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ABSTRACT: We give a combinatorial description of the invariant factors associ-
ated with certain sequences of product of matrices, over a local principal ideal
domain, under the action of the symmetric group by place permutation. Lascoux
and Schiitzenberger have defined a permutation on a Young tableau to associate
to each Knuth class a right and left key which they have used to give a combi-
natorial description of a key polynomial. The action of the symmetric group on
the sequence of invariant factors generalizes this action of the symmetric group, by
Lascoux and Schiitzenberger, to Young tableaux of the same shape and weight. As
a dual translation, we obtain an action of the symmetric group on words congruent
with key-tableaux based on nonstandard pairing of parentheses.
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1. Introduction

The purpose of this paper is to give a combinatorial description of the
hexagons defined by the invariant factors associated with a certain type of
sequences of product of matrices, over a local principal ideal domain, under
the action of the symmetric group by place permutation, and to show its re-
lationship with the combinatorics developed by Lascoux and Schiitzenberger
to give a combinatorial description of key polynomials. Key polynomials were
combinatorially investigated by Lascoux and Schiitzenberger, in the case of
the symmetric group, in [12, 13].

Given an n by n non-singular matrix A, with entries in a local principal
ideal domain with prime p, by Gauflian elimination one can reduce A to a
diagonal matrix A, with diagonal entries p™, ..., p®, for unique nonnegative
integers a; > ... > «p, called the Smith normal form of A. The sequence
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p“, ..., p" defines the invariant factors of A, and a = («, ..., a,) the in-
variant partition of A. It is known that «, 3, v are invariant partitions of
nonsingular matrices A, B, and C' such that AB = C' if and only if there
exists a Littlewood-Richardson tableau T of type («, 3,7), that is, a tableau
of shape v/a which rectifies to the key tableau of weight 5 (Yamanouchi
tableau of weight ) [5, 6]. The relationship between invariant factors and
the product of Schur functions was noticed earlier by several authors, with
different approaches, as P. Hall, J. A. Green, T. Klein, R. C. Thompson et al
9, 10, 15, 1]. (For an overview and other interconnectedness, see the survey
by W. Fulton [6] as well as [5, 7, §].)

Let m = (mq,---,m;) be a weak composition. Let the symmetric group
Sy act on weak compositions of length < ¢ wvia the left action s;m = (my, ...,
Mir1, My, -+ ,my) with s;; 1 < ¢ < t — 1, the simple transpositions of S;.

Let 5(m) be the unique partition in the orbit Sym and '(m) its conjugate.
K (m) denotes the key-tableau of weight m, that is, the tableau of weight m
whose column shape is 3'(m), and Dj,,| the n by n diagonal matrix having
the ith diagonal entry equals p whenever ¢ € [my] and 1 otherwise. The
invariant partition of Dy, is (1™*). We identify K(m) with the sequence of
diagonal matrices (D), - -+, Dpy,)) in the sense that the sequence of parti-
tions (1™) C (1™) 4+ (1™2) C --- C (1"™) 4 --- + (1"™) = F'(m) defines the
key K(m) and, simultaniously, are the invariant partitions of the sequence
of product of matrices Djy1s Dimy Do)y =+ 5 Dima)Ppma) * - Ppmy)- - (French
notation is adopted.) For instance,

K(10325) = is identified with (D[l], Dy, D[g], D[Q], D[4]).

= W = Ot
W =~ Ot

5

395
Let T(m) be a tableau of skew-shape v/a and weight m. Let J; denote
the column-word of length m; defined by the set of column-indices of the
letter k£ in T'(m), and put J := J;--- JoJp, called the indexing-set word of
T(m). The sequence of column lengths of J is m* the reverse of m. Let
w be the word of T(m) defined by concatenation of the column-words of T
left to right. Write () «— w) = (P(w), Q(w)) to mean that the row insertion
of w produces the pair of tableaux P = P(w) and Q(w) of the same shape,
with Q(w) a standard tableau. We have () «— J) = (Q, Q(J)) such that
Q(J) = (std(evac P))" and Q(w) = (std P)!, where evac denotes evacuation,
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! transposition and std standardization. J is a frank word if and only if
P = K(m). Equivalently Q(.J) = std(K (m"))'.

Let U be a n by n unimodular matrix, that is, a matrix whose determi-
nant is not divided by p. Put A, UK (m) for the sequence A,, A UDy,,,

AUDp Dy -+ s AaU D1 Dipy) +  + Dp,- The sequence of invariant par-
titions o' = o C a! C ... C «af, associated with this sequence of matri-
ces, satisfy for k = 0,1,...,t — 1, [&*| — |a¥| = myyy and of < ! <

af +1, for any i. Thus A, UK (m) is identified with a tableau T'(m) of skew-
shape v/a and weight m, and it is shown in [3] that P(w) = K(m) and J is a
frank word. When we consider the action of the symmetric S; on weak com-
positions of length < ¢ via the left action, we are at the same time defining an
action of the symmetric group on the sequence of matrices A,U K (m), where
U is a fixed unimodular matrix, and, therefore, on tableaux of skew-shape.
We obtain two families of hexagons, which are dual translation of each other:
one on frank words running over tableaux with the same shape and weight,
rather than on the frank words within a Knuth class; and, the other one
on key-tableaux based on nonstandard pairing of parentheses. However in
each hexagon there is only one tableau and we may associate to it right and
left keys. The construction which leads to the first hexagon is based on a
particular row shuffle decomposition of a three-column frank word and on a
variant of the jeu de taquin on a two-column tableau or contretableau. This
means that the second hexagon is based on a column shuffle decomposition of
a word congruent with a key over a three-letter alphabet and on a nonstan-
dard pairing of parentheses. These hexagons, contain in particular, the ones
defined, respectively, by the jeu de taquin operation, and by the operation
based on the standard matching of parentheses.

2. Variants of the jeu de taquin on two-column frank
words, pairing of parentheses and invariant factors

In this section, we describe the invariant factors, equivalently, the skew-
tableaux on a two-letter alphabet, associated with the sequences A UK (m)
and A,UK (sym) with m = (my, mso). For this, we have to define variants of
the jeu de taquin on two-column frank words and to show its relationship
with pairings of parentheses on words congruent with keys over a two-letter
alphabet.

We denote by © the jeu de taquin operation on a two-column tableau or
contre-tableau (a two-column skew-tableau such that the pair of columns is
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aligned at the top) Jy Ji, and by © a variant of © which runs as follows. If
JoJq1 is a contretableau (tableau), slide vertically the entries of the column
Jo (J1) along the column J; (J2) such that the row weak increasing order is
preserved, and a common label to the two columns never has a vacant west
(east) neighbor. Then exchange the vacant positions with the east (west)
neighbors. In particular, when the first (second) column Jy (J;) is slided
down (up) maximally such that the row weakly increasing order is preserved,
we get the jeu de taquin. For instance,

2 5 m 5 5 |
1 4 m 4 A m
O g3 “ 93 7 9 3 (2.1)
m 1 2 1 2
25 5 5 | 5 |
- 1 4 9 4 9 4 3 W
O g3 T m3 T 3w " 24 (22)
m 1 2 1 2 1 2

Clearly, ©(.J5.J;) and ©(J.J;) are not congruent unless © = 0, but ©(J,.J;)
is a frank word with the same shape and weight as O(.Jy.Jp).

Let w = wyiws ... w; be a word on the two-letter alphabet {r,r +1}. A
pairing of w is a set of indexed pairs (called r-pairs) (w;, w;) such that 1 <
i <j <k w=r+1 and w; = r, and if (w;, ws) is another pair, then
i,l,7,s are pairwise distinct. View each r (resp. r + 1) as a left (resp.
right) parenthesis. The r-pairs of w are precisely the matched parentheses.
Furthermore the subword of unpaired r’s and (r + 1)'s is a subword of w the
form r*(r +1)’. In general, not every r-pairing gives the maximal number of
r-pairs of w,and if 6, is the operation which replaces the word r*(r 4+ 1)! of
unpaired 7’s and (r+1)'s in w (in the corresponding positions) by r!(r + 1),
unless certain conditions are imposed on the r-pairing, the maximal number
of r-pairs of 6w and w may be different. However, when either & = 0 or
[ = 0, although w and 6,w may have different r-pairings, they have always the
same maximal number of r-pairs. We shall restrict ourselves to words w in
these conditions, that is, w is a word on a two-letter alphabet congruent with
a two-letter key. In this case, the operation 6, can be reduced to a variant
of jeu de taquin on two-column frank words. In particular, the operation
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based on the standard r-pairing, denoted by 6,., can be reduced to the jeu de
taquin.

Suppose that w is congruent with the key of weight (0", m,., m,,1). With-
out loss of generality, assume m,,; < m,. Let J..1J, be a frank word of
column shape (m, 1, m,, 0" 1), such that by sorting the billeters of the bi-
word E/ = (7“ +J{)+7}1£1T77LT
billeters for the anti-lexicographic order with priority on the first row, we
get X = ( JH;UJT f > , where J,.1J, 1 indicates J,,1J, by weakly increas-
ing order. Consider an r-pairing in w defined by an increasing injection
i:Jr1 — Jp, thatis, o <i(x), such that J.NJ,.1 Ci(Jr41). (We identify a
column word with its underlying set.) To perform 6w based on this r-pairing
means to apply an operation © on J,,1.J, (denoted by C:)T) which exchanges
the vacant entries of the first column with the correspondent east neighbors
consisting of J,\i(J,41) in the second column J,.. Conversely, an operation O,
on J,.1.J, means an operation 6, on w, where the r-pairing on w is defined by
any increasing injection i : J,o; — J, such that ©.J, 1 J, = [J,.1U(J,\ B)] B,
where J, N Jyy1 € i(J,1) = B. When O, = O, we get the standard pairing
of parentheses on w and thus ,. Thus the operations ©,, ©, and HT, 6, are
respectively translated into each other, according the following commutative

diagram,
_ Jr+1Jr T r Jr—!—IJT
- ( w ><——-—->Z = (r 4 1o

1 1 . (2.3)

> = < O(Jr14:) 1 )é——+§, _ < O(J,41J,) >

0,w (r + 1)y

), by weakly increasing rearrangement of the

If () — w) = (P,Q) then (§ «— 6w) = (6,P,Q'), where Q and @’ are
distinct unless 6, = 6,. As ©, runs out of the congruence class, 6, does not
preserve the Q-symbol but we have f,w = f,w. For instance, in (2.1), any
increasing injection {1,2} — {2,3} defines a standard pairing of parenthe-
ses, giving rise to 67 : (2(21)1)1 — (2(21)1)2 ; and in (2.2), any increas-
ing injection {1,2} — {2,4} defines a pairing of parentheses, giving rise to
01 : (2(21)11) — (2(21)21) .
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We are now in conditions to describe the invariant factors, equivalently,

the skew-tableaux on a two-letter alphabet associated with the sequences
A UK (m) and AUK (sym).

Lemma 2.1. [2] (a) Let U be a n by n unimodular matriz. Then, there exists
o €S, such that U = TP,QL, where T is ann by n upper triangular matriz,
with 1's along the main diagonal, () is an n by n upper triangular matriz,
with 1's along the main diagonal, and multiples of p above it, and L is an n
by n lower triangular matrixz, with units along the main diagonal.

(b) By elementary operations on the left and on the right, AU K(m) may
be considered equal to A, P,QK(m), with o € S,,.

(c) The Smith normal form of AyP,QDyy,), with o € Sy, is the diagonal
matriz A, where o C ot is the horizontal strip tableau of skew-shape o' /.

Theorem 2.2. [2] Let m = (my,msy). Let T and T' be respectively the
tableaux defined by the sequences A UK (m) and A UK (sym), with indexing-
set words JoJy, JoJi, and words w, w'. Then,

(a) Jodv, J3J! are frank words such that ©1JyJy = JbJ,.

(b) w= K(m) and w' = 61w = K(s;m).

Conversely, if T and T" are respectively tableauz of skew-shape with indexing-
set frank words JoJv and J4J{ satisfying JyJ| = O,JsJ;, then there exist
an unimodular matrix U such that A,ZUK(m) and AU K (sym) define the
tableaux T and T" respectively.

Example 2.3. Let U = Py301T14(p), where Py3op is the permutation matrix
associated with 4321 € S, and Ti4(p) is the elementary matrix obtained
from the identity by placing the prime p in position (1,4). With a = (2,1)
the sequences A, U(Dy3), Dyg)) and A U(Dyy, D3)) define, respectively, T' =
2 2

e 1 2 and7 = e 2 2 . The words w = 21211 of T and w' =
e o 1 1 o o 1 1

22211 of T" satisfy 9~1w = w' = 61w, where €~1 is the operation based on the
parentheses matching (21(21)1). However, if we choose U’ = Pso41T04(p),
the sequences AU’ (Dyg), Djg) and AU’ (Dyy), Dy3)) define, respectively, T

2
and 7" = e 1 2 . In this case, the word w” of T" satisfy 6w = w".

o o | 2
The corresponding operations on the indexing frank words are displayed as
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follows
m 4 4 1 3 4 3 4 3|

©: 33 «— 3 3 ©O: 13 « 13 « 2 4. (24
1 2 1 2 2 2 W 1 3

The operations O, (#,) can be extended to frank words with more than
two columns (words on a t-letter alphabet, ¢ > 2) [11, 14]. Under certain
conditions, operations ©, (6,) can be extended, as well, to frank words with
more than two columns (words on a t-letter alphabet, t > 2). For this,
we generalize a criterion, by Lascoux and Schiitzenberger in [13], to test
whether the concatenation of a frank word with a column word is a frank
word. Denote, respectively, by L(J) and R(J) the left and right columns of
a frank word J.

Theorem 2.4. [13] The concatenation JJ' of two frank words J, J' is frank
if and only if R(H)L(H') is frank for any pair of frank words H, H' such that
H=Jand H =J.

Notice that when J, J' are column-words, JJ’ is frank if and only if J.J' is
a tableau or a contretableau. Therefore, we deduce the following criterion
for the concatenation of a column with a frank word.

Corollary 2.1. Let J = Ji---J; be a fr@k word and Jpy1 a column. Then,
Jir1d is frank of and only if Jpi1Jy and JyJg—1- -+ Jy are frank words, where
Jri1 I = Ou(Jps1 k).

The criterion given by this corollary can be generalized to operations ©.
Given two columns B, B', we write B < B’ [respectively, B > B'] if there is
an increasing injection B — B’ [respectively, decreasing injection B «— B'].
We put |J| for the cardinal of J as a set.

Corollary 2.2. Let J = Ji,---Ji be a frank word and Jii1 a column. Then,
Jir1J_is frank if and only if JyJy and JyJg—1 -+ Jy are frank words, where
Jer1 k. = Ok (Jyi1Jx) for some operation Oy.

Proof: The necessary condition is a consequence of the previous corollary.
Reciprocally, assume the existence of an operation ©;, in the required con-
ditions, and let J; 1 Jp = Op(Jps1Jy). Clearly, we have J;, < J;, and also
Jk+1l>Jk+1, since | J;| = |Jk\ By the hypotheses, the product JkL(H) is frank,
for any frank word H = J_;---.J;. This means that either Jk < L(H), or
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Zf > L(H). By transitivity, we find that either J; < L(H), or Jp>L(H), i.e.,
JrL(H) is frank. Thus, by theorem 2.4, the word JyJi_1 - - - Jy is frank, and
therefore, by the previous corollary, Ji1J is frank. [

Theorem 2.5. Let T be the tableau defined by AU K(m), with word w and

J the indexing set word. Then P(w) = K(m) and J is a frank word of shape
#

m.

Proof: Let J = J;...J;. We will prove, by induction on t > 1, that J;--- .J;
is a frank word. When ¢ = 1 the result is trivial, and the case t = 2 is a
consequence of theorem 2.2 (see [2]). So, let ¢ > 2 and let T be the tableau
defined by A UK (my, ..., m:). By the inductive step, the word J;_1 - -+ Jp is
frank, since the sequence A,UK (myq,...,m;_1) defines the tableau 7" with
indexing set word J;_1...J; and weight (myq,...,ms 1).

By Smith normal form theorem, there is a partition & and an unimodular
matrix U’ such that by elementary row operations, AgU Dy, ) -+ - Djpy, ,) can
be reduced to AzU’. The sequence AgU’'K (my_1,m;) defines the tableau T
with indexing sets J;_1, Jy, and weight (m;_1,m;). By the case t = 2, the
word J;J;_1 is frank. Moreover, by theorem 2.2, we find that if T is the
tableau defined by the sequence AgzU, K (my, m;_1), the indexing sets J;_1, J;
of T satisfy JyJ, 1 = ét—l(JtJt—l) for some operation O,_1.

Finally, notice that A UK (my,...,m;_9,m;) defines the tableau T with
indexing set word J;_1J; o...J;, and weight (my,...,ms 2, m;). By the
inductive step, J;_1J;_2---J; is a frank word. Thus, by corollary 2.2, the
word J; - - - Jy is frank, and therefore, w = K(m). |

3. An action of the symmetric group on Young tableaux

Let U be an n by n unimodular matrix and (1, B2, 53) = B(mq, ma, m3).
We consider the following hexagon

5 AUK (By, B, B3)—2— AJUK (8o, Bs, B1) X
AUK (Br, Bo, B3) AUK (B3, B2, B1)-

PN S

2 AUK(Br, B3, B2)—5— AU K (B3, b1, B2)
(3.1)

;From the discussion in the introduction, we may look at (3.1) as an
hexagon whose vertices are tableaux of skew-shape such that the words
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are congruent with a key K(f;,, 8, 8:i;), and the indexing frank words have
column shape (8;,, Bi,, 3i,)" with (i1,i2,i3) running over the orbit S33(m).
Therefore, we have two hexagons, one defined by the words of the skew-
tableaux and the other one defined by the indexing frank words. These
hexagons are copies of each other since operations based on pairing of paren-
theses can be reduced to variations of the jeu de taquin on two-column frank
words and wvice versa. Taking into account theorems 2.2 and 2.5, the next
statement follows from the hexagon above. Given o € S;, put o = revo,
where rev denotes the longest permutation of S;.

Theorem 3.1. Let 0 €< 51,89 >, 0 € < 01,05 > and O € < O1,09 > with
the same reduced word. Let T'(c(3(m)) be the tableau defined by A UK (o5(m)),
with word cw and indexing frank word oJ of shape o 3(m). Then {T(c3(m)) :
o €< 51,89 >} are the vertices of a hexagon such that

(a) there exist 0, and 0y satisfying the Moore-Cozeter relations of the sym-
metric group Sz, such that 6 e < 51, 6y >, with the same reduced word as 0,
verifies ow = 6w = 0K (8) = K(o(m)).

(b) there exist O, and O, satisfying the Moore-Coxeter relations of the

symmetric group Sz, such that © € < ©1,0y > with the same reduced word
as O, verifies oJ = 6J.

Our aim is therefore to describe explicitly the operations 6; and ©; in the
hexagons, defined in (a) and (b) of this theorem,

élw - égélw
w 91625110 (32)
\ N o /
9271) - 819221)

and

- O1J = J3G2G1 —— 0:0,J = F3 [5G, “~

J = J3JoJy élégélj = F3XHy (33)

\ (:)QJ == L3L2J1 —éléQJ == L3H2H1/

In fact the hexagon (3.1) and, hence, hexagon (3.3), obey the following
conditions. (The translation of these conditions to hexagon (3.2) will be
done later.)
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Lemma 3.2. [2] Consider the hexagons (3.1) and (3.3). Then

(a) If L3Ly and F3F, are, respectively, the indexing frank words of
AQUK(Bl,ﬁg) and AQUK(BQ,B:;), then F2 S L2.

(b) If L3Hs and J3Gy are, respectively, the indexing frank words of
AQUK(ﬁg,ﬁl) and AQUK(BQ,ﬁl), then G2 S Hg.

(¢) The operations ©1 and Oy defining the hexagon (3.3) are such that
©9[0:1J] = F3FyGy with Fy < Ly, and ©1[0,J] = LsH,H, with Gy < Hy.

Remark 3.3. The conditions (¢), in the previous lemma, imposed on the
operations of the hexagon (3.3) do not come from the braid relations of the
operations ©,. As can be seen in the example below, there are operations ©;
and ©, which close the hexagon and do not satisfy the conditions in (c). For
instance,

13 -2
~ 8 ~
) 2 4 2213 4.6
124/ “2
3 1 34
&124~13/@2
3 61 9y

We start to analyse the hexagon (3.3) under the conditions in (c¢), of the
previous lemma. The Knuth class of a key over a three-letter alphabet as well
as any frank word with three columns can be characterized in terms of the
shuffling operation. This characterization gives a combinatorial explanation
of our hexagons (3.1), (3.2) and (3.3). Indeed by Green’s theorem the set of
all shuffies of the columns of a key are contained in the Knuth class of a key.
However under certain conditions we have equality.

Theorem 3.4. [3] Let K be a key with first column A. Then, the Knuth
class of K 1s equal to the set of all shuffles of its columns if and only if each
of its column is either an interval of A or is obtained from an interval of A
by removing a single letter.

This criterion can be easily applied considering the planar representation of
the weight of the key-tableau. For instance K(2,0,1,2,4,2,3) is the shuffle
of its columns, since each column in the planar representation of the weight
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(2,0,1,2,4,2,3),

— W R Ol g
e e 0o o

— e e 6 o o o

[\

3 4

has at most, one gap of size 1. Each column is either an interval of A =
{1,3,4,5,6,7} or is obtained from an interval of A removing one letter.

Corollary 3.1. If K(m) is a key over a three-letter alphabet, then the Knuth
class of K(m) equals the set of all shuffles of its columns. Equivalently, if J
s a three-column frank word of shape m, then J is a shuffle of rows whose
lengths, by weakly decreasing order, is 3'(m), the conjugate shape of K (m™).
That is J has one of the following forms

Aj A, Ag
(1) Ai A§ . (1) Ai A§ . (III) Ag . Aé,
A3 A3 A3 A3 A3 A3 A3 A3 A3
Ay Al A
(1V) A3 A3, (V) A A3, (V) A3 A3
A3 A3 A3 A3 A3 A3 A3 A3 A3

where A3 < A3 < A3 with |A3] = |A3] = |A3|; AT N A =0, forr # s,
i=1,2,3, and A? < A3, A} < A%, A3 < A3, with |A3| = |A3] = |A).

Theorem 3.5. Let J = J3JoJ1 be a contretableau. The following assertions
are equivalent.

(a) There exist ©1 and Oy defining the hexagon (3.3) such that ©[©.J] =
F3FyGy with Fy < Ly, and ©1[05J] = LsHyH, with Gy < Hy.
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(b) The contretableau J has a decomposition, as below, giving rise to the
hezxagon

Ay A A A AY AY
Ay Ay A A
. A AT O A A
2 2
Ay Ay 4 O A G S ap e
Ay A ! ! A A
J= A3 A3 A3 A3 :
2 2 2 A2
43 j%\ A3 A3 A I S B
1§, A} A Ay AY g,
A3 A3 o, A3 A3
A A A3 AY
Al Al
_ _ - (3.4)
where the sets A are pairwise disjoint in each column J;, Al,, < A}, with
Al = (A7,

A3 < AT < Ay < A,

A3 = [AT] = |A3] = |A]], and /1N A3 C AT, (Ji\ A}) N A5 C AL [\ (AU
ADIN A3 C A3 [ U (ATU AN N A2 C A3 and [Jo U (ATU A)] N A3 C A3,
where < means < without common elements.

Proof: (b) = (a) The vertices of the hexagon (3.4), by previous corollary, are
frank words, and clearly satisfy (c¢) of lemma 3.2.

(a) = (b) The frank words Js.JoJ; and J3G2Gy are, respectively, in the
conditions of (IV') and (/1) of corollary 3.1 and satisfy O, J305J; = J3GoG1.
Then

G1 C N, |G| = |, J2 <Gy, J1NJy C Gy and
Go = JoU(J1\Gr), J3 < Go. (3.5)
Since the frank word (:)Q(J3J2J1) = L3LoJp is in the conditions of (I11) of
corollary 3.1 we have
Ly C Jy, |Lo| = |J5], J3 < Ly < J; JoNJs C Ly and
Ly =JsU(Jo\ Lo). (3.6)
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Again the frank word F3F2G1 = éQ(JSGQGl) satisfy (V') of corollary 3.1.
Then

Fy C Gy, |Fy| = |J5], J3 < Fy <Gy, GonJs C Fy and
Fy = J3U (Gy\ Fy). (3.7)

By (3.5) and (3.7), we have Fy, C Gy = Jo U (J; \ G1). Thus, we may write
Fy = AjU A3, with A5 C J, and A? C J; \ Gy. Moreover,since J3 < Fy, we
may also write J3 = A3 U A3, where A3 < A5 e A3 < A7 satisfy |A3] = |43,
‘A§| = |A%‘, GgﬂAg - Ag and GQOA% - A% We define A% = J1 \ (Gl UA%),
therefore J; \ G1 = Al U A%,

The frank word F3X H; = O, F3F5G4 satisfy (I) of corollary 3.1. Then

H, C Gy, |Hi| =|F|, F» < Hy, NGy C Hy and
F3[>X=F2U(G1\H1)I>H1. (38)

Since Fy = A3 U A7 < Hy, we can define
A =min{Z C H, : |Z| = |A}| and A < Z},

where the minimum is taken with respect to <, and A} = H; \ A;. As
Hy; C Gy, put A3 = G\ H;. We have H; = ASU A} and X = AS U A3 U A3,
From F5 < H; and the definition of A‘;’, we get

A3 < A5 < A% and A2 < A2 < A,

where A2 < A means that A7 < A] and A3 N A} = 0. Note that from (3.5)
and (3.8), we obtain J; N A5 C A?. By lemma 3.2

Fy < Lo. (3.9)

Now we consider the bottom edges of our hexagon (3.3). Since the frank
word LsHyHy = ©1(L3LoJh) satisty (11) of corollary 3.1 we have

H, C i, |Hi| =|Lo|, Ly < Hy, LyNJ; € Hy and
L3§H2:L2U(J1\H1)DH1. (310)

By lemma 3.2, (¢), we have

Gy < H,. (3.11)
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Finally, since F3X H; = ©,(LsH>H,) we have

X - HQ, |X‘ = |L3’, L3 < X, HQﬂLgX and
Fy=LyU (Hy \ X). (3.12)

By (3.10) and by ASU A3 U A3 = Xy C Hy = Ly U AT U A2 U A3, we conclude
that A5 C LyUAL But A3 and A are disjoint sets, it follows A5 C Ly. Define
A} = Lo\ A5 and A3 = Jo \ Lo. As |Ls| = |Hy|, we also have |A}| = |A3],
|A3| = |A3|, (J1\ A}) N AL C Af and (J; \ (47 U A})) N A3 C A3, Moreover
from the inequality L, < H;, we get A3 < A1 By (3.9) and (3.5), we get

A? < A} and by (3.11), we have A3 < A3, ]
AL A4
Ay Ap A
. From this hexagon we get, respectively, a right key K, = Ag A3 and
Ay
A
A3 A3 A3
A3
aleft key K_ = A3 A3 , with K, > K_.
A3 A3 AS
A
355
Example 3.6. For instance, considering the contretableau J = 2 ;l

2
we may consider the following decompositions of J which lead to different
hexagons.

3 3 3 3
55 5 5
O,
33@12421 i2 9, 3 3
252 225, (3.13)
N 3 3 3 3
16, 5 5 55424

2 2@122
4 4
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33 3 3
5 5 5 5
O
33@122 22 O, 3 3
4 4
252 gg (3.14)
33 33
1 O 6, 4
5 55— 55
2 2 99
4 4

The second one gives the frank words in the Knuth class of J.

We may now describe the hexagon (3.2). Without loss of generality, we
may consider the hexagon (3.4) in the simplified form in the sense that the
sets Al are singular,

5b5 ) 5b5 5

c a c a
vt oot b at
N b a> Oy b3 a’
0, 2 2 2 2 a
SV P /c al c1 a Q SR
bt a? a a b4 o
J = b o’ b a? (3.15)
2 2 2 9
c al \ I S SV dd c1 a
a @2 b4 a4 b4 CL4 éQ a
b3 CL3 (:) b3 CL3
9 2 1 2 9
c a ¢’ a
al al

with ¢ <V <da’, j=1,...,5 and ¢ < a®> < b* < a*. The contretableau
J can be splitted into row words X; = c2a’b*a*, Xy = °b°a’, X3 = b3a?, and
Xy=a", withe <b <d,j=1,...,5 and ¢ < a® < b* < a*. We consider
the biwords

o Js S [ Fabtat Avad® bPad ol
Z_<322315 — 1= 3121 321 21 1 (3.16)

v ( (JsJaJi) 1 )

w
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where Y is obtained by sorting the billeters of II by weakly increasing re-
arrangement for the anti-lexicographic order with priority on the first row.
Since (J3J5J1) T is a shuffle of X7, X5, X3 and X4, then w is a shuffle of 3121,
321, 21, 1 such that w|X; = 3121, w| X, = 321, w|X3 = 21, w|Xy = 1, and
w|X; denotes the subword of w defined by the letters below the positions X;
of the top word in the biword . Therefore the hexagon (3.2) is a ” shuffie”
of four hexagons,

c2a2b4a4> 0, <62a2b4a4

01 <3221 3231) 01
<02a2b4a4)/ \(C2a2b4a4>

3231

3121
&<c2612b4a4)_(02¢z2b4a4>4o2 (3.17)
01

3121 3221
Aa’bd
(321)

(Cs@5b5> %2 (3.18)

<c5a5b5> 0 <c5a5b5
0,7\321 321 )\
<c5a5b5)/ \
321

%(0%%5

b’a’\ /g, (3.19)
5, \ 31

o ()_()4 | (3.20)

Indeed, by corollary 3.1, every Yamanouchi word w on a three-letter al-
phabet is a shuffle of £ > 0 words 3121, [; words 321, ls words 21 and I3 — k
words 1, that, by abuse of notation, we shall write w = sh((3121), (321)",
(21)2, 167F).

Theorem 3.7. The vertices of the hexagon (3.2) are the words of the tableaux
of skew-shape defined by the hexagon (3.1) only if there exist a shuffle of
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k > 0 words 3121, Iy words 321, ls words 21 and I3 — k words 1, w =
sh((3121)%, (321)4, (21)b 15—k, such that

(a) B;w = sh((#;3121), (9321)h,a%21Ya(9ﬂ)k‘kL i=1,2;

()éé = sh((0;0;3121)F, (0;0;321)1, (6;0;,21)%2, (0:;0;1)7%), 1 < i # j <
( ) 819291?1} = Sh((6162913121>k, (019291321)11, (91929121)12, (0192911)l3_’“).
That is, the hexagon (3.2) is a “shuffle” of the hexagons (3.17), (3.18),

(3.19) and (3.20) with the appropriate multiplicities.

Example 3.8. The hexagon (3.13) gives gives rise to the hexagon, below,
where the operations are based on nonstandard pairing of parentheses

0
fL//32 221——313 21\\\\
3232331 3121121
3231331 : 3221221 6y (3.21)
1

(the bared letters indicate the subwords 3121 and 1 in the shuffle).

Remark 3.9. The following example is the translation of the previous remark
to hexagon (3.2). The hexagon

b, 39912 33914,
e o

3211 3321

;;\\3211-—7—~3221/j§/
2 0, 2

is not a shuffle of the two hexagons (3.18) and (3.20).

We will show that this family of actions of S3, induced by the different
shuffle decompositions of a Yamanouchi word w over a three letter alphabet,
includes the action defined by the operations 6;, ¢ = 1,2. This is achieved in
the following algorithm, where we exhibit a special shuffle decomposition for
w. As a consequence, using (3.16), the hexagon (3.4) contains, in particular,
the action defined by the jeu de taquin. We denote by w4 the subword of w
obtained by suppressing the letters not in A. If X C [/] with [ the length of
w, then w|X is the subword of w defined by the letters of w in positions X.
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Algorithm 3.10. Let w = K (1, 52, 03). Our algorithm is presented as a
three step definition.

Step 1. Consider the subword w21} and bracket every factor 21 of wgg 1.
The letters which are not bracketed constitute a subword of wys;y. Then
bracket every factor 21 of this subword. Again, the letters which are not
bracketed constitute a subword. Continue this procedure until it stops, that
is, until we get a word consisting of I; no bracketed letters 1’s in w. This
bracketing process enables us to decompose w as

w|([1, . ->]l3+l27 Jl, coey Jlg, Kl, ce ,Kll), (322)

where w|]l =21,1€ [13 + ZQ], w|Jl =3,l € [13], and UJ‘KZ =1,1€ [ll]

Step 2. Let w’ be the subword of w obtained by removing all letters 1
belonging to the factors w|l;, for all [ € [l3 + l5]. As in the previous step, we
bracket all the successive factors 32 and 31 of w’. We get a refinement of the
decomposition (3.22), by making the unions of k sets J; with k sets K, for
some integer 0 < ¢ < min{l3,/;}, and making the unions of the remaining
[3 — q sets J; with l3 — ¢ sets I;:

w\(Fl, cee Fq, Gl, ce Glg_q, [1, Ce 7[lz+Q7 Kl, cee Kll—q)a
where w|F; = 31, [ € [q], w|G; =321, 1 € [Is — q], w|l; =21, [ € [ls + ¢], and
wlK;=1,1€[lh —q

Step 3. Finally, let w” be the subword of w obtained by removing the
subwords w|G; = 321 and w|K; = 1, for all [ > 1. As before, we bracket all
the successive factors 3121 of w”. This operation consists of the union of the ¢
sets F; with ¢ sets I;. The decomposition of w obtained in this way, is denoted
by w|(I7, .- I} g, 40, ) Where w| I = 3121, 1 € [q], w|I} = 321, 1 € [g+1,13],
w|[l* =21,1€ [l3 + 1,13+ lg], and w|Il* =1,1€ [lg +lo+ 13+l +1; — q].

In next example, we illustrate the application of the previous algorithm to
a Yamanouchi word.

Example 3.11. Let w = 33121121 = K(4,2,2). Following the first step
of algorithm 3.10, we bracket all the successive factors 21 of wq; 2y, that is,
331(21)1(21), obtaining in this way the decomposition

w = wl|({4,5},{7,8},{1},{2}, {3}, {6}),
where w|{4,5} = w|{7,8} =21, w|{1} = w|{2} = 3 and w|{3} = w|{6} = 1.
Next, let w’ = 3312 — 12— (where — indicates the place of the suppressed
letters) be the subword of w obtained by removing the letters 1 belonging
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to w|{4,5} and w|{7,8}, and bracket all the successive factors 31 and 32 of
w'. Thus, we have w' = 3(31)2 — 12—, with the letters 3 and 1 belonging to
{2} and {3}, respectively; and then, we have w] = (3 — —2) — 12—, with the
letters 3 and 2 of this factor belonging to {1} and {4, 5}, respectively. Then,
we get the decomposition

w=w|({1,4,5},{7,8},{2,3},{6}),

with w|{1,4,5} = 321, w|[{7,8} = 21, w|{2,3} = 31 and w|{6} = 1. Finally,
let w”’ = —31 — — — 21 be the subword of w obtained by removing the
subwords w|({1,4,5} = 321 and w|{6} = 1. This word have only one factor
3121 and thus we get the decomposition

w=w|({2,3,7,8}*,{1,4,5}*, {6}*) = 33121121,

where the underlined letters define 3121, the upperlined letters define 321
and the remaining letter define the shuffle component 1. It is easy to check
that the parenthesis matching operations induced by this decomposition are
the standard ones:

0, 3322127°T 02 3392133 0
o AT BT
337121121 33221331
Hz\sﬁ_nﬁ ; 33_2g2ﬁ/92 - (3.23)
1

Finally to each hexagon (3.4) corresponds an hexagon (3.1).

Theorem 3.12. [2] Given an hezagon (3.4), there exists an n by n unimodu-
lar matriz U such that, for some partition o, A UK (03(m)) with o running
in S3 is a hexagon, whose indexing frank words are those of (3.4).
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