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Abstract: The characteristic polynomial of the pencil generated by two J-Hermi-
tian matrices is studied in connection with the numerical range. Geometric proper-
ties of the numerical range of linear operators on an indefinite inner product space
are investigated. The point equation of the associated curve of the numerical range
is derived, following Fiedler’s approach for definite inner product spaces. The clas-
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classification of cubic curves. As a consequence, the respective numerical ranges are
characterized. Illustrative examples of all the different possibilities are given.

Keywords: numerical range, generalized numerical range, indefinite inner product
space, plane algebraic curve.
AMS Subject Classification (2000): 15A60, 15A63, 46C20.

1. Introduction
Let J = Ir ⊕ −In−r (0 ≤ r ≤ n), where Im denotes de identity matrix of

order m. If r 6= 0, n, the matrix J endows Cn with the Krein structure defined
by the indefinite inner product 〈x, y〉J = y∗Jx, x, y ∈ Cn. For A ∈ Mn,
the algebra of n × n complex matrices, let A[∗] = JA∗J and consider the
J-Cartesian decomposition A = HJ + iKJ , where HJ = (A + A[∗])/2 and
KJ = (A − A[∗])/(2i) are J-Hermitian matrices, that is, HJ = (HJ)[∗] and
KJ = (KJ)[∗]. If J = ±In, we obtain the well known Cartesian decomposition
of A, where H = HJ and K = KJ are Hermitian matrices.

Let F J
A(u, v, w) = det(uHJ + vKJ + wIn) be the characteristic polynomial

of the pencil uHJ + vKJ . Our aim is to discuss the connection between
F J

A(u, v, w) and the J-numerical range of A denoted and defined by

WJ(A) =

{
x∗JAx

x∗Jx
: x ∈ Cn, x∗Jx 6= 0

}
.
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If J = ±In, then WJ(A) reduces to the well-known classical numerical range
or field of values of A, usually denoted by W (A).

The equation F J
A(u, v, w) = 0, with u, v, w viewed as homogeneous line

coordinates, defines an algebraic curve of class n. The real part of this curve
is the associated curve of WJ(A), denoted by CJ(A).

This paper is organized as follows. Section 2 consists of definitions and
preliminary results. In Section 3, some properties of CJ(A) are studied. In
Section 4, the point equation of CJ(A) is derived, following the approach of
Fiedler [5, 6] in the particular case of J being a positive definite Hermitian
matrix. In Section 5, the associated curves CJ(A) are classified in the 2× 2
case. In particular, a new proof of the Hyperbolical Range Theorem is given.
In Section 6, the associated curves CJ(A) are classified in the 3 × 3 case,
using Newton’s classification of cubic curves. These results extend for Krein
spaces results of Kippenhahn [8] on the classical numerical range. In section
7, illustrative examples are presented.

2. Definitions and preliminaries
We briefly recall some known properties of WJ(A). For any A ∈ Mn, W (A)

contains the spectrum of A, denoted by σ(A), while for the J-numerical range
the following inclusion holds: σJ(A) ⊆ WJ(A), σJ(A) denoting the set of the
eigenvalues of A that have anisotropic eigenvectors, that is, vectors x for
which x∗Jx 6= 0. We denote by σ+(A) and σ−(A) the sets of eigenvalues of A
with associated eigenvectors having positive and negative J-norms, respec-
tively. By σ0(A) we denote the set of the eigenvalues of A with isotropic eigen-
vectors, i.e., vectors x such that x∗Jx = 0. If λ ∈ σJ(A) = σ+(A) ∪ σ−(A),
then λ ∈ WJ(A). However, if λ ∈ σ0(A), it may not belong to WJ(A).

The field of values W (A) is a compact and convex set for A ∈ Mn [7].
In contrast with the classical case, WJ(A) may not be closed and is either
unbounded or a singleton [11, 10]. For λ ∈ C, WJ(A) = {λ} if and only if
A = λIn. On the other hand, WJ(A) is not usually convex. However, it is
the union of the convex sets

WJ(A) = W +
J (A) ∪W +

−J(A) (1)

where
W±

J (A) = {x∗JAx : x ∈ Cn, x∗Jx = ±1} ,

being W +
−J(A) = −W−

J (A) [11]. Moreover, WJ(A) is pseudo-convex [11]; that
is, for any pair of distinct points x, y ∈ WJ(A), either WJ(A) contains the
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closed line segment joining x and y if x, y belong to the same convex set in
(1) (W +

J (A) or W +
−J(A)), otherwise WJ(A) contains the two closed half-lines

of the line defined by x and y with endpoints x and y.
A matrix U ∈ Mn is called J-unitary of signature (r, n − r), 0 ≤ r ≤ n,

if U−1 = JU ∗J . These matrices form a group denoted by Ur,n−r. For any
U ∈ Ur,n−r, we have WJ(A) = WJ(U ∗AU) and the following holds

WJ(αIn + βA) = α + β WJ(A), α, β ∈ C. (2)

For A ∈ M2, Murnaghan [12] proved that W (A) is an elliptical disc (pos-
sibly degenerate) whose foci are the eigenvalues of A, α1 and α2. The major
and minor axis are of length

√
Tr(A∗A)− 2 Re(α1α2) and

√
Tr(A∗A)− |α1|2 − |α2|2,

respectively. This result is the well-known Elliptical Range Theorem. In the
indefinite case, for A ∈ M2 and J = diag(1,−1), the Hyperbolical Range
Theorem [2] states that WJ(A) is bounded by the hyperbola (possibly de-
generate), with foci at α1 and α2, and transverse and non-transverse axis of
length

√
Tr(A[∗]A)− 2 Re(α1α2) and

√
|α1|2 + |α2|2 − Tr(A[∗]A), (3)

respectively. For the degenerate cases, WJ(A) may be a singleton, a line, a
subset of a line, the whole complex plane, or the complex plane except a line.

The description of WJ(A), when A ∈ Mn and n > 2, is not an easy task.
Some authors have characterized (generalized) numerical ranges for some
special classes of matrices. In certain cases, WJ(A) still is an hyperbola and
its “interior”, independently of the size of A.

A supporting line of a convex set K ⊆ C is a line that intersects K at least
in one point and that defines two half-planes, such that one of them does not
contain any point of K. For each point on the boundary of K, supporting
lines may not exist or they may not be unique. The supporting lines of WJ(A)
are the supporting lines of the convex sets W +

J (A) and W +
−J(A). As proved

in [2, Theorem 2.2], if ux + vy + w = 0 is the equation of a supporting line
of W +

J (A) (W−
J (A)), then

det(uHJ + vKJ + wIn) = 0, (4)

and−w is the maximum, or the minimum, eigenvalue of the pencil uHJ+vKJ

in σ+(A) (σ−(A)), according to ux + vy + w ≤ 0, or ux + vy + w ≥ 0, for all
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points in W +
J (A) (W−

J (A)). We recall that the converse is not always true,
that is a solution of (4) may not be a supporting line of WJ(A).

Since F J
A(u, v, w) = det(uHJ + vKJ + wIn) is a homogeneous polynomial

of degree n, (4) may be considered the line equation of an algebraic curve
on the complex projective plane P2(C). We consider the complex projective
curve Γ defined by

Γ = {(u : v : w) ∈ P2(C) : det(uHJ + vKJ + wIn) = 0},
and its dual curve

Γ∧ = {(x : y : z) ∈ P2(C) : xu + yv + zw = 0 is a tangent of Γ}.
The real affine part of Γ∧,

Γ∗ = {(x, y) ∈ R2 : (x : y : 1) ∈ Γ∧},
is the associated curve of WJ(A). Some authors use the designation bound-
ary generating curve, following the German terminology (“randerzeugende”
curve). The curve FA(u, v, w) = 0 has class n, that is, through a general
point in the plane there are n lines (may be complex) tangent to the curve.
(For details on plane algebraic curves, we refer to [4].)

If J = ±In, CJ(A) is simply denoted by C(A). Kippenhahn proved that the
curve C(A) generates W (A) as its convex hull [8]. For CJ(A) the following
holds.

Theorem 1 ([3]). Let A = HJ + iKJ ∈ Mn. Assume that there exists a
real interval [θ1, θ2] such that the n eigenvalues λ1(θ), . . . , λn(θ) of cos θHJ +
sin θKJ (θ ∈ [θ1, θ2]) are real and have an associated basis of anisotropic
eigenvectors. Let uk(θ) be an eigenvector of cos θHJ + sin θKJ associated
with λk(θ), k = 1, . . . , n. Then CJ(A) is given by

{
zk(θ) =

u∗k(θ)JA uk(θ)
u∗k(θ)Juk(θ)

: θ ∈ [θ1, θ2], k = 1, . . . , n

}

and WJ(A) is the pseudo-convex hull of CJ(A).

Since every complex matrix A can be uniquely expressed as A = HJ +iKJ ,
where HJ and KJ are J-Hermitian, we have

〈Ax, x〉J = 〈HJx, x〉J + i〈KJx, x〉J .

Denoting by Re S and Im S the projection of S ⊆ C on the real and imag-
inary axis, respectively, and having in mind that 〈HJx, x〉J , 〈KJx, x〉J are
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real, it follows that Re WJ(A) = WJ(HJ) and Im WJ(A) = WJ(KJ). More
generally, the projection of WJ(A) on the line passing through the origin
with argument θ is given by WJ(cos θHJ + sin θKJ).

Let A be a J-Hermitian matrix such that σ+(A) = {α1 ≥ · · · ≥ αr} and
σ−(A) = {αr+1 ≥ · · · ≥ αn}. If σ0(A) = ∅, the eigenvalues of A are said to
interlace if [α1, αr] ∩ [αr+1, αn] 6= ∅ and αr 6= αr+1, α1 6= αn. The following
result was obtained in [13] for J-Hermitian matrices of size n and it is very
useful in our discussions.

Theorem 2. Let A ∈ M3 be a J-Hermitian matrix. If one of the conditions
(a)-(d) holds, then WJ(A) is the whole real line:

(a) A has complex (conjugate) eigenvalues;
(b) A has real spectrum and A is nilpotent with nilpotency index (that is,

the smallest natural k such that Ak = 0) equal to 3;
(c) A has three anisotropic eigenvalues and they interlace;
(d) A has one eigenvalue in σ+(A) and another in σ0(A) with multiplicity

2, and 0 belongs to the interior of W (JA + iJ).
(e) If A has one eigenvalue in σ+(A) and λ ∈ σ0(A) has multiplicity 2, and

if 0 does not belong to the interior of W (JA + iJ), then WJ(A) = R

or WJ(A) = R\{λ}.

3. Properties of CJ(A)
Proposition 1. The coefficients of the algebraic curve F J

A(u, v, w) = 0 are
real.

Proof : We easily find

F J
A(u, v, w) = det(uHJ + vKJ + wIn)

= det(uJ(HJ)∗J + vJ(KJ)∗J + wIn)

= F J
A(u, v, w),

where F J
A(u, v, w) denotes the polynomial obtained from F J

A(u, v, w) taking
the conjugates of its coefficients.

Next, we characterize the associated curve of the numerical range of a
J-Hermitian matrix.

Proposition 2. Let A be a J-Hermitian matrix of order n. Then, CJ(A) is
the set of points (λ, 0) of the affine plane, for λ a real eigenvalue of A. If the



6 N. BEBIANO, J. DA PROVIDÊNCIA AND R. TEIXEIRA

eigenvalues of A are all complex (and so A has even order), then CJ(A) is
the real axis.

Proof : We have F J
A(u, v, w) = det(uA + wIn), because A is a J-Hermitian

matrix. If u = 0, then the unique solution of the equation F J
A(u, v, w) = 0

is given in line coordinates by (0 : 1 : 0), i.e., the real axis. Suppose now
that u 6= 0. Since we are considering homogeneous coordinates, the solutions
of the polynomial equation F J

A(u, v, w) = 0 are of the form (1 : v : w0/u0),
for each pair (u0, w0) satisfying that equation. Taking u = 1, we obtain
the polynomial in w with real coefficients, det(A + wI). Obviously, its real
solutions are (1 : v : −λ), for λ a real eigenvalue of A. But (1 : v : −λ) is the
pencil of lines passing through the point (λ : 0 : 1) (the real axis is included)
and as usual, we identify the pencil with this point. If the matrix does not
have real eigenvalues, then the real axis is the unique possible solution.

The following statements generalize results of Kippenhahn for the classical
numerical range [8].

Theorem 3. Let A = HJ + iKJ ∈ Mn. Assume that there exists a real inter-
val [θ1, θ2] such that the n eigenvalues λ1(θ), . . . , λn(θ) of cos θHJ + sin θKJ

( θ ∈ [θ1, θ2]) are real and the corresponding eigenvectors are anisotropic.
Then, for each θ ∈ [θ1, θ2], there are n real tangents to CJ(A) with the direc-
tion −θ + π/2.

Proof : Consider the real direction given by u = cos θ, v = sin θ, for θ accord-
ing to the hypothesis. Then the equation

F J
A(u, v, w) = det(uHJ + vKJ + wIn) = 0

has n real solutions in w, since by the hypothesis the J-Hermitian matrix
uHJ + vKJ has n real eigenvalues (counting the multiplicities). These n real
solutions are the tangent lines to CJ(A) with argument −θ + π/2.

Corollary 1. The arcs of CJ(A) with tangent lines perpendicular to the
direction θ ∈ [θ1, θ2] in Theorem 3 do not have flexional tangents.

Remark 1. The real interval [θ1, θ2] may reduce to a singleton {θ′}. Then the
supporting lines of WJ(A), if they exist, are perpendicular to θ′. In this case,
the boundaries of W +

J (A) and W +
−J(A) are lines with argument −θ′ + π/2.

We recall that a point P , not equal to the circular points at infinity (1 : i : 0)
and (1 : −i : 0), is called a focus of a curve C if the line l1 through P and
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(1 : i : 0) and the line l2 through P and (1 : −i : 0) are tangent to C at
points other than the circular points at infinity.

A curve of class n with real coefficients has n real foci, counting multiplici-
ties, and n2−n foci which are not real [14]. Murnaghan [12] and Kippenhahn
[8] independently proved that the real foci of the algebraic curve defined by
det(uH + vK + In) = 0 are the eigenvalues of A = H + iK.

Proposition 3. The n real foci of the algebraic curve defined by the equation
F J

A(u, v, w) = det(uHJ + vKJ + wIn) = 0 are the eigenvalues α1, . . . , αn of
the matrix A = HJ + iKJ .

Proof : Taking u = 1 and v = i in F J
A(u, v, w) = 0, we obtain det(HJ +

iKJ + wIn) = det(A + wIn) = 0, that is, the roots w are the eigenvalues of
A multiplied by −1. Repeating the above procedure for u = 1 and v = −i,
we find det(HJ − iKJ + wIn) = det(A∗ + wIn) = 0, and so w are the
eigenvalues of A∗ multiplied by−1. Thus, w coincides with−αj, j = 1, . . . , n.
For k, l = 1, . . . , n, let gk and gl be the lines given in line coordinates by
(1 : i : −αk) and (1 : −i : −αl), respectively. We observe that these lines
pass through the circular points at infinity. More precisely, the lines gk pass
through (1 : i : 0), while the lines gl pass through (1 : −i : 0). Since gk and
gl are solutions of the equation

det(uHJ + vKJ + wIn) = 0,

they are the unique tangent lines to the curve that pass through the circular
points at infinity. Easy calculations show that the intersections of gk with
gk, k = 1, . . . , n, are given by (Re αk : Im αk : 1), k = 1, . . . , n.

4. The point equation of CJ(A)
We recall that an usual procedure to find the point equation of the asso-

ciated curve is to eliminate one of the indeterminates, say u, from (4) and
ux + vy + w = 0, dehomogenize the result by setting w = 1, and eliminate
the remaining parameter v from the resulting equation FA(v, x, y) = 0 and
∂FA(v, x, y)/∂v = 0. In this Section, we present an alternative procedure to
find the point equation of CJ(A). The second mixed compound of two matri-
ces A = [aij] and B = [bij] of the same size m× n, denoted by 〈A,B〉, is the(
m
2

)× (
n
2

)
matrix with entries

〈A,B〉PQ =
1
2

(airbjs + ajsbir − aisbjr + ajrbis),
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where P = (i, j), 1 ≤ i < j ≤ m, and Q = (r, s), 1 ≤ r < s ≤ n. In
particular, the second compound of a matrix A is denoted and defined by

A(2) = 〈A,A〉.

It follows from the definition that

(A(2))PQ = det

(
air ais

ajr ajs

)
,

for P = (i, j), 1 ≤ i < j ≤ m, and Q = (r, s), 1 ≤ r < s ≤ n. Therefore, A(2)

is the array of all minors of A of second order. Next, we list some properties
of the second compound and of the second mixed compound, obtained in [5].

Lemma 1. For any matrices A,B, A1, A2 of the same size, and for any
complex numbers α1, α2, the following holds:

(a) 〈α1A1 + α2A2, B〉 = α1〈A1, B〉+ α2〈A2, B〉;
(b) 〈A,B〉 = 〈B,A〉.

Lemma 2. For A,B ∈ Mn, the form

det(xA + yB)

(which is a product of linear complex factors αix + βjy) is either identically
zero, or has a multiple linear factor if and only if

det

(
A(2) 〈A,B〉
〈A,B〉 B(2)

)
= 0.

Next Theorem is not practical for large matrices, but it can be used for
small size matrices and for theoretical purposes.

Theorem 4. Let A = HJ + iKJ ∈ Mn, where HJ and KJ are J-Hermitian.
If the associated curve CJ(A), given in line coordinates by the equation (4),
is irreducible, then its point equation is given by the non-linear part of the
equation

det

(
(HJ − xIn)(2) 〈HJ − xIn, K

J − yIn〉
〈HJ − xIn, K

J − yIn〉 (KJ − yIn)(2)

)
= 0, (5)
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or, equivalently, by the non-linear part of the equation

det




(HJ)(2) 〈HJ , KJ〉 〈HJ , In〉 xI(n
2)

〈HJ , KJ〉 (KJ)(2) 〈KJ , In〉 yI(n
2)

〈HJ , In〉 〈KJ , In〉 I(n
2)

I(n
2)

xI(n
2)

yI(n
2)

I(n
2)

0




= 0. (6)

The linear factors of the above equations correspond to multiple tangents, in
the case of their existence. If CJ(A) contains a line, they also correspond to
that line.

Proof : Performing some elementary operations with the blocks of the matrix
in (6), using Laplace Theorem and Lemma 1, we can easily see that the first
members of equations (5) and (6) are equal if

(
n
2

)
is even, or symmetric if(

n
2

)
is odd. Therefore, the equations (5) and (6) are equivalent. On the other

hand, (5) is invariant under the replacement A 7→ A± (x + iy)In. Therefore,
it is sufficient to prove that the result holds for the origin (0, 0). Moreover,
the origin satisfies (6) if and only if

det

(
(HJ)(2) 〈HJ , KJ〉
〈HJ , KJ〉 (KJ)(2)

)
= 0.

By Lemma 2, this means that the form det(uHJ +vKJ) is identically zero or
has a multiple linear factor. However, the first case may not hold, otherwise
that would mean that det(uHJ + vKJ + wIn) is divisible by w and, conse-
quently, CJ(A) is reducible. Then, only one possibility remains: the form
det(uHJ + vKJ) has a multiple linear factor. The proof follows by dual con-
siderations. We eliminate w from det(uHJ +vKJ +wIn) and ux+vy+w = 0
for x = y = 0. Therefore, there is a multiple tangent to CJ(A) passing
through the origin. Obviously, the origin lies either on that tangent or on
the associated curve itself. The non-linear factor of (5) or (6) corresponds to
CJ(A) and the linear factors to multiple tangents, in case of their existence,
or to a line, if that line belongs to CJ(A).

5. Characterization of CJ(A) for A ∈ M2

Let A be an arbitrary matrix in M2 and J = diag(1,−1). By (2), without
loss of generality we may consider A with zero trace and real determinant.
Writing A = HJ +iKJ , where HJ and KJ are J-Hermitian matrices, by easy
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computations we get

F J
A(u, v, w) = det(HJ)u2 + det(KJ)v2 + w2

+ Re Tr(A)uw + Im Tr(A)vw + Im det(A)uv.
(7)

Having in mind the conditions on A, this polynomial reduces to

F J
A(u, v, w) = det(HJ)u2 + det(KJ)v2 + w2. (8)

Proposition 4. Let C be the real part of the algebraic curve defined in line
coordinates by the equation G(u, v, w) = cuu

2 + cvv
2 + w2 = 0 , where cu,

cv ∈ R.

(a) If cu = cv = 0, then C = {0};
(b) If cu < 0 and cv = 0, then C = {(−

√
|cu|, 0), (

√
|cu|, 0)};

(c) If cu > 0 and cv = 0, then C = R;
(d) If cu = 0 and cv < 0, then C = {(0,−

√
|cv|), (0,

√
|cv|)};

(e) If cu = 0 and cv > 0, then C = iR;
(f) If cu > 0 and cv > 0, then C = ∅ (an imaginary ellipse);
(g) If cu > 0 and cv < 0, then C is the hyperbola centered at the origin

with transverse and non-transverse axis on the imaginary and real axis
of length 2

√
|cv| and 2

√
|cu|, respectively;

(h) If cu < 0 and cv > 0, then C is the hyperbola centered at the origin
with transverse and non-transverse axis on the real and imaginary axis
of length 2

√
|cu| and 2

√
|cv|, respectively;

(i) If cu < 0 and cv < 0, then C is the ellipse centered at the ori-
gin with major and minor axis on the coordinate axis, of lengths
2
√

max{|cu|, |cv|} and 2
√

min{|cu|, |cv|}, respectively.

Proof : (a) If cu = cv = 0, then G(u, v, w) = 0 if and only if w = 0, and the
solution of this polynomial equation is the pencil of lines (u : v : 0) passing
through the point (0 : 0 : 1). As usual, we identify the pencil with the point
(0 : 0 : 1), and so C is the origin of the affine plane.

(b) If cv = 0, it follows that G(u, v, w) = 0 if and only if w = ±√−cu u.

If cu < 0, then we get the pencils of lines (u : v :
√
|cu|u) and (u : v :

−
√
|cu|u), which pass through the points (−

√
|cu| : 0 : 1) and (

√
|cu| : 0 : 1),

respectively. Identifying the pencils with the respective points of the real
axis, the result follows.
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(c) If cv = 0 and cu > 0, then the unique real solution of the equation
G(u, v, w) = 0 is obtained for u = 0 and w = 0. This solution is the line with
coordinates (0 : 1 : 0), i.e., the real axis.

The proof of (d) and (e) follows analogously to (b) and (c), respectively.
(f) If cu > 0 and cv > 0, then G(u, v, w) = 0 if and only if |cu|u2 + |cv|v2 +

w2 = 0 and this equation does not have real solutions. Since (0 : 0 : 0) does
not represent any line in the projective plane, C is the empty set.

(g) Suppose that cu > 0 and cv < 0. Thus, G(u, v, w) = |cu|u2−|cv|v2 +w2.
To obtain the equation of the algebraic curve in point coordinates, let w = 1
and u = (−1− vy)/x. We easily get

∂G

∂v
= |cu| 2y2v + 2y

x2
− 2|cv|v.

Solving the equation ∂G
∂v = 0 with respect to v, we obtain

v =
y|cu|

x2|cv| − y2|cu| .
Obviously,

u = − x|cv|
x2|cv| − y2|cu| .

Substituting the expressions of u and v in G(u, v, w) = 0, we get

y2

|cv| −
x2

|cu| = 1.

The proofs of (h) and (i) follow by analogous arguments, and the Proposi-
tion is proved.

As seen in the proof of Proposition 4, the polynomial F J
A(u, v, w) is irre-

ducible if and only if neither det(HJ) nor det(KJ) is equal to zero.
The Elliptical Range Theorem is easily obtained from Proposition 4. If

H and K are Hermitian and Tr(H) = Tr(K) = 0, then det(H) ≤ 0 and
det(K) ≤ 0. Recalling that W (A) is the closed convex hull of C(A), the
Elliptical Range Theorem follows from Proposition 4 (a), (b), (d) and (i). To
prove the Hyperbolical Range Theorem we need the two following Lemmas.

Lemma 3. Let 0 6= A = [aij] ∈ M2 be a J-Hermitian matrix such that
Tr(A) = 0. The following holds:

(a) If det(A) < 0, then CJ(A) = {(−
√
| det(A)|, 0), (

√
| det(A)|, 0)} and

WJ(A) = R\]−
√
| det(A)|,

√
| det(A)|[;
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(b) If det(A) = 0, then CJ(A) = {0} and WJ(A) = R\{0};
(c) If det(A) > 0, then CJ(A) = R and WJ(A) = R.

Proof : Recalling (8), CJ(A) is given in line coordinates by the equation
det(A)u2 + w2 = 0, and it is characterized by Proposition 4. Without loss of
generality, we may consider

A =

[
k a
−a −k

]
,

being a ≥ 0 and k = 1 if a11 6= 0, and k = 0, otherwise. We observe that
k = 0 only if det(A) > 0.

Let x = [cosh t (eiα sinh t)]T , t ∈ R, α ∈ [0, 2π]. If k = 1, by easy
calculations we find x∗Jx = 1 and x∗JAx = cosh 2t + a cos α sinh 2t . For
t ∈ R,

e2|t|(1− a) + e−2|t|(1 + a)
2

≤ x∗JAx ≤ e2|t|(1 + a) + e−2|t|(1− a)
2

. (9)

If k = 0, then x∗JAx = a cos α sinh 2t, and for t ∈ R we have

−a sinh(2|t|) ≤ x∗JAx ≤ a sinh(2|t|). (10)

(a) If det(A) < 0, then 0 ≤ a < 1 and k = 1. By (9), x∗JAx is a positive
real number. Moreover,

e2|t|(1− a) + e−2|t|(1 + a)
2

≥
√

1− a2.

On the other hand, e2|t|(1+a)+e−2|t|(1−a)
2 7→ +∞, when |t| 7→ +∞. Thus,

W +
J (A) = [

√
| det(A)|, +∞[, W +

−J(A) =]−∞,−
√
| det(A)|], and so WJ(A) =

R\]−
√
| det(A)|,

√
| det(A)|[.

(b) If det(A) = 0, then a = 1 and k = 1, and by (9),

e−2|t| ≤ x∗JAx ≤ e2|t|,

for t ∈ R. Then W +
J (A) = R+ and W +

−J(A) = R−. Therefore, WJ(A) =
R\{0}.

(c) If det(A) > 0, either a > 1 and k = 1 or a 6= 0 and k = 0. If |t| 7→ +∞,
from (9) and (10) it follows that W +

J (A) = R, W +
−J(A) = R, respectively,

and so WJ(A) = R.

Lemma 4. Let A = [aij] = HJ + iKJ ∈ M2, where HJ and KJ are J-
Hermitian matrices, being Tr(A) = 0 and Im det(A) = 0.
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(a) The inequalities det(HJ) < 0 and det(KJ) < 0 may not occur simultane-
ously;

(b) If det(HJ) < 0 and det(KJ) = 0, then KJ = 0;
(c) If det(HJ) = 0 and det(KJ) < 0, then HJ = 0.

Proof : (a) Since Tr(A) = 0, it follows that a22 = −a11. From the inequalities
det(HJ) < 0 and det(KJ) < 0, we easily get

1
4

(a12 − a21)(a12 − a21) <
1
4

(a11 + a11)
2;

1
4

(a12 + a21)(a12 + a21) < −1
4

(a11 − a11)
2.

The members of the above inequalities are non-negative, and by multiplica-
tion we find

1
16

(a2
12 − a2

21)(a
2
12 − a2

21) < − 1
16

(a2
11 − a2

11)
2. (11)

Since det(A) is a real number, −a2
11 − a12a21 = −a2

11 − a12a21 and so

(a2
12 − a2

21)(a
2
12 − a2

21) < −(a12a21 − a12a21)
2.

Then |a12|4 + |a21|4 − 2|a12|2|a21|2 < 0, a contradiction.
(b) If det(HJ) < 0 and det(KJ) = 0, having in mind (11), a11 is a real

number and a12 = −a21. It follows that KJ = 0.
(c) The proof of (c) is analogous to (b).

Theorem 5. For A under the assumptions of Lemma 4, h = det(HJ) and
k = det(KJ), the following holds:

(a) If h = k = 0, then CJ(A) = {0}. If A = 0, then WJ(A) = {0};
otherwise, WJ(A) is the line defined by a11 and −a11, except the origin;

(b) If h < 0, k = 0, then CJ(A) = {(−
√
|h|, 0), (

√
|h|, 0)}, and WJ(A) =

R\]−
√
|h|,

√
|h|[;

(c) If h > 0, k = 0, then CJ(A) = R. If KJ = 0, then WJ(A) = R;
otherwise, WJ(A) = C\R;

(d) If h = 0, k < 0, then CJ(A) = {(0,−
√
|k|), (0,

√
|k|)}, and WJ(A) =

iR\]−
√
|k|,

√
|k|[;

(e) If h = 0, k > 0, then CJ(A) = iR. If HJ = 0, then WJ(A) = iR;
otherwise, WJ(A) = C\iR;

(f) If h > 0, k > 0, then CJ(A) = ∅, and WJ(A) = C;



14 N. BEBIANO, J. DA PROVIDÊNCIA AND R. TEIXEIRA

(g) If h > 0, k < 0, then CJ(A) is the hyperbola centered at the origin with
transverse and non-transverse axis on the imaginary and on the real
axis, of length 2

√
|k| and 2

√
|h|, respectively; WJ(A) is the hyperbola

and its “interior”;
(h) If h < 0, k > 0, then CJ(A) is the hyperbola centered at the origin with

transverse and non-transverse axis on the real and on the imaginary
axis, of length 2

√
|h| and 2

√
|k|, respectively; WJ(A) is the hyperbola

and its “interior”.

Proof : The characterization of CJ(A) follows from Proposition 4 and Lemma
4(a).

(a) Suppose that h = k = 0.
(i) If HJ = KJ = 0, then A = 0 and WJ(A) = {0}.
(ii) If HJ = 0 and KJ 6= 0, then a11 is imaginary, A = iKJ and by

Lemma 3, WJ(KJ) = R\{0}.
(iii) If HJ 6= 0 and KJ = 0, then a11 is real, A = HJ and Lemma 3

implies that WJ(A) = R\{0}.
(iv) If HJ 6= 0 and KJ 6= 0, let B = e−iθA 6= 0, where θ = arg a11.

From the conditions h = 0 and k = 0, we get (Re a11)2 = 1/4|a12− a21|2 and
(Im a11)2 = 1/4|a12 + a21|2. It follows that

Re(a2
11) = (Re a11)

2 − (Im a11)
2 = −Re(a12a21). (12)

Since det(A) ∈ R, −a2
11 − a12a21 is real. Then (12) implies that det(A) = 0.

It is also easily seen that |a11| = |a12| = |a21|. Then −a2
11−a12a21 = 0 implies

that
ei arg a11ei arg a11 + ei arg a12ei arg a21 = 0,

and so a11a21 + a11a12 = 0. It follows that B is J-Hermitian and det(B) = 0.
By Lemma 3, WJ(B) = R\{0}. Consequently, W J(A) = eiθR\{0}.

(b) Suppose that h < 0 and k = 0. By Lemma 4(b), KJ = 0. Thus,
A = HJ and by Lemma 3 the result follows.

(c) Consider h > 0 and k = 0. Then CJ(A) is the real axis. If KJ = 0,
then A = HJ and by Lemma 3 WJ(A) = R. If KJ 6= 0, by Lemma 3
WJ(KJ) = R\{0}. Then, the projection of WJ(A) on the imaginary axis
is the imaginary axis with the origin deleted. Thus, WJ(A) is the whole
complex plane without the real axis.

The proofs of (d) and (e) are analogous to (b) and (c), respectively.
(f) Suppose h > 0 and k > 0. Lemma 3 ensures that WJ(HJ) = R and

WJ(KJ) = R. By Proposition 4, CJ(A) = ∅, and so WJ(A) = C.
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(g) Let h > 0 and k < 0. By Lemma 3, WJ(HJ) = R and WJ(KJ) =
R\] −

√
|k|,

√
|k|[. By Proposition 4, CJ(A) is the hyperbola centered at

the origin with transverse axis on the imaginary axis of length 2
√
|k|, and

non-transverse axis on the real axis of length 2
√
|h|. Then, WJ(A) is the

hyperbola and its “interior”.
(h) The proof is analogous to (g).

If A ∈ M2 has zero trace and real determinant, then its eigenvalues are
symmetric, and both real or both pure imaginary. Therefore, easy calcula-
tions show that the expression (3) for these matrices may be obtained from
Theorem 5 having in mind that

Re det(A) = det(HJ)− det(KJ) (13)

holds for an arbitrary matrix A = HJ + iKJ ∈ M2. The proof of (13) follows
by Lemma 1 and recalling that the second compound of A = HJ + iKJ ∈ M2

coincides with its determinant.

6. Characterization of CJ(A) for A ∈ M3

For A ∈ M3, we characterize the associated curve CJ(A) based on the fac-
torability of the polynomial F J

A(u, v, w). Kippenhahn in [8] classified C(A)
following Newton’s classification of algebraic curves of order 3 [1], and our ap-
proach is similar. Without loss of generality, we consider J = diag(1, 1,−1).
We denote by Akk the submatrix of A ∈ M3 obtained deleting its k-th lines,
k = 1, 2, 3.

1.st Case Suppose that A ∈ M3 is J-decomposable, i.e., there is a J-unitary
matrix U ∈ M3 such that

(i) U−1AU =

[
a11 0
0 A11

]
or (ii) U−1AU =

[
A33 0
0 a33

]
, (14)

where A11 and A33 may be diagonal matrices. Since WJ(A) = WJ(U−1AU) ,
we may consider A of the form (i) or (ii). Suppose that A is of the form (14)(i).
The polynomial F J

A(u, v, w) is reducible and can be written as follows

F J
A(u, v, w) = (Re a11u + Im a11v + w) F J

A11
(u, v, w).

Each linear factor of F J
A(u, v, w) corresponds to an eigenvalue of A. The

equation in line coordinates

Re a11u + Im a11v + w = 0 (15)
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gives the family of lines (u : v : −Re a11u − Im a11v) that pass through the
point (Re a11 : Im a11 : 1), and as usual, we identify the family of lines with
this point. Therefore, the point a11 of the affine plane is the solution of the
equation (15) and CJ(A) = {a11}∪CJ1(A11), where J1 = diag(1,−1). By the
Hyperbolical Range Theorem ([2] or Theorem 5) we conclude that CJ(A) is
a point and a hyperbola (possibly degenerate).

Suppose that A is of the form (14)(ii). Clearly, CJ(A) = {a33}∪C(A33) and
by the Elliptical Range Theorem [9] CJ(A) is a point and an ellipse (possible
degenerate).

2.nd Case The matrix A is J-indecomposable and the polynomial F J
A(u, v, w)

factorizes into linear factors or into a linear factor and a quadratic factor.
Therefore, CJ(A) consists of the eigenvalues of A corresponding to the linear
factors and to a conic (may be degenerate) corresponding to the quadratic
factor. We note that the conic is a hyperbola or an ellipse. In fact, the conic
may not be a parabola because a parabola has one focus in the line of infinity
of the projective plane, contradicting Proposition 3.

3.rd Case Suppose that the polynomial F J
A(u, v, w) is irreducible and so it

is of degree 3. By standard arguments and using projective transformations,
it can be shown that the line equation of CJ(A) may be written in the form

v2w = α(u− βw)(u− γw)(u− δw).

Viewing the coordinates u, v, w as point coordinates, we may use Newton’s
classification for algebraic curves of order 3 and apply the duality principle.
The following possibilities may occur:

(i): β < γ < δ: the dual curve consists of an oval and an infinite branch
with 3 real flex points. CJ(A) has oval components and components
with cusps (see Examples 1 and 2);

(ii): β < γ = δ: the dual curve has a node as singular point. Then
CJ(A) has a double tangent (see Examples 3 and 4);

(iii): β = γ < δ: the dual curve has an isolated point. Thus, CJ(A) has
a line (cfr. Examples 5 and 6);

(iv): β = γ = δ: the dual curve has a cusp as singular point and CJ(A)
also has a cusp as singular point (see Example 7);

(v): Two of the three roots are complex conjugate: the dual curve has
only an infinite branch and CJ(A) is a deltoid-like curve of order 6
(cfr. Example 8).
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Kippenhahn [8] proved that the possibilities (iii), (iv) and (v) can not occur
for C(A). In contrast with the classical case, the examples in Section 7 show
that all the above mentioned curves may in fact appear as associated curves
of WJ(A).

The knowledge of the associated curve allows the complete characterization
of the J-numerical range. In Case 1, when A is of the form (14) (ii), it
is easily seen that W (A33) ⊆ W +

J (A) and a33 ∈ W +
−J(A). Therefore, to

obtain WJ(A) we take the line connecting each z ∈ W (A33) and a33 deleting
the open line segment joining these two points. On the other hand, when
A is of the form (14)(i), we easily conclude that W +

J1
(A11) ⊆ W +

J (A) and
W +
−J1

(A11) ⊆ W +
−J(A). Moreover, a11 ∈ W +

J (A). Hence, to obtain WJ(A) we
consider the closed line segment connecting each z ∈ W +

J1
(A11) and a11, and

for each z ∈ W +
−J1

(A11), we take the line connecting z and a11 removing the
open line segment joining these two points.

In the Case 2 and Case 3, the following analysis takes place. If there
exists a real interval [θ1, θ2] such that the n eigenvalues λ1(θ), . . . , λn(θ) of the
pencil cos θHJ + sin θKJ (θ ∈ [θ1, θ2]) are real and there exists an associated
basis of anisotropic eigenvectors, then we use Theorem 1. Otherwise, we use
Theorem 2, which characterize the projection of the J-numerical range of A
on the lines passing through the origin.

7. Examples
In the examples presented in this Section the point equation of CJ(A),

A ∈ M3, is obtained using Theorem 4 (and eventually Proposition 2 for
J-Hermitian matrices). The line equation of CJ(A) is given by

F J
A(u, v, w) = w3 + det(HJ) u3 + det(KJ) v3 + Re Tr(A) uw2

+ Im Tr(A) vw2 + Im ζA uvw + ζHJ u2w + ζKJ v2w

+[det(HJ)− Re det(A)] uv2 + [det(KJ) + Im det(A)] u2v,
(16)

where A = HJ + iKJ is the J-Cartesian decomposition of A and ζB denotes
the sum of the 2 × 2 principal minors of the matrix B. In the figures, the
eigenvalues of A are represented by dark dots and the curves were plot using
Mathematica 5.1.
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Example 1 (2.nd Case). It can be easily shown that the matrix

A =




1 0 0
−1 −1 0
0 −1 1




is J-indecomposable and F J
A(u, v, w) = −(u − w)(u + w)2. Thus, CJ(A) =

{−1, 1}. Now, we determine the J-numerical range of the pencil cos θ HJ +
sin θ KJ for each real direction θ. If θ = π/2, we use Theorem 2 (b), and so
the J-numerical range of the pencil is R. Analysing all the real directions
θ 6= π/2 and using Theorem 2 (e), we may conclude that WJ(A) = C.

Example 2 (3.rd Case (i)). Consider the matrix

A =




0 −1/2 0
1/2 0 −1/2
0 1/2

√
2


 .

The line equation of CJ(A) is

1 +
√

2u + 1/4u2 − 1/4v2 −
√

2/4uv2 = 0,

being the point equation

32
√

2x5 − 8x6 − y2 + 6y4 − 8y6 + 2
√

2x3(35− 124y2) + 2x4(−49 + 76y2)+

2
√

2x(2− 11y2 + 12y4)− 4x2(11− 57y2 + 54y4) = 0.

Hence, the associated curve is a “broken” ovular curve and a “broken”
deltoid-like curve.

-4 -2 2 4

-2

-1

1

2

The eigenvalues of HJ are 0 ∈ σ+(HJ), 1/2(−1+
√

2) ∈ σ+(HJ) and 1/2(1+√
2) ∈ σ−(HJ). Then W +

J (HJ) =] − ∞, 1/2(−1 +
√

2)] and W +
−J(HJ) =

[1/2(1 +
√

2), +∞[. Analysing directions θ 6= 0 and using Theorem 1, we
conclude that W +

J (A) is contained in the half-plane x ≤ 1/2(−1 +
√

2) and
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that W +
−J(A) is contained in the half-plane x ≥ 1/2(1 +

√
2). Moreover,

W +
−J(A) is bounded by the outer curve in this half-plane, while W +

J (A) is
bounded by the outer curve in x ≤ 1/2(−1 +

√
2).

Example 3 (3.rd Case (i)). Consider the matrix

B =




0 29/10 1
0 0 1
0 0 0


 .

The line equation of the associated curve is

1− 29/40u(u2 + v2)− 641/400(u2 + v2) = 0,

being the point equation:

(−290 + 641x)3(290− 641x + 400x3) + 2(−34555092100+

x(108857138180+x(−39443756161+600x(−238310980+187684721x))))y2+

(25245963839+1200x(−119155490+111994721x))y4 +14521888400y6 = 0.

The associated curve is an ovular curve and a deltoid-like curve.

-1.5 -1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

The eigenvalues of HJ and KJ interlace: −1.45 ∈ σ+(HJ), 1/40(29−√41) ≈
0.564922 ∈ σ−(HJ), 1/40(29 +

√
41) ≈ 0.885078 ∈ σ+(HJ), −√641/20 ≈

−1.2659 ∈ σ+(KJ), 0 ∈ σ−(KJ),
√

641/20 ≈ 1.2659 ∈ σ+(KJ). In the
directions θ 6= 0, π/2 an analogous situation occurs with the pencil cos θHJ +
sin θKJ . By Theorem 2, we conclude that W +

J (A) = W +
−J(A) = WJ(A) = C.
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Example 4 (3.rd Case (ii)). Let

C =




0 −1/2 0
1/2 0 −1/2
0 −1/2 −√2


 .

The line equation of the associated curve is 1−√2u+
√

2/4uv2 = 0, and the
point equation is 27x2y2 − 2(1− 4y2)2 +

√
2x(−1 + 36y2) = 0, being x = 0 a

double tangent. The associated curve is a “broken” cardioid.

-4 -3 -2 -1 1 2 3

-3

-2

-1

1

2

3

The eigenvalues of HJ are −√2 ∈ σ−(HJ) and 0 ∈ σ+(HJ), being 0 a double
eigenvalue with 2 linearly independent eigenvectors of positive norm. Thus,
W +
−J(HJ) =]−∞,−√2] and W +

J (HJ) = [0, +∞[. The projection of WJ(A)
on other directions, within a certain interval, are also two closed half-rays.
By Theorem 1, we conclude that W +

J (A) is contained in the half-plane x ≥ 0
and it is the convex hull of the branches of CJ(A) in the right closed half-
plane. Analogously, W +

−J(A) is contained in the half-plane x ≤ −√2, being
the convex hull of the associated curve contained in this region.

Example 5 (3.rd Case (ii)). Consider the matrix

D =




0 4 1− i
0 0 1− i
0 0 0


 .

The line equation of CJ(A) is 1 − 2u(u2 + v2) − 3(u2 + v2) = 0, the point
equation is

(2 + x)(−2 + 3x)3 + 18(−4 + 3x2)y2 + 27y4 = 0,

and x = 1 is a double tangent. The associated curve is a cardioid.
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-2 -1.5 -1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

The eigenvalues of HJ are −2 ∈ σ+(HJ), 1 ∈ σ0(HJ), being 1 a double eigen-
value with an associated isotropic eigenvector. Thus, W +

J (HJ) and W +
−J(HJ)

are the half-planes x > 1 and x < 1, respectively (in this case, it can be eas-
ily shown that 1 6∈ WJ(HJ)). The pencil cos θHJ + sin θKJ has interlacing
eigenvalues in all real directions except for the real axis, and so W +

−J(A) and
W +

J (A) are the half-planes x < 1 and x > 1, respectively.

Example 6 (3.rd Case (iii)). Let

E =




0 2
√

2 0
−2
√

2 1
√

5
0

√
5 1


 .

The line equation of CJ(A) is 1 + 2u + u2 − 3v2 − 8uv2 = 0, and the point
equation is

(−1 + x)2(x(−8 + 3x)3 − 2(−8 + 3x(−28 + 39x))y2 − 5y4) = 0.

The associated curve is a “broken” deltoid-like curve and a line.
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-2 2 4 6

-3

-2

-1

1

2

3

The eigenvalues of HJ are 0 ∈ σ+(HJ) and 1 ∈ σ+(HJ) ∩ σ−(HJ). Hence,
WJ(HJ) = R. For θ 6= 0, we use Theorem 2 (a) and (c) to characterize the
J-numerical range of the pencil cos θHJ + sin θKJ . Thus, W +

J (A) is the half
plane x ≤ 1, and W +

−J(A) is the half plane x ≥ 1, being WJ(A) = C.

Example 7 (3.rd Case (iii)). Consider the matrix

G =




0 −1 0
1 0 −1
0 −3/2 1/2


 .

The line equation of CJ(A) is u2 + 9v2 + 16− 8u(v2 − 1) = 0, and the point
equation is

(1− 4x)2(−x(8 + 9x)3 − 2(−8 + 27x(−28 + 179x))y2 − 41y4) = 0.

The associated curve is a deltoid-like curve and a line.

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

The eigenvalues of HJ are 0 ∈ σ+(HJ) and 1/4 ∈ σ0(HJ), where 1/4 has
algebraic multiplicity 2 and an isotropic eigenvector. In this case, WJ(HJ) =
R\{1/4}. For θ 6= 0, the pencil cos θHJ + sin θKJ has complex eigenvalues.
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Then, W +
−J(A) is the half-plane x > 1/4 and W +

J (A) the half-plane x < 1/4.
Finally,

WJ(A) = C\{z : Re z = 1/4}.
Example 8 (3.rd Case (iv)). Consider the matrix

M =



√

2 0 2
0 −√2 4
0 2 0


 .

The line equation of CJ(A) is 1 + 10v2 + 8
√

2uv2 = 0, and the point equation
is

64
√

2 + 150
√

2x2 − 125/2x3 − 6x(40 + 9y2) = 0,

being x = 0 the equation of its asymptote (the asymptotes are tangent lines
of the curve at points at infinity). The associated curve is a Cissoid of Diocles.

-3 -2 -1 1 2

-4

-2

2

4

The matrix HJ has the (triple) 0 eigenvalue, which is isotropic. Since HJ

is nilpotent with nilpotency index equal to 3, we get WJ(HJ) = R. Since
the eigenvalues of KJ are ±i

√
10 and 0, we find that WJ(KJ) = R. For

θ 6= 0, π/2, the pencil cos θHJ + sin θKJ has complex eigenvalues. Hence,

WJ(A) = W +
J (A) = W +

−J(A) = C.

Example 9 (3.rd Case (v)). Let

N =




1 1 1
0 1 1
0 0 1


 .
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The line equation of the associated curve is 1+u3 +3u+13/4u2 +1/4v2 = 0,
and the point equation is

x3(−1+2x)(4+x(−5+2x))+2(54+x(−234+x(349+12x(−19+5x))))y2+

(253 + 12x(−37 + 19x))y4 + 112y6 = 0.

The associated curve is a deltoid-like curve of order 6.

0.2 0.4 0.6 0.8 1

-0.1
-0.05

0.05
0.1

The eigenvalues of HJ are 1/4(5 ± i
√

7) and 1/2; so WJ(HJ) = R. The
eigenvalues of KJ are ±i/2 and 0, and so WJ(KJ) = R. For θ 6= 0, π/2, the
pencil cos θHJ + sin θKJ has complex eigenvalues. Hence,

WJ(A) = W +
J (A) = W +

−J(A) = C.
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