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Abstract: The imbalance of local and systemic factors in individuals with diabetes mellitus (DM)
delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to
diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic
amputations worldwide, posing a huge threat to the well-being of individuals with DM and the
healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still
remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based
wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky
macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been
related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing
properties, features that make them ideal candidates for therapeutic applications. Furthermore,
biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic,
and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review
aims to unravel the multiple functional properties of biomaterials as promising wound dressings
for chronic wound healing, and to examine how these are currently being evaluated in research and
clinical settings as cutting-edge wound dressings for DFU management.

Keywords: biomaterials; chronic wounds; clinical translation; diabetic foot ulcers; natural and
synthetic materials; wound dressings; wound healing

1. Introduction

Diabetes mellitus (DM) represents a rapidly growing global health challenge with
significant socioeconomic impacts, and its incidence is predicted to keep rising over the
coming decades [1–3]. According to the International Diabetes Federation, DM prevalence
keeps increasing, posing dramatic challenges to patients, families and societies [1,2]. In
2021, DM affected one in every ten adults (20–79 years), for a total of 537 million people
worldwide [1]. Projections further indicate that this number could rise to over 783 million
by 2045, a 20% increase [1]. Moreover, DM is responsible for one death every 5 s and for a
316% increase in the health expenditure over the last 15 years (USD 966 billion) [1].

Individuals with DM face many risk factors that compromise their overall health
and well-being, leading to a range of comorbidities, including cardiovascular diseases,
diabetic retinopathy and kidney disease, nerve and/or vascular damage, and diabetic foot
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complications [1,4]. In particular, the risk factors involved in diabetic foot development
include persistent hyperglycemia, chronic inflammation, hypoxia, peripheral neuropa-
thy, peripheral arterial disease (PAD), impaired angiogenesis, and difficulty in fighting
infections [5–9], as depicted in Figure 1.
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Figure 1. Risk factors associated with the development of diabetic foot ulcers (DFUs) (produced
using BioRender). The chronic low-grade inflammation and prolonged hyperglycemia in individuals
with diabetes can foster myelin damage over time, prompting peripheral neuropathy. This results in
oxidative stress and impairment of the sensitive, motor, and autonomous nerves. In turn, peripheral
arterial disease (PAD) leads to insufficient blood supply and subsequent hypoxia, as well as hyperco-
agulability and serious limb ischemia, weakening the lower-extremity zones and making them prone
to secondary infections. On top of that, angiogenesis is also reduced in individuals with diabetes.
Foot ulceration is hence expectable.

Affecting 15 to 25% of individuals with DM during their lifetime, diabetic foot ulcers
(DFUs), as complex lesions of the lower extremities, are one of the most significant and
devastating complication of diabetes [3,5,8,10]. These ulcers might not heal over time
and can develop polymicrobial infections, leading to prolonged hospitalizations and even
amputations in 85% of cases [2,5,9,11,12]. Current DFU treatments focus on multidisci-
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plinary approaches, including key aspects of diabetic wound care such as glycemic control,
adequate arterial supply, the debridement of necrotic tissue, pressure offloading, and the
treatment of any infection [3,4,9,11–16]. However, more effective treatment options are
lacking to achieve actual efficient management of this condition, and consequently to reach
superior treatment success rates [17,18].

Biomaterials are natural or synthetic materials designed to interact with biological
systems [19,20], which exhibit great potential for diabetic wound healing due to their
unique inherent characteristics [21–24]. On the one hand, biomaterials have been exten-
sively explored due their ability to absorb wound exudates while providing a moist and
warm environment, that are beneficial for tissue regeneration [21–24]. On the other hand,
many biomaterials have also been revealed to have antimicrobial properties that help
prevent infections and consequently promote proper wound healing [21–23]. Furthermore,
biomaterials can also be used as local depots of bioactive agents that can be delivered
in a controlled and sustained manner over time, reducing the risks of dose-related toxic-
ity while promoting wound closure [21–25]. Owing to their versatility, biocompatibility,
biodegradability, and hydrophilicity, biomaterials have arisen as encouraging candidates
for the successful treatment of DFUs [22–24].

This review aims to unravel the multiple functional properties of biomaterials as
promising wound dressings for chronic wound healing. Additionally, it will examine
cutting-edge wound dressings that are undergoing clinical trials for DFU management.

2. Diabetic Foot Ulcer: A Multifactorial Emerging Issue

DFUs are deep tissue lesions on the lower extremities, mainly associated with sus-
tained hyperglycemia, peripheral neuropathy, and PAD [5–9]. Globally, a lower limb is
amputated every 20 to 30 s, with DFU being responsible for 85 to 95% of cases [8,26–28].
Furthermore, individuals with DFUs typically display an increased risk of mortality, more
than the double risk of those with DM without a DFU [3,8,29,30]. A 5-year lower survival
rate was also revealed for individuals with a DFU when compared to those with DM
without DFUs [8,30–32]. This lower survival rate is in addition to the reduction of 6 years
in life expectancy that is observed for the condition of DM itself [30–32].

2.1. Pathophysiology of Diabetic Foot Ulcers

Peripheral neuropathy is the primary predisposing factor in DFU development, due
to long-term hyperglycemia, which results in oxidative stress and damages the sensitive,
motor, and autonomous nerves [10,28]. Sensory defects manifest as a loss of sensitivity to
injury and stimulation in the lower limbs due to small-fiber nerve dysfunction, thereby
promoting constant unconscious trauma and subsequent ulceration [10]. These sensory
defects may include sensory dullness, numbness, and abnormal pain, among others [10,26].
By generating intrinsic muscle weakness and atrophy, consequently leading to biome-
chanical anatomical changes in the feet such as hammer toe, Charcot’s ankle, pes-planus,
and pes-cavus, motor neuropathy triggers high-pressure zones in the feet [3,8,10,26,28].
This increased shear stress and friction force further promote foot ulceration [10]. Periph-
eral sympathetic nerves may also be damaged, causing thermoregulatory dysfunction
that involves altered sweating, dry skin, cracking, and calluses, subsequently facilitating
ulceration [10,26].

PAD is another key factor in ulcer development, characterized as a chronic arterial
occlusive disease of the lower extremities [3,10,28]. Specifically, approximately 80% of
individuals with DFUs initially experience PAD, resulting in an insufficient blood supply,
hypercoagulability, and serious limb ischemia [3,10,28,33]. Tissue ulceration is therefore
anticipated due to long-term ischemia and hypoxia, which weaken lower-extremity regions
and render them susceptible to secondary infection [3,10,28].

Significantly, 50 to 60% of DFUs become infected, predominantly with bacterial
colonies of S. aureus, C. striatum, and P. aeruginosa, and fungal colonies of C. albicans [5,34–38].
Moreover, between 20 and 25% exhibit deep infections with some anaerobic bacteria, such
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as Bacteroides spp., Prevotella spp., and Clostridium spp., which can spread to the bone,
further exacerbating the risk of mortality and the socioeconomic burden [8,28,39].

2.2. Impaired Healing in Diabetic Foot Ulcers

DFUs may arise from several risk factors that collectively impair the wound healing
process of these individuals. Wound healing is a process with four overlapping phases, in-
volving a complex and dynamic sequence of cellular and biochemical events to restore skin
integrity and functionality after trauma [5,40–42]. The first phase—hemostasis—begins
immediately after skin injury with the constriction of the damaged blood vessels and
activation of platelets [5,40,43]. This promotes platelet aggregation and the subsequent
formation of a fibrin clot, covering the injured endothelium and consequently stopping
the bleeding [5,40,43]. The second phase—inflammation—starts with the recruitment of
neutrophils to the wound site, as a first line of defense against pathogens [5,40,41,43].
After a peak population between 24 and 48 h post skin injury, the number of neutrophils
greatly reduces and pro-inflammatory M1 phenotype macrophages arrive successively
at the wound site to continue clearing microbial pathogens and debris [5,40,41]. In de-
tail, M1 macrophages attract different types of adaptive immune system cells to the
wound site by the secretion of cytokines and chemokines, either to continue clearing
cellular debris or to fight infection [5,40–42]. These macrophages then switch from the
pro-inflammatory M1 to anti-inflammatory M2 phenotype as inflammation resolves to fur-
ther foster tissue regeneration, producing anti-inflammatory cytokines and growth factors.
The third phase—proliferation—occurs with the formation of granulation tissue to fill the
wound, the contraction of the wound borders, wound coverage with epithelial cells (i.e.,
re-epithelialization), and neovascularization [5,40–43]. The fourth phase—remodeling—
involves collagen fiber reorganization, tissue remodeling and maturation, and an overall
increase in tensile strength [5,40,41,43].

Nonetheless, the impairment of local and systemic factors in individuals with DFUs
leads to a poorly orchestrated cascade of the four phases, thus delaying or even inter-
rupting the healing process, as per Figure 2. The concurrent presence of DM and DFU
stimulates an unbalanced accumulation of immune cells, as well as an increase in the
M1/M2 macrophage ratio, reactive oxygen species (ROS), and pro-inflammatory cytokines,
together ending in chronic non-healing wounds that remain in a state of low-grade in-
flammation [5,16,26,42]. In detail, Erem et al. showed that patients with DM exhibited
hypercoagulability and decreased fibrinolysis during the hemostasis phase, compared to
healthy individuals [44]. Patients with DM have also been associated with an imbalance
in cytokine release by neutrophils during the inflammatory phase, thus favoring wound
infection [26,45]. Furthermore, fibroblast and keratinocyte migration, as well as their pro-
liferative capacity, is compromised in patients with DM due to hyperglycemia, leading to
poor re-epithelialization of the wound [46,47]. On top of this compromised cell migration,
angiogenesis is also reduced in patients with DM, resulting in decreased blood supply to
the wound site [48]. During the remodeling phase, patients with DM have also shown
altered fibroblast function, contributing to flawed closure of the wound [49]. This may
probably be explained by an inefficient response to transforming growth factor beta (TGF-β)
from fibroblasts, as well as an aberrant production of the extracellular matrix [26,49].
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Figure 2. Healthy versus impaired phases of the healing process: the case of diabetic foot ulcers
(DFUs) (produced using BioRender). Under DFU conditions, an unbalanced accumulation of immune
cells and an increase in the M1/M2 macrophage ratio, reactive oxygen species (ROS), and pro-
inflammatory cytokines occur. In addition, re-epithelialization and angiogenesis are scarce, altogether
ending in chronic non-healing wounds that remain in a state of low-grade inflammation.

2.3. Management of Diabetic Foot Ulcer

Current therapeutic approaches for managing DFUs involve multidisciplinary strate-
gies that address key aspects of diabetic wound care, including glycemic control, adequate
arterial supply, the debridement of necrotic tissue, pressure offloading, and the treatment of
any infection with appropriate broad-spectrum antibiotics [3,4,9,11–16]. For example, it was
recently reported that the MADADORE acronym corresponds to the recommended DFU
management principles: Metabolic control, Assessment of foot, Debridement, Antibiotics,
Dressing, Offloading pressure, Referral to multidisciplinary teams, and Education [50].
Metabolic control involves the management of associated medical conditions such as hyper-
glycemia and hyperlipidemia, through adequate medication and dietary counseling [51].
Assessment of foot concerns the correct evaluation of the associated risk factors and clas-
sification of the ulcer according to the perfusion, extent, depth, infection, and sensation
(PEDIS) scale [52]. Debridement involves the surgical removal of any necrotic or unhealthy
tissue, while treating any infection with appropriate broad-spectrum antibiotics. Further-
more, dressings are needed to foster wound exudate absorption and create a protected
environment propitious for tissue regeneration. In turn, offloading through minimally
invasive surgery such as the minimally invasive metatarsal osteotomies is essential to re-
duce plantar pressure, while supporting minimal tissue damage, immediate post-operative
weight bearing, and a lower risk of potential infections, consequently preventing recurrent
ulceration [53,54]. Last but not least, referral to multidisciplinary teams means the indi-
cation of appropriate adjuvant therapies for the optimal management of DFUs, such as
stress-reducing approaches [55,56], while education is fundamental to improve DFU health
literacy for the prevention of future ulcers.

However, despite these efforts, the efficient management of DFUs remain a clinical
challenge, with limited success rates in treating severe infections [17,18]. Indeed, current
DFU treatments still exhibit a huge recurrence rate of 40% within one year, 60% within
three years, and 65% within five years [8,13,28,57], due to persistent risk factors even after
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the former ulcer has healed [58]. Consequently, there is a crucial need for novel strategies
that can successfully address the multifactorial etiology of DFUs.

3. Biomaterials as a Promising Therapeutic Platform for Wound Dressings

A therapeutic strategy with rising potential to handle the challenging macro and
micro wound environment of individuals with DM involves the use of biomaterials as
wound dressings. Biomaterials have long been related to unique versatility, biocompatibil-
ity, biodegradability, and hydrophilicity, characteristics that make them ideal candidates
for therapeutic applications [22–24]. Furthermore, biomaterials have also been explored
for their innate properties for wound healing [21–24]. An ideal wound dressing for the
management of DFUs should present several key features. Firstly, it must demonstrate
excellent biocompatibility and biodegradability to ensure tissue healing. Secondly, it should
create a moist and warm environment conducive to tissue regeneration. Thirdly, the dress-
ing should prevent polymicrobial infections to ensure proper wound healing. Finally, it
should exhibit adequate porosity that enables gas exchange, and stimulate cell migration,
proliferation, and neovascularization, as depicted in Figure 3 [21,22].
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3.1. Natural Biomaterials

Wound dressings may be produced either from naturally occurring materials or syn-
thetic materials [24,59,60]. Common natural materials include alginate, cellulose, chitosan,
collagen, dextran, fibrin, gelatin, hyaluronic acid (HA), and pectin. These materials have
been widely used as biomaterials due to their excellent biocompatibility, biodegradability,
and low antigenicity, making them less likely to trigger inflammatory responses [24,59,61].
Moreover, these natural biomaterials can mimic the native tissue structure and function,
allowing greater cell attachment and infiltration, and further supporting tissue regener-
ation [24]. However, there are some limitations to their clinical use, such as their poor
mechanical properties, usually requiring cross-linking with synthetic polymers that exhibit
good mechanical properties, or chemical modifications to improve their intrinsic character-
istics, as described in the following subsections [24,59,61]. Natural materials that have been
recently evaluated in research settings as promising wound dressings and their respective
formulation and main properties are summarized in Table 1.
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Table 1. Natural biomaterials with cutting-edge potential as wound dressings and their respective main properties.

Biomaterial Structural Formula Formulation Main Properties/Outcomes Ref.

Alginate
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elasticity, tensile strength, and ductility

Good biocompatibility with L929 fibroblasts, as well as
enhanced cell adhesion and proliferation

[65]

CMC hydrogels for loading of EGF *
No differences in overall bacterial loads and virulence
genes, but colonization by bacterial strains with lower

biofilm formation capacities
[66]

Chitosan
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Decreased ROS, hemostatic effect, and S. aureus and E. coli inhibition in 
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Fostered coagulation, decreased inflammation, and improved collagen 
deposition in full-thickness wounds of diabetic rats 

[67] 

QC/TA layer-by-layer-deposited TA/Ag-modified 
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Antibacterial activity against S. aureus and E. coli 

Decreased ROS in vitro 
[68] 

Composite hydrogels made of chitosan and PVA for 
loading of PHMB, perfluorocarbon nanoemulsions, 

and chitosan nanoparticles loaded with EGF 

Sustained release of PHMB and EGF, promoting antibacterial activity 
against S. aureus and S. epidermidis, and cell growth of KERTr cells 

Enhanced re-epithelialization, improved collagen deposition and matura-
tion, and decreased inflammatory responses in full-thickness wounds of 

diabetic rats 

[69] 

Collagen 
 

(collagen type I) 

Porcine collagen hydrogel for loading of ucMSC-
derived small extracellular vesicles and fusion pep-

tides 

Good mechanical strength 
Enhanced NIH-3T3 fibroblast proliferation, migration and adhesion 

Enhanced tube formation in EA.hy926 cells 
Improved healing of wounds in diabetic rats 

[70] 

Quaternized chitosan/TA hydrogels

Decreased ROS, hemostatic effect, and S. aureus and E. coli
inhibition in vitro

Fostered coagulation, decreased inflammation, and
improved collagen deposition in full-thickness wounds of

diabetic rats

[67]

QC/TA layer-by-layer-deposited
TA/Ag-modified PLA/PU hybrid

nanofibers

Great flexibility
Antibacterial activity against S. aureus and E. coli

Decreased ROS in vitro
[68]

Composite hydrogels made of chitosan
and PVA for loading of PHMB,

perfluorocarbon nanoemulsions, and
chitosan nanoparticles loaded with EGF

Sustained release of PHMB and EGF, promoting
antibacterial activity against S. aureus and S. epidermidis,

and cell growth of KERTr cells
Enhanced re-epithelialization, improved collagen

deposition and maturation, and decreased inflammatory
responses in full-thickness wounds of diabetic rats

[69]
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Collagen 
 

(collagen type I) 

Porcine collagen hydrogel for loading of ucMSC-
derived small extracellular vesicles and fusion pep-

tides 

Good mechanical strength 
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Enhanced tube formation in EA.hy926 cells 
Improved healing of wounds in diabetic rats 

[70] 

(collagen type I)

Porcine collagen hydrogel for loading of
ucMSC-derived small extracellular

vesicles and fusion peptides

Good mechanical strength
Enhanced NIH-3T3 fibroblast proliferation, migration and

adhesion
Enhanced tube formation in EA.hy926 cells

Improved healing of wounds in diabetic rats
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Electrospun nanofibers made of
chitosan, PEO, and collagen for loading

of Cur

Sustained release of Cur up to 3 days
No toxicity towards human dermal fibroblasts

Significant wound area closure of wounds in non-diabetic
rats

[71]
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for loading of ZnO-NPs and Pf

Sequential hemostatic, antibacterial, and angiogenic
activities in infected wounds of diabetic rats [73]
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Collagen cross-linked fibrin hydrogels
for loading of SVF cells **

Improved mechanical and elastic properties
Enhanced healing activity in patients with hard-to-heal

diabetic wounds
[75]

Gelatin

GelMA cryogels for loading of EPCs
and aFGF

Improved stability and retained degradability
Enhanced pressure ulcer healing in a diabetic rat model,

due to upregulation of HIF-1α
[76]

Gelatin microspheres for loading
of ADSCs

Good biocompatibility and adaptive degradation rate
Accelerated healing of wounds in diabetic rats [77]

Gelatin and oxidized dextran hydrogels
for loading of ZnO-NPs and Pf

Sequential hemostatic, antibacterial, and angiogenic
activities in S. aureus-infected wounds of diabetic rats [73]
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Antibacterial activity against S. aureus and P. aeruginosa,
anti-inflammatory activity, and collagen deposition and
angiogenesis properties, enhancing healing of infected
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[72]

HA hydrogels with integrated MnO2
nanoenzymes, for loading of M2 Exos

and FGF-2

Improved healing of wounds in diabetic mice, through
eradication of bacterial infection, diminution of oxidative
stress, supply of oxygen, and stimulation of angiogenesis

and epithelialization

[78]

PEG-DA/HA-PBA hybrid hydrogels
for loading of MY

Glucose-triggered release of MY
Efficient elimination of ROS

Ameliorated inflammatory response, angiogenesis, and
tissue remodeling of wounds in diabetic rats
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progenitor cell; aFGF—ok; ADSC—acid fibroblast growth factor; MnO2—manganese dioxide; M2 Exos—M2 macrophage-derived exosome; FGF-2—fibroblast growth factor 2;
PEG-DA—polyethylene glycol diacrylates; PBA—phenylboronic acid; MY—myricetin.
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3.1.1. Alginate

Alginate is a natural biomaterial that has attracted the greatest attention in biomed-
ical applications, along with chitosan [80–82]. It is composed of two linear co-polymers:
(1,4)-linked β-D-mannuronic acid (M) and α-L-guluronic acid (G). It is a structural pro-
tein that is typically extracted from brown seaweeds, but that is also produced by few
bacterial species including Pseudomonas aeruginosa [80,81,83–85]. The M/G ratio and the
length of the chain influence its properties as a wound dressing [80,81]. Indeed, higher G
content results in strong and firm gels, whereas higher M content leads to weak and soft
gels [81,85,86]. Alginate’s anionic nature provides excellent biocompatibility, hydrophilicity,
and biodegradability, as well as great swelling capacity, ease of gelation, pH sensitivity,
and non-toxicity [81,84,85,87]. Specifically related to wound healing, it may enhance ion ex-
change with wound exudate and blood, while forming a protective barrier that maintains an
optimal moisture content and temperature favorable for wound healing [80,82]. However,
alginate also displays some drawbacks to its clinical use, such as low structural stability
under physiological conditions, and no antimicrobial activity [83]. These limitations can be
counteracted through chemical modifications, cross-linking with other materials, or loading
with bioactive agents [83,88]. For example, Chen et al. designed an oxygen-producing
patch filled with sodium alginate gel beads containing active S. elongatus, a unicellular
cyanobacterium that has rapid autotrophic growth, to produce dissolved oxygen [62]. In
detail, oxygen needs to be dissolved, i.e., to leave the gaseous phase and enter the liquid
phase, to become biologically available and be diffused into a cell [89]. Accordingly, this
patch delivered oxygen by penetrating the skin much more efficiently than common topical
gaseous oxygen therapy, thus improving chronic wound healing and skin graft survival
in diabetic mice [62]. Other authors applied the ionic cross-linking method with calcium
ions to produce sodium alginate hydrogels loaded with deferoxamine (DFO) and copper
nanoparticles (Cu-NPs) [63]. The simultaneous release of DFO and Cu-NPs from sodium
alginate hydrogels synergistically stimulated hypoxia-inducible factor 1 alpha (HIF-1α)
levels and vascular endothelial growth factor (VEGF), enhancing angiogenesis, reducing
chronic inflammation, and accelerating wound healing in a diabetic mouse model [63].
Another study combined the cross-linking of sodium alginate with carboxymethyl chitosan
(CMCS) and loading with a small molecular probe (Ir-fliq) based on an iridium complex to
form a gel for optical imaging and photodynamic antimicrobial chemotherapy (PACT) [64].
Under light irradiation, the formed hydrogels promoted the healing of S. aureus-infected
chronic wounds in diabetic mice, by inhibiting bacteria growth through PACT [64].

3.1.2. Cellulose

Cellulose is a natural polysaccharide that is widely distributed and abundant in
nature, namely in plants, fungi, algae, and bacteria [59,60]. This material has been used
for wound healing applications as a biomaterial due to its good biocompatibility and
hydrophilicity, which are critical features to ensure wound exudate absorption and a
favorable moist environment conducive to wound healing [59,60]. Lot-to-lot variability is
typically present due to the diversity of extraction sources. For instance, bacterial cellulose
displays better biocompatibility, porosity, air permeability, moisture absorption, water
retention, mechanical properties, and flexibility compared to cellulose of plant origin [60].
Despite these favorable characteristics, poor cell adhesion, a lack of antibacterial activity,
and low water stability have been linked to cellulose, which limit its clinical translation [60].
Nonetheless, chemical modifications or blending with other materials can be used to
bypass some limitations [60,90–92]. Carboxymethyl cellulose (CMC) is an alternative that
has gained particular attention, due to its low cost and high abundance [60]. Moreover,
Azarniya et al. developed composite scaffolds consisting of nanofibrous mats made of
bacterial cellulose and polyethylene oxide (PEO)-modified keratin, and tragacanth gum
(TG)-conjugated hydrogels [65]. The modified nanofibers with TG-conjugated hydrogels
showed superior overall mechanical properties such as hydrophilicity, elasticity, tensile
strength, and ductility [65]. In addition, good biocompatibility with L929 fibroblasts was
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observed, as well as enhanced cell adhesion and proliferation, thus underlining the potential
of this hybrid composite scaffold as an attractive wound dressing [65]. Furthermore, a
randomized clinical trial conducted by Pessanha et al. demonstrated the effects of a CMC
hydrogel loaded with epidermal growth factor (EGF) on biofilm formation in the wounds
of patients with DM [66]. Despite no differences in overall bacterial loads and virulense
genes, they revealed that the loaded hydrogels were colonized by bacterial strains that
presented lower biofilm formation capacities [66].

3.1.3. Chitosan

Chitosan is a natural biomaterial composed of two linear sugar monomers: β(1,4)-linkedD-
glucosamine and N-acetyl-D-glucosamine [24,80,93–95]. It is obtained by the alkaline deacety-
lation of chitin, the main component of the exoskeleton of crustaceans [24,80,93–95]. The type
of chitosan, length of the chain, and degree of deacetylation influence its properties as
a wound dressing [80,94,95]. Chitosan is quite unique, as it is the only known cationic
polysaccharide in nature. Furthermore, chitosan presents several outstanding characteris-
tics favorable for biomedical applications, including high biocompatibility, biodegradability,
bioadhesivity, hydrophilicity, and hemostatic and antimicrobial properties [60,80,93–98].
Nevertheless, it exhibits some weaknesses such as chemical characteristics that limit its
flexibility and consequent clinical use, although these weaknesses are preventable through
chemical modifications and cross-linking with other materials [61]. A good example is
the introduction of tannic acid (TA), with its excellent ROS reducing capacity and hemo-
static activity, into a quaternized chitosan matrix by Pan et al. [67]. Quaternized chitosan
is known to exhibit better water solubility and antibacterial properties compared to chi-
tosan [99,100]. Accordingly, this modified chitosan hydrogel showed a decrease in ROS,
a hemostatic effect, and S. aureus and E. coli inhibition in vitro; in addition, it fostered
coagulation, decreased inflammation, and improved collagen deposition in full-thickness
wounds of diabetic rats [67]. Zhou et al. also used quaternized chitin (QC) and TA to form
QC/TA layer-by-layer-deposited TA/Ag-modified polylactic acid (PLA)/polyurethane
(PU) hybrid nanofibers [68]. The formed hybrid nanofibers showed great flexibility, antibac-
terial activity against S. aureus and E. coli, and a reduction in ROS in vitro [68]. Moreover,
Lee et al. fabricated composite hydrogels made of chitosan and polyvinyl alcohol (PVA)
for loading of polyhexamethylene biguanide (PHMB), perfluorocarbon nanoemulsions,
and chitosan nanoparticles loaded with EGF [69]. This composite hydrogel exhibited the
sustained release of PHMB and EGF, promoting antibacterial activity against S. aureus and
S. epidermidis, and the cell growth of human KERTr keratinocytes, essential for wound
repair [69]. In addition, the produced hydrogels stimulated re-epithelialization, improved
collagen deposition and maturation, and reduced inflammatory responses in full-thickness
wounds of diabetic rats [69].

3.1.4. Collagen

Collagen is a fibrous protein composed of long polypeptide chains normally produced
by fibroblasts in mammals, and represents the major component of the extracellular ma-
trix [19,21,22,87,101]. To date, 29 types of collagen have been identified, with collagen type
I being the most abundant [19,102]. Its high biocompatibility and biodegradability, low
immunogenicity, and ability to ensure cell attachment make collagen a suitable option
for therapeutic applications [19,60,101–103]. Despite a very low antigenicity being in-
duced, this can be controlled through the removal of the terminal telopeptide from collagen
molecules [19]. Moreover, collagen can modulate cells to boost new collagen deposition
and organization [101,102]. However, the low swelling capability and mechanical strength
and the high degradation rate may also be limitations for certain purposes, although it
is possible to overcome these limitations through chemical modifications or cross-linking
with other materials [101,103]. Ma et al. used porcine small intestinal submucosa (SIS),
mainly composed of collagen, to create a functional hydrogel for the loading of umbili-
cal cord mesenchymal stem cell (ucMSC)-derived small extracellular vesicles and fusion
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peptides [70]. SIS was modified through catecholamine chemistry, in order to enhance the
adhesion ability and biomechanical properties of the hydrogel [70]. This modified collagen
dressing exhibited good mechanical strength, and NIH-3T3 fibroblast proliferation, migra-
tion and adhesion enhancement, as well as tube formation in EA.hy926 vascular endothelial
cells [70]. The healing of full-thickness wounds in diabetic rats was also demonstrated [70].
Another study employed a blend-electrospinning process for the fabrication of electrospun
nanofibers made of chitosan, PEO, and collagen [71]. These electrospun nanofibers were
used for the sustained release of up to 3 days of curcumin (Cur), a strong anti-inflammatory
and anti-infective agent, without causing toxicity towards human dermal fibroblasts [71].
Moreover, the Cur-loaded electrospun nanofibers significantly promoted the wound area
closure of full-thickness wounds in non-diabetic rats [71].

3.1.5. Dextran

Dextran, a hydrophilic polysaccharide produced by bacteria, consists of linear chains
of α-1,6-linked d-glucopyranose residues [104,105]. It is known for its good biocompatibil-
ity, biodegradability, water retention, and easy modification, as well as its ability to reduce
ROS and excess platelet activation, hence decreasing inflammatory responses and vascular
thrombosis [72,104,106]. However, poor antibacterial activity has been linked to dextran,
which requires cross-linking with other materials or loading with bioactive agents to handle
this limitation. For example, Wei et al. engineered a composite hydrogel made of oxidized
dextran and HA for the controlled release of an antimicrobial peptide (AMP) and platelet-
rich plasma (PRP) [72]. This composite hydrogel exhibited antibacterial activity against S.
aureus and P. aeruginosa, anti-inflammatory activity, and collagen deposition and angiogen-
esis properties, thus improving the healing of infected wounds in diabetic mice [72]. Guo
et al. also demonstrated the potential of mixing ethylenediamine-modified gelatin with
oxidized dextran for the loading of zinc oxide nanoparticles (ZnO-NPs) with antibacterial
activity and low pH responsiveness, and paeoniflorin (Pf) with inherent angiogenic activity
and ROS responsiveness [73]. This composite hydrogel achieved sequential hemostatic,
antibacterial, and angiogenic activities, thus promoting the healing of chronically S. aureus-
infected wounds in diabetic rats [73]. Wu et al. further showed the potential of combining
oxidized dextran and the antimicrobial peptide DP7 to form a dual-function pH-sensitive
hydrogel for the loading of ceftazidime (CAZ), an antibiotic [74]. This hydrogel was proved
to exhibit a synergistic action able to eradicate multi-drug-resistant (MDR) bacteria such as
P. aeruginosa and to induce the scarless healing of P. aeruginosa-infected wounds in diabetic
mice [74].

3.1.6. Fibrin

Fibrin is a natural polymeric material formed in the body during the first phase of the
healing process when fibrinogen is activated [21,107]. It acts as a plug to cover the injured
endothelium and consequently stop the bleeding [21,107]. In addition, fibrin may behave
as a scaffold for leukocytes and endothelial cells throughout tissue regeneration [107].
Recently, fibrin has gained particular attention as a biomaterial for its bulk stiffness, degrad-
ability, and suitable porosity, as well as its role in promoting wound healing [75,107]. In
comparison to dressings made of collagen found in more mature tissues, fibrin dressings
may present a rapid degradation rate and a more porous structure with smaller typical
periodic distances, due to its smaller length [108,109]. Nilforoushzadeh et al. demonstrated
how cross-linking with collagen further boosted fibrin characteristics, by improving its ma-
jor weakness: its poor mechanical and elastic properties [75]. The fibrin–collagen hydrogels
were then used to encapsulate stromal vascular fraction (SVF) cells for the enhancement of
healing in patients with hard-to-heal diabetic wounds [75].

3.1.7. Gelatin

Gelatin is a natural polymeric material obtained from partial hydrolysis of insoluble
collagen type I [19,110]. As a collagen derivative, it shares many of its characteristics,
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i.e., great biocompatibility, flexibility, stability, hydrophilicity, non-immunogenicity, and
biodegradability [19]. As a smaller polypeptide, gelatin exhibits a smooth and viscoelastic
material profile that contrasts with the more rigid and robust characteristics of collagen [19].
Moreover, gelatin is readily obtained from cost-effective resources, such as porcine skin,
making it a highly attractive biomaterial for a diverse range of biomedical applications [19].
Although gelatin’s mechanical properties may be considered limiting in certain applica-
tions, typically these limitations have been mitigated through cross-linking with other
biomaterials [19,110,111]. In addition, gelatin has also been shown to present hemostatic
activity that is suitable to initiate the wound healing process and to absorb wound exudates,
thus creating an appropriate microenvironment for the next phases of wound healing [19].
For example, recent studies have explored the potential of methacrylated gelatin (GelMA)
shape-memorable cryogels for the controlled release of endothelial progenitor cells (EPCs)
and acid fibroblast growth factor (aFGF) [76]. The incorporation of methacrylate groups
enables the visible-light-induced cross-linking of gelatin into a stable hydrogel, while
preserving its intrinsic enzymatic degradability [76]. Moreover, the methacrylated gelatin
cryogel exhibited enhanced pressure ulcer healing in a diabetic rat model, due to the upreg-
ulation of HIF-1α at the wound site [76]. Other authors developed gelatin microspheres
loaded with adipose-derived stem cells (ADSC) [77]. These ADSC-loaded gelatin micro-
spheres were capable of accelerating the healing of full-thickness wounds in diabetic rats,
through the promotion of M2 macrophage polarization, collagen deposition, angiogenesis,
and hair follicle formation [77]. As previously described, Guo et al. revealed the poten-
tial of mixing ethylenediamine-modified gelatin with oxidized dextran for the loading of
ZnO-NPs (with antibacterial activity) and Pf (with angiogenic activity) [73]. The formed
hydrogels were shown to achieve sequential hemostatic, antibacterial, and angiogenic
activities in response to pH and ROS variations, consequently promoting the healing of
chronically S. aureus-infected wounds in diabetic rats [73].

3.1.8. Hyaluronic Acid

HA is a linear polysaccharide found in the extracellular matrix of connective tissues
in vertebrates and even in bacteria [80,87]. As a non-sulfated anionic glycosaminogly-
can, HA displays good biocompatibility, biodegradability, and gel-forming properties,
making it widely used in biomedical applications [80,87]. Moreover, HA plays a relevant
role in inflammation, angiogenesis, and subsequent wound healing [60,61]. Indeed, high-
molecular-weight HA may interact with the plasma membrane receptors of cells, such
as CD44 receptors, for the enhancement of capillary formation [60,61]. In addition, HA
may also induce inflammatory cells to eliminate invading microorganisms, and encourage
fibroblasts and keratinocytes to migrate and proliferate to the wound bed through the
regulation of pro-inflammatory cytokine synthesis, thus fostering wound healing [60,61].
However, HA also presents some drawbacks such as poor mechanical properties and
structural stability, high water solubility, and no antimicrobial activity, therefore limiting its
clinical use [60,80]. Nevertheless, studies have shown that some of thdse limitations can
be bypassed by formulating composite hydrogels made of oxidized dextran and HA [72].
This composite hydrogel with the controlled release of an AMP and PRP exhibited antibac-
terial activity against S. aureus and P. aeruginosa, anti-inflammatory activity, and collagen
deposition and angiogenesis properties, thus improving the healing of infected wounds
in diabetic mice [72]. In turn, Xiong et al. developed HA hydrogels with integrated
manganese dioxide (MnO2) nanoenzymes, which can decompose endogenous ROS, i.e.,
hydrogen peroxide, into oxygen, for the timed release of M2 macrophage-derived exo-
some (M2 Exos) and fibroblast growth factor 2 (FGF-2) [78]. This HA-based hydrogel
resulted in the improved healing of wounds in diabetic mice, through the eradication of
bacterial infection, diminution of oxidative stress, supply of oxygen, and stimulation of
angiogenesis and epithelialization [78]. Moreover, Xu et al. designed a hybrid hydrogel
made of phenylboronic acid (PBA) with glucose sensitivity modified onto a HA chain, and
polyethylene glycol diacrylates (PEG-DA), for the release of myricetin (MY), a molecule
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with strong antioxidant activity [79]. This glucose-responsive hybrid PEG-DA/HA-PBA
hydrogel exhibited a glucose-triggered release of MY, and an efficient elimination of ROS,
as well as an ameliorated inflammatory response, angiogenesis, and the tissue remodeling
of full-thickness wounds in diabetic rats [79].

3.2. Synthetic Materials

Synthetic materials offer advantages over naturally occuring materials, such as the
absence of lot-to-lot variability and the ability to fine-tune and predict mechanical prop-
erties. However, synthetic materials do have some drawbacks that can limit their clinical
application. These disadvantages include lower bioactivity and biodegradability, reduced
capacity to mimic native tissue structure and function, and a greater likelihood of triggering
inflammatory responses [24,60]. Indeed, both natural biomaterials and synthetic materials
possess advantages and disadvantages, underlining the importance of appropriate material
selection and the potential of natural/synthetic material combinations for the development
of wound dressings [112]. It is important to note that cross-linking between natural and
synthetic materials can also weaken some biological and wound healing activities, reducing
their potential as chronic wound dressings [23]. This can be overcome with the loading of
bioactive agents in the wound dressings to achieve the enhanced healing of chronic wounds
such as DFUs. Common synthetic materials include polycaprolactone (PCL), polyethylene
glycol (PEG), polyethylene oxide (PEO), polylactic acid (PLA), poly(lactic-co-glycolic acid)
(PLGA), polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP). Synthetic materials
that have been recently evaluated in research settings as promising wound dressings and
their respective formulation and main properties are summarized in Table 2.

Table 2. Synthetic biomaterials with cutting-edge potential as wound dressings and their respective
main properties.

Biomaterial Structural Formula Formulation Main Properties/Outcomes Ref.

Polycaprolactone
(PCL)
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Table 2. Cont.

Biomaterial Structural Formula Formulation Main Properties/Outcomes Ref.
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tosan; PDA—polydopamine; GS—gentamicin; VEGF—vascular endothelial growth factor; PHN—
phenytoin; SILD—sildenafil citrate; SIM—simvastatin; QUE—quercetin; CNC—cellulose nanocrystals; 
NT—neurotensin; PEI—polyethylenimine; NO—nitric oxide; MRSA—methicillin-resistant S. aureus; 
CS—chitosan; UA—ursolic acid; MOL—Moringa oleifera leaf; GO—graphene oxide; Neo—
Neomercurocromo®; Cipro—ciprofloxacin; PVPI—PVP-iodine; CMCS—carboxymethyl chitosan. 

CS/PVA/UA
nanofibers

Good hydrophilicity and wettability,
as well as sustained and non-toxic

release of UA
Enhanced stimulation of M2

macrophage polarization, decreased
pro-inflammatory TNF-α and IL-6

levels, and reduced ROS in Raw
264.7 cells

Accelerated closure of full-thickness
wounds in diabetic mice, with

enhanced revascularization and
re-epithelialization, increased

collagen deposition and remodeling,
and improved hair follicle

regeneration

[123]

PVA/MOL/GO
hydrogels

Increased tensile strength
High water content and equilibrium

swelling ratio
Good cytocompatibility in 3T3L1

fibroblasts
Great antibacterial activity against

S. aureus and E. coli
Great migration of 3T3L1 fibroblasts

after 6 h

[124]
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Table 2. Cont.

Biomaterial Structural Formula Formulation Main Properties/Outcomes Ref.

Polyvinyl
pyrrolidone

(PVP)

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 17 of 31 
 

 

PLGA-PEI/NO NPs 

Extended release for up to 4 days of NO 
Enhanced antibiofilm activity, through a strong 

binding to the MRSA biofilm matrix 
Improved healing of MRSA biofilm-infected 

wounds in diabetic mice 

[122] 

Polyvinyl 
alcohol 
(PVA) 

 

CS/PVA/UA nanofibers 

Good hydrophilicity and wettability, as well as sus-
tained and non-toxic release of UA 

Enhanced stimulation of M2 macrophage polariza-
tion, decreased pro-inflammatory TNF-α and IL-6 

levels, and reduced ROS in Raw 264.7 cells 
Accelerated closure of full-thickness wounds in 

diabetic mice, with enhanced revascularization and 
re-epithelialization, increased collagen deposition 

and remodeling, and improved hair follicle regener-
ation 

[123] 

PVA/MOL/GO hydrogels 

Increased tensile strength 
High water content and equilibrium swelling ratio 

Good cytocompatibility in 3T3L1 fibroblasts 
Great antibacterial activity against S. aureus and E. coli 

Great migration of 3T3L1 fibroblasts after 6 h 

[124] 

Polyvinyl 
pyrrolidone 

(PVP) 
 

Composite nanofibrous 
scaffolds made of chitosan, 
gelatin, PCL, and PVP for 
loading of PHR and MET 

Increased wettability and hydrophilicity 
High tensile strength 

Cytocompatibility with L929 fibroblasts 
Accelerated healing of full-thickness wounds in 

diabetic rats by improving collagen remodeling, re-
epithelialization, and hair follicle formation, while 

lowering pro-inflammatory TNF-α, IL-6, IL-1β, and 
NF-κB levels 

[114] 

PVP/HA-based bilayer film 
patches for loading of Neo 

and Cipro 

Good self-adhering strength 
Sustained release of the bioactive agents for up to 

5 days 
Antibacterial activity against S. aureus, E. coli, and P. 

aeruginosa 
Decreased IL-6, IL-1β, and TNF-α levels 

Enhanced wound healing in diabetic mice 

[125] 

PVPI-grafted CMCS micro-
spheres 

Antibacterial activity against S. aureus 
Accelerated wound healing in diabetic mice [126] 

PDLLA—poly(D,L-lactic acid); ACP—amorphous calcium phosphate; Si4+—silicon ion; PHR—
pioglitazone; MET—metformin; TNF-α—tumor necrosis factor alpha; IL-6—interleukin-6; IL-1β—
interleukin-1 beta; NF-κB—nuclear factor kappa light chain enhancer of activated B cells; Ag-NPs—
silver nanoparticles; CHO—aldehyde-terminated; DFO—deferoxamine; PBNP—Prussian blue nano-
particles; ROS—reactive oxygen species; TG—tragacanth gum; Cur—curcumin; SCS—sulfated chi-
tosan; PDA—polydopamine; GS—gentamicin; VEGF—vascular endothelial growth factor; PHN—
phenytoin; SILD—sildenafil citrate; SIM—simvastatin; QUE—quercetin; CNC—cellulose nanocrystals; 
NT—neurotensin; PEI—polyethylenimine; NO—nitric oxide; MRSA—methicillin-resistant S. aureus; 
CS—chitosan; UA—ursolic acid; MOL—Moringa oleifera leaf; GO—graphene oxide; Neo—
Neomercurocromo®; Cipro—ciprofloxacin; PVPI—PVP-iodine; CMCS—carboxymethyl chitosan. 

Composite nanofibrous
scaffolds made of

chitosan, gelatin, PCL,
and PVP for loading of

PHR and MET

Increased wettability and
hydrophilicity

High tensile strength
Cytocompatibility with L929

fibroblasts
Accelerated healing of full-thickness

wounds in diabetic rats by
improving collagen remodeling,

re-epithelialization, and hair follicle
formation, while lowering

pro-inflammatory TNF-α, IL-6,
IL-1β, and NF-κB levels

[114]

PVP/HA-based bilayer
film patches for loading

of Neo and Cipro

Good self-adhering strength
Sustained release of the bioactive

agents for up to 5 days
Antibacterial activity against S.
aureus, E. coli, and P. aeruginosa

Decreased IL-6, IL-1β, and
TNF-α levels

Enhanced wound healing in
diabetic mice

[125]

PVPI-grafted CMCS
microspheres

Antibacterial activity against S.
aureus

Accelerated wound healing in
diabetic mice

[126]

PDLLA—poly(D,L-lactic acid); ACP—amorphous calcium phosphate; Si4+—silicon ion; PHR—pioglitazone;
MET—metformin; TNF-α—tumor necrosis factor alpha; IL-6—interleukin-6; IL-1β—interleukin-1 beta; NF-κB—
nuclear factor kappa light chain enhancer of activated B cells; Ag-NPs—silver nanoparticles; CHO—aldehyde-
terminated; DFO—deferoxamine; PBNP—Prussian blue nanoparticles; ROS—reactive oxygen species; TG—
tragacanth gum; Cur—curcumin; SCS—sulfated chitosan; PDA—polydopamine; GS—gentamicin; VEGF—
vascular endothelial growth factor; PHN—phenytoin; SILD—sildenafil citrate; SIM—simvastatin; QUE—
quercetin; CNC—cellulose nanocrystals; NT—neurotensin; PEI—polyethylenimine; NO—nitric oxide; MRSA—
methicillin-resistant S. aureus; CS—chitosan; UA—ursolic acid; MOL—Moringa oleifera leaf; GO—graphene oxide;
Neo—Neomercurocromo®; Cipro—ciprofloxacin; PVPI—PVP-iodine; CMCS—carboxymethyl chitosan.

3.2.1. Polycaprolactone

PCL is a synthetic polyester known for its excellent mechanical strength and conse-
quent stability [127–129]. It can be obtained from low-cost resources via the ring-opening
polymerization of ε-caprolactone monomers using a wide range of catalysts, and exhibits
good biocompatibility [87,127,128,130]. However, PCL’s semicrystalline and hydrophobic
nature results in a slow degradation rate, and poor wettability, cell attachment, and tissue
integration, thus limiting its clinical use as a wound dressing [129,130]. In addition, it
may also lack biological activity [129,130]. To overcome some of these issues, researchers
have combined PCL with other materials and have resorted to loading with bioactive
agents [127,128]. For example, Jiang et al. developed composite poly(D,L-lactic acid)
(PDLLA)/PCL electrospun scaffolds to achieve better mechanical stability under wet con-
ditions [113]. These composite scaffolds were then nanocoated with amorphous calcium
phosphate (ACP) and silicon ion (Si4+) to further improve cell proliferation and migration,
and to encourage their angiogenesis capacities [113]. Coated nanofibrous scaffolds en-
hanced the healing of full-thickness wounds in diabetic mice by stimulating angiogenesis,
collagen deposition, and re-epithelialization [113]. In turn, Cam et al. designed com-
posite nanofibrous scaffolds made of chitosan, gelatin, PCL, and PVP for the combined
loading of pioglitazone (PHR) and metformin (MET), oral antidiabetics that also display
anti-inflammatory activities [114]. These composite nanofibrous scaffolds demonstrated
increased wettability and hydrophilicity, as well as high tensile strength and cytocompat-
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ibility with L929 fibroblasts [114]. In addition, loaded composite scaffolds showed the
accelerated healing of full-thickness wounds in diabetic rats by improving collagen remod-
eling, re-epithelialization, and hair follicle formation, while lowering pro-inflammatory
tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and
nuclear factor kappa light chain enhancer of activated B cells (NF-κB) levels [114].

3.2.2. Polyethylene Glycol

PEG is an amphiphilic polymer known for its excellent biocompatibility, biodegrad-
ability, stability, and low-cost preparation [22,60,101]. Nonetheless, the preparation of
wound dressings made of this synthetic polymeric material commonly requires the use of
cross-linking agents such as formaldehyde that could turn them cytotoxic [60]. Therefore,
developing novel strategies to reduce the toxicity and enhance the biological activity of
PEG-based dressings is thus imperative. One effective option is the cross-linking of PEG
with chitosan to form hydrogels for the loading of silver nanoparticles (Ag-NPs) that
own attractive antimicrobial, anti-oxidant, anti-inflammatory, and anti-platelet proper-
ties [115,131]. These loaded chitosan-PEG hydrogels showed high porosity and a high
degree of swelling, as well as improved antioxidant capacity and antimicrobial activity
against P. aeruginosa, E. coli, and S. aureus [115]. In addition, loaded hydrogels boosted
the healing of wounds in diabetic rabbits [115]. Wu et al. similarly combined four-armed
aldehyde-terminated PEG (4-arm PEG-CHO) with quaternized chitosan to form a hydrogel
for the loading of DFO [116]. The formed hydrogels displayed good mechanical properties
and biocompatibility, as well as improved angiogenesis and the accelerated healing of S.
aureus-infected wounds in diabetic rats [116]. Furthermore, Xu et al. developed PDLLA-
PEG-PDLLA hydrogels for the loading of Prussian blue nanoparticles (PBNPs) with great
ROS-scavenging capacity [117]. These PBNP-loaded hydrogels stimulated angiogenesis,
and decreased ROS and pro-inflammatory cytokine (IL-6 and TNF-α) production, thus
favoring the healing of full-thickness wounds in diabetic mice [117].

3.2.3. Polyethylene Oxide

PEO is a synthetic polymer with a similar structure to PEG, but that typically displays
higher molecular weights [132,133]. It is a neutral polymer that can be obtained through
the polymerization of ethylene oxide using a metallic catalyst [133,134]. PEO is a non-ionic
polymer that exhibits good biocompatibility, hydrophilicity, and biodegradability [133–135].
Moreover, its high-molecular-weight grade contributes to high viscosity, which is a suitable
characteristic for forming strong and solid gels favorable to be applied as transdermal
dressings [135]. Despite its poor biological activity, PEO has been combined with other
materials for the enhancement of intrinsic properties and subsequent biomedical applica-
tion [92]. As previously described, Azarniya et al. developed composite scaffolds consisting
of nanofibrous mats made of bacterial cellulose and PEO-modified keratin, as well as TG-
conjugated hydrogels [65]. PEO was used as an additive to enhance mechanical properties
such as the spinnability of pure keratin. The modified nanofibers with TG-conjugated
hydrogels showed superior overall mechanical properties such as hydrophilicity, elasticity,
tensile strength, and ductility [65]. In addition, good biocompatibility with L929 fibrob-
lasts was observed, as well as enhanced cell adhesion and proliferation, thus underlining
the potential of this hybrid composite scaffold as an attractive wound dressing [65]. As
mentioned earlier, Jirofti et al. employed a blend-electrospinning process for the fabrica-
tion of electrospun nanofibers made of chitosan, PEO, and collagen [71]. Here, PEO was
used as an additive to enhance mechanical properties such as the spinnability of chitosan.
These electrospun nanofibers were used for the sustained release of up to 3 days of Cur, a
strong anti-inflammatory and anti-infective agent, without causing toxicity towards human
dermal fibroblasts [71]. Moreover, the loaded electrospun nanofibers revealed significant
wound area closure of full-thickness wounds in non-diabetic rats [71].
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3.2.4. Polylactic Acid

PLA is an aliphatic polyester that is easily obtained in an eco-friendly way through
the condensation of lactic acid, followed by the ring-opening polymerization of cyclic lac-
tides [68,118,136,137]. Its good biocompatibility, biodegradability, and relatively high mechan-
ical properties make PLA an appealing material for biomedical applications [68,118,119]. In
addition, it has been associated with enhanced cell proliferation and growth factor signal-
ing due to its inherent characteristics that make it similar to natural collagen fibers in the
extracellular matrix [119]. A limitation to the clinical use of PLA is its low hydrophilicity,
which can be mitigated by combining it with other materials or loading it with bioactive
agents [118]. For instance, Yu et al. developed porous PLA nanofiber membranes that
were further decorated with sulfated chitosan (SCS) and polydopamine-gentamicin (PDA-
GS) [118]. The combination with SCS was used to improve the hydrophilicity of PLA
nanofibers and enhance M2 macrophage polarization, while PDA and GS were used to im-
prove anti-inflammatory and anti-bacterial activities [118]. Overall, these PLA/SCS/PDA-
GS nanofiber membranes showed the immunomodulation of M2 macrophage polarization
and stimulation of VEGF secretion in Raw 264.7 macrophages [118]. In addition, developed
nanofiber membranes exhibited antibacterial activity against S. aureus, further highlighting
their potential as attractive wound dressings for diabetic wound healing [118]. Other au-
thors designed multilayered nanofibrous PLA patches for the loading of phenytoin (PHN),
sildenafil citrate (SILD), and simvastatin (SIM) with anti-inflammatory, angiogenic, and
lymphangiogenic properties, respectively [119]. Loaded patches kept their physicochemi-
cal and mechanical properties, as well as biocompatibility and cell adhesion capacity, in
human dermal fibroblasts [119]. In addition, the developed nanofibers showed adequate
fibroblast proliferation, angiogenesis, and lymphangiogenesis, resulting in a proper and
scarless healing of full-thickness wounds in diabetic rats [119]. Furthermore, Di Cristo
et al. produced co-electrospun fibers made of PLA and PVP for the loading of quercetin
(QUE), a bioactive molecule with high anti-inflammatory, anti-oxidant, antimicrobial, and
wound healing properties [120]. The prepared fibers exhibited good hydrophilicity, and a
fast initial release of QUE that was followed by a continuous and constant release for up to
120 h [120]. Moreover, these nanofibers showed great antibiofilm activity against S. aureus,
and anti-inflammatory potential in PMA-differentiated THP-1 macrophages, making them
hopeful alternatives for the effective management of diabetic foot infections [120].

3.2.5. Poly(lactic-co-glycolic acid)

PLGA is a linear co-polymer resulting from the ring-opening polymerization of lactide
and glycolide [138]. This aliphatic co-polymer displays excellent biocompatibility and
mechanical properties, such as mechanical strength and flexibility, as well as low hydropho-
bicity and crystallinity compared to PLA, leading to a faster biodegradation rate [87,138].
Moreover, its mechanical properties and degradation rate are easily controllable and tun-
able by modifying the ratio of PLA to polyglycolic acid (PGA), further highlighting its
potential as a wound dressing [138]. However, the relatively high cost of PLGA can pose
a challenge, restricting its use in biomedical applications [138]. Nonetheless, Zheng et al.
still employed PLGA to form composite nanofiber membranes with cellulose nanocrys-
tals (CNC) for the loading of neurotensin (NT), an inflammatory modulator [121]. This
composite nanofiber membrane exhibited the sustained release of NT for up to two weeks,
and also demonstrated good cytocompatibility and fibroblast adhesion, in addition to the
spreading and proliferation stimulation of 3T3 fibroblasts [139]. In addition, the NT-loaded
PLGA/CNC composite nanofiber membranes showed accelerated healing of full-thickness
wounds in diabetic mice, with better epidermal and dermal regeneration scores, and
decreased pro-inflammatory cytokine expression (IL-1β and IL-6) [121]. In turn, Hasan
et al. developed PLGA nanoparticles decorated with polyethylenimine/diazeniumdiolate
(PEI/NONOate), possessing the ability to bind to the bacteria biofilm matrix [122]. The
formed NPs were used for the extended release of up to 4 days of nitric oxide (NO), a
bioactive agent with antibiofilm and wound healing activities, yet with a short half-life and
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limited diffusion [122]. The resulting loaded NPs showed enhanced antibiofilm activity,
through a strong binding to the methicillin-resistant S. aureus (MRSA) biofilm matrix [122].
Furthermore, PLGA-PEI/NO NPs improved the healing of MRSA biofilm-infected wounds
in diabetic mice, with complete bacterial biofilm eradication [122].

3.2.6. Polyvinyl Alcohol

PVA is a synthetic resin derived from the hydrolysis of polyvinyl acetate in an al-
cohol solution, followed by treatment with an alkaline catalyst [21,87]. This synthetic
linear polymer displays good biocompatibility, biodegradability, hydrophilicity, and semi-
crystalline features [21,22,60,87]. PVA also possesses good mechanical properties such
as swelling capacity, tensile strength, and chemo-thermal stability, despite a lack of elas-
ticity [22,60,87,110]. However, PVA exhibits diminished hemostatic, bioadhesive, and
antimicrobial activities [60,101,110]. To address these limitations, PVA-based dressings
can be formulated with other materials or loaded with bioactive agents. For example,
Lv et al. combined chitosan (CS) with PVA to form electrospun nanofibers to be loaded
with ursolic acid (UA), which has the ability to lower blood glucose, and anti-oxidant and
anti-inflammatory characteristics [123]. CS/PVA nanofibers loaded with 0.2% (w/v) of
UA showed good hydrophilicity and wettability, as well as the sustained and non-toxic
release of UA [123]. Furthermore, the loaded nanofibers enhanced the stimulation of M2
macrophage polarization, decreased pro-inflammatory TNF-α and IL-6 levels, and reduced
ROS in Raw 264.7 macrophages [123]. Finally, CS/PVA/UA nanofibers accelerated the
closure of full-thickness wounds in diabetic mice, with enhanced revascularization and
re-epithelialization, increased collagen deposition and remodeling, and improved hair
follicle regeneration [123]. In turn, Ningrum et al. used the freeze–thaw process to develop
hydrogels composed of PVA and graphene oxide (GO) for the loading of Moringa oleifera
leaf (MOL) extract, with antimicrobial and anti-inflammatory activities [124]. The combina-
tion with GO further increased the tensile strength of the loaded hydrogels [124]. Overall,
PVA/MOL/GO hydrogels demonstrated a high water content and equilibrium swelling
ratio, as well as good cytocompatibility with 3T3-L1 fibroblasts [124]. In addition, loaded
hydrogels showed great antibacterial activity against S. aureus and E. coli, although a lower
inhibition was observed against E. coli [124]. Lastly, PVA/MOL/GO hydrogels greatly
stimulated the migration of 3T3L1 fibroblasts after 6 h, thus emphasizing their potential for
wound healing [124].

3.2.7. Polyvinyl Pyrrolidone

PVP, or povidone, is an amphiphilic polymer synthesized through the radical poly-
merization of N-vinylpyrrolidone monomer [140,141]. This synthetic polymer exhibits
favorable biocompatibility, biodegradability, wettability, and chemical stability [60,87,141].
In addition, PVP has bioadhesive and antibacterial (mainly against Gram-negative bacteria)
properties, useful characteristics for wound dressings [21,60]. However, to correspond to
the current needs of biomedical therapeutics, the combination of PVP with other materials
to further improve its characteristics has been widely reported in the literature. As previ-
ously described, Cam et al. designed composite nanofibrous scaffolds made of chitosan,
gelatin, PCL, and PVP for the combined loading of pioglitazone (PHR) and metformin
(MET), oral antidiabetics that also display anti-inflammatory activities [114]. These compos-
ite nanofibrous scaffolds demonstrated increased wettability and hydrophilicity, as well as
high tensile strength and cytocompatibility with L929 fibroblasts [114]. In addition, loaded
composite scaffolds showed the accelerated healing of full-thickness wounds in diabetic
rats by improving collagen remodeling, re-epithelialization, and hair follicle formation,
while lowering pro-inflammatory TNF-α, IL-6, IL-1β, and NF-κB levels [114]. Other authors
developed a bilayered film patch composed of PVP and HA for the loading of the antiseptic
Neomercurocromo® (Neo), and the antibiotic ciprofloxacin (Cipro) [125]. PVP/HA-based
bilayer film patches displayed good self-adhering strength, the sustained release of the
bioactive agents for up to 5 days, and excellent antibacterial activity against S. aureus, E. coli,
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and P. aeruginosa [142]. In addition, these loaded patches decreased pro-inflammatory IL-6,
IL-1β, and TNF-α levels, and enhanced the healing of full-thickness wounds in diabetic
mice [125]. Furthermore, Yu et al. grafted PVP-iodine (PVPI) onto CMCS microspheres for
the further improvement of chitosan characteristics [126]. These composite microspheres
promoted antibacterial activity against S. aureus and wound healing in diabetic mice [126].

4. Biomaterial-Based Wound Dressings in the Clinical Setting

The use of biomaterials as wound dressings for DFUs has been widely explored in
research settings, but not many have yet been tested in the clinical setting, and even fewer
have been approved and have become commercially available specifically for DFU manage-
ment over the last five years. Indeed, there are several barriers that delay the clinical trans-
lation of wound dressings from the bench to the market. On the one hand, the performance
of chemical modifications on biomaterials to further improve their intrinsic characteristics
requires supplementary validation by the U.S. Food and Drug Administration and/or the
European Union Medical Device Regulation [143]. This results in an additional step for
material safety and quality assessment, prior to the time-consuming technology validation
process itself. On the other hand, common techniques to characterize traditional wound
dressings may not be adequate to prove superior capabilities in the wound healing en-
hancement of the most innovative wound dressings and may require more accurate models
of the DFU condition and more complete techniques to simultaneously evaluate the tissue
regeneration rate, drug release effectiveness, and stimuli-responsive mechanisms [143,144].
Furthermore, innovative wound dressings often possess a multicomponent and multifunc-
tional core, leading to difficult device classification and validation processes. Undeniably, it
is often ambiguous to determine which property is the primary mode of action of wound
dressing for adequate device classification, owing to the combined mode of action of nu-
merous wound dressings [143]. If the primary mode of action is drug delivery, the wound
dressing is classified as a drug, whilst if the primary mode of action is not drug delivery,
it is classified as a medical device [145]. Thus, most of these wound dressings should un-
dergo both drug and device validation. Finally, the cost/benefit ratio is often unattractive
for healthcare systems, thus limiting the access to cutting-edge therapeutic approaches
for patients with chronic DFUs [146]. A list of the most recent clinical trials involving
biomaterial-based wound dressings for DFU treatment and their respective formulations is
presented in Table 3.

Table 3. Formulations of biomaterial-based wound dressings under clinical trials for DFU manage-
ment. Search carried out on ClinicalTrials.gov from 2018 to 2023 (accessed on 19–21 April 2023).

Biomaterial Formulation Phase ClinicalTrials.gov ID Year

Collagen Mesenchymal stromal cells in a
collagen scaffold I NCT03509870 2018–2020

Fibrin PRP-fibrin glue III NCT04315909 2019–2020

Hydroxyethyl cellulose
Granexin®—hydroxyethyl

cellulose gel loaded with aCT1
peptide

III NCT02667327 2020

Fibrin Allogeneic ADSCs in a fibrin gel II NCT03865394 2019–2021

Fibrin PRP Concepts Fibrin Bio-Matrix Pilot NCT02312596 2021

Hydroxyethyl cellulose
and PEG Fitostimoline® hydrogel IV NCT05661474 2021–2022

Collagen Piscean-derived collagen dressing Pilot NCT05324930 2021–2022
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Table 3. Cont.

Biomaterial Formulation Phase ClinicalTrials.gov ID Year

Collagen Omeza collagen matrix Pilot NCT05417425 2022

HA Hēlaquis Matrix—HA matrix Pilot NCT05198544 2022

PVA Exufiber Ag+ Pilot NCT05494450 2022

Collagen
Meso Wound Matrix™—porcine
peritoneum membrane-derived

collagen matrix
Pilot NCT04182451 2019–2023

PCL PHOENIX Wound Matrix® Pilot NCT04437537 2022–2023

CMC NanoSALV catalytic antimicrobial
wound dressing gel Pivotal NCT05619237 2022–2023

Chitosan ChitoCare® PMCF NCT05570877 2022–2023

CMC and polyethylene Cutimed® gelling fiber PMCF NCT05148390 2022–2023

PRP—platelet-rich plasma; ADSC—adipose-derived stem cells; PEG—polyethylene glycol; HA—hyaluronic acid;
PVA—polyvinyl alcohol; Ag+—silver cation; PCL—polycaprolactone; PMCF—Post Market Clinical Follow-up;
CMC—carboxymethyl cellulose.

On the one hand, many examples are based on natural biomaterials due to their
excellent biocompatibility, biodegradability, and low antigenicity, as well as their ability
to mimic native tissue structure and function, thus fostering suitable wound healing.
For instance, a phase I trial evaluated the potential of a collagen scaffold loaded with
mesenchymal stromal cells to enhance cell proliferation and migration and subsequent
wound healing [147]. In turn, two phase III trials assessed the safety and effectiveness
of a fibrin glue loaded with PRP, which formed a protective barrier against the external
environment and fostered re-epithelialization [148,149], and Granexin®, a hydroxyethyl
cellulose gel for the loading of aCT1, which is a synthetic peptide known to stimulate
re-epithelialization and consequent wound closure [150,151]. A phase III trial evaluated
the potential of an allogeneic ADSC-loaded fibrin gel that possesses anti-inflammatory and
pro-angiogenic effects and can stimulate granulation tissue formation [152,153]. In addition,
many pilot trials have emerged as small-scale preliminary studies to evaluate the feasibility
and assist the planning and modification of larger-scale studies for the efficacy assessment
of wound dressings such as PRP Concepts Fibrin Bio-Matrix, a fibrin-based matrix enriched
with platelets [154]; Piscean-derived collagen dressing with hemostatic effects [155]; Omeza,
a fish-derived collagen matrix that maintains a moist healing environment to promote
wound healing [156]; Helaquis Matrix, a HA matrix that facilitates cell migration and
proliferation and maintains wound moisture [157]; and Meso Wound Matrix™, which
is another collagen matrix but derived from porcine peritoneum membrane [158,159].
Furthermore, a pivotal study, which is intended to demonstrate and confirm safety and
efficacy and to estimate the incidence of common adverse effects, further assessed the
potential of NanoSALV catalytic, an antimicrobial wound dressing gel made of CMC that
regulates wound moisture [160].

On the other hand, examples based on synthetic materials have also emerged due to
their good mechanical properties, as well as their broad variety. For instance, many pilot
trials have emerged that are focused on the efficacy assessment of wound dressings such as
Exufiber Ag+, a PVA fiber which has great exudate absorption capacity, and antimicrobial
and anti-oxidant effects due to Ag+ [161]; and PHOENIX Wound Matrix®, which consists of
a PCL-based matrix that mimics the native ECM and handles the chronicity and persistent
inflammation of chronic wounds [162]. Furthermore, some clinical trials are investigating
the potential of combining natural and synthetic materials such as Fitostimoline®, which
consists of a hydroxyethyl cellulose and PEG-based hydrogel that form a protective barrier
against the external environment to foster proper wound healing [163].
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Another example is represented by the Post Market Clinical Follow-up (PMCF) trials
that are still ongoing to further assess the safety and performance of the CE-marked
Chitocare® and Cutimed® [164,165]. Chitocare® consists of a wound healing gel, which
owes its wound healing and anti-infective effects to chitosan [164], while Cutimed® is
a gelling fiber made of sodium CMC and high-density polyethylene and polyethylene
terephthalate, allowing the absorption of wound exudates and subsequent conversion into
a soft gel that maintains a moist environment to support wound healing [165].

5. Conclusions and Future Perspectives

In recent years, there has been a wealth of research focused on biomaterials and their
inherent properties as wound dressings for chronic DFUs. However, further investiga-
tion remains necessary to effectively address the challenging macro and micro complexity
of the wound environment of DFUs. Indeed, only a few biomaterial-based therapeutic
strategies have successfully reached translation to the market, despite numerous materials
being explored in pre- and clinical trials. As a result, DFUs continue to pose a significant
threat to the well-being of individuals with DM and place a burden on the healthcare
system while waiting for truly effective therapeutic strategies. Therefore, to bridge the
gap between research and clinical application, a combined and collaborative effort among
multidisciplinary teams is essential to develop more effective treatment options. In this
approach, key factors to consider include material selection, chemical modifications, com-
bination with other materials, and loading with biomolecules possessing pro-angiogenic,
anti-inflammatory, and antimicrobial properties. Furthermore, more accurate models of
non-healing DFUs need to be included in future research to efficiently prove the efficacy
of novel biomaterial-based therapeutic approaches. This should include chronic wound
models with polymicrobial infections and even biofilms, in order to better mimic the DFU
condition. Moreover, the referral to multidisciplinary teams must remain a key point for
the optimal management of DFUs. This should include adjuvant health and well-being
areas such as dietary counseling and stress-reducing therapies. Indeed, a more holistic
personalized approach should undeniably be part of DFU management. Addressing all
of these challenges could thus potentially increase clinical trial success rates, ultimately
leading to the development of effective treatment approaches for polymicrobial-infected
chronic wounds such as DFUs.
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