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ANCTPAKT

,Hue rpagume npemHory sugosu, a Hema A0BO/THO mocTtosu” - Vcak HbyTH.

CuMbBONIOT Ha MOCTOBUTE € NoBp3aH CO Y0BEYKUTe Xenbu u acnupauuu ga ce nospsat, Aa
MCTpaXyBaaT, Aa AOCTUrHyBaaT... CETO TOa Ha KPajoT ro 03Haudyea BHATPELIHWOT TaTHeX Ha BeyHata
noTpara no cMUcAaTa Ha XMBOTOT. Mo Koj 0f, AiBaTa MocTa Ke 0A1y4M fja 04y HOBEKOT, aKo He Mo OHOj
BUCTUHCKUOT-BepBaTa. Buaejku sepbata npecrasyBa MOCT, MOCT nomefy OHa Kazie CyM cera 1 Kaae bor
Me BOAM M Kaje caKa fda cym..[anu oBa He e [0BOJIHO 33 Aa Ce Hanpasu NPBMOT HYEKOP HU3
HeBUAMBMOT SUA, Ha HenosHaToTo? 360pyBajkK BO MHXeHepCKa CMMCAa, 0Baa MUC/A Ke ja 0CBET/IN
yenbaTa fa ce NOCTUrHe ce NoBeKe U NoseKe.

HeKaKo C/1eaHo CO rope KaXaHoTO MOCTOBCKUTE KOHCTPYKLIMM ONUTO @ 0COBEHO OHWE €O caHAaqecTy
FnaBHM HOCauU 0f, ceKorall 611e MHOTy nonynapHu, Npes, cé nopaau HUBHaTa nogo6HocT, nofo6HocT
Koja Npou3snerysa of, BUCOKMOT CTEMEH Ha TOp3nOoHa U daeKkcunoHa KpyTocT. Ho, He 61BajK1 COBpLUEHMU,
KaKo LITO M HULLTO OBO3EMHO He e COBpPLUEHO, HECUMETPUYHOTO HaToBapyBakbe Kaj caHAadectute
HOCauu Mpeay3BUKYBa Nojasa He camo Ha MOAOMKHO CBUTKyBakbe TYKy W Ha Top3uja U AUCTPO3uja,
[BeTe NPUAPYKeHW co MojaBa Ha BUTOMeperse. 3a TEHKOSUAHWU HOCauW, NPUHUHCKU nocieAnyHo
NoBp3aHo co HMBHaTa ,,G13MoHOMMja" AUCTOP3MjaTa NpeTcTaByBa 3HaYajHa nojasa Koja UMa B/INjaHUe
BP3 CEBKYNHUOT OATOBOP Ha KOHCTPYKLWjaTa. Cenak, UcTpakysar-aTa Ha Tema AMCTOP3NOHEH OLroBop
Kaj caHAayecTuTe CMperHaTM Hocauyu ce BO /AumuTMpaH 6Opoj nopaau KommnaekcHocTa Ha
npo6aematiKaTa. MHCAMpUpaHW o4 KOMMAEKCHOCTA U OA KaxaHoTo , C& WTO HeKorall cu nocakysan
ce Haofa o4 ApyraTa CTpaHa Ha CTPaBoT, 1 cé& wTo Tpeba e Aa ro noMmuHell mocTtoT!”, ce AaBa npakTuyeH
npucTan NpUcTan 3a UCTPaXyBakbe Ha AUCTOP3MOHMOT OArOBOP Kaj crperHaTnTe caHAaqectt Hocauu.
CnepactseHo, 6uaejku ctaHysa 36op 3a cnperHaT Hocay Ke 6uAe 3emeHa U COOJBETHO BK/Ny4eHa BO
aHanW3aTa pas/iMKaTa BO KPYTOCHUTE KapaKTepWUCTUKW nomefy ropHUOT BETOHCKM nojac U AONHWUOT
yeAuYeH nojac, npeky AebuHuparbe Ha ABa Pas/MYHU AMCTOPSUOHW arau, ariu Koj JIOTUYKM
npowsnerysaat o4 AedopmaLimjaTa HanpeyHa Ha NpecekoT. A, WTO NpecTasysa Apyro AedopmalimjaTa
aKo He BUCTMHCKMOT OAroBOP Ha KOHCTpYKLUMjaTa 3a Koj ce NponuulysaaTt napameTpu co Liesl Heroso
nojacHysare. Kako ce cTura 4o o4roBopoT Ha caHAayecTuoT Hocay? Mpeky Aga npucranu. EQHKOT e
OHOj TaKaHapeyYeHWOT aHa/IMTUYKM BO KOj Ce U3HecyBaaT GyHAaMeHTaNHUTe paBeHKu 3a AUCTopsuja,
LeTepMUHUPaHU NPeKy TeopujaTa 3a TEHKOSUAHM Hocauu U aHasiorujata-Beam on Elastic Foundation.
Ce peduHupa aedbopmupaHuoT obanK v aucTpubyuujaTa Ha Hanperakba Npeju3BMKaHW of, camara
nojasa Ha Auctopauja. BropuoT npucran nak ce 6asupa Ha MeTOA Ha KOHEYHU enemTu, Kaje
KOpUCTejKM I MOXKHOCTUTE Ha codTepckmoT nakeT ,ABAQUS” ce goafa fo AepopmupaHarta cocTojba
Ha pasrnefyBaHUOT CErMEHT 0/, HOCaYoT, MpU LUITO ce AobueaaT 1 pacnpesenbute Ha Hanperakba. Ceto
OBa ce CrpoBefyBa Ha efeH CMperHaT caHAayecT Hocay AeduHMpaH Kako npocra rpeja u ce
nopBpAyBa NPeKy TPUAMMEH3UOHAIHA aHaNN3a CO KOHEYHU eNeMEHTH.

W3BplieHa e cropeabu nomefy f4BaTa METOAW BO OAHOC Ha TeopeTckaTa NosajuHa u aobuenute
pesyntatu. Mpu Toa, ce npejnara HOB, NMPaKTUYeH METOA 33 UCTPaxyBake Ha AUCTOP3MOHOTO
OfHeyBatbe Ha CrperHaTuTe CcaHZauyecTM Hocauu, W 3a cornefyBakbe Ha pacnpesenbara Ha
HamnperaraTta Kaj HocauuTe 3emajku ro NpeasuA, BAMjaHUETO Ha pasNnMyHaTa KpyTocT Koja ja Aasa
GeToHcKaTa nao4a. M KaKo pesy/aTaT Ha CETO 0Ba Ce [asa MHCMUpaLmja 3a HaTaMOLLHM UCTPaXyBakba
Ha ,peanHu” nabapaTopuUCKM MUHU MOAeM 33 fa ce Ao6uja NOBEPOAOCTOjHa KpUTUYKa cropeaba Ha
pesyntatute Ao6UEHN NPEKY TEOPUTCKM, HYMEPUYKM NPUCTAN U OHWUE O, UCTIUTYBAHLETO.

Kny4Hu 360p0oBM: CNperHaTu caHZayecT Hocauu; aro/i Ha AUCTOP3uja; BUTOMEpere; MOXAaHULM;
HOCMBOCT Ha CMOJIKHyBare; BEF aHanoruja.




ABSTRACT

“We build too many walls and not enough bridges.”-Isaac Newton.

The symbol of bridges is associated with human desires and aspirations to connect, to explore, to
achieve... all of which ultimately signify the inner rumbling of the eternal search for the meaning of
life. On which of the two bridges will Man decide to go, if not on the right one - faith. Because faith is
a bridge, a bridge between where | am now and where God is leading me and where He wants me to

be...

Is this not enough to make the first step through the invisible wall of the unknown? Talking in
engineering sense this thought shall light up the desire of achieving more and more.

Somewhat merged with the above, bridge constructions in general and especially those with box main
girders have always been very popular, first of all because of their suitability, suitability resulting from
the high degree of torsional and flexural stiffness. But not being perfect, just as nothing on earth is
perfect, the asymmetric loading of box girders causes not only longitudinal bending, but also torsion
and distortion, both accompanied by warping. For thin-walled beams, causally related to their
"physiognomy", distortion is a significant phenomenon that has an impact on the overall response of
the construction. So, asymmetrical loads on box girder bridge decks cause not only bending but also
torsion with warping and distortion of the cross-section. The latter two may prove to be relevant for
the longitudinal analysis and design of the deck but their effects within the overall structural behaviour
are difficult to assess using shell finite element models. However, the researches on the distortional
behavior of composite box girders are limited due to its complexity. Inspired by the complexity and
knowing that everything we've ever wanted is on the other side of fear, and all we have to do is cross
the bridge, a practical approach to investigating the distortion response of coupled box girders is given.
This study is to propose a practical approach to investigate the distortional behavior and get the
accurate stress distribution of composite box girders. Considering the differences of stiffness between
the top concrete plate and the bottom steel flange, two different distortional angles © are assumed at
the top and bottom corners of the composite cross section, respectively. Then, the fundamental
differential equations of distortion are derived by using energy methods based on the thin-walled
beam theory and solved with BEF (Beam on Elastic Foundation) analogy. Both the deformation and the
accurate stress distribution of the composite box girder due to distortion are obtained. And to approve
the reliability of the analytical approach, a simply supported composite box girder is analyzed and
verified by three-dimensional finite-element analyses in software package “ABAQUS”. That has been
made to shown the simplicity and economical aspect of the analytical approach which provides a
distinct insight into the structural response of composite box girders due to distortion.

Comparisons were made between the two methods in terms of the theoretical background and the
results obtained. In doing so, a new, practical method is proposed for investigating the distortional
behavior of the composite box girders, and for understanding the distribution of stresses in the girders,
taking into account the influence of the different stiffness provided by the concrete slab. And as a
result of all this inspiration is given for further research on "real" laboratory mini-models to obtain a
more reliable critical comparison of the results obtained through a theoretical, numerical approach
and those of the test

Keywords: composite box girder, distortional angle, warping, shear connectors, shear capacity, BEF
analogy.
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1. INTRODUCTION

1.1 SCIENTIFIC JUSTIFICATION OF THE TOPIC

From an engineering perspective, bridges have consistently held a unique and vital significance for
builders. This significance arises initially from the practical necessity of bridging geographical obstacles.
Furthermore, it emerges from the intricacies involved in comprehending the structural response of
bridges to external forces and perhaps, partly from the sense of magnificence attributed to these
structures due to their imposing physiognomy. Nevertheless, it is primarily the first two rationales that
underscore the gravity and import of bridge engineering endeavors. Over time, historical records
reveal concerted efforts to advance the state of bridge construction in response to these compelling
motivations.

Hence, the use of box-shaped main girders in bridge construction has enjoyed enduring popularity,
primarily attributable to their suitability, arising from the notable torsional and flexural stiffness they
offer. Bridges featuring a box cross-section have found widespread application, owing to the favorable
relationship between their stiffness characteristics and their self-weight (Schlaich & Scheef, 1982; Chen
& Yen, 1980). However, the persistent trend toward downsizing these cross-sections, especially for
specific construction methods, inevitably results in structures that are increasingly flexible. This
heightened flexibility, in turn, elevates the risk of significant deformations induced by torsion,
distortion, and warping.

The analysis of these structures in the longitudinal direction can be effectively accomplished through
the application of linear models where the loading pattern follows the influent lines. By employing
such models, we can derive a distribution of internal forces and deformations, which, when combined
with the specified boundary conditions, serve as the basis for constructing the cross-sectional analysis

model.

In single-cell box girders subjected to uniform symmetrical loading, the longitudinal stresses can be
defined by the effects of longitudinal bending and possibly, at wide spans, the effects of transverse
forces. Under asymmetrical loading, planar buckling of the cross-section and deformation generate
longitudinal deformations, leading to the development of longitudinal warping stresses. These effects
can be very significant in the design of complex box girders, especially in cases of large bending stiffness
(width—height) on the plate of the cross-section, as well as in cases of diaphragms that are either
flexible or positioned at a substantial distance along the span.

The choice between a concrete prestressed cross-section, a pure steel cross-section, or a composite
cross-section of the box girder significantly impacts the distribution of stresses and deformations at
the cross-sectional level. However, research on the distortion response in composite box girders is
relatively scarce due to the inherent complexity of the problem. Inspired by this complexity and guided
by the saying, "Everything you've ever wanted is on the other side of fear, and all you have to do is
cross the bridge," we have adopted a practical approach to investigate the distortion response of
composite box girders. Since the girder is composite in nature, itis essential to account for the differing
stiffness characteristics between the top concrete flange and the bottom steel flange, as this
unquestionably influences the final deformation. To comprehensively capture the cross-sectional
response of the girder, we introduce the concept of two distinct distortion angles.
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We employ two distinct methods to analyze the behavior of box girders at the cross-sectional level:
Beam on Elastic Foundation (BEF) analogy

Finite Element Method

The first approach, despite its simplifications and the inherent complexity of the phenomenon, holds
particular relevance and clarity, especially during the preliminary design phase. In comparison to other
methods like the Finite Element Method, which necessitates a large volume of input data and thus
introduces the potential for errors, this approach can offer more straightforward and informative
results. The classical approach relies on several established theories. These theories include the Euler-
Bernoulli beam theory, the torsion theory advocated by Benscoter (1954), and the "curve plates"
theory based on the Beam on Elastic Foundation analogy, initially introduced by Wright, Abdel-Samed,
and Robinson (1968) as a means of defining distortion in box girders. Additionally, this classical
approach features a simplified method for determining the nonlinear stress distribution resulting from

transverse redistribution during bending.

The second approach involves the analysis of models constructed using shell finite elements within the
software package "ABAQUS." Analyzing and designing bridge structures with box main girders, as
previously mentioned, is a complex endeavor. This complexity arises from the three-dimensional
response of the girder itself, encompassing torsion, distortion, and bending in both the longitudinal
and transverse directions. However, thanks to the advancement of modern analysis tools like the finite
element method, we can now perform comprehensive box girder analyses using discretization
techniques. This enables us to simultaneously consider the structural response in both longitudinal
and transverse directions, as well as their mutual interactions. Consequently, these tools empower us
to scrutinize the behavior of the box girder at the level of a characteristic cross-section, affording a
detailed and holistic understanding of its performance.

The outcomes of the conducted analysis will provide an accurate depiction of the actual behavior
exhibited by reinforced concrete prestressed box cross-sections within the cross-sectional plane,
encompassing both symmetrical and asymmetrical loading scenarios. The focus is on assessing the
response of the characteristic cross-section, which allows us to discern and understand the reactions
of the box girder, perceived through the occurring stresses and strains. The key parameters under
scrutiny pertain to the response of the girder during various conditions, including bending, warping,
torsion, and distortion.

The importance of this research lies in the introduction of a novel and pragmatic approach for
examining the distortional behavior of composite box girders. It offers a means to comprehend the
stress distribution within these girders while considering the distinct influence of the varying stiffness
characteristics introduced by the concrete slab. This method delivers valuable insights into how
composite box girders respond to distortion, enhancing our ability to predict the behavior of single-
cell box girders that exhibit at least one axis of symmetry.

1.2 AIM OF THE RESEARCH

As it is already known, the composite structures lead to the exhaustion of the maximum of the bearing
capacity of the steel - its tensile strength and the bearing capacity of the concrete under pressure. The
very choice of box girders for bridge structures underscores their exceptional load bearing capacity
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and torsional stiffness, making them a preferred choice for spanning large distances. When subjected
to symmetrical loads, box girders typically exhibit longitudinal stresses that can be accurately
represented by the effects of longitudinal bending. Additionally, the shear lag effect becomes
significant when the cross-section features a wide flange. However, when asymmetric loading comes
into play, box girders, as thin-walled beams, undergo deformation within their own plane—commonly
referred to as distortion. This deformation includes warping and out-of-plane deformations. These
effects introduce additional stresses, arising from distortion itself, in conjunction with transverse
bending stresses and the so-called "Saint-Venant" shear stresses. The presence of normal stresses
arising from warping and bending stresses at the cross-sectional level due to distortion can indeed
reach significant levels if not adequately addressed. This underscores the vital importance of
comprehensively analyzing the behavior of box girders under the influence of asymmetric loading.
Asymmetric loading induces complex phenomena such as elastic bending, torsion, and distortion.
While several studies have explored distortion in box girders and proposed various methodologies,
research specifically addressing composite box girders under asymmetric loading remains relatively
limited. The inherent complexity of this problem contributes to this scarcity of studies. It's worth noting
that some of the research conducted in this area has borrowed principles from the analysis of pure
steel box girders, often without fully considering the distinct differences in flexural stiffness between
the top concrete flange and the remaining steel section. This difference unguestionably influences
distortional stiffness and resistance. Hence, there exists a clear need for the development of a
simplified approach that can effectively define the resulting deformation and stress distribution within
composite box girders when subjected to distortion induced by asymmetric loading. Such an approach
would significantly contribute to our understanding of these complex structural behaviors.

The analysis and design of box girders can be tracked back to the theory of curved beams developed
by Saint-Venant (1843), followed by the theory of thin-walled beams advocated by Vlasov (1961), while
Kristek (1970) contributed by studying deformable girders and proposing an analytical solution. The
analytical solution is essentially divided into two stages. The cross-section is first assumed to be solved
as a rigid cross-section. Subsequently, the internal forces resulting from the support conditions are
applied to the beam and analyzed again. The final result is a superposition of the two previous steps.
Chapman et al. (1971) defined a finite element analysis of steel and concrete box girders to investigate
the impact of diaphragms on stress distribution due to warping and distortion. The "BEF" analogy as
employed by Wright et al. (1968) also defined the behavior of box girders when subjected to distortion
itself.

Distortional warping is a crucial aspect of axial displacement caused by warping when a cross-section
is allowed to deform freely. This deformation occurs in response to asymmetric and distortional
loading, unless certain supports or diaphragms are strategically placed to constrain it. The extent of
distortion largely depends on the transverse flexibility of the cross-section and the distribution of
transverse bending moments throughout the box girder’s cross-section, stemming from its behavior
as a frame system. Both axial distortional warping and transverse elastic deformation are indicated.

The primary distinction between a pure steel or concrete box girder cross-section and a composite one
lies in the material of the composite box girder where the top flange is made of concrete while the
bottom flange is made of steel. This leads to variations in deformable stiffness due to different material
responses. The deformability of the top concrete flange significantly differs from what would be
observed in a purely steel flange. Consequently, the distinct stiffness characteristics directly influence
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the cross-section's deformability, resulting in a unique distribution of distortional stresses across the

box cross-section.

The objective of this thesis is to provide insights into the various approaches employed for the analysis
of box girder cross-sections, with a particular emphasis on their mathematical formulations.
Specifically, the research aims to offer a comprehensive understanding of the results obtained in terms
of total longitudinal normal stresses and the influence of bending, torsion, distortion, and shear lag. A
specific focus of this study centers on the analysis of composite box girders, which are known for their
intricate response to torsional and distortional stresses. However, assessing this complex behavior
poses considerable challenges. Through a critical examination and evaluation of existing
methodologies, the research endeavors to pinpoint key engineering considerations. These
considerations include the significance of torsion and distortion effects and the crucial role played by

the geometric characteristics of the cross-section.

1.3 RESEARCH METHODOLOGY

In light of the distinct stiffness characteristics between the top concrete and bottom steel flanges,
different rotation angles are assigned to the nodal points considered in the analysis. The response of
the composite box girder to distortion is defined through two alternative methods: The first method
relies on a set of differential equations derived from "energy methods," which are grounded in the
theory of thin-walled beams. To solve these differential equations, relevant geometric characteristics
are defined, including the distortion constant of warping Ip,,, and the distortion stiffness of the frame
Kp,, tailored to the composite cross-section. The cross-sectional deformation and stress distribution
resulting from distortional loading are determined by solving these differential equations using the
"BEF" analogy. The second approach involves the use of the finite element method, implemented in
the "ABAQUS" software package. This method allows for a numerical analysis of the composite box

girder's behavior analyzed as a simple beam.

1.4 BRIEF CONTENT OF THE PAPER

The Master's Thesis is structured into six chapters, with the current chapter serving as the introduction.
The subsequent chapters are as follows:

Chapter 2 — This chapter provides an overview of various analytical methods employed to assess the
transverse load capacity of composite box girder cross-section in bridge structures. It encompasses a
review of prominent methods utilized in the analysis of box girder bridges, including the "BEF" analogy
and methodologies employing shell finite elements.

Chapter 3 — Methods of analysis of bridge structures with box girders. This chapter delves into the
theoretical formulations pertaining to bending, warping torsion, distortion. Furthermore, it presents a
simplified technique for accounting for the shear lag effect. The chapter also introduces a

computational analysis approach utilizing shell finite elements.

Mornasje 4 — First-order analyses of numerical examples. In this section, an in-depth analysis of a
specific composite box girder and a simple beam system is conducted. The analysis employs both
analytical methods and mathematical models utilizing finite elements.
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Mornasje 5 — Analysis and comparative evaluation of findings. This chapter is dedicated to comparing
the outcomes derived from the two distinct approaches outlined in the previous section. The
comparative assessment serves to validate the accuracy of the proposed analytical method.
Additionally, we carry out an analysis of a pure steel box girder using mathematical models with finite
elements, aiming to discern differences in the response between a composite box girder and a pure

steel box girder.
Chapter 6 — Conclusions and Future Directions. This concluding chapter summarizes the key findings
and conclusions resulting from the research and analytical endeavors. It also provides insights into

potential avenues for future research.

Chapter 7 — Literature. This section lists the references and literature sources employed in the

preparation of this Master's Thesis.
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2. METHODS OF ANALYSIS FOR BOX GIRDERS BRIDGES

2.1 GENERAL OVERVIEW OF THE PROBLEM

Historically, a significant amount of research has focused on predicting the behavior of diverse types
of box girder bridges within the elastic range. However, only a limited number of studies have
undertaken experimental investigations aimed at assessing the accuracy of existing design
methodologies. The unique characteristics of box girder bridges, coupled with the intricate
deformation and stress patterns that arise due to varying boundary conditions and load scenarios,
pose challenges for designers. Approximate and conservative methods for static and dynamic analyses
further compound these challenges. The literature review conducted is structured as follows:

= Box girders under construction

= Experimental studies on elastic response of box girders
= Limit state of load capacity of box girders

= Dynamic response of box girders

= Distribution and redistribution of loads and stresses in box girders, defined load distribution

codes

2.1.1. Box girders under construction

During the construction phase of bridges, particularly those with variable loads, a significant degree of
distortion or warping-torsion may occur. This is primarily attributed to the flexibility of the bottom
flange and webs during torsional loading. In bridges with straight configurations, the cross members
and diaphragms play a secondary role in upholding the structural integrity of the bridge. However, in
the case of horizontally curved bridges, a distinctive interaction between the webs and the bottom
flange occurs, leading to cross members and diaphragms assuming the role of primary load-bearing
elements. This shift in their function is particularly pronounced under torsional and bending loads. It's
important to note that there has been a limited number of both experimental and analytical studies
conducted to date that investigate the behavior of curved bridges during the construction phase.

Historically, several prominent bridges, including the Yarra Bridge in Australia, the Rhine River Bridge
in Koblenz, the Fourth Danube Bridge in Vienna, and the Milford Haven Bridge in Wales, have
experienced damage or failure during their construction phases. These unfortunate incidents
prompted a reevaluation of the fundamental principles underpinning the design of box girder bridges.
In 1976, a significant development occurred when Macdonald and colleagues conducted elastic
experimental tests on two models of single-cell steel girders. These tests involved subjecting the
girders to both centric and eccentric loading. The models were equipped with lateral bracings, and the
number of cross bracings was systematically varied. Notably, the open cross-section models with top
lateral bracings were analyzed as if they were equivalent closed box cross-sections, incorporating a
steel plate on top. This analytical approach was inspired by a concept introduced by Dabrowskiin 1968.
Remarkably, the experimental findings closely aligned with the analytical results, signifying the
reliability of this analytical method. In 1978, United States Steel (USS) reported several challenges
encountered during the construction of steel box girder bridges. These challenges encompassed issues
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such as the excessive rotation of girders before and during the placement of concrete slabs. In 1985,
Branko and Green undertook a comprehensive experimental analysis involving a series of scale models,
representing a system of simple beams, single-cell box-girder bridges, and interconnected box-girder
bridges. The primary aim of their analysis was to investigate the impact of structural loading, bracing
configurations, overall stability, and deformation on torsional open and quasi-closed box-girder
bridges. The results of their experimental work were meticulously compared with analytical studies
that incorporated both torsional bending analysis of open and quasi-closed cross-sections and the
finite strip method. In 1989, Schelling and colleagues conducted an analytical study aimed at examining
the response of a curved multi-l-beam system when subjected to self-weight loading and the weight
of a concrete slab before curing. Their study involved the creation of a three-dimensional model of a
spatial frame. The noteworthy outcome of their investigation included the derivation of general
permanent load distribution factors. These factors could be applied to a range of commonly used
structural configurations to prevent overstressing during the construction phase when temporary
support structures are not required. In 1996, Davidson and associates employed the finite element
method to conduct a study focused on warping stresses encountered in horizontally curved steel I-
girder bridges. However, their study primarily concentrated on analyzing the influence of cross
members in minimizing warping stresses developed in the steel flanges immediately after the
concreting of the slab.

2.1.2. Experimental studies on elastic response of box girders

The primary objectives underlying the aforementioned experimental analyses were primarily centered
around the validation and verification of the precision and reliability of computer programs and
existing methodologies employed for studying the structural behavior of box girder bridges. It's
important to note that, to date, field tests on box girder bridges have been relatively scarce, with most
of these tests primarily focused on observing elastic behavior, thus presenting a limited scope in terms

of comprehensive experimental assessments.

In 1975, Kissane and Beal conducted a test on a horizontally curved concrete-steel composite bridge
situated on the Avoca-Bath section of the Southern Tier Expressway, spanning over the Genesee
Expressway in Steuben County, New York. This bridge was characterized by two continuous spans. A
year later, Yoo et al. carried out a similar test, focusing on a three-span bridge that also exhibited
continuous curvature. This bridge was a composite box-girder structure and was located at the
interchange of 1-695 and 1-83 near Baltimore. In 1975, Evans and Rifai engaged in experimental work
centered around box girder bridges. Their research involved the investigation of eighteen single-cell
models, all part of a simple beam system with varying degrees of curvature. These models were
subjected to testing up to the elastic behavior limit, aiming to validate results obtained through the
finite element method. The majority of these models were constructed using steel plates, while a
portion were crafted from sand/araldite material. Rigid end diaphragms were exclusively placed at the
ends of these models. Additionally, Aslam and Godden conducted an experimental analysis employing
a series of small-scale aluminum models representing straight, inclined, and curved four-cell box girder
bridges. These models were subjected to elastic testing, with and without the presence of a radial
diaphragm at the midspan, by applying a single-point load at various positions along the span. In 1979,
Brennan and Mandel conducted an investigation focused on the elastic behavior of small horizontally
curved models of I-girders and multicolumn composite girders. The objective of this analysis was to
collect data for potential use in future studies and comparisons. Utilizing this data and employing
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methods such as the folded plate method, the finite strip method, and the finite element method,
Skordelis summarized the findings from five representative bridge models to validate the accuracy of
elastic solutions. Skordelis, along with colleagues, expanded on this work by conducting an analysis of
three large-scale bridges. These bridges included rectilinear, slanted, and curved designs, comprising
a two-lane reinforced concrete bridge and a four-cell box girder. These structures were continuous
above the central support-column. The analysis involved subjecting these models to both constant and
variable loads, assessing their behavior at working stress levels as well as the point of load failure.
Additionally, in 1982, Buckle and Hood investigated a curved, continuous, single two-span laboratory
model. This model was subjected to loading at various locations along its mid-span cross-section. The
model was constructed using filled epoxy resin segments and incorporated diaphragms above the
supports. It was prestressed with an enveloped parabolic profile.

In 1972, Haynes and Bonakdarpour conducted an elastic test on a small-scale model of a three-column
curved box girder bridge made of Plexiglas. Their analysis aimed to assess the feasibility of applying
deformation theory based on Vlasov's theory of thin-walled beams. It's important to note that this
analysis did not consider distortional deformation or warping effects. In 1976, Pham and Turkstra
investigated two single-cell Plexiglas models with substantial curvature. Their research focused on
studying the impact of intermediate diaphragms and evaluating the suitability of three-dimensional
finite element modeling for single-cell curved girders. In 1987, Xi-Jin and De-Rong conducted an elastic
analysis using a Perspex model of a continuous curved, two-cell box-girder bridge. The objective of
their study was to validate the accuracy of the finite-strip method in predicting the behavior of curved
multi-cell bridges. In 1988, Siddiqui and Ng analyzed two Plexiglas, single-cell bridge models in the
elastic range. This analysis aimed to investigate the influence of transverse diaphragms on the behavior
of the box section under both centric and eccentric loading conditions. In 1990, Mirza and colleagues
performed static and dynamic tests on two 1/7 scale model bridges. These bridges were simply
supported, prestressed concrete structures, with the first model featuring one cell and the second
having two cells. The primary objective of their work was to generate experimental data regarding the
linear and nonlinear responses of box girder concrete bridges under various levels of damage, including
concrete cracking. Lastly, in 1992, Ng and associates conducted an experimental study on a 1/24 linear
scale model of the Searsville Road Bridge, spanning the Queensway east of Ottawa. This model was
made of a four-cell, curved girder made of concrete and aluminum. The model was continuous over
the central support and underwent elastic testing under various loading conditions, including the
application of an OHBD truck.

2.1.3. Limit state of load capacity of box girders

Among the numerous experimental and theoretical studies conducted on box girder bridges discussed
thus far, only a limited few have delved into nonlinear behavior, as well as the local bending and
distortion of individual steel plates in both straight and curved bridge designs. n 1973, Abdel-Sayed
conducted an investigation into the critical load limit and pre-bending of webs in curved girders
subjected to combined loading, involving shear and normal stress. In 1979, Haynes and Humphreys
undertook a series of experiments involving box girder models pushed to the point of failure. These
models were subjected to a combination of increased torsional and bending forces and comprised top
steel flanges, steel webs, bottom steel flanges, and cross bracings. Only some of these models featured
a concrete slab. The results of this analysis served multiple purposes, including the validation of
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designed to accelerate the determination of load factors for curved steel box girders. In 1984, Seible
and Skordelis developed a numerical method and a computer program aimed at tracking the nonlinear
behavior of multi-cell reinforced concrete box girder bridges when subjected to increased static loads.
This analysis considered various nonlinear aspects related to the behavior of concrete as a material.
These included the initiation of concrete cracking, yielding of reinforcement, the formation of plastic
joints due to shear and concrete bending and crushing moments. To carry out this analysis efficiently,
a three-dimensional grid was utilized to minimize computational requirements. The results obtained
through this computational technique demonstrated a strong correlation with the outcomes of a
physical test conducted on a two-span, four-cell reinforced concrete box girder. This experimental test
was performed to failure by Skordelis and his colleagues. In 1985, researchers Perry et al. and Pinckney
et al. conducted an investigation involving a scale model of a two-cell prestressed concrete bridge. This
model represented a four-lane roadway that bifurcated into three-lane and two-lane spans. The bridge
was constructed with typical one- and two-cell box girder design and featured cantilevers. Notably,
the bridge had a significant curvature at its base and was continuous over the central supports.
Additionally, it was torsionally stiffened over the three outer supports. A similar study was carried out

by Owens et al.

In 1986 and 1988, researchers Choudhury and Choudhury, along with Scordelis, integrated the models
developed by Bazant El Nimeiri and Zhang-Lyons. This integration resulted in the creation of a single-
cell, curved, non-prismatic, thin-walled box element. Additionally, in 1988, Marie et al. introduced a
box girder model with a non-deformable cross-section, comprising concrete panels and steel layers.
This model aimed to replicate the behavior of a curved prestressed box girder. In 1989, Razagqpur and
Nofal developed a finite element computer program capable of predicting the material nonlinear
behavior to the point of failure in structures made of plain concrete, reinforced concrete, prestressed
concrete, steel, and composite structures. Mirza et al. conducted tests to the point of failure on one-
cell and two-cell prestressed concrete girder models. The results of these experiments were
subsequently analyzed using the proposed nonlinear method. In 1989, Lopez and Aparicio introduced
a mathematical model for the nonlinear analysis of reinforced concrete structures. To illustrate the
practical application of their model, they utilized a prestressed concrete bridge with a double
trapezoidal cell foundation curvature located at the Santamarca intersection of the La Paz highway in
Madrid, Spain. This bridge featured a continuous design with five spans, each having a radius of 103.5
meters and a total length of 155.56 meters. In 1993, Ng et al. developed a similar finite element
program tailored for monitoring the nonlinear response of reinforced concrete structures exclusively.
As a comparison for their analysis, they utilized a two-span, four-cell reinforced concrete girder bridge
that had been previously investigated by Skordelis et al.

In 1994, Soliman and ElMekaway employed a nonlinear finite element analysis to explore the impact
of the bottom flange near the mid-support region on the deformation behavior of reinforced concrete
girder bridges. Building upon this research, in the same vyear, Soliman and Ghali extended the
theoretical investigation utilizing nonlinear finite element techniques. Their study delved into
assessing how intermediate diaphragms and end diaphragms influenced the behavior of single-cell
box-girder bridges across varying spans, including small, medium, and long spans. Subsequently, in
1995, Yabuki et al. introduced a numerical method designed to predict the effects of local bending and
distortion phenomena on the nonlinear behavior and load-bearing capacity of thin-walled welded steel
girders. These girders featured curvature at their base and were reinforced with intermediate
diaphragms. The study's theoretical predictions, derived from the proposed method, were compared
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Analysis of composite box girder in bridges with distortion effects

with experimental test results conducted on two large curved steel box girders, each with a different
number of internal diaphragms. Despite the extensive literature review, data from experimental
analyses conducted to the point of complete failure of composite box girders remain scarce.

2.1.4. Dynamic response of box girders

Over the last three decades, notable advancements in materials have emerged, introducing high-
strength materials like high-strength steel. These innovations have facilitated the adoption of thinner
structural elements in bridge construction. While these materials enable the creation of longer bridge
spans, they also present challenges related to dynamic deflections and vibrations, which can result
from factors such as heavy truck loads, wind forces, or seismic activity. These dynamic responses can
pose inconveniences for both motorists and pedestrians using these bridges. In response, ongoing
research efforts have been dedicated to conducting analytical and experimental studies aimed at
comprehending and mitigating the dynamic response of box girder bridges.

In 1967 and 1972, researchers Culver and Shore, as well as Chaudhuri, employed closed-form solution
of the equation of motion to investigate the impact of transverse shear deformation and rotational
inertia on the natural frequencies of horizontally circularly curved girders. Their study was based on
the differential equation of motion for a freely vibrating horizontally circular-curved girder. Similarly,
in 1968, Tan and Shore used differential equations to model the out-of-plane vibrational motion of a
girder within a horizontal circular-curved simple beam girder system. They adopted an appropriate
idealization of the bridge, treating it as a thin, prismatic, curved girder subjected to a constant-
magnitude moving force. In 1966 and 1970, Komatsu and Nakai employed the fundamental equation
of motion, along with Vlasov's theory of thin-walled elements, to conduct various studies on the free
and forced vibrations of horizontally curved one or two-cell box girder. They validated their theoretical
analyses using experimental data obtained from tests on existing simple beam and continuous beam
bridges in Japan. Furthermore, in 1972, Cheung and Cheung discussed the application of the finite-
strip method in determining the natural frequencies and vibration modes of both straight and curved

bridges.

In 1972 and 1973, Taba and Pham utilized the finite element method to apply dynamic loads in order
to determine the behavior of bridges in their curved sections. They also performed an experimental
analysis of two curved, plexiglass, two-cell box girder models that confirmed the reliability of the
proposed analysis methods. In 1975, Rabizadeh and Shore introduced a finite element method for the
dynamic analysis of curved multi-span bridges. Their work laid the foundation for the impact factor
later adopted by the American Association of State Highway and Transportation Officials (AASHTO) in
their Guide Specification of 1980. In their research, Rabizadeh and Shore employed two sets of
concentrated forces to simulate a moving vehicle, with component forces acting radially and
transversely. This simulated vehicle moved at a constant angular velocity along the circular path of the
bridge. In 1981, Haynes and Lee presented the experimental results obtained from a vehicle-induced
dynamic field test on a two-span continuous, curved, composite bridge located in Seoul, Korea.
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In 1984, Billing compiled the findings of dynamic testing conducted in 1980 on 27 bridges featuring
various configurations and span lengths. The outcomes of this research laid the groundwork for the
dynamic load allowance (DLA) adopted by the Canadian Standards Association (CAN/CSA S6-88) and
the Ontario Highway Bridge Design Code (OHBDC 1983, Second Edition). The DLA was determined
through bending theory and was contingent on the first frequency of the bridge. However, this
dynamic load allowance/frequency relationship was subsequently revised in the third edition of the
OHBD code in 1992, as well as in the CHBD code. The updated DLA was designed to be a constant
value, dependent on the number of axes. In 1997, Akoussah et al. raised questions regarding this new
revision. Using three-dimensional finite element modeling, they explored the interaction between
vehicles and bridges, focusing on the dynamic reinforcement factor of reinforced concrete bridges.
Their study encompassed simple beam systems with spans ranging from 20 to 32 meters. The bridge
code of the American Association of State Highway and Transportation Officials, AASHTO 1996, has
traditionally applied an impact factor depending solely on the span of the bridge.

In 1985, based on the shape function, Chang et al. utilized a method developed by Rayleigh-Ritz to
predict the seismic response of continuous bridge systems consisting of one, two, three, and four
spans. During 1985 and 1986, Mirza et al. and Cheung and Mirza conducted comprehensive research
that encompassed both theoretical and experimental aspects, focusing on the impact of stiffening
systems on the dominant frequency of composite bridges. The theoretical component of their work
relied on the finite element method, while the experimental segment involved the construction of a
composite model representing a double-cell box girder bridge. This model was continuous over both
spans and featured varying heights for the central support. Their study specifically examined the
fundamental frequency of the bridge. In 1987, Inbanatan and Wieland conducted an analytical
investigation into the dynamic response of a box girder bridge, simple beam system, to a moving
vehicle over a rough roadway surface. Their findings indicated that heavy vehicles traveling at high
speeds over uneven road surfaces can induce stresses in the bridge structure that exceed the
recommended limits specified by bridge codes. In 1988, Abdel-Salam and Haynes presented the results
of a comprehensive study focused on the seismic response of continuous,, multi-cell, composite box
girder bridges with curved configurations. They utilized the EI Centro earthquake motion acceleration
record and its corresponding response spectrum as dynamic input for their analysis. The bridge was
modeled using three-dimensional space frame elements, with special elements incorporated to
account for the curved geometry and boundary conditions of the structure. Their research highlighted
the significant impact of higher vibrations on the seismic response of this type of bridge.

In 1988, 1990 and 1992, researchers such as Galdos, Galdos et al., and Schelling et al. conducted
studies on the dynamic response of horizontally curved box girders with varying spans using plane web
finite element analysis. In their investigations, they represented moving vehicles using two constant,
forces without a mass, traveling at a consistent angular velocity along the same curve as the bridge.
These studies played a pivotal role in the development of the current impact factors that are employed
by AASHTO (Guide Specifications for Horizontally Curved Highway Bridges, 1993) for curved bridges.
In 1990, Mirza et al. conducted free vibration tests on two models of prestressed girders, both part of
a simple beam system. The first model was a single-cell girder bridge, while the second model featured
a two-cell configuration. The primary focus of this study was to analyze the fundamental vibration
frequency and damping ratios of these bridge models at various levels of cracking damage. These
dynamic characteristics could subsequently be used to estimate the extent of damage resulting from
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influence of diaphragms, cross members, and bridge behavior on the dynamic response of a 45 m span
bridge. In 1990 and 1992, Kashif and Humar and Kashif developed a finite element technique to analyze
the dynamic response of box-girder bridges, a simple beam system, taking into account the interaction

between the vehicle and the bridge.

In 1993, Richardson et al. presented the results of seismic loading simulation tests. During these tests,
substantial horizontal loads were rapidly applied and released, inducing vibrations in the bridge. The
observed vibration modes were used to validate the analytical model of the bridge's dynamic response.
Validation primarily relied on the fundamental vibration mode, which predominantly involved

horizontal vibrations.

In 1995, Huang et al. conducted a study on the dynamic response of curved I-girder bridges under the
influence of truck loading. Their research introduced a method to account for the dynamic response
of a thin-walled box-girder bridge when subjected to live load. The girder was discretized into multiple
thin-walled beam elements. Their analysis considered the occurrence of torsion accompanied by
warping and distortion. The study incorporated four different road surface roughness classes,
characterized as very good, good, average, and bad roads, using power spectral density functions. The
analytical results indicated that the dynamic response was significantly influenced by higher vibration
modes. In 1996, Wang et al. investigated the free vibration characteristics and dynamic response of a
continuous, thin-walled box girder bridge subjected to multi-vehicle loading. Their findings
demonstrated that continuous and cantilever bridges with only one lane at mid-span exhibited greater
susceptibility to vibration compared to those with mid-span suspension. In 1997, Senthilvasan et al.
explored the relationship between the live load and the response of a bridge with base curvature. Their
investigation utilized both the finite strip analysis method and the horizontally curved folded-plate
model to analyze the structural behavior of such bridges.

2.1.5. Distribution and redistribution of loads and stresses in box girders, defined
load distribution codes

Composite box girder bridge structures offer advantages over composite steel-concrete plate I-girders
due to their superior torsional stiffness, making them more efficient and cost-effective. Additionally,
composite box girders exhibit enhanced load-bearing capacity during deformations at the cross-
sectional level. The following summary provides an overview of research conducted on load
distribution and deformation characteristics in various types of composite bridges.

The impact of cross bracing on the stresses induced by warping and bending in curved I-beams was
initially investigated by Yoo and Littrell in 1985, employing a comprehensive three-dimensional finite
element model. Subsequently, in 1986, Brockenbrough also utilized finite element modeling to
determine load distribution factors, taking into account warping effects, for curved composite I-girder
bridges. These factors were examined in relation to span length, radius of curvature, and the spacing
between girders and cross bracing. In 1967 and 1968, researchers like Johnston and Mattock, as well
as Fontaine and Mattock, delved into the lateral load distribution in single-span, composite, multi-cell
box-girder bridges that lacked transverse diaphragms. They employed a computer program to analyze
these structures, accounting for the "folded plate" effect. Additionally, experimental tests were
conducted to validate the analysis and assess the accuracy of the computer program. Two bridges were
constructed for this experimental analysis. The first bridge was a two-lane structure with a 25-meter
span, comprising three box girders as the primary girders. The second bridge was a scaled-down model,
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one-fifth the size, featuring two lanes and a 31-meter span, constructed with two box girders. Both
bridges underwent testing with concentric and eccentric truck loading, following AASHTO standards.
The outcomes of this research were used to develop an equation that described the bending moment
distribution factor under live load action for each girder, considering roadway width and the number
of girders. These findings served as the foundation for the lateral redistribution of bending stresses, a
method currently employed by AASHTO in 1996 and included in the initial two editions of the Ontario
Highway Bridge Design Code (OHBDC) in 1979 and 1983. However, this equation did not consider the
beneficial impact of cross-bracing between box girders and was limited to bridges where the number
of spines matched the number of lanes. AASHTO LRFD in 2000 introduced an alternative equation for
ultimate limit state load distribution to determine bending moments and shear forces in each box
girder of the multi-cell bridge cross-section under live load.

In 1985 and 1992, Bacht and Jaeger proposed load distribution factors for bending moment and shear
effects, which served as the foundation for the dynamic load distribution under live loads in the third
edition of the OHBDC in 1992, specifically for multi-spine bridges. Their research was centered on
multi-spine bridges with a minimum of three spines, featuring zero transverse bending stiffness and
load transfer between different spines through transverse shear mechanisms. In 1994, Normandin and
Massicot established distribution patterns for multi-spine bridges with varying characteristics and
geometries by leveraging the results obtained from refined finite element analysis. Their study
considered parameters such as the type of live load, the use of external bracing, and the existence of
internal diaphragms. Their findings emphasized the crucial role of internal diaphragms within the box
girders, significantly reducing cross-sectional deflection under various loads. Furthermore, their
research revealed that in fully loaded bridges, external bracing between girders did not substantially
impact the distribution characteristics of bending and shear moments. However, it's important to note
that this method is applicable to bridges where the number of spines matches the number of lanes.

In 1978, Haynes introduced a modification factor aimed at broadening the applicability of the moment
distribution equation, initially proposed by Fountain and Mattock, for horizontally curved, composite,
multi-cell box girder bridges. The proposed modification factor is a function of the radius of curvature
only in the case where cross bracings are incorporated within the girder itself. In 1980, Mukherjee and
Trikha employed the finite strip method and established a collection of coefficients encompassing
moment action, shear, transverse moment, and vertical displacement for two-cell, curved, reinforced
concrete girder bridges. These coefficients were designed to facilitate the practical design process for
such bridges. However, it's important to note that their applicability was limited to concrete bridges
featuring two lanes, span lengths ranging from 20 to 40 meters, and radius of curvature falling within
the range of 45 to 150 meters.

The AASHTO (Guide Specification for Horizontally Curved Highway Bridges, 1993) also provides
guidelines for curved composite I-girder and box-girder bridges. These specifications are founded on
the research conducted by Heins and lJin in 1984, which examined the live load distribution in
composite I-girders for both simple beam and continuous beam systems. Their research employed a
space frame idealization that considered the interaction of diaphragms (cross bracing in the radial
direction) and lower lateral support. The specifications include design equations for use in conjunction
with a plane web solution. For curved I-girders and box girders, AASHTO (Guide Specification for
Horizontally Curved Highway Bridges, 1993) mandates that moments and shear forces used to define
the behavior of individual elements should be derived from a rational analysis of the entire structure,
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accounting for the complete load distribution. Moreover, if this rational analysis treats the system as
a planar structure rather than a space frame, and includes the influence of bottom lateral bracing, the
code modifies the resulting maximum stresses from live load using the Hines-Gean equation. This
adjustment takes into account additional warping stresses in addition to normal bending stresses.

In 1981, Davies and Bohn introduced a curvature correction factor for load distribution in concrete and
prestressed concrete multi-cell box girders. They recommended that for the outermost girder (furthest
from the center of the curve), the bridge load should be directly distributed without any modifications.
However, for all other girders, they proposed using a correction factor that considers the ratio of the
distance from the center of the curve to the girder to the radius of curvature. It's important to note
that this method did not account for the positive impact of transverse diaphragms. In 1988, Nutt et al.
proposed a set of equations to calculate moment distribution in a rectilinear reinforced concrete and
prestressed multi-cell box girder. These equations were based on various parameters, including the
number of lanes, cell width, span length, and number of cells. In 1989, Ho et al. utilized the finite strip
method to analyze a two-cell girder, simple beam system, and plate bridges without intermediate
diaphragms. They derived empirical equations to determine the ratio of the maximum longitudinal
bending moment to the equivalent beam moment. These equations were developed for bridges with
different lane configurations and span lengths, 40 m in the case of two lanes, 50 m in the case of three
lanes and 67 m in the case of four lanes. However, these empirical equations were specifically designed
for two-cell straight bridges made of either concrete or steel. In 1995, Cheung and Fu employed the
finite strip method to establish equations describing the relative behavior of curved and straight box
girders. These equations were formulated as functions of various parameters, including span length,
number of lanes, girder spacing, and radius of curvature. However, it's important to note that this
study did not take into account the influence of the number of girders and the distribution of
permanent loads. Additionally, it did not consider the beneficial effects of diaphragms located within
the box girder itself or the effects of bracing between the girders.

Upon the suggestions for specific load distribution factors from California engineers dating back to
1959, AASHTO made refinements to the specified load distribution factors for bending moments in
straight reinforced concrete bridges in 1996. These refined factors stipulated S/8 for one-lane traffic
and S/7 for two or more lanes, with 'S' representing the cell width. However, these factors lack any
insight into the structural behavior of the bridge or the factors influencing its response. In 1991, Zokaye
and colleagues conducted research that contributed to the development of the moment and shear
load distribution factors currently utilized in the AASHTO LRFD guidelines from 1994, specifically for
straight concrete multi-cell bridges. Furthermore, in 1996, Brighton conducted a study aimed at
determining the live load distribution factor for a new type of precast, concrete, two-cell box girders,
which was proposed for use in a precast system designed for the rapid construction of short-span
bridges.

The Canadian Bridge Design Code currently lacks specifications and design guidance for horizontally
curved bridges, including box-girder bridges. However, these are highly effective due to their superior
torsional stiffness compared to other composite |-main girder cross-sections. They offer improved load
distribution characteristics and reduced permanent load effects. The American Association of State
Highway and Transportation Officials (AASHTO) guidelines from 1996 propose that a curved bridge can
be designed as a straight bridge when the central angle is 12 degrees. Furthermore, they suggest that
for horizontally curved bridges, the curvature's effect can be disregarded in structural design
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calculations as long as the ratio L'R is less than 1.0. Here, L represents the length of the curved span, b
is half the width of the bridge, and R is the radius of curvature. However, these constraints have raised
questions, particularly in terms of moment and shear considerations for curved composite bridge
structures. As a result, there is a need for further research to gain a better understanding of moment
and shear distribution in both composite concrete-steel straight and curved box girders, as well as

multicell configurations.

Box girders are currently one of the most commonly used main girder types in bridge structures,
(Schlaich & Scheef, 1982). They typically consist of a top and bottom flange, along with two or more
webs, forming a closed box-like configuration. This configuration can be either single-cell or multi-cell.
One of the primary focuses of analysis and development in this context is understanding how box
girders respond to asymmetric loading, especially when dealing with composite cross-sections.The
closed cross-section design of box girders provides them with high torsional stiffness, making them
advantageous in scenarios where torsional stiffness is crucial, such as in inclined or curved bridges.
Additionally, these superstructures offer significant longitudinal stiffness relative to the permanent
weight. This characteristic enables them to span large distances, making box girders a viable and
economically justified solution from both aesthetic and structural standpoints. (Schlaich & Scheef,
1982, Pedro, 1995).

The behavior of box girders often entails substantial plane deformations within the cross-section,
which necessitates the use of methods that simultaneously include both longitudinal and transverse
behavior. Several approaches are used to achieve this goal:

= Classical approach(classical formulation)

® Finite Element Method (solid finite element)
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2.2 ANALYTICAL APPROACH

The determination of the longitudinal stress state in box girders can be achieved using classical
formulations for bending, torsion, and distortion. This approach involves decomposing the complex
problem associated with "folded plate action” into its constituent components, namely bending,
torsion, and distortion. Itis particularly applicable to girders that meet certain criteria, including having
a length-to-height ratio (I/d) of 4 or greater, a span size that is 1.5 times the width (b) of the girder,
where the local zones of influence resulting from the direct impact of external forces are considered
separately (Schlaich & Scheef, 1982).

In cases where loads are symmetrically applied to the cross-section of the girder, the transverse and
longitudinal analysis can be carried out separately. The phenomenon of girder warping becomes
prominent in such scenarios. Additionally, the impact of shear stresses on the wide flanges, often
referred to as the shear lag effect, may or may not be taken into account.

On the other hand, when an asymmetric load is applied, the analysis of transverse and longitudinal
behavior becomes interconnected. Eccentric forces lead to deformation within the plane of the cross-
section, resulting in distortion, as well as longitudinal bending of the plates, leading to the generation
of longitudinal stresses. This phenomenon is commonly referred to as distortional warping.

Eccentric loads also introduce torsional effects. In locations where there is a variation in the torsional
moment, the uneven torsion contributes to the development of longitudinal stresses. This
phenomenon is particularly significant in cross-sections located near supports that resist warping, such
as cross-sections close to the concentrated eccentric load.

Distortion and torsional warping can lead to an increase in longitudinal stresses, and whether or not
these effects are considered significant depends on the specific case being analyzed.

According to the analysis conducted by Pedro (1995) and Schlaich & Scheef (1982), the analysis of box
girders with thin-walled webs subjected to a load, as depicted in Figure x1, involves a systematic
breakdown of the load into the following steps:

= Longitudinal analysis of the girder, treating it as having a rigid cross-section. This analysis
considers the vertical and torsional loading resulting from direct integration along the

transverse direction.
= Cross-sectional analysis:

e The top flange is assumed to be fixed into the webs, as shown in Figure x11. In this
analysis, the vertical load is replaced by equivalent forces and moments applied to the
webs. For permanent loads and distributed live loads, the corresponding forces and
moments are considered uniformly distributed in the longitudinal direction. However,
for concentrated live loads, they are transferred through the top flange in a way that
results in a non-linear longitudinal distribution of transverse flexural moments. This
distribution can be determined using influence surfaces and shell/finite strip analysis.
As a simplification, it is assumed that the vertical loading is equivalent to the action of a
concentrated load and moment applied at the nearest point of the web plate. If this
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approach is considered too conservative, it is possible to make certain simplifications to
the models for in-plane load degradation, as determined by a specific study.

The analysis involves a segment with a length d, = 1, treated as a frame subjected to
the action of eccentric loads (my, pa), (mp, pp) — Figure 1

Division of applied loads (concentrated and distributed) into symmetrical and

asymmetrical parts

_ batpp _ ba-DB

Psym = 2 , Panti = 2 (1)
_ mytmp | _ PatpB

Msym = 2 v Manti = 2 (2)

Calculation of the bending moment in the transverse direction. For symmetrical loading,
the distribution of bending moments in the transverse direction is considered by adding
the results to those obtained from step 2.1.) The effect of longitudinal bending
responsible for the girder’s flexure has already been considered in step 1).

Substitution of the asymmetric load on the torsional and distortional subsystem. In the
case of shear stresses, which are defined using St. Venant’s uniform torsion theory, non-
uniform torsion leads to longitudinal stresses in the girder. These torsional warping
stresses can be determined using Benscoter’s torsion theory, which takes into account
torsion bi-shear (Benscoter 1954)

Finally, the effects of the distortion subsystems must be considered in the analysis. The
results obtained from analyzing a single frame separately from the rest of the structure
are not entirely accurate because part of the load is transmitted longitudinally and
transferred as such to the adjacent frames. Therefore, there is a direct relationship
between the transverse deformation of the girder and the longitudinal bending of the
plates, a relationship established through compatibility and equilibrium. This provides
an opportunity to develop a theoretical model of a beam on elastic foundations, which
allows the replacement of the effect of girder distortion along the span. This theory was
originally proposed by Wright, Abdel-Samed, & Robinson (1968). Analyzing the web as
a beam on elastic foundations enables the simulation of bending moments, which are
added to those calculated in steps 1) and 2.2.2), and longitudinal stresses, which are
added to those caused by bending and torsional buckling.

I

3 Wy (&
700 N
/Q,(;Cb G % 17
) =5 %\
2o AHETA ?_;,‘1
@ A
|Z 5 TPNKOBCKA T 2]
< S/
XA )
WO, o RO/
\&}r 0y 2 R\‘,/=
\\\Of\.’)ﬁu I 74




Analysis of composite box girder in bridges with distortion effects

: PAl t ps
11 O 1|1 Y e i £
Fi B 14 iX) R RN ey
\ / = maCT Q:)me + A \\ / &
/ |
1A / A /
\\w{ P\ P \ /
at) // az2)
{Psym Psym| Panti Panti
Msym¢ ¥ vo Msym . .
i Mony™ /< Mo
+ /
/
sl

P, Pure]_ ™
e/
0
Py pure T\t :7 w PureT
\ﬁ."._._.m—_m;;:ﬁ::;;.m.vj
c1)  Poruwer

Figure 1 Load division for analysis of all phenomena in a box girder

2.3 FINITE ELEMENT METHOD

The analysis of a girder's response to asymmetric loading, which results from cross-section
deformation, is conducted using both analytical methods and mathematical modeling through the
finite element method. This analysis is carried out using software capable of three-dimensional
modeling and analysis, with "ABAQUS" being a notable software application for this purpose that
defines a new template for advanced nonlinear and detailed analysis. ABAQUS is a specialized software
used for modeling and analyzing mechanical components and assemblies. It facilitates both the pre-
processing phase of modeling and the visualization of results from finite element analysis. It is
particularly well-suited for detailed analysis of girders with complex geometry. It offers efficient
modeling of complex models that rely on the method of solid and shell-finite elements, instead of using
simplified 1D elements. A key feature of ABAQUS is its ability to perform detailed analysis at the local
cross-sectional level. This means that it can focus on specific elements of interest within the girder,
such as top and bottom node distortion angles, normal stresses due to cross-section distortion,
transverse bending moments, transverse stresses, longitudinal bending, and warping. ABAQUS not
only calculates these parameters but also visualizes the results graphically. An appropriate modeling
procedure is outlined below:

Part 1) Input parameters:

The analysis process involves establishing various inputs regarding geometry, constitutive parameters,
loading (concentrated loads, line loads, surface loads and permanent load specifications), support
conditions and adequate placement of internal diaphragms if any. The material and strength
characteristics of both steel and concrete are given. All loads are assumed vertical and are defined by
their magnitude and their relevant coordinates in a global XYZ reference system.

Part 2) Defining the model:

This phase of the analysis involves considerations related to longitudinal discretization and the choice
of deformation modes. Each element's walls are defined by the coordinates of their endpoint nodes
(X,Y,Z). The loads are then distributed based on their position relative to these finite elements.
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Additionally, it is possible to specify which deformation modes should be considered in the analysis
and define the characteristics of the finite element network.

Part 3) Solving the equilibrium equations:

During this stage, it resolves the system of linear equilibrium equations and obtains the approximate
longitudinal and transverse nodal amplitudes for each deformation mode.

Part 4) Calculation of longitudinal and transverse stresses:

The software calculates and records the stresses at the initial and final nodes of each element for
various deformation and loading modes. This data provides a comprehensive understanding of the
structure's response, including deformation, strains, stresses, rotations at specific points, reactions,
and longitudinal deflections of the modeled girder. This information allows for the determination of
distortion angles at critical nodes (node-concrete/steel and node-steel/steel), as well as the
assessment of strains and subsequent stress distribution at the cross-sectional level. These calculations
are crucial for recognizing the substantial influence of the rigid yet deformable characteristics of the
cross-sectional frame, which significantly impact stress redistribution, both within the cross-section
and longitudinally, leading to longitudinal warping and girder deformations.
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3. ANALYTICAL APPROACH

3.1 ANALYTICAL APPROACH-INTRODUCTION

This chapter provides a detailed explanation of analysis methods rooted in classical formulations for
bending, torsion, and distortion. Despite the simplifications and inherent complexity of the physical
processes involved, this approach can be more suitable and straightforward during the preliminary
design phase when compared to finite element or surface element methods. Utilizing finite element
and surface element approaches entails handling vast amounts of data, which can introduce a greater
potential for errors (Schlaich & Scheef, 1982).

The chapter commences with an examination of longitudinal analysis, specifically focusing on the
behavior of the box girder when subjected to bending. Simultaneously, shear lag effects are considered
by applying defined effective widths. Subsequently, the chapter delves into the combined longitudinal
and transverse behavior of the box girder when exposed to eccentric loading, incorporating the

influences of torsion and distortion.

This approach is primarily applicable to homogeneous box girders. However, since the girders in
question are prestressed, reinforced concrete box girders, they inherently possess heterogeneity due
to the presence of reinforcement in both the transverse and longitudinal directions. To simplify the
problem, a common approach is to replace the heterogeneous cross-section with an equivalent
homogeneous one (as illustrated in Figure 2). This homogenization process is contingent on the
structural characteristics themselves. It assumes that the girder is devoid of cracks and reinforcement.
While this assumption holds true for prestressed concrete girders, caution is warranted in cases
involving composite elements, where cracking may occur in the slab above the supports. Composite
box girders are also susceptible to shearing at the concrete-steel contact.

Figure 2 Typical cross-section of a composite box girder and b) equivalent homogenized cross-section

3.2 BENDING ANALYSIS FOR BOX GIRDERS

3.2.1 Elasticlongitudinal bending

The loads applied to the box girder induce longitudinal stresses primarily caused by longitudinal
bending. The ratio of the dimensions of the cross-section in relation to the span length permits analysis
and treatment of the girder as a slender prismatic element capable of undergoing elastic bending. This
behavior can be determined using the Euler-Bernoulli theory.

Under certain simplifying hypotheses, it becomes feasible to derive the differential equation governing
linear elastic bending. These outcomes are suitable for homogeneous box girders as mentioned in
section 3.2.1.3.
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Analysis of composite box girder in bridges with distortion effects

3.2.1.1 Hypotheses
= The hypotheses made during the analysis of the box girder are as follows:
= The girder is prismatic in shape;
= The material is homogeneous and follows Hooke's law for elasticity, characterized as isotropic;

= Plane cross-sections of the girder remain plane and perpendicular to its axis, following

Bernoulli's hypothesis;

= Cross-sections are free to deform within their own plane, i.e. 0,y = 0z, = Ty, = 0~ Navier’s

Hypothesis.
3.2.1.2 Bending equation
If we examine a box girder subjected to a symmetrical load, as depicted in Figure 3.
% b
| :
p(x)/2 # 4 | px)/2
[ T e i '
t j b
by j :
b

Figure 3 Generated cross-sectional view of a box girder under symmetrical loading along the upper edge of the
webs

According to Bernoulli's hypothesis, for a structure with infinite length, the longitudinal deformation
at any point within the cross-section can be expressed by the equation:
V4
= = (3)
Here z represents the vertical coordinate measured from the center of gravity, and R, is the radius of
curvature, positive, as depicted in Figure 4.
According to Hooke's law and utilizing Navier's hypotheses, along with Young's Modulus E,, the

longitudinal stresses resulting from bending are expressed as:

E
Op= &xx E= -2 (4)

Considering that the vertical load does not induce any axial force N, it can be deduced that the cross-
section in the region where strain is zero, known as the neutral axis, passes through the center of

gravity. Therefore:
E E
N= [, opdd=], E‘ZdA:EfA zdA=0 (5)

Given that the longitudinal stresses need to be balanced only by the bending moment caused by the
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Analysis of composite box girder in bridges with distortion effects

E El
My, = [, o,zdA= ], R—Z'ZZZT:_ (6)
where I, represents the secondary moment of inertia around the y —axis and is obtained through the
equation:
L= [, z*dA (7)

Combining the first and last equations, the balance between the bending moment and the longitudinal
stresses at any point of the cross-section is defined as:
Op = %-z (8)
y
If the deformed state of the girder is considered as shown in Figure 4 from the differential equation
and assuming that the displacements are small, it can be taken that:

1 V. M
—= ——Fax —VUxx = EIX’ (9)
Y

[1+vZ]

N[ W)

where v represents the displacement of the center of gravity seen along the vertical axis z and v, and
Vy are the first and second derivatives along the axial axis respectively.

If we establish the static equilibrium, of an infinitesimal segment of a girder exposed to a general

vertical load p,, (Figure 4) it follows that:

dv M
p) = 25 v(x) = (10)
The simplified Euler—Bernoulli equation for bending, obtained through the last two equations, is as
follows:
d'v EL =
T Ely =pX) (11)

Y
L S M+dM

¥m.‘a§mwT

a) b)

Figure 4 Deformed state of the girder subjected to bending and static equilibrium of a girder segment under a
vertical load

3.2.2 Transverse distribution -,Shear lag effect”

The theory of elastic bending is correct for pure bending, as long as the shear forces are equal to zero.
However, in the general case shear stresses exist and when present they are responsible for the
deformation of the cross-section in its own plane, including warping. Plane cross-sections are no longer

22

PSS o} MA,'(
3! wo &
N e W0T ¢y 9
x° 4

AHETA
TPNKOBCKA

-

P4




|
!

Analysis of composite box girder in bridges with distortion effects

plane, so Bernoulli's plane-section hypothesis and theory accordingly no longer hold, although they

provide a good basis for an initial approximation.

When shear deformations are taken into account in the analysis of a girder, it leads to a change in the
longitudinal stress distribution within the wide flanges of the girder compared to the previously
established stress distribution according to the Euler-Bernoulli theory. This change is attributed to the
phenomenon known as the shear lag effect. As illustrated in the figure below, the stresses increase in
the regions near the nodes where the web and flanges meet, and they decrease as you move away
from these nodes. The ratio between the maximum stress and the average stress within the cross-
section of the box girder has been identified as an important factor in the elastic analysis of the cross-
section. This effect is particularly pronounced near concentrated loads and when the flange width-
span ratio is high (Chen & Yen, 1980).

Figure 5 Longitudinal bending stresses with and without the influence of transverse distribution

The traditional approach for incorporating the shear lag effect involves calculating the cross-sectional
properties while using reduced effective widths for the wide flanges. Various methods can be
employed to define these parameters, but the one outlined in (B.S.I., 2004), which is based on stress
distribution, is commonly utilized. In this approach, the effective width is determined in such a way
that it can accommodate a force equivalent to what the flange itself can bear, all while assuming that
the longitudinal stresses remain constant and equal to the maximum longitudinal stresses resulting
from the non-linear stress distribution. Once these maximum values are defined, an analytical
approach can be employed to determine the stresses throughout the entire cross-section.

The calculation of the effective width is a more practical approach when compared to determining
analytical methods for defining the normal stress distribution. Analytical methods often involve
complex equations and multiple approximations, which restrict their applicability to specific, typical

cases.

3.2.2.1 Effective width

The calculation of longitudinal stresses across the span of a box girder while considering the shear lag
effect can be accomplished by analyzing an equivalent cross-section with flanges of reduced width,
This reduced width corresponds to the effective width, defined as:

b¢ o
3= =2 (12)

Here 1 epresents the effective width coefficient, which is the ratio between the mean and maximum

longitudinal stress, respectively.

The effective width factor is primarily influenced by the following factors:
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= Segment width/length ratio (b.; bp; b — by)/(2])
= Type of load (concentrated or distributed)

= Support conditions

= Stiffness coefficient defined as:

=4 (13)

| Af

Where 4, is the transverse surface area of the longitudinal bracings, and A

; . . b by b-b
is the corresponding flange area, both measured along the width (7“; 7”; —Z—t).
,  (bby2 by/2 L by/2 , (b2
7 7 7 g 1
o i e |
be2 be2
L by/2 L bp/2 L I
7 7

Figure 6 Effective cross-section for box girder bridge, effective widths contributing to the cross-section response

Considering the parameters mentioned earlier, a series of coefficients for effective width is provided, 3
explained below. Although these coefficients are primarily intended for uniformly distributed loads
along the entire span, the code specifies that they can also be used for concentrated loads from
vehicles or railway vehicles. For cantilever extensions beyond the web, an appropriate coefficient k is
| used: k = [1—0.15 (b — b;)/2D)].

;8
‘ Effective width coefficients for intermediate values can be obtained through linear interpolation. The
same can be done for intermediate positions in the span.
With the fully defined effective width of the cross-section, the maximum longitudinal stress in the top
and bottom flanges, particularly at the joint with the web, can be determined using the results of the
standard Euler-Bernoulli theory:
tmax t b |
lor = 0, ———
b,SL b 2(be,1tbe3) (14) :
tymax b _bb B
oy’ = 15
| b.SL b 2., (15) i
ﬂ Finally, the non-linear stress distribution over the entire cross-section can be calculated using the I
equations provided in B.S. 5400 Part 3 (2004), where y is the distance to the web-flange joint (Figure .
6): |
b

|
“ Olg = oL [(M) +025(53- 1) (1-(52) )| (16) i
i 24
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t  _ _tmax|((b-b)-2y * _ _ ((b=bo-2y 4)]

obg = oL [(—_(b—bt) ) +025(52- 1) (1 (Lo (17)
_and bp-2y\*

Ull:,SL _ O_;:gzax l(bbb_:y) +0.25(51 — 1) (1 _ ( bbb y) )] (18)

3.3 TORSIONAL-DISTORTIONAL ANALYSIS OF BOX GIRDERS

The action of live loads on bridge structures can often result in asymmetric loading relative to the
bridge's axis. This asymmetry leads to not only pure bending but also torsional or distortion effects.
Torsion or distortion behavior in elements with closed cross-sections, like box girders, can be divided
into three separate effects (Kollbrunner&Basler, 1969):

= Uniform torsion or Saint — Venant torsion
= Non-uniform torsion or warping
= Dijstortion

The first two mechanisms involve the external influence being considered through twisting and
warping. Saint-Venant torsion is characterized by a constant circulatory shear force in each cross-
section, while warping is associated with the development of stresses caused by bi-moment u bi-shear
stresses (Koll Brunner & Basler, 1969). The total torsional moment is the sum of uniform and non-
uniform torsion. In cases where both phenomena exist and neither predominates, the cross-section is

said to undergo mixed torsion.

When analyzing the two previous effects, it is assumed that the cross-sections maintain their planar
shape. However, if this assumption is not valid, it becomes necessary to consider the effects of cross-
sectional distortion, as these effects can be significant.

Therefore, the interaction of all three effects will be discussed under the influence of asymmetric
loading. Ultimately, analytical equations will be derived to calculate longitudinal and transverse normal
stresses. The focus is on a single-cell box girder that is symmetrical about the vertical axis and exhibits

clear behavior in this context.

331 Girder response under eccentric loading

ip(x) px)i2 px)/2 if;,(x)/g p(x)/Z i

i
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Figure 7 Load decomposition into symmetric and asymmetric component

The load can be categorized into symmetric and asymmetric components, as depicted in Figure 7. The
symmetric component induces longitudinal bending across the entire cross-section, resulting in
vertical displacement as a rigid body. Conversely, the box girder's response to the asymmetric portion
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Analysis of composite box girder in bridges with distortion effects

of the load can be described as the interaction of three subsystems related to uniform torsion, non-

uniform torsion, and distortion.

POz PR

P

a) b) c)

Figure 7.1 Decomposition of the asymmetric component of the load into uniform torsion, warping torsion and
distortion

The next step is to determine the force system for each of the individual subsystems. The force systems
for the first two can be established using Benscoter's theory (Benscoter, 1954) for torsional warping,
which accounts for bi-shear deformation as a contributing factor.

Distortion forces on the other hand can only be determined through the disposition of the torsion in
the initial load. Considering the longitudinal variation of torsional forces (while only considering
torsional warping) adds complexity. However, since warping stresses caused by torsion are typically
small, it's reasonable to neglect them when calculating distortional forces (Fan & Helwig, 2002).
Therefore, torsion forces can be determined using Saint-Venant torsion theory (as described in
sections 3.3.2 and 3.3.3).

iP(X)/Z PO "
' «,,,u..,.w..,u, ‘y{

o 77

i

4

i,

i

Figure 8 Decomposition of the asymmetric component of the load pure torsion and distortion =

These approximate torsional forces, commonly referred to as pure torsional load, are obtained by
integrating shear stresses calculated using Bredt's formula (along plate cross-sectional areas):

Pw,purer = (—(ﬁfﬁ) (?%c_)) (19)

_ (b _ (bp
Pt,purer = (b_‘;) Pw,purers Pb,pureT = (Z‘;) Pw,purer: (20)

The components constituting the distortion system can be determined by ensuring that the force
p(x)

system is in self-equilibrium, and the sum of the vertical components must be equal to = according
to:5
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e = (Gotsa) () (1)

Next, the horizontal forces can be calculated by considering the resultant moments and forces.
Calculating the moments at the top and bottom nodes gives:

Pta = (:—:’) Pw,d» Pbd = (%) Pw,a- (22)
Now that the torsional and distortional loads have been defined, they can be considered individually
as uniform torsion, torsional warping, and distortion. For simplicity, the ,x “is omitted, but it should
be noted that parameters such as g, u, T and others vary along the longitudinal direction.

3,3.2 Uniform torsion

Uniform torsion can be simply described as a twisting reaction that results in circular shear within the
cross-section. It involves shear stresses that are linear to the geometry. In the case of closed cross-
sections, such as box girders, the torsional stiffness is primarily represented by a uniform torsional flow
circulating around the closed cross-section. Shear stresses that are linear to the geometry can often

be neglected in this context.

Assuming that the cross-section is rigid as it rotates about its shear center of rotation, it will remain
plane only if the strains at the midpoints of the plates are proportional to their normal distance to the
shear center Vlasov (1961). For constant shear flow, this is only possible if the thickness grows at the
same rate as the normal distance to the shear center. These conditions are not relevant for most
situations, meaning that cross-sections will generally undergo warping.

In Saint-Venant's torsion theory, the displacement caused by warping can be expressed as a function
of twist ¢, x, which is treated as a constant (the comma indicates a differentiation). This understanding
will be of practical importance in the chapters that delve into torsional warping, as it is closely linked
to the behavior of the cross-section beyond its plane.

3.3.2.1 Hypotheses

When discussing the behavior of box girders according to Saint-Venant torsion theory, four key
assumptions are typically considered:

»  The shape of the cross-section remains unchanged within its own plane, meaning it remains
undeformed in that plane while rotating around the shear center and undergoing warping

perpendicular to that plane;
= Stresses within the girder are directly proportional to strains, following Hooke's law;

= The box girder is prismatic, which means its constituent elements may vary in thickness within
the cross-section, but not along the length of the girder itself;
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s The cross-section of the box girder is thin-walled. This implies that the variation of shear
stresses across the thickness of the elements and the resulting secondary displacements due

to warping are small and can be safely neglected;

3.3.2.2 Basic equations and relations

In the context of thin-walled closed cross-sections, the torsional system generates a constant shear
flow that circulates around the closed perimeter. This shear flow is quantified using Bredt's formula:

—_ TSV — TSV
v =S4, (bp+bo)d (22)

Here A, represents the area enclosed by the central line of the walls composing the cross-section.

The true shear strain in the mid-surface is related to the tangential and axial displacements v and u,
as shown in Figure 8. This relationship can be expressed as:

= v _ Ou, &
Vsv = 56 = &5 ' ox (23)

For small angles, the rotation of rigid bodies is related to the tangential displacements of the central
line as follows:

[
=70, (24)

Where 7 represents the normal distance between the shear center and the considered closed wall
segment and @ , is constant as already stated. By replacing 88 and 99 we get:

du = (L2 r(zs,x) - ds (25)

Gt

Figure 9 Deformation-displacement of the cross-section as a result of the rotation

The warping function at any point of the cross-section can be determined by integrating du along the
central line of the entire cross-section, starting from some arbitrary point:

u(s) = up + fos'ce”%%ds -0y fos rds (26)

Noting that u is not a function of x given the hypotheses employed. In this relation u, denotes the
warping-induced displacement at the initial point and the first integration is applied only to the cell
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Analysis of composite box girder in bridges with distortion effects

walls, not to the cantilever parts of the top flange. If us integrated around the closed perimeter and
set to zero, to ensure the continuity of the displacements caused by warping, we get:

gﬁ%ds=2-Ao-Q),x (27)
Here2-Ap = fos rds as a result of geometric analysis (Calgaro, J. A. Virlogeux, 1988).

By substituting the Saint-Venant shear flow, g5, according to 5, we get:

)
Qj.x - GJ (28)
443
}= - (29)
$
] is the Saint-Venant torsional constant for single-cell box girders. If ug = =@, Cp, then we can

understand that:

2:A sds
Us= =0y (Ws(s) _fﬁ_d—so ) J.o ) + CO) (30)

t
Here w,(s) is the so-called “sectorial coordinate” and is calculated through the integration of the
previously defined tangential radii around the central line, viewed relative to the shear center and

starting at an arbitrary point of the closed perimeter:
we(s) = fos rds (31)

Since the second expression between the brackets is also a function of integration along the midline,

an equivalent sectorial coordinate Wy can be defined:

W) = wels) — 2 [y T (32)

By defining a new quantity u;(s), defined as a stabilized warping function, it is possible to reach a
compatible relation, taking the warping displacements and rate of twist @ , for Saint-Venant torsion.
The value of the constant C, will be determined in the subsequent chapter.

T(s) = Ws(s) + Co (33)
ug(s) = 0+ Ts(s) (34)

3.3.3 Non-uniform torsion

If the warping is not constant along x, the normal strains and stresses increase. The basis of warping-
induced displacements is such that these warping torsional stresses vary along the perimeter of the
cross-section and along the length of the girder itself, thus some of the shear stresses are balanced by

the torsional moment.

3.3.3.1 Hypotheses

The development of a formulation to include and define non-uniform torsion is based on the same
assumptions as those for uniform torsion, according to the following conditions:
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Analysis of composite box girder in bridges with distortion effects

The longitudinal normal stresses can be calculated without considering the Poisson effect;

The normal displacements (flexures) resulting from the warping U (x, s) are obtained through:
. d
us(x' s) = _us(s) E% (35)

Here y = x(x) is a function that should be determined, and its derivative is used analogously to the
derivative of the rotation angle described in (3.37) U;(s) represents a stabilized value of the warping

function.

3.3.3.2 Compatibility equations

As mentioned earlier, uniform torsion formulations establish a correlation between Saint-Venant
torsional shear and warping-induced deformations of the cross-section. When warping-induced
deformation varies along x, a set of warping torsional stresses o, and corresponding shear stresses
7,, are generated. These are added to the stresses associated with uniform torsion 75,,. The key
difference between these newly introduced stresses and those considered in Saint-Venant’s theory is
that the deformations of the closed cross-section are no longer exact because @, is no longer
constant. To account for this, a new auxiliary function y(x) is defined, which depends on the total
shear flow ¢ = g, + qy- This leads to the adoption of hypothesis 2, assuming that warping-induced
deformations should result from 3.38.

With warping deformations already defined, the normal strains and stresses can be derived from the
standard compatibility and constitutive equations for linear elements:

d — d?y
en(x,8) = ﬁ = —us(s)m (36)

o (x5) = —E - T5(5) T (57)

Before writing the equilibrium equation, we first need to fully define the warping function U, (s). For
this to happen, the position of the shear center and the value of the constant Cj relating to the cross-
section under consideration must first be determined. The cross-sectional diagrams relating to the
coordinates wg(s) and the warping function U5 (s) are schematically shown in Figure 9, where §
represents the shear center. They are usually obtained starting with integration from point 0, also
presented in Figure 9.
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Analysis of composite box girder in bridges with distortion effects

3.3.3.3 Shear center

In a thin-walled cross-section as the one presented in Figure 10, S is the shear center, G is the center
of mass, A is a generic point along the mid-line, P is defined as the initial point from which the

characteristics of the cross-section can be calculated.

Figure 11 Tangential radius for reference points
The relation between the tangential radius r and 1, is expressed using geometric characteristics and
can be defined as:

_ dy dz
r=rnte ey (37)

When integrating between the arbitrary starting point of the mid-line and point A, and using the
equation (3.34), the following expression is obtained:

J, r—n)ds= [ edy—[ eydzoows=w+t (e2)y — (ey)z + Co
(38)

By utilizing (3.35), a relationship can be established between equivalent sectorial coordinates
calculated relative to the shear center Ws and to the initially defined point P w,:

Wy = Wy + (e) v —(ey) 2+ Co (39)

For an element subjected solely to an external moment of rotation, the equations express:

J, owdA=0 (39)
J, owydA=0 (40)
J, owzdA=0 (41)

With (3.40) and (3.36), the preceding system of equations can be written as:

J, WpdA+CorA=0 (42)
J, WoydA—ey-l,—e; 1y =0 (43)
J, WpzdA+ey Iy, +e; ;=0 (44)
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The system of equations can be solved via Cg and the location coordinates for the shear center:

1 .

CO = —'K : fA WpdA (45)
Iz'Swz“'Iyz'Swy

ey = ———— 46

y [ (46)

gy = — Lo Sve (47)

4 Lyl-1%,

Here Sy, 1 S, are inertial quantities of the cross-section defined as
Swy = fA WyydA (48)

Swz = [y WpzdA (49)

3.3.3.4 Equilibrium equation

The normal stresses caused by warping according to equation (37). Applying the equation to an
infinitesimal wall element — Figure 12 — the following is obtained:

dow . o Q9w _

z e S (50)

By substituting (3.40) into (3.49) and subsequent integration along the central line of the cross-section
we can define the equation for the secondary warping shear flow g, which is in self-equilibrium.

- s ~
E -1i(s) -Eg-fosu(s)-tds (51)
a3y s~
quw(s) =E 'Eﬁ'fo ii(s) - tds (52)
Y g,
\ N
I S =
NNy N
dx \\\\ %*%%M d;\\\ \’\\\\
+é€&ds 8
'35 (o +§“‘dx}t
% s 1

Figure 12 Equilibrium of an infinitesimal segment subjected to warping torsion

With the already defined warping shear flow, the warping torsionT,, can be obtained through
integration, as follows:
3,
T, = J, qurds= —ElL, 55 (53)

d-x3

Here I, is the warping constant, defined as

a——
o —

2 00 a2 \\
/{S’Qewwc.‘%\\ 32
Lo e
éf, O(, 40 (:,“\\
<8 AHE
S S TPIKOBCKA B 2|
== L4 .
&
|\ \&%ﬂ&n
\\\o 4

&) 4
NN A
‘:*w\é!*A 3—.“\1 o

Az T



Analysis of composite box girder in bridges with distortion effects

I, = [, (@(s))*tds (54)
The torsional moment is balanced through the sum of the contribution of both uniform and non-
uniform torsion, given in (28) and (53):

3.
T=Ty+Ty =6 - 22— EL, -2 (55)

dx3
On the other hand, the torsional moment can be expressed as a function of the total shear flow, which

can be determined by using (23) and (24) according to (Calgaro, J. A. Virlogeux, 1988):

g =Gop- ((24-29) (56)

8s dx
do dy
T = fS qrds=G-IC-—E—G-(IC——])-E;
(57)
Here I, is the shear central second moment of inertia

I = [, r’tds (58)

Eliminating %from (55) and (57), a differential equation is obtained, which is related to the warping

function yy and the torsional moment:

a3y ax _
—Ely, 5 — UG = uT (59)
Here p is the shear-induced warping parameter presented as
p=1-g (60)

This is a parameter for the curvature of the cross section, and that in terms of torsion. For very thin
walls, unity is performed, considering the effect of "shear warping" to have little influence. This effect
can also be described as torsion bi-shear. This is related to the shape of the warping function i (Figure
10), where the two webs bend with the same magnitude, but in the opposite direction. With the same
analogy it is possible to define a new quantity B, defined as the bi-moment or warping moment, by
which the longitudinal stresses can be calculated through the "bending moment" equation:

o, (x,5) = 1i(x, s)Iﬁ (61)
d?y
B=-El,%% (62)

3.
Solving the differential equation—ET,, % - ,uG]% = uT with respect to % and introducing another

2
derivative we can define the bi-moment B as defined in B = —EI,, Z—x%(, followed by the calculation of

stresses caused by torsional warping according to
oy (x,8) = (%, s) IE (63)
w

On the other hand, it is possible to derive more generating differential equilibrium equations, which
will correlate with the warping function y and will generate a value for the torsional load my. This can
be achieved first by solving the static equation of an infinitesimal segment of the girder (Figure 13):
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—T + mpdx + (T + Z—idx) =0 (64)

which simplifies to:

dar

o bt o mt

T ¢t— —p T-l-g;z:dx

dx

Figure 13 Equilibrium state of an infinitesimal segment of the girder subjected to torsion

3
By introducing a derivative in —EIW%X—)S(— - ,LLG]% = uT and using the equation developed in —% =
my the general equilibrium equation is obtained:
Ely (d'¥ 47X\ =
u (dx‘*) +6J (dxz) - mT(x) (66)

An interesting observation is the fact that the function y(x) would be taken equal to ¢ (x), i.e., if bi-
shear is neglected, the same equilibrium equation will be obtained, where the parameter defining the
warping shear is not taken into consideration. The simplified equation corresponds to the so-called
Karman-Christensen theory of torsion: :
d*y dz¢\ _

Bl (55) + 61 (Gz) = mr @ (67)

3.3.3.5 Homogenization rules during torsion accompanied by warping and distortionina
composite girder

Warping torsion in composite box girders has been analyzed by Chen & Yen (1980). The definition of
the distribution of shear and stresses is carried out through an appropriate substitutive thickness of

the concrete plate-flange as follows:

__a _ q (té) Gs  Eg
- = L b =—x—===n
¥ Ge(ty),  Gs(tdsvew tt/gpew  Gc  Ec
(68)
0 B o e YD
W= = u(x,s)mw (69)

3.3.4 Distortion

When a box girder experiences distortion, it undergoes deformations within its own cross-sectional
plane. The compatibility in the deformations of the web-flange node contributes for the walls that
form the cross-section, to submit and deform in the direction of their mid-lines, which means that if it

is assumed that the membrane shear strains are equal to zero, warping occurs. So every response of
34




Analysis of composite box girder in bridges with distortion effects

the frame is between the response of those "freely deformable" and "stiff" cross-sections, where the
degree of stiffness increases simultaneously in both transverse and longitudinal directions. According
to Schlaich & Scheef (1982) if the load is changed to a small extent in the longitudinal direction and if
the deformation in the transverse direction is not prevented, then the cross-section behaves closer to
the free distortion frames. On the other hand under concentrated load action or for areas near
transverse bracings, the fully rigid frame approach is closer to reality (Schlaich & Scheef, 1982).

Longitudinal bending
‘P Of the bo"om p,ate ,,,,,,,, SIS ?, i
....... \ /
i //

Longitudinal bending e
of the web plate «t
Longitudinal bending
of the bottom plate
Figure 14 Displacement compatibility under distortion
The redefinition of the distortion load p, acting on the box girder means simultaneous balancing
through two composite mechanisms:
= Longitudinal bending of the flanges, correlated with the load p’,;

= Deformation occurring in the transverse direction of the cross-section itself, correlated with

the load pj
»  The sum of these two distinct deformations results in the total force, expressed as:
pa = P +va (70)

» Considering that the distortion system is in a state of self-equilibrium, we can infer the

following equations:
Pﬁz,d = Pwa — P&,d
b
Pha= Pea—Pla= —(32) (Pwa —Pha) (71)

PzLa,d = Pbd — Pg,z = = (;,%) (Pw,d - p&,d)

3.3.4.1 Hypotheses

When considering the distortion of box girders, the analysis is based on the following key assumptions
(Schlaich & Scheef, 1982):

= The dimensions of the flanges, when viewed longitudinally, are significantly larger compared

to their width (%) > 4;

s The girder is thin-walled in nature;

E

T TR e
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= The girder exhibits symmetry in the transverse direction relative to the vertical axis;

= The entire bridge structure is symmetrical, implying that the girder maintains a consistent
width throughout its length;
= The thickness of both the web and the flanges remains constant in the transverse direction,

and the effect of haunches is neglected;

= The end supports are assumed to be rigid with respect to transverse deformations, owing to
their adequate rigidity and the prevention of torsional rotations;

= Longitudinal connections primarily transmit shear stresses in the longitudinal direction, due to

the influence of a torsional load;
3.3.4.2 Longitudinal bending of the girder

First, a segment of the girder is considered, subjected to a distortional load pfi as illustrated in Figure

3.16.

Longitudinal bending
> of the bottom plate e —————

Longitudinal bending \. »+—""
of the web plate e
Longitudinal bending
of the bottom plate
Figure 15 Displacement compatibility under distortion
The loading and the cross-section are asymmetrical i.e. symmetrical about the y-axis respectively,
leading to an asymmetrical "box response" (for example Fy = F, u F3 = Fy).

The connection of the plates at the interfaces include equivalent shear flows f2 (x) and f3 (x), whose
resultants along the longitudinal direction are F2 (x) and F3 (x) :

F(x) = [, f2(x)dx (72)

F@) = f, i@dx 72)

The equilibrium equations for each plate, taking symmetry into account, lead to the determination of
internal forces and moments that are equal to the distortional load and shear forces. Specifically, mﬁld,
mk, 4 w mb ; represent the bending moments resulting from PE4, Pl a v DEq respectively. The

following equations describe this relationship:
= Top flange
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M, = Fyb; — m%,d
= Web
NW = F3 = FZ

b
M, = —(F, + F3)7‘”+ Myyq
= Bottom flange
Nb =0

My = Fzbs —mj 4

(73)

(73)

(73)

(73)
(73)

The stresses in the cross-section are obtained as a function of the internal moments and forces and

the characteristics of the cross-section respectively,

= Top flange
Uzd——%%
= Web

= Bottom flange

_ Mpby
03d = 20,

In these calculations, the following moments of inertia and surface areas are utilized:

_ b _bytw,; _bhty,, _
le="57lw="57l =7 7 Aw = bwtw
By substituting 3.70 into 3.71 we obtain:

= Top flange

_ [Fybe—mi 4]be
Oa =~ 5,

= Web

b L
[R=Fy] _ [SEAR)my albe
Aw 21;

024 =

b L
_[B-R] [—(FZ+F3)TW+mw’d]bt
Ay 21,

03d =

= Bottom flange

[Fsbs—mE 4]bp

03q4 = 20,

(74)

(74)

(74)

(74)

(75)

(76)

(76)

(76)

(76)
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Since there is longitudinal bending in the girder, taking into account the relationship between the
distortional load from (71), the following can be observed:

d*mgg L bp\ . L by 4*Myya
it = pha= ~ () rha = () T Vi
d’mp g L (bt) L (bt d’myq
2 = Pra= T\, )Pwa = ﬁ)_dx_z— (77)

Assuming that the boundary conditions are the same for the top and bottom flange as well as for the
web, which is often the case, the relationship between the distortional load and moments is the same:

b b
Mig = — (;i) Mgy, 0, Mg = (;,i) Mipa (78)
Hence the stresses can be expressed as a function of F,, F3,m";,_d:
= Top flange
[szt"'( )mwd]bt
O2d4 = ————ZT_ (79)
= Web
[~(r+E )2 4mb, 4 |b
o = _[Fa—Fz] _ 273/, w,d |Pw (79)
2d Ay 21,
. [F3-Fa] _ [—(Fz+F3)b7‘”+mﬁ,,d]bw 79
30 = T 4 o™ (79)

= Bottom flange

Fybg— Lalp

By equating the stresses for the different flanges (plates) from 3.76 and by defining certain geometric
dependencies, we can extract the following equations:

L

Fz( +2)+Fy _3(1—at)";vv"v"’ (80)
F2+F3( +2)_3(1—E)m—b—“"”d (80)
Where

121,: 121y bp
= = (81)

a = s ap = B =
LT pEA,’ P b,%Aw’ﬂ by

The system of equations can be solved with respect to F,and F;:

_ ap(app3p+1)-(ap+3)BAmy, g my g
F = Bl(ar+2)+(ap+2)—1] by (82)
By = ap(apB+3p+B?)—(2at+3) mb, 4 (82)

Bllag+2)+(ap+2)-1] by

By substituting the shear resultants in 3.76 for the stresses in the top and bottom points of the web, a
relationship is established with the moment in the web itself, as follows:

(4R (tapB+2p) Muyabw -
2d 7 Bl(ap+2)+(ap+2)-1] 2l (83)

(4B @+artB)  Muabw
934 = Bllagt2)Haptn-1 2k, (83)
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The position of the neutral axis can now be defined by considering the linear stress distribution in the
web which is consistent with the hypothesis set for the longitudinal bending of the plates. y; nyy are
defined as the distance measured along the length of the web to the top and bottom edges
respectively:

ol +B)(AtapB+2B)
e = loal+los] — aptapB+3(1+p) bw (84)

Yb = by — Yt (85)

An equivalent secondary moment of inertia for the web Iy, ¢, can also be defined, whereby the stresses
resulting from the bending of the flanges in the cross-section expressed by the individual web-plate
analysis subjected to p";,'d. Considering a local web referential:

mk Y% mk Yb
024 = ——thet; 034 = ;;;Z’e (86)
Where:
_ 2B[(ap+2)+(ap+2)—1]
lwe = A+B)(artapf+3(1+p)) W &)

The cross-sectional stress diagram is fully defined as being asymmetrical and linear. The web subjected
to pf, 4 can be considered as a beam element, for which the deformation in the plane itself Ay, is
expressed through the equalization with an equation similar to that of 3.2.1.2:

dt,,

p\ﬁ'/,d T dxt EIw,e (88)

Figure 16 Distortion warping stresses

3.3.4.3 Deformations at the cross-sectional level

The cross-section is analyzed as an individual frame subject to the distortion subsystem p’&. This
subsystem is equivalent to the system of asymmetric diagonal forces applied at the nodes (Figure 17).
This can be defined by specifying the length of the diagonal so that:

Sa = %Pa,d (89)

o= [E) e %
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Solving the statically indeterminate system leads to the definition of the asymmetric transverse

distribution of the moments (Figure 3.18b):

B e 1+B(2+1y)  bpd (Sg
Mz = L7 2+2p+2p241+1p,8% g (2) (91)
N EN - 248+ byd (Sa
My = TM3 = S 2B+2p2+141pB? g (2) (#1)
Where
o= bl Pl (92)

t~ pwr’ b bw Ty
From here, the moments of inertia in the transverse direction are derived, for a unit of length
specifically

3

Fes ol T s — o=l (93)
t= 2102’ W T 12(1-v%)’ P T 12(1-v2)

a)

Figure 17 Equivalent diagonal system of forces and corresponding stress distribution

Applying the unit dummy load method, considering only the influence of transverse bending, and
substituting (3.86) and (3.88), the diagonal displacements § are related to pVTV’d as follows:

T . _ 12gEL,
pW,dl - btbbdz 25 (94)

_ 24284282 +1p+1p B2
ez = Bl(re+2)(rp+2)-1] (95)

The relationship between the diagonal deformation of the cross-section and the transverse
deformation of the flanges themselves is still written as unknown. To calculate it, the displacements
A, Ay, Ap, m; and n; are defined (Figure 3.19). The first three relate to web and flange displacements,
while m; and n; are displacements normal to the flanges, i.e., the webs. These displacements can be

defined by establishing geometric correlations:

my = [18w] = 1812522 - (96)
ny = [1ad - 181 %522 o= (96)
ma = [18wl + 1851 5522 o (96)
ng = (18] + 18y 12522 5= (96)

onin\
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Figure 18 Deformations and displacement of the distortion frame

As depicted in Figure 3.17, the Iongitudinai stresses, which are equal at the ends of the flanges, indicate
that the curve followed by the webs and the flanges is proportional. Assuming that the support
conditions are the same for all plates, the curvature and displacement between different plates are
related by the same absolute ratio. Taking into account (3.81) for the ratio, we obtain:

1
o _ (D (1), ol B o
E (R;) 3 (Rw) AW (ﬁ)_ be (97)
1
gad _ (L) - (L M_(ﬁ)_z_y_b
E (R,,) 2 (Rw) AT @) (97)
By using the previous equations in (3.93) we get:
_ _ 2yeb—bp] d
M= lAWI[l br 2by, ]bw (98)
- 2yr _ be=bp] 4
= Al [bt 2by, ]bw (98]
= 2yp Bi—bp] 4
mg = |Ay]| [1 * by 2by ]bw (98)
- 2yp _ be=bp] @
ng = |Ay| [bb 2by, ]bw (98)

Utilizing the geometric dependencies and correlations, the diagonal displacements can be expressed
as a function of the normal displacements:

n m 2 F

8, = Coslw cos @ + Cosl(p [sin @ cos @ + cos O sin @] (99)
_ N3 m3 . _ ;

03 = zosp C0S 0+ o [sin @ cos ¢ — cos 6 sin ¢] (99)

Here 6 and @ are the angles that the diagonals make with the horizontal flanges and the inclined webs.
The trigonometric equations that are helpful include:

betby . be=b d
£b. sing = ;b ?; cosf = — (100)
w

w

. d
sinf = 5; cosf =

The diagonal deformations are the result of the combination of displacements 6, and §3. Combining
the equations given in (3.96) and (3.95), we can define:

5= 8, +06;= %klAW (101)
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ap+B2(ap+2)+2(B+1)](1+8) (102)

ki= [
1 apt+apB+3(B+1)

Finally, it is possible to write an equation that relates the distortional load and the displacements in
the plane of the girder, consistent with the global effect on the frame in the transverse direction:

pha = kA (103)
by, —

3.3.4.4 Equilibrium equation

The effect of distortion on the box girder can be calculated through the displacements in the web A,
after which the equations for defining the displacements, stresses and internal forces and moments
for the entire cross-section are used. From here, it is possible to carry out an individual analysis for the
in-plane bending of the girder under the action of py, 4 = p‘ﬁ,,d + p‘f,'d, with the girder being elastically
supported along its entire length, resembling a beam on an elastic foundation. Substituting (3.85) and
(3.100) into (3.67) leads to:

d*Ay,
Pwa = Elye + kAy, (105)
This bending equation is the same as the derivative in 3.2.1.2, but with its own specificity relating to
elastic support. Thus, the stiffness of the cross-section is simulated in terms of transverse deformation.
Once the deformation field of the web is defined along its axis, it becomes possible to calculate the

longitudinal bending moment:

d2A
Mg — Elye — (106)

The stresses arising from distortional warping can be determined using equation (3.83).

The forces and moments can then be divided into symmetrical and asymmetrical components, as
illustrated in Figure 3.20.

The previous sections focused on analyzing the distortion effect in single-material girders. This analysis
can be extended to composite cross-sections by transforming them into homogeneous cross-sections
with equivalent thicknesses, typically referring to steel. However, as demonstrated earlier, distortion
involves the simultaneous response of plates to longitudinal and transverse bending. Therefore, when
considering distortion, it's essential to account for two separate equivalent thicknesses (Calgaro, J. A.
Virlogeux, 1988):

= |ongitudinal bending

AR
(tt)d =n= E. (107)
= Longitudinal bending
S T
(t_t) =%n (108)
tt/ g

3.3.5 Load acting eccentrically in the webs of the girder
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Up to this point, the equations have been based on the assumption that the box girder is subjected to
loads equal to the vertical loads applied directly at the web-flange nodes. However, in practice, this is

a rare scenario, and eccentric loading is more common.

Various combinations of vertical loading positioned at different locations along the length of the top
flange are considered (Figure 3.21). The values of my, mp, P4, Pp CAN be calculated through static
equivalent load analysis, as depicted in the drawing.

pnl pg
i E’I-F‘T‘T”T“"‘JNW“T"I’T’} ; l 3
e —— e~ AR o m
1, A\ ] f:]
T S o4 /1
; 3
/ Ps 'y /

Figure 19 Equivalent vertical load

Forces and moments are divided into symmetrical and asymmetrical components as shown in Figure
20.

% e
3

—
i

P tPureT

Figure 20 Decomposition of the equivalent load into pure torsion and distortion

The division of the asymmetrical components leads to pure torsion

b b
Ptpurer = (—b—;) Pw,pureTs PbpureT = (ﬁ) Pw,purer (107)
Where
b (pa-pB)b
Pw,pureT = ((bt'*"gb)d) ( = ZB L+ my — mB) (108)

and distortional load subsystem (Schlaich & Scheef, 1982),

Pta = (Z_Z) Pw,d» Ppa = (:—‘:) Pw,d (109)
Where
pua = (onsy) (B222) — () (555 + Gimtrsss) ™ —ma) (110)

The calculation of the distortional load involves analyzing the girder as a beam on elastic foundations
subjected to the distortional load, as presented in 3.60a. For the torsional analysis, the external load

is defined as:
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(pa—pB)b: + (1112)

)

3.4 SOLUTION OF THE EQUILIBRIUM EQUATION

The solution of the equilibrium equation for elastic bending, torsion, and distortion (Table 3.3) is the
one that ensures equilibrium and compatibility for a given load and boundary conditions. The solutions
will be presented for the analysis of cases involving the action of a concentrated force Q and a
distributed load q. Based on the specified boundary conditions for each scenario, two types of
boundary conditions are considered: a simple beam (3.22a) and a double fixed beam (Figure 21).

Q
a)
q
A xE $...4 \2! «[ ' -4! i i B
<\V\';<"\, /\\
b)
L
> ; ! (S ! ) " -
A — -~
M, C - B{ i ) M,
] X o ] ¥
RA 4 &y t 3 { a4 { RB
i 8y ; -8y |
H i
Figure 21 Support and loading conditions
Table 1 Equilibrium equations for elastic bending, warping torsion and distortion
Loading Equations
Elastic bendin d*w
& Ter il =4 (x)
4 2
Torsion and warping El, d"x a“x\ _
u dx4 + G] dxz - mT(x)
4
Distortion d*A
orto #lw,e + kAw= QW,d(x)

3.4.1 Elastic bending

The solution of the Euler-Bernoulli beam equation is provided here. Table 3.3 presents the results for
the support reactions Ry, R, My and Mg, as well as the bending momentM (x) for two different

scenarios of support conditions (Figure 20).
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Analysis of composite box girder in bridges with distortion effects

It's important to note that the solution includes the contribution of shear-induced deformation due to
warping, which is represented by the parameter p. If this effect is not of interest, it can be removed
from the equation (3.109).

Maisel and Roll (1974) summarize solutions that consider the torsional moment resulting from

asymmetrical loading, as depicted in Figure 3.22. These solutions apply to cases where a uniformly
distributed load is acting along the entire length and the supports, and it restricts any rotation of the

cross-section.

The support conditions for analyzing torsion in both scenarios are as follows:

A simple beam whose end points of support do not prevent warping

B,= Bg=0 (114)
A beam that is double-fixed, which prevents the warping
ax\ _ (&) -
@), = 5,=" (114

Adequate diagrams for the torsional moments can be defined by

Concentrated load

T(x) = —l;l“—"MT, 0<x<a, (115)

T(x) = %MT, a<x<l (115)

Uniformly distributed load

l

T() = (x—3)mp 0<x <! (116)

P TN
%»u [e¥1] M41€,7 4

& *0:; é
S AHETA 23
o TPMIKOBCKA 71
% S

£y
v?
>,
<
4;«0“'3 s
79,
N,

V74
T

TR T




AHAAUZA HY CAPEZHAM CanAaUecn HOCaY KUj MOCMOBU CO epermu Ha ducmopsuja
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B

3.4.3 Distortion
As already stated previously, the distortion response can be analyzed using the beam on elastic

foundation analogy. The solution to this "equivalent" problem was partially explored by Hetenyi
(1946), and his work laid the foundation for subsequent research that has yielded valuable results.

In the analysis, we consider a beam on elastic foundation subjected to either a concentrated or
uniformly distributed load (Figure 3.23a). Additionally, we examine a beam exposed to the same load
but with the distinction that it is infinitely long (Figure 3.23b).

Q
a)
A B
2 &
b) Q
Ry q Ry
M, ? ¥ [:D - M,
N S P T S D T N T
EE A T W N R - g
¢
RGA RoB
Mwi l-\}%a
2 = 3 g . S

EAE A AN N N N N N 2 T 3

Figure 22 Analogy-Beam on elastic foundation
The first step involves analyzing the infinite beam. As a result of this analysis, bending, bending forces,
rotations and displacements are developed at point A and B, points corresponding to the ends of the
beam which has defined end points. To make the two systems correspond, forces and bending

moments must be applied at the corresponding points A and B of the "infinite" beam on elastic
foundation to satisfy the support conditions. Satisfying the support conditions in this case means that:

YFi=XFp=0 (117)
YMy= YMg=0 (118)

The solution for the beam of defined length involves superimposing the solution for the infinite beam
subjected to the load, as shown in Figure 3.23b, and the corresponding forces and bending moments
needed to satisfy the equilibrium conditions (3.12c). These forces and moments are obtained by solving
the system of equations (3.112). This process results in the equations given in (3.113) and (3.114).

Ay 4= 2%; [RoaA(x) + RopA(l — x) + QA(lx — apgD] + % [Mg4B(x) + MogB(l — x)] +
Zq—k{cl[ﬁ(al —x)=D(a; + a; —x)] + cz[2—D(x—a;) —D(a; + az —x)] + c3[D(x —a; —
a;)—D(x —ap)l} (119)
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My s = = [RoaC(x) + RopC(L = x) + QC(lx = ao)] + 5 [MoaD () + MosD(L = )] +

é{“ﬁ[g(% —x)—B(a; + a; — x)] + c[B(x — ay) +B(a; +a; —x)] —c3[Blx —a; —az) —

B(x —apl} (120)
Where
=1 c,=c3=0 0<x<a (121)
;=1 cg=c3=0 g <xsat+a (122)
;=1 c1=c;=0 a+a; <x <1 (123)

The functions A(x), B(x), C(x) u D(x) are defined according to:

A(x) = e *(cos Ax + sin Ax) (124)
B(x) = e *sinix (125)
C = e *(cos Ax — sin Ax) (126)
D(x) = e ™ cosAx (127)

_ i_ 4 k
A= = /4%,9 (128)

The parameterL, represents the characteristic distortion length (Schlaich & Scheef, 1982), which
defines the longitudinal stiffness related to bending in the girder (EIw,e ) relative to the stiffness in the
transverse direction of the cross-section (k).4

Solving the system of equations defined in (3.112) is simplified by separating the base load into its
symmetric and asymmetric components

MP™ = 1M, + M) RY™=;(Ra+Ra) (129)
Mgt = 1M~ Mp) R = S(Ry—Rp) (130)

Combining the symmetric and asymmetric sets of moments and forces, the following result is obtained:

Moa= MI™ +M&H  Roq= Ryy" +RE (131)
Mop = M" +ME3"  Rop = Roy" +REE" (132)

The previous explanations were specific to the case of a beam on elastic foundation along the length
of the span without end support points. For the case illustrated in Figure 3.22, the support conditions

can be defined as:

= Simply supported beam

Aya= Byp=0 (133)

YMy= X Mp= (134)
= Double fixed beam

Apa= Byp=0 (135)

XM= XMp=0 o (136)
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Analysis of composite box girder in bridges with distortion effects

3.4.4 Distortion in composite box cross-section

As previously mentioned, the onset of distortion is triggered by the action of asymmetric loading.
When a box girder with a symmetrical cross-section is loaded with a vertical load that has a certain
eccentricity relative to the axis of the cross-section, the applied load can be divided into a flexural force
p and a torsional force m = ge. The torsional force can be further divided into pure torsion and
distortion components.

q/2 q/2 q/2 q/2

| ol

B \ ] —— = (;

a)

,l_h_h =

b, pureT

Figure 23 Load decomposition of the part causing pure torsion and distortion

The distortional behavior of box girders has been extensively studied and analyzed by various
researchers, primarily focusing on either pure steel or pure concrete box girders. However, the
influence of differing stiffness characteristics between the top concrete flange and the steel webs and
bottom flange, which collectively form the cross-section of a composite box girder, has not been
thoroughly investigated. The specific cross-sectional configuration under consideration is depicted in

Figure 2.

N
W
it
f]
e o

-
e
S
N
-
Sane
AL

T

<
=<
by

Figure 24 Cross-section of the composite box girder

A - width of cantilever extension, A = 3500 [mm]

B, b — distance between the two webs, B = 7000 [mm],b = 7000 [mm]

h - height of the steel cross-section, h = 3000 [mm]

h,, h;-distance from the distortion center to the top and bottom flange, respectively

t,, — thickness of the concrete slab, t,, = 400 [mm]
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Analysis of composite box girder in bridges with distortion effects

t,, t;—thickness of the webs and bottom flange respectively

A, = t,(2a + b) —area occupied by the concrete slab

A, = tyh-area occupied by each of the webs respectively

A, = t;b - area of the bottom steel flange
As depicted in Figure 2, the position of the coordinate system is located in the center of distortion.

The cross-section will be deformed in relation to the original shape and will manifest out-of-plane
warping under the effect of the distortion load and the so-called distortion angles will be formed in
the corners, at the joints between the webs and the top and bottom flange respectively. When steel
or concrete box girders are analyzed, it is assumed that all four distortion angles that occur in the four
corners are equal. But in composite box girders, the top concrete flange deforms at a different angle
compared to the bottom steel flange as a result of their different deformable stiffness. Accordingly,
the different angle of distortion cannot be neglected. It is defined through the following geometric

characteristics:

Figure 25 Defining the distortion angle

0, = v__l;”u & _Wiu_zwﬂi' g; = Zl;_vu+ K“;i.l. (137, 138)

6, is the distortion angle taken at the concrete top flange, 6, is the distortion angle taken at the
bottom steel flange, v and w are displacements in the direction of the x and y axes whose coordinate
origin is positioned at the center of distortion D. Analogous to the definition from the theory of
distortional warping, the derivative of the angular distortion 8’ = d6/dz will take the displacements
in the direction of the z coordinate axis. From here it can be derived:

Uy, = wpby; w = wpb (139, 140)

Where wy, is defined as the warping function resulting from the distortion itself. When the
displacement u, is constrained, normal stresses and shear stresses are induced.
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Analysis of composite box girder in bridges with distortion effects

3.4.4.1 Relation between 8, and 6,

In the distortional model, as shown in Figure 1, the composite girder is subjected to the action of a
concentrated distortional load represented by H and V. Given that the torsional moment results from
the components into which the concentrated distortional load H and V is decomposed, the

equilibrium equation must be satisfied:
m= H-2h=V"-2b (5)

"

l s T //-1“3

" Ech +
Edlw Exhy f—tu =
Esh AR B
m,
£ b H my 4
a) b)

Figure 26 a) Distortional forces Hand V b) The corresponding bending moment diagram

The resistance provided by the cross-section is now being considered, and the transverse bending
moment diagram is defined in Figure 4. The magnitude of the transverse bending moments at the
nodes of the cross-section is determined as follows:

3h, neb
m; = mg = H-g- (1—=-y)my=my= H-g-y;wherey = ﬁ“—b (141, 142, 143)

Tw Iy I

n, = E—Z represents the ratio of modulus of elasticity of concrete and steel respectively, I, I, n I are

moments of inertia for the top, bottom flange and webs respectively given as:

D B T S
L= Gas v = Gassy b= et (144, 145, 146)

A virtual system is established where the box girder in all four corners has joint points and a unitary
moment M = 1 which is applied accordingly (Figure 5).

_ MMy _ ;[ _bh _ h? _

6, = [ Eid; H [12Eclu A-n+ 12Egl, (2 3)/)] (147)
_ (MM _ . [ bh h? _

o, = Edy H [12}3511 + 12Eql,, Gy 1)] (149)

Then, the ratio of the rotation angles for the top and bottom flange is defined as

0. Meb(1-y)+=(2-37)
m=t= o~ (150)

6 b1, 13,
! Y, G-

1

M= Tt s

1
ik 1,.,/»«{!»——*

Figure 27 Diagram of the bending moments under the action of the distortional imaginary moment M
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3.4.4.2 Analysis of the distortional influences

The distortional stress ap,, is described using Hooke's law:

2
Opw = Ee =E3 = EZZwp (151)

0z2
Assuming that the distortion does not cause axial forces N, or bending moments M,, and M, then the

following equation must be satisfied:

Nz = IA JDWdA = O, Mx = fA JDlvydA = 0’ My — fA O-Dwdi _ 0 (152-1(2,3))
b
PR S— L
2 1 ﬂs .......... ,,‘._..-—‘_..‘,—-._._.-———,.‘ ,,,,, ; prsress” i )
+ W - s
[:—M*“““ \ X D / ¥
«
y £
= ‘ + A AL
E— /
7

Figure 28 Warping function as a result of distortion

By substituting equation 13 into equation 14 the shape of the warping distortion function can be
defined as shown in Figure 6. The cross-section is symmetric along the y axis even though the stress
distribution is viewed along the y axis. Therefore equations (14-1) and (14-2) are automatically
satisfied. The value of wp,, in points 1, 2 and 3 can be simply defined by

bh 1 2a
Wpwi = g Wow2 = (1 +T) Wpw,1; Wpw,3 = BWpw,1 (153-1(2,3))

Where g is defined as a coefficient that defines the ratio of the warping distortion function at node 3-

Wpw,3 and node 1-wp,, 4 and 5 can be calculated from the equation (14-3) according to the following:

026, 920, 926,
f OpwXdA = EcngWDwdiu+f Eo—— 372 WpwXdAy +f Ei— 372 WpwXdAy,
A Au Awl Aw2

0%0,
+f EC e > WDWXdAl

2
(3% ) :—Z+3hutw (% b) %+3Aw .
f=m Ap+3hty, M A, (154)

Furthermore, the strain energy U, due to distortional warping stress op,, can be calculated as:

Ec l azeu z Eg 1 aZgu . Eg
Uo- = E—fA Wl%wdAu IO ( ) dz +—f As W[%wdAwl fO (6_22—) dz +?IAW2 WI%WdAWZ .

0z 2
1 (9%6, 226, _ Eglpwa (026, Eslpw,z l (9%67)\2
ko (a—zf) f WDWdAlf (azz) dz == = f0(az2u) dz + == f0(az2) dz  (155)
I
Where: Ipy,1 = l;“;'u + Ipwwi Ipwz = Ipwwz + Ipw,1 (156-1(2))
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b2h%  (2a+b)\?
For the top flange Ipy,, = fAu wiiydAy; = m(—ab—) Ay (158)
2 bZhZ
For the first steel web Ipy, w1 = wal WiwdAy1 = WZhutw (159)
2 b%h?
For the other steel web Ipy, w2 = waz wi,dAy, = mZhltw (160)
2 b%n? 2
For the bottom flange Ipy,; = [, 1wDWdAl = 48(1+ﬁ)2[5’ A (161)
w

Ip,, is defined as the distortional warping constant

3.4.4.3 Distortion energy analysis

Despite the distortional warping, the box girder components will deform in a direction perpendicular
to their plane, i.e. the distortional transverse flexure, which is limited by the transverse frame stiffness
of the box girder itself. When analyzing the frame function, the cantilever extensions at the top flange
are neglected. A finite element dz c is detached from the girder and subjected to analysis, with the
top, bottom flange and webs isolated accordingly. Figure 7 shows the distribution of moments and
shear forces in each isolated element. According to the symmetry in terms of distribution of forces,
certain relations can be established

Myup = Mpa; Mpc = Mcp; Gya = dyp Gxa = AxBi Ay = qyc 9xa = 9xD (162-1(2,3,4,5,6))

From the equilibrium conditions for the bending moments the equation (24) can be defined as:

-2m

—2m
Myp +Map = 0; mpg+mpc= 0; qya= qyp = _bﬂi Gy = Gyc = bBCi dxa = qxB =
Grc = Gup = A28 (163-1(2,3,4,5))
By combining the equations (162) and (163) the equation (164) is derived:

2(mygg+mpa) 2( +mgc) 2( + )
G = Gea + Qp = ZABTTED) — ZIMDRTNC g = gyt Gyp = =B S G =y,

(164-1(2,3))

The nodes of the frame are treated as rigid, essentially considering the box girder components as a
"fixed girder." Based on the equations defining the deformations, the equation between the transverse
moment and transverse flexural displacement can be expressed as follows:

Myp = Zb;;lu (39,4_ %) ; Mpe = %11(3915 _6A_:,—l) » Map = iblw-(ze“1 +0p +6A7v) i Mpa =

2Ely, Av
2Bl (g, +205 +65) (165-1(2,3,4))

Where 6, and 05 represent the angles of rotation at points A and B respectively, and therefore

Ay = S (166)

By uniting the equations (165-1)-(165-3) into (163-1) and (163-2), the equation (166) is obtained:

Zi’“(wA— “%)+%’1(29A+93+6%")=0,%’—1(393— %)+2—‘if—“’(e,,+293+6’3—:)=0

(167-1(2))
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Then the equations are redefined as:

3h Iy 6hly 6 (Bh I ) 6hI; _S
. il = — v 168-1(2
05 eA( +2) S Bwy, = 4,0, = ~6; +2) + gk w, =3 (168-1(2))
Afterwards 84 1 65 can be calculated:
hIjAw) L(zmu _3h21 Iy \ 28wy (_Sﬂ )ﬂ thAWuL(Zh'z.3h2111u\2AWz (3th Ll)“;v
_hiwb \bly b21Z, ) b bly h - blwb  \blw  b2I% ) b bly  Jh 169-1(2
04 = 14 2P0 3RAI Iy U = 1+2h(ll+lu) 3RAT Iy ( -1(2))
+ bl bbIZ, bly bbIZ,
From the equation (165) the following can be calculated:
3h ] T
_2ElL “bly 2Aw; | 2Av 3(1+blw) 2Aw,, | 2Av
Myp ==~ —1'zh(1—,+1u)+3hh1,1u =7 +_h_ LN thlllu b +—h_
blw bbIZ, bly bbIZ,
3hI 2hl )
_2Eq Y 20wy, . 24V 3(1+ u) 20w, | 2Av
Mpc = b | 14200t 3hh1,1u b +T PRELIURI) 3hhlllu b +—h_ (170)
bly bbIg, blw bbIg, |
From the equation (164-2) the following is obtained:
2(map+mpc) 24Ely, 1 (zAwl 2Av) 24Ely, 1 (zAwu ZAU)
= —_——_———m— = — —_ 1
Iy b » Ay bh b, I\ p + h + bh b+2’_l+1u b T h (171)
1+ Tw Tw 14w Tw
_IL SEIlIu I_u+37illlu
Tw" b1, Tw™ br
The distortion moment due to distortion can be calculated through:
_ _ 24Egly 1 2Aw; | 2Av 24Ecly, 1 (ZAwu 2Av
Tow = ayb = bh k+2_’u_+’_l( ™ T on b0, I » T h (172)
R ngly Tw Ry nplw
I, 31111—1u 7 3R,
mw* bnglg nglw bngl3,
The distortional stiffness of the box girder is obtained as:
b oI, lu biotu It
_ 24Egly, _ R “Tw  nglw, 24E ]y, _ n “ngly Iy
Kpwu = ah ' = 1+ Ty ST Kpw, = an ' T 14 T, ShITy (173-1(2))
nglw  bngl, w " bngl},
Also:
2Aw. 20v 2Aw 2Av
B, =4l =—t — (174-1(2))
b h
The equation (32) can be described as follows:
Tpw = Kpwubu + Kpw,101 (175)
Therefore, the strain energy due to the shear stress can be calculated according to the following
equation:
10l 1 L, 2 L2
=2 Jy Tow 0dz = ; (KDW,u [ 6,2dz + Kpw, J, 61 dz) (176)

3.4.4.4 External influences

The equation for influences by distortional forces can be established by:
V= = Jy 22 0ydz — Jy =L 0ydz (177)

3.4.4.5 Basic distortion differential equation
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Analysis of composite box girder in bridges with distortion effects

Summing up the equations (17), (36) and (37), the total potential energy Il is given as:

M= Uy + Uy +Vp

Eslpw1 (L (d26y ESI wa (L (d200)\2 1 1 1
1= ———Z L fO ( dzz) dz + ——= D2 fO (dzzl) dz +§(KDw,u J-O BuZdZ + KDw,l fO HlZdZ) —

[y 6,dz - [} =L 6,dz (178)

In order to minimize the total potential energy II, the variation potential energy oIl = 0 isvalid for any
set of boundary conditions, the following equation must be satisfied:

da*e,
Eslpw =2+ Kpwuby = 35 Eilpuws o2+ Ky 6y = (179-1(2))

Here the distortion equations for a box girder are defined:

d*6y 49 __ 1 mr _ 4| Kpwu , d*6; 4 ﬂ _ 4| _Kpwyi
T + 413,60, = Elows & Ay = _4Eslnw1 T + 41,0, = Tows & A= prE— (180-1(2))

These differential equations are solved using the BEF analogy and by analyzing the equilibrium

conditions.
Table 5 Equations for calculating the redistribution of internal influences at the cross-sectional level under
symmetrical loading

Load Transverse moments Axial forces
ERQ\”*_.”F \ / m=0
g
. _l+42n mg _3r(1+n) me
BTk, 2 T ks 2
mR (i 2 T = . gi
Myp =mAB-|-—2—- \\ :/ Ny nu_SIU‘P
Ty Mg \ ! Ty = —No
= —r— L2 T n, = —n
mp k3 2 m u 0
Map ng = Ny *sing
- _3(1 +Tu) . EcIs ny
by o k3 d'bs ey =3(2+T‘0+T‘u)
AI\ /Al. ) AlO k3
mp " 3 . ECISAIO
- 3(1+T0). Ecls dZ 'bs
k3 d- bs
ks =1+ 2ry+ 2r, + 31973,
_ qr
g = Myp +- tang, npc =0
= nap — 2 tobfz =22t b2(d—
Mg = Nap — 5 ~toboZs Ny =5, tubi(d — z)
X X

tsbz2 tszd
‘IR(S s 4 _LsZs )

qr 2
Nug = — tobi 2z
I, \2cos¢@ = 3cos?¢ AE T 5, "0TK“s

Ng -—nAD+

ky=(p+2)(+2)—1

4d? + b% — b2

ks =2+28+2B% +19+1,p%  cos¥ = e
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Analysis of composite box girder in bridges with distortion effects

Table 6 Equations for calculating the redistribution of internal influences at the cross-sectional level under

! asymmetrical loading

Load

Transverse moments

Diagonal forces

Axial forces

P by qy
AT 4+ By

AL\ ) ’{% \ m=0 5= pyte n (2+{Db"‘%
ol = 0 ememe sl P e ——C—
s / 201+ f)d A A1+ /i
\-0 P ‘l) \ £ EE 2
g 55 Bbo gy
o A1+
my
Rgu = Sy
03 2d{1+ 1)
3425 my 8
Myp = = =g~ - _6__~ N
..NC.‘ - 4: L 1+8 § Dmgg
‘)\fﬁﬁ// Map = Mg + o I 3/2 - Zﬂrﬁ) =g cosd B cos Y
s - —y 4 / ~ 114, 3ing
b
Mg
my by
i ) Ny =
" N _ B+ 284 np) T30+ prd
T+ Bk 2 oo
.I 1 . bu “qn Nip = Mg — G
% z/ wy {1+ pd
] _ _BQHR+n) y My
Wi+ By 20y
g g eoRe
433 Axicinm
my My ny
e " = D)
: my
o8 3 Myp = Mg +— R
5 //.. : 40 #> 1 1 ° . b, Mg
\ " ) " = Ana d{ba + bh,)
S fa’[:,::—mﬁgl’ +‘8)m]. Ny
2my
m b s
my )
s 1+pQ@+m) ¢ Ngg = fpe =0
. I;g 3
g - “ b,d ' Ny = Hpg ~
s e _ 2my 5
g = cos@ — cosé
Iy
my
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4. FIRST-ORDER ANALYSIS OF NUMERICAL EXAMPLES

The proposed approach is implemented in a practical example involving a detached segment of a
composite box girder with a length of 30 meters. The analysis covers bending, torsion, and distortion
effects. To simulate real-world conditions, an asymmetric uniform load of 27 kN/m is applied to
comprehensively capture all cross-sectional responses, including deformations both within and out of
its own plane. Appropriate boundary support conditions are applied to ensure an accurate
representation of the box girder's behavior in this scenario.

The chosen example is initially analyzed using the proposed method, involving the solution of the
differential equation based on the BEF analogy. Subsequently, the same analysis is conducted using a
finite element model within the commercial software "SIMULIA-ABAQUS." The results obtained from

both approaches are presented in separate tables.

2 q2
L, A=3500mm | B=7000 mm A=3500 mm
*

2000 mm 40|

ol e -

Figure 29 Distribution of stresses and deformations in the box girder cross-section

Table 7: Cross-sectional properties needed to solve the basic differential equations

Equation (40-1)

Equation (40-2)

B = 14.69

Warping function in:
Point 1
Point 2

Point 3

wgy = 0.379 [m?]
wge = 0.758 [m?]
wgz = —5.571 [m?]

Distortion constant of warping
For the top flange Ipy,, = 0.957 [mf]

For the web Iy, 1 = 0.001 [m®]

Distortion constant of warping
For the bottom flange Ip,; = 0.975 [m®]

For the web I, 2 = 0.837 [m®]

Edlpwws = 3.067 - 101° [Nm*]

ESIDW.WZ

Distortional stiffness of the frame

Kpyy = 4.093 - 10° [N]

Distortional stiffness of the frame

Kpyy = 1.152- 102 [N]

Al = 2.479

Al =0.171
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Table 8: Comparison of obtained values for the distortion angle and stress redistribution

Analytical method

,FE“ 3D model (B) A/B
(A)
0, 0.04714 0.04786 0.98
Distortion angle

0, 0.00951 0.0096 0.99

B —0.22 MPa —0.25 MPa 0.88

Normal stresses due to Oawz —0.43 MPa —0.44 MPa 0.97

el s 0.05 MPa 0.07 MPa 0.71
B 21.89 MPa 21.63 MPa ~ 1.00
Transverse bending Mapu 16.15 MPa 13.74 MPa ~ 1.10
L Mant 0.95 MPa 0.81 MPa ~ 110

Max, ropeH 0.31 MPa 0.36 MPa 0.86

Transverse stresses

Max,foneH 6.11 MPa 5.65 MPa ~ 1.00

Figure 30 Response of the considered composite box girder cross-section under asymmetrical loading
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Analysis of composite box girder in bridges with distortion effects

5. ANALYSIS AND COMPARISON OF THE RESULTS

To conduct a comparative analysis focusing on deformability and distortion response within the
girder's plane, an analysis was performed on a pure steel box girder which once again determines the
influence of the stiffness characteristics of the cross-section on the overall distortion response. The
cross-section will be deformed in relation to the original shape and will manifest out-of-plane warping
under the effect of the distortion load and the so-called distortion angles will be formed in the corners,
at the joints between the webs and the top and bottom flange respectively. During the analysis of steel
or concrete box girders, it is typically assumed that all four distortion angles occurring at the four
corners of the cross-section are equal. However, in composite box girders, the top concrete flange and
the bottom steel flange deform at different angles due to their varying stiffness properties. This leads
to two distinct distortion angles, each carrying different stress magnitudes. The shape that represents
the distortion response provides insight into how differences in stiffness characteristics, arising from
the composition of the box (composite vs. pure steel), impact the girder's behavior.

Figure 31 Response of the considered steel box girder cross-section under asymmetrical loading
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section, at the cross-sectional level

Table 9: Comparison of the relevant-distortion angle and distortion stresses in a composite and steel cross-

Composite girder (A) Steel girder (B) A/B
6, 0.04786 0.00871 5.50
| 6, 0.0096 0.00871 1.10
Distortion angle
E B g 0.07 MPa 18.95 MPa 0.004
Brpuris 21.63 MPa 18.05 MPa 1.19
P earel Mapu 13.74 MPa 11.53 MPa 119
bending moments Migisi 0.81 MPa 0.51 MPa 1.61
Max, top flange 0.36 MPa 3.05 MPa 0.11
Transverse stresses
Max, bottom flange 5.65 MPa 4.56 MPa 1.23
20, ' ;
154
& 10,
5.5
S0 b .04 6,06 6.66 6.1 [x1.6:3)
Steain
Aamp. 2 |
8.0} o
60+ L
20
0.0 L 1 : 1 i i3 i
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 [x1.E-6]
Strain
[x1,E~3]
0.50
0.401~
@ 0,304
| L1
i 0.204
0.104-
O.EGO o.éo

Time

UR3 H: 1429 NSET A
UR3 Hi 3417 WSET A
UR3 H: 43567 NSET A
UR3 lf: 199476 NSET A

cross-section under asymmetrical loading

0.00
0.00
Figure 32 Diagram of stresses and manifested rotations in the key nodes of the considered composite box girder
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[x1.E3]
120

Strss

o8
i
5

.00 0.10 0.20 0.30 0.40 0.50 0.60
Strain

1.0l

20}

0.0l TS i ; ) i
0.00 .10 0.20 0. 0.40 0.50

0.60 0.80 1.00
Time

- UR1 H: 30 HSET SET-8
- URYL H: 223 HSET SET-8

Figure 33 Diagram of stresses and manifested rotations in the key nodes of the considered steel box girder
cross-section under asymmetrical loading - pure steel and composite node
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6. CONCLUSIONS

This thesis is dedicated to investigating the behavior of composite box girders when subjected to
asymmetric loading, leading to distortion. The complexity of this problem, coupled with the scarcity of
studies addressing the distinct responses of composite girders, primarily stemming from differences in
stiffness between pure and composite nodes, served as the driving force behind this analysis. To
comprehensively understand the structural behavior, two distinct analytical methods were employed.
One approach utilizes classical formulations, while the other relies on a mathematical model grounded

in the finite element method.

By developing analysis methods, which are primarily rooted in analytical formulations for bending,
torsion, and distortion, it becomes evident that despite the inherent simplifications and the complexity
of the physical phenomenon, these approaches can offer greater relevance and clarity in the
preliminary design phase. This is in contrast to finite element or surface element methods, which entail
handling a substantial amount of data, thereby introducing a higher potential for errors.

The examination of bending, warping torsion, and distortion phenomena, including the specialized
principles enabling the analysis of composite girders, and the utilization of solutions grounded in
solving the fundamental equilibrium equation using the beam on elastic foundation analogy, which
considers the influences of the structural stiffness characteristics of the box girder frame, highlights
the importance of these phenomena in shaping the overall longitudinal and transverse behavior of the
structure, both within and outside the plane of the girder itself.

Through the application of the proposed analytical method to a composite box girder cross-section
under asymmetric loading, segmented into loading subsystems, and taking into account the varying
stiffness characteristics between the pure steel node (web/bottom flange) and the composite node
(web/top flange), on the overall stress distribution, the significant influence of these stiffness
characteristics of the frame is evident. The observed differences in distortion angles, leading to distinct
distortion stresses in the two nodes, reaffirm the necessity of incorporating node stiffness
characteristics in the analysis of composite box girders.

To validate the analytical method and its results, a mathematical model was implemented in the
"ABAQUS" software package. This model accounts for the deformations of the composite girder,
including both longitudinal and transverse aspects, resulting in the determination of distortion angles,
stresses, and longitudinal warping. The successful comparison between the analytical method and the
results obtained through numerical simulation in "ABAQUS" confirms the accuracy and practicality of
the proposed method.

In conclusion, the proposed method, which enables the calculation of distinct distortion angles for
pure steel and composite nodes, proves its utility in analyzing the response of composite box girders.
This approach, which considers the stiffness characteristics of the frame within the girder's cross-
section, is essential due to the emergence of additional stresses resulting from distortion. These
additional stresses, alongside those from transverse bending and St. Venant shear, include distortional
normal stresses due to warping and transverse bending stresses caused by distortion. These stresses
can be significant, and their response may rely on the deformable stiffness of the cross-section. Thus,
for an accurate assessment of frame stiffness, all relevant parameters should be considered.
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In summary, the method proposed in chapter 3.4.4 provides a practical analytical approach for defining
the distortion behavior of composite box girders. It allows for a better understanding of stress
distribution within composite box girders by considering the varying stiffhess provided by the concrete
slab.

Since the definition of the distortion angle is crucial in the definition of the distortional stiffness of the
frame, the integration of the derivatives of the basic differential equation for the distortion problem
is proposed for the bending curve of the top concrete and the bottom steel flange. The equation, on
which the proposed method is based, described in chapter 3.4.4.5, was solved through the analogy-
"Beam of Elastic Foundation".

To further validate the accuracy of the proposed method, a laboratory test using a 3D model at an
appropriate scale is suggested. This test would provide the actual distortional deformation of the box
girder and serve as additional confirmation of the reliability of the simplified analytical method for
predicting the girder's response under distortion.
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APPENDICES

Appendix 1 Software output

An overview of the essential modeling steps and the results obtained from the analysis conducted in
the "ABAQUS" software package is provided. The results focus on key nodes that are analyzed due to
their varying stiffness characteristics.
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