474 36266.7 35721.9 35435.6
error (%) 0.5586 0.1992  0.0700 0.0236  0.0067 —

0.5 cost 41506.3 40027.6 38496.3 37520.6 36978.6 36693.9
error (%) 0.5586 0.1992  0.0700 0.0236  0.0067 —

1.0 cost 42889.1 41408.4 39884.0 38913.7 38375.0 38092.1
error (%) 0.5586 0.1992  0.0700 0.0237  0.0067 —

TABLE 2. Results for v; = 1.

40 — : u°
35 \\\‘\ _____ ujo
— N 0
30 N L u60
25 — VN T T U
w o204 N R - 80
15 — \ O N ulOO
10 NI
5 B N . i \\_; :::\\ B
0 | == R |
0 25 50 75 100 125 150
T

FIGURE 2. Evolution of %/ in time and space and time (Az = 1,
At =05, 1 = 2).

a erratic behavior of the solution for the largest values of Az, producing
negative cost (in these case, the value of u exceeds uy).
Figure 2 shows the evolution of ] in time and space.

6. Conclusions

We conclude that the injection is done in the beginning of the chamber,
and near the final time (for the time dependent case). In what concerns the
error, it is smaller in the time independent case. Finally, as expected, in
what respect the cost, it is always small in the second case.
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r=2
step optimal solution (qf #0) quality of the numerical solution
At Az |j m—=3 m—2 m—1 m cost error (%)

0.5 1 gl 104.7 238.6 243.2 113.5|116183.8 11.086

0.5 q{ 98.4 236.7 247.1 117.8|143763.9 6.5928

0.25 q{ 87.9 231.6 2529 127.7|157705.3 2.9495
0.125 q{ 67.7 220.8 263.7 147.8 | 164658.2 —

1 1 q 542 120.8 120.8 54.2 | 132477.3 10.576

0.5 q{ 53.9 121.1 121.1 53.9 | 152105.5 6.4065

0.25 q{ 53.9 121.1 121.1 53.9 | 161966.8 3.0196
0.125 q{ 53.9 121.1 121.1 53.9 | 166903.3 —

r=95
step optimal solution (¢’ # 0) quality of the numerical solution
At Az |j m—=3 m—2 m—1 m cost error (%)

0.5 1 g 939 2329 2489 124.3| 83616.2 12.419

0.5 q{ 74.6  224.1 259.8 141.5|111181.0 7.5516

0.25 q{ 39.2 2055 278.9 176.3 | 125073.8 3.6065
0.125 q{ 0 180.3 300.0 219.7 | 131997.5 —

1 1 g 533 120.5 121.0 54.7 | 100739.6 10.311

0.5 q{ 4.8 94.8 147.4 103.0 | 120197.2 6.7237

0.25 q{ 0 85.8 150.0 114.2|129948.5 3.1956
0.125 q{ 0 71.5  150.1 128.3 | 134809.5 —

TABLE 3. Results for time dependent () and r equally distributed

source terms in [0, L].
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Ax
« At 4 2 1 0.5 0.25 0.125
U1 4 2 1 0.5 0.25 0.125
n 7 155 310 620 1240 2480

20 0.5 cost -127641.7 -31037.8 14273.1 29597.4 33846.9 34854.3
error (%)  13.8508 9.4618  3.5211  1.2170 0.3484 —

1.0 cost -69297.5  -1164.2  25064.6 34267.0 35041.8 35086.8
error (%)  15.3702 6.5694  2.5745  0.0810 0.0982 —

86.4 0.05 cost -217842.2 -88258.8 -10545.8 21231.2 31312.1 34099.5
error (%) 15.1854 7.3978  4.4418  1.5628  0.4504 —

0.5 cost -27291.6  15677.5 30011.4 33951.0 34876.0 35043.2
error (%)  6.2560 2.3414  0.8387  0.2857  0.0813 —
1.0 cost 1169.3 25818.1  34407.2 35051.1 35091.8 35099.1

error (%)  4.3718 1.7369  0.0347  0.0210  0.0696 —

TABLE 4. Results for v; = 1.
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