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1. Introduction

The geometric approach to both differential equations and classical me-
chanics has been very clarifying for many problems and is receiving a lot of
attention during the last years. As far as we know there is no systematic
treatment of the concept of quasi-coordinate from the geometric point of
view, and it is well known that the use of such quasi-coordinates has many
applications in physics and engineering [21]. Our aim in this paper is to
provide the geometric approach to such a concept and to prove the efficiency
of such geometric tool for solving different problems.

The dynamics of a classical system is usually described in terms of gene-
ralized coordinates on a tangent bundle of a manifold, i.e. positions qi and
their velocities vi ≡ q̇i. However, sometimes it is useful to consider a diffe-
rent set of coordinates, e.g. Euler equations for the rigid body are written
in terms of the three Euler angles (θ, ψ, ϕ) and the three components of the
angular velocity (ωθ, ωψ, ωϕ) instead of the velocities (θ̇, ψ̇, ϕ̇). This new set
of coordinates are called quasi-velocites. Although usually the calculations
in quasi-coordinates are difficult, they are used to solve many types of me-
chanical systems (see [14, 21]). The geometrical description on the tangent
bundle that we propose is a particular case of a more general geometrical
framework, the Lagrangian mechanics on Lie algebroids.
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Lie algebroids provide a very general framework for Mechanics, including
mechanical systems with symmetries in the same scheme. Roughly speaking,
a Lie algebroid is a generalization of both a Lie algebra and a tangente bun-
dle, these being the simplest examples of Lie algebroids. For a detailed study
of this subject we refer the books of Cannas et. al. [2] and of Mackenzie [17].
Since Pradines [22], who introduced the Lie algebroids as infinitesimal ob-
jects corresponding to Lie grupoids, several authors have studied the theory
of Lie algebroids giving important contributions for the knowledge of their
properties and applications. Among others, Higgins et. al. [13] introduced
the notion of prolongation of a Lie algebroid over a map; Weinstein [24] was
the first to study Lagrangian mechanics on Lie algebroids and Mart́ınez [18]
developed the formalism for the Lagrangian mechanics on Lie algebroids,
generalizing the fundamental geometrical elements of Lagrangian mechanics
(see also [15] and references therein).

One of the goals of this paper is to deal with systems with linear non-
holonomic constraints in Lie algebroids, applying a generalized version of
the well-known methods of the Lagrangian multipliers [1, 4, 23] and Gibbs-
Appell [12, 16]. The solution of these systems is obtained in local coordinates
adapted to the constraints. These adapted coordinates on a Lie algebroid
play the rôle of quasi-coordinates on a tangent bundle. For the subject of
non-holonomic systems in a Lie algebroid we refer the first paper from Cortés
et. al. [7] and the papers of Mestdag et. al. [19, 20], Cortés et. al. [8] and
Cariñena et. al. [6].

This article is organized in the following way. In the first section we re-
call the geometrical tools of classical mechanics in a tangent bundle. In the
second section, we provide the geometric approach to solve classical systems
using quasi-coordinates. In the third section we give a brief introduction to
Lie algebroids and in the fourth section we see how the geometric approach
to quasi-coordinates, given in the second section, derive from a Lie algebroid
structure. In the fifth section we generalized the problem of quasi-coordinates
in a tangent bundle to the problem of changing coordinates in a Lie alge-
broid. In the last section we apply the above problem to solve systems with
linear non-holonomic constraints in Lie algebroids, using the methods of the
Lagrange multipliers and of Gibbs-Appell in Lie algebroid framework.
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2. The geometric approach to classical mechanics of au-

tonomous systems

In the geometric approach to autonomous systems, the existence of holo-
nomic constraints amounts to restrict the possible configurations of the sys-
tems and to consider the set of such possible configurations as a differentia-
ble manifold, usually denoted by Q and called configuration space. First-
order differential equations appear as local expressions determining the in-
tegral curves of vector fields in Q, which are sections of the tangent bundle
τQ : TQ → Q, while second-order differential equations appear as local ex-
pressions determining the integral curves of a special type of vector field on
TQ, the so-called second-order differential equation vector fields.

A local chart (U, φ) on the n-dimensional manifold Q provides a local tri-
vialization of τ−1

Q (U) and therefore a set of tangent bundle coordinates. If

(q1, . . . , qn) are the coordinates on U , then the set of vector fields on U ,
given by {∂/∂qi | i = 1, . . . , n}, define such a local trivialization and if v is
the vector at the point q of coordinates (q1, . . . , qn) given by v = vi ∂/∂qi,
the local coordinates of (q, v) are (q1, . . . , qn, v1, . . . , vn). Note that T (TQ)
has two different vector bundle structures over TQ given, respectively, by
τTQ : T (TQ) → TQ and TτQ : T (TQ) → TQ. Sections with respect to
τTQ are the vector fields on TQ and those which furthermore are also sec-
tions with respect to TτQ are the special kind of vector fields to be called
second-order differential equation (shortened SODE) vector fields. The local
expression of such a SODE vector field is

D = vi
∂

∂qi
+ f i(q, v)

∂

∂vi
.

The two important geometric ingredients of a tangent bundle are a (1,1)-
tensor field S, called vertical endomorphism, and the Liouville vector field
∆ generating dilations along the fibres (see [9, 10, 11]). The coordinate
expression of S in terms of natural tangent bundle coordinates (qi, vi) on TQ
is

S =
∂

∂vi
⊗ dqi ,

while the dilation vector field ∆ on TQ, which is the generator of the 1-
parameter group of dilations (q, v) 7→ (q, et v), is given in such coordinates
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by

∆ = vi
∂

∂vi
.

Both the vector field ∆ and the tensor field S can be used to characterize
SODE vector fields D, as those satisfying

S(D) = ∆ .

All the constructions in the geometric approach to Lagrangian mechanics
can be formulated using such objects [9, 10, 11]. So, given a Lagrangian
function L ∈ C∞(TQ) we can define the Cartan 1-form θL = dL ◦ S, with
coordinate expression θL = (∂L/∂vi) dqi, and then the Cartan 2-form ωL =
−dθL is given by

ωL = −dθL =
∂2L

∂vi∂qj
dqi∧dqj +

∂2L

∂vi∂vj
dqi∧dvj .

The exact 2-form ωL is symplectic when the Lagrangian is regular, which
in local coordinates means that det(∂2L/∂vi ∂vj) 6= 0. So, when ωL is sym-
plectic, it establishes a one-to-one correspondence, ω̂L : X(TQ) → Ω1(TQ),
between vector fields and 1-forms on TQ just by contracting vector fields with
ωL. In particular, the vector field responsible for the dynamics described by
the Lagrangian L in the absence of non-conservative forces, corresponds to
the energy function defined by L, EL = ∆(L) − L, and it can be shown to
be a SODE vector field.

The remarkable fact is that in such a correspondence, vertical vector fields
are in one-to-one correspondence with semi-basic 1-forms on TQ (see [4]).
This is an important property because forces arising in classical formulations
are geometrically described by semi-basic 1-forms.

The simplest case is when there are not external forces and then the La-
grangian describing the motion is given by the kinetic energy, corresponding
to the Riemannian metric g defined on the configuration space Q, as a sub-
manifold of the ambient Euclidean space:

T =
1

2
g̃(D,D) ,

for any choice of a SODE vector field D. Here g̃ denotes the pullback of g
to TQ. In this case θT (U) = g̃(U, ·), for any U ∈ X(TQ), and ET = T . The
free dynamics is given by the vector field XT , solution of i(XT )ωT − dT = 0.
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The integral curves of XT are the geodesics of the Levi-Civita connection
associated with the Riemannian metric g (see [3]).

In the presence of external forces, given by a semibasic 1-form F on TQ,
the dynamical vector field is the solution of

i(X)ωT − dT = −F , (1)

i.e. X = XT + ω̂−1
T (−F), where the second term in the sum is vertical and

therefore X is also a SODE vector field. Note that F can also be decomposed
into a sum of a non-conservative force Q with another force which is conserv-
ative Fc, derivable from potentials, i.e. a (basic) exact form Fc = −dV which
can be absorbed in the first term of (1) just by redefining the Lagrangian,
now becoming L = T − V . In summary, the equations of motion will be

i(X)ωL − dEL = −Q , (2)

where we assume that the conservative forces are included in the definition
of L, because ωL = ωT and EL = T + V . The Lagrangian functions of the
form L = T − V are usually said to be of mechanical type.

Now, one can develop the theory for general Lagrangian functions L ∈
C∞(TQ), where the conservative forces are included in its definition, with
the only assumption of regularity, i.e. it is assumed that L is regular.

3. A geometric approach to quasi-coordinates

The use of quasi-coordinates has been shown to be very efficient in descri-
bing the motion of some dynamical systems. For instance, the use of the area
swept by the line joining a planet with the sun for the motion of the planet,
or the use of the components of the angular momentum for describing the
motion of a rigid body with a fixed point. In fact, as pointed out in [12, 25],
the configuration of a dynamical system cannot be in general described by
quasi-coordinates, but it is possible to describe the displacement by using
quasi-coordinates, more specifically quasi-velocities. We explain next the
geometric meaning of such quasi-velocities.

Let πQ : T ∗Q → Q denote the cotangent bundle of a n-dimensional diffe-
rentiable manifold Q. It is well-known that a local 1-form α on an open set
U of Q, i.e. a section for πQ over U , defines a linear function α̂ ∈ C∞(U),
where U = τ−1

Q (U), as follows:

α̂(v) =
〈
ατQ(v), v

〉
,

for all local vector field v defined on the open set U .
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As indicated above, the choice of a local chart on an open set U of Q, with
coordinates (q1, . . . , qn), determines a basis (∂/∂q1, ..., ∂/∂qn) of the tangent
space at each point of U = τ−1

Q (U). In such a way we define an associated
local coordinate system on TQ. The 2n coordinates are now the n basic
functions qi (or in a more rigorous notation qi ◦ τQ) and the corresponding

functions on the fibres vi = d̂qi. Note that dq1 ∧ · · · ∧ dqn 6= 0 and therefore

the functions d̂qi, for i = 1, . . . , n, are functionally independent.
When the local expression of the local 1-form α, in terms of the coordinates

on U , is α = αi(q) dq
i, then α̂ is the function α̂(v) = αi(q) v

i. In order to
define a local chart on U , instead of {dq1, . . . , dqn}, we can alternatively make
use, together with the base coordinate functions, of any other set of n 1-forms
{α1, . . . , αn}, given locally by

αi = αi j(q) dq
j , ∀i = 1, . . . , n ,

with the only condition of being linearly independent at each point, i.e.
α1 ∧ · · · ∧ αn 6= 0, in this case the 2n coordinates in U are the n basic

functions qi and the linear functions {α̂1, . . . , α̂n}. These new coordinates

on the fibres {α̂1, . . . , α̂n} are but linear combinations, with basic functions
as coefficients, of the usual velocities. Note that the 1-forms αi do not need

to be exact, but in the case of all of them being exact, the functions α̂i

would be the velocities corresponding to a new coordinate system on the

base manifold Q. The new fibre coordinates wi = α̂i, which play the rôle of
velocities, are called quasi-velocities, while the coordinates (qi, wi) are called
quasi-coordinates on TQ. Note also that in some cases we can globally define
quasi-velocities on Q, for instance when Q is a Lie group G, while velocities
can only be defined locally.

The fact that α1∧· · ·∧αn 6= 0, points out that there exists functions βi j(q)
such that

dqi = βi j(q) α
j , ∀i = 1, . . . , n ,

with det(βi j) 6= 0. The matrix with entries βi j(q) will be the inverse matrix
of

(
αi j(q)

)
, i.e.

βi j(q) α
j
k(q) = δik ,

for all q ∈ U . The quasi-velocities wi are associated to a basis of vector
fields {X1, ..., Xn} on Q, dual to the basis of 1-forms {α1, . . . , αn}, that is,
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〈
αi, Xj

〉
= δij, so locally Xj = βi j∂/∂q

i, and

wiXi = vj
∂

∂qj
.

Then, the relations among fibre coordinates are

wi = αi j v
j , vi = βi j w

j ,

and consequently,
∂wi

∂vj
= αi j ,

∂vi

∂wj
= βi j ,

and
∂

∂vi
= αj i

∂

∂wj
,

∂

∂wi
= βj i

∂

∂vj
.

The local expressions of the Liouville vector field ∆ and the vertical endo-
morphism S in terms of quasi-coordinates are, respectively, given by

∆ = vi
∂

∂vi
= βi j w

j αj i
∂

∂wj
= wj ∂

∂wj
,

and

S =
∂

∂vi
⊗ dqi = αj i

∂

∂wj
⊗ dqi =

∂

∂wj
⊗ αj .

The explicit coordinate expressions of a SODE vector field D ∈ X(TQ),
which is characterized by S(D) = ∆, in terms of quasi-coordinates is

D = βi k(q)w
k ∂

∂qi
+ f i(q, w)

∂

∂wi
,

because if

D = hi(q, w)
∂

∂qi
+ f i(q, w)

∂

∂wi
,

then

S(D) = αj i h
i(q, w)

∂

∂wj
,

and therefore S(D) = ∆ if and only if αj i h
i(q, w) = wj, that is, hi = βi j w

j.
Let us consider a system characterized by a regular Lagrangian function

L ∈ C∞(TQ) and the action of a non-conservative force Q, locally defined
by Q(q, v) = Qi(q, v)dq

i. The Cartan 1-form θL = dL ◦ S is given in quasi-
coordinates by

θL =

(
∂L

∂qk
dqk +

∂L

∂wi
dwi

)
◦

(
αj i

∂

∂wj
⊗ dqi

)
= αj i

∂L

∂wj
dqi =

∂L

∂wj
αj ,
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and consequently, the Cartan 2-form ωL defined by ωL = −dθL, turns out to
be

ωL =
1

2

[(
∂αk i
∂qj

−
∂αk j
∂qi

)
∂L

∂wk
+ αk i

∂2L

∂qj∂wk
− αk j

∂2L

∂qi∂wk

]
dqi ∧ dqj

+αk i
∂2L

∂wj∂wk
dqi ∧ dwj ,

that is,

ωL =
1

2

[
γkml

∂L

∂wk
+ βj l

∂2L

∂qj∂wm
− βi m

∂2L

∂qi∂wl

]
αm ∧ αl +

∂2L

∂wj∂wk
αk ∧ dwj ,

where the functions γkml are given by

γkml = βi mβ
j
l

(
∂αk i
∂qj

−
∂αk j
∂qi

)

and are known in the literature by Hamel symbols (see [14, 21]). We can
now write the coordinate expression in terms of quasi-coordinates of the
dynamical equation i(X)ωL = dEL −Q, where the energy of the system in
the absence of non-conservative forces is given by

EL = ∆L− L = wi ∂L

∂wi
− L .

It is well-known that when L is regular the dynamics will be given by a
second-order differential equation vector field (see [10]), of the form X =
βi mw

m ∂/∂qi + fm(q, w)∂/∂wm. The left-hand side of the dynamical equa-
tion becomes:

i(X)ωL =

(
γkml

∂L

∂wk
+ βj l

∂2L

∂qj∂wm
− βi m

∂2L

∂qi∂wl

)
wmαl

+wm ∂2L

∂wj∂wm
dwj − fm

∂2L

∂wm∂wl
αl ,

while the right hand side is

dEL −Q =

(
wkβi l

∂2L

∂qi∂wk
− βi l

∂L

∂qi

)
αl + wk ∂2L

∂wjwk
dwj − Υlα

l ,

where Υl = βilQi is the l-component in quasi-coordinates of the external
force Q. Therefore,

wmγkml
∂L

∂wk
− wmβi m

∂2L

∂qi∂wl
− fm

∂2L

∂wm∂wl
= −βi l

∂L

∂qi
− Υl .
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The dynamical equation is equivalent to

£XθL = dL+ Q,

where £X is the Lie derivative. In the physicians notation, the above equation
is equivalent to the following system of generalized Euler-Lagrange equations:

d

dt

(
∂L

∂wl

)
= βj l

∂L

∂qj
+ wmγkml

∂L

∂wk
+ Υl . (3)

Suppose that the Lagrangian is of mechanical type, i.e. L is the difference
between the kinetic energy T and the potential energy V of the system.
Then, the equations of motion are given by:

d

dt

(
∂T

∂wl

)
= βj l

∂T

∂qj
+ wmγkml

∂T

∂wk
+ Πl, (4)

where Πl = βjlFj is the l-component in quasi-coordinates of the external
force F = −dV + Q (see [12, 25]).

4. Lie algebroids

The structure of Lie algebroid has been shown to be of a great usefulness in
Mechanics from the pioneer paper by Weinstein [24]. In particular Mart́ınez
showed in [18] that the Lagrangian theory can be developed directly in the
Lie algebroid formalism by using new geometric tools which generalize the
vertical endomorphism and the Liouville vector field, but now in a generali-
zation of the tangent bundle of TQ.

We summarize in this section the basic concepts and definitions of the
theory of Lie algebroids.

Definition 4.1. A Lie algebroid with base M is a vector bundle τA : A→M ,
together with a Lie algebra structure in the space of its sections given by a Lie
product [·, ·]A, and a vector bundle map over the identity in the base, called
anchor, ρ : A → TM , inducing a map between the corresponding spaces of
sections, to be denoted with the same name and symbol, such that:

[v, ϕw]A = ϕ [v, w]A + (ρ(v)ϕ)w,

for any pair of sections for τA, v and w, and each differentiable function ϕ
defined on M .
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Let {qi | i = 1, . . . , n} be local coordinates in a chart on an open set
U ⊂M , and let {eα | α = 1, . . . , s} be a basis of local sections of the bundle
UA = τ−1

A (U) → M . Each local section v is written v = vα eα. The local
coordinates of p ∈ UA are p = (qi,vα). In a similar way, the corresponding
dual basis {eα | α = 1, . . . , s} of local sections on UA∗ = π−1

A (U), allows us to
define local coordinates (qi, µα) for πA∗ : A∗ →M .

The local expressions for the Lie product and the anchor map are (sum-
mation on repeated indexes is understood):

[eα, eβ]A = cαβ
γ eγ , ρ(eα) = ρi α

∂

∂qi
, (5)

where α, β, γ = 1, . . . , s, and i = 1, . . . , n. The functions cαβ
γ ∈ C∞(U)

and ρi α ∈ C∞(U) are called structure functions of the Lie algebroid. The
conditions for ρ to be a Lie algebra homomorphism are

ρj α
∂ρi β
∂qj

− ρj β
∂ρi α
∂qj

= ρi γ cαβ
γ , ∀i = 1, . . . , n, (6)

and for the Leibniz condition and the Jacobi identity of the bracket [·, ·]A,
are ∑

cycl(α,β,γ)

(
cαβ

ν cνγ
µ + ρi γ

∂cβα
µ

∂qi

)
= 0, ∀µ = 1, ..., s. (7)

These equations are called structure equations of the Lie algebroid.
Examples of Lie algebroids are the tangent bundle of a manifold M , with

the identity as anchor map and the usual bracket of vector fields, or any inte-
grable subbundle of it, and also a finite-dimensional Lie algebra g, considered
as a vector bundle over a point, for which the anchor vanishes identically and
the bracket is that of g. In the first case, with the usual choice of coordinates
(qi, vi) on A = TM , induced from local coordinates (qi) on the base M , the
structure functions are

cij
k = 0 , ρi j = δij.

However, in arbitrary coordinates, the structure functions cij
k, in general,

do not vanish. For the case of the Lie algebra g the structure functions are
the structure constants of the Lie algebra cαβ

γ and ρi α = 0.
Given a Lie algebroid (A, ρ, [·, ·]A) over M , there exists a derivation dA of

degree one of the graded exterior algebra of forms of A, Ω•(A), to be called
A-forms, which is nilpotent of order two, i.e. d2

A = 0 (see e.g. [2, 17]). It
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is called the exterior derivative of the Lie algebroid. In the particular cases
of the tangent bundle TM and that of a Lie algebra g, dA reduces to the
de Rham operator d on the manifold M and the Chevalley differential dg,
respectively.

5. Quasi-coordinates and the tangent bundle as a Lie

algebroid

When we use quasi-coordinates (qi, wi) on the tangent bundle TQ, then
we have an associated choice of a local basis of sections for τTQ : T (TQ) →
TQ, i.e. a local basis of vector fields in TQ. Such basis is {Xj, ∂/∂w

j |
j = 1, . . . , n}, where {qi | i = 1, ..., n} is a set of local coordinates on Q and
Xj = βi j ∂/∂q

i is an element of the dual basis of {αi | i = 1, ..., n} .
Using such a local basis, the relations defining the structure functions of

the Lie algebroid τTQ : T (TQ) → TQ are:

[Xr, Xl] = γmrlXm,

[
Xm,

∂

∂wk

]
= βjm

∂βrk
∂qj

αlr
∂

∂wl
,

[
∂

∂wi
,
∂

∂wj

]
= 0,

ρ(Xm) = Xm, ρ

(
∂

∂wj

)
=

∂

∂wj
.

Recall that the anchor map ρ on the Lie algebroid T (TQ) is the identity map
on T (TQ), the bracket [·, ·] on the sections of the Lie algebroid is the usual
bracket of vector fields on TQ and γmrl are the Hamel symbols associated with
the definition of the quasi-coordinates.

The expression of the exterior differential of the Lie algebroid will be de-
termined, for all F ∈ C∞(TQ) by

dF = Xi(F )αi +
∂F

∂wi
dwi.

Given a Lagrangian function L ∈ C∞(TQ), we can easily calculated its
differential, the differential of EL = ∆(L) − L and the Cartan forms θL =
dL ◦ S and ωL = −dθL. Their local expressions in quasi-coordinates are
given in Section 3. If the Lagrangian is regular and a non-conservative force
Q is given, the dynamics equation i(X)ωL = dEL −Q has a unique solution
X = wmXm + fm∂/∂wm, that satisfies the generalized Euler-Lagrangian
equations (3).

Example 5.1. Let us consider a particle P (mass = 1) moving in a plane
under the action of a force of magnitude F (r) on the direction of a fixed point
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O, where r represents the distance between the point O and the particle P .
Let θ be the angle that the line OP makes with a fixed direction in the plane,
and Ȧ the area swept by unity of time by the line. The configuration space of
the system is Q = R

2−{0} and the usual coordinates on the phase space TQ
are q1 = r, q2 = θ, ṙ, θ̇. In order to solve the equations of motion we use the
following set of quasi-velocities on TQ: w1 = ṙ, w2 = 2Ȧ = r2θ̇. From the
previous relations, we conclude that the coordinates transformation matrices
α and β are the following:

α = (αi j) =

(
1 0
0 r2

)
, β = (βi j) =

(
1 0
0 1

r2

)
.

The motion of the particle P is described by the regular Lagrangian

L =
1

2
(w1)2 +

1

2

(w2)2

r2
− V (r),

where F1 = −dV /dr = F (r) and F2 = 0. The equations of motion (4) are
equivalent to

{
Π1(r, θ, w

1, w2) = ẇ1 − (w2)2

r3

Π2(r, θ, w
1, w2) = ẇ2

r2

.

Since Π1 = β1
1F1+β2

1F2 = F1 and Π2 = β1
2F1+β2

2F2 = 0, the dynamics
is given by the integrable curves of the vector field X = wmXm + f i ∂/∂wi

satisfying:
{
ẇ1 = F (r) + (w2)2

r3 = f 1

ẇ2 = 0 = f 2
,

where ṙ = w1 and θ̇ = w2/r2. As we can easily see, the quasi-velocity w2 is
a constant of motion, that is, the area swept Ȧ is constant of motion.

The usual coordinates on TQ are: q1 = r, q2 = θ, v1 = ṙ and v2 = θ̇. If we
need to determine the geometrical solution of the dynamics in the usual set
of coordinates on TQ, we must pay attention to the term with ∂/∂qi in the
solution X in quasi-coordinates, that is, the parcial derivative in order to the
coordinate qi maintaining fixed the coordinates w:

∂

∂qi

∣∣∣∣
w

=
∂

∂qi

∣∣∣∣
v

+
∂

∂vj
∂vj

∂qi
=

∂

∂qi

∣∣∣∣
v

+
∂

∂vj
∂βj k
∂qi

αk rv
r. (8)
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In this particular case,

X = wmXm+

(
F (q1) +

(w2)2

(q1)3

)
∂

∂w1
= wmβi m

∂

∂qi

∣∣∣∣
w

+

(
F (q1) +

(w2)2

(q1)3

)
∂

∂w1
.

So, applying (8), we have the dynamics solution in usual coordinates (q1, q2,
v1, v2) on TQ

X = vi
∂

∂qi

∣∣∣∣
v

+ vi
∂

∂vj
∂βj k
∂qi

αk rv
r +

(
F (q1) +

(w2)2

(q1)3

)
βi 1

∂

∂vi
,

that is,

X = vi
∂

∂qi

∣∣∣∣
v

+ v1 ∂

∂v2

(
−2

r3

)
r2v2 +

(
F (q1) +

(w2)2

(q1)3

)
∂

∂v1
.

Then, in the coordinates (r, θ, ṙ, θ̇) we have

X = ṙ
∂

∂r
+ θ̇

∂

∂θ
+

(
F (r) + rθ̇2

) ∂

∂ṙ
−

2ṙθ̇

r

∂

∂θ̇
.

Example 5.2. Let G be a Lie group and e the unity of the group. We can
identify the tangent bundle TG with G× TeG, using the map TLg−1 : TG→
G× TeG given by

TLg−1(g, ġ) = (g, ξ),

where Lg : G → G is defined by Lgh = gh, for all h ∈ G. Let (ξI), for
I = 1, ..., dimG, be the set of coordinates of ξ ∈ TeG with respect to a base
{eI} of TeG, then (ξI) is a set of quasi-velocities in TG, where

ξIeI = ξ = TgLg−1(ġ).

If g is a point in G of local coordinates (gI), then (gI , ξI) define a set of
quasi-coordinates in TG. Note that the map α = TgLg−1 : TgG → TeG is
an invertible linear transformation whose inverse transformation is given by
β = TeLg : TeG → TgG. Thus, ξI = αI J ġ

J and ġI = βI Jξ
J , where α =

(αI J) and β = (βI J) are the coordinates transformations matrices, between
the usual coordinates (gI , ġI) on TG and the quasi-coordinates (gI , ξI).

Given a regular and G-invariant Lagrangian L ∈ C∞(TG), it does not
depend on the elements of the Lie group G. Thus, in quasi-coordinates, the
Lagrangian is given by l(ξ) = Lqc(g, ξ) = L(g, ġ). Since the Lagrangian L
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on the Lie algebroid TG is G-invariant, it is possible to obtain the Euler-
Lagrange equations of the gauge algebroid TG/G ≡ g from the equations (3)
on TG:

d

dt

(
∂l

∂ξI

)
= ξJcJI

K ∂l

∂ξK
, (9)

where cJI
K are the structure constants of the Lie algebra g of the Lie group

G, with respect to the basis {eI} of g ≡ TeG. In fact, let XL(g) = TeLg(X)
be the left-invariante vector field on G associated to an element X in the Lie
algebra g of G. Thus, the set

{
eLI

}
represents a local basis of sections of TG

associated to the set of local coordinates (gI , ξI) on TG ≡ G× g, because

ξIeLI = ġi
∂

∂gi
.

The structure functions of the Lie algebroid TG are given by:

[eLI , e
L
J ]TG = cIJ

KeLK , ρTG(eLJ ) = eLJ .

Using the structure functions of the Lie algebroid TG and the Euler-Lagrangian
equations (3), in the absence of non-conservative forces, we obtain (9). If
the Lagrangian L is regular, then the geometric solution of the dynamics is
a SODE vector field on TG given by XL = ξMeLM + fM∂/∂ξM with

fM = W
MI
ξJcJI

K ∂l

∂ξK
,

where W
MI

is the inverse matriz of
(
∂2l/∂ξI∂ξM

)
.

6. The problem of changing local coordinates on a Lie

algebroid with base coordinates fixed

Using the description of Lagrangian mechanics in a Lie algebroid (see [15,
18]) and the structure functions of the Lie algebroid for a given set of local
coordinates, it is possible to write the dynamics of the Lie algebroid in a
different set of coordinates, in parallel with quasi-coordinates formalism on
a tangent bundle (see [12, 14]). In an arbitrary Lie algebroid, we do not
have a canonical basis of sections for the Lie algebroid and, therefore, the Lie
algebroid does not have a natural set of coordinates. However, sometimes is
worthwhile to write the equations of motion in a given set instead of other
initially given, as we can see in the next section.
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Recall that the prolongation of the Lie algebroid p : A → M (see [13, 15,
18]) is a vector bundle T A over A, where T A is the total space of the pull-
back of the vector bundle Tp : TA → TM by the anchor map ρ : A → TM .
The projection pT A : T A → A is defined by pT A(b, v) = pTA(v) = a ∈ A,
with pTA : TA → A the canonical projection of the tangent bundle TA
over the base A. An element (b, v) of T A will be denoted by (a, b, v),
where a ∈ A is the point where v is tangent to A. With this notation,
T A = {(a, b, v) ∈ A× A× TA | p(a) = p(b), ρ(b) = Tap(v), with v ∈ TaA}.
The vector bundle pT A : T A→ A can be endowed with a Lie algebroid struc-
ture, where the anchor is the map ρT A : T A→ TA, given by ρT A(a, b, v) = v,
and the Lie bracket on the space of sections is defined by setting [15, 18]:

[V1, V2]T A(a) = (a, [σ1, σ2]A(p(a)), [X1, X2](a)),

for all a ∈ A and all projectable sections V1, V2 ∈ Γ(T A), i.e. sections of
the form Vi(a) = (a, σi(p(a)), Xi(a)) where σi ∈ Γ(A) and Xi ∈ X(A) are
such that Tp ◦ Xi = ρ(σi) ◦ p, with i = 1, 2. If A is the tangent bundle
to a manifold Q, A = TQ, endowed with its usual Lie algebroid structure,
the prolongation of the Lie algebroid A is the tangent bundle T (TQ) to TQ
endowed with its usual structure of Lie algebroid over TQ (see [18]).

Let us consider on the Lie algebroid A a new set of local coordinates
{(qi,wα) | i = 1, ..., n, α = 1, ..., s} (see section 4) associated to a basis
of sections {fα | α = 1, ..., s} of A, that satisfies:

wα = Φ̂α(q,v) = Φαβ(q)v
β, (10)

vα = Ψ̂α(q,w) = Ψαβ(q)w
β, (11)

for all α = 1, ..., s, where Φ̂α and Φ̂α are linear functions on A associated
to the A-1-forms Φα and Ψα, respectively, that verify ΨαβΦβγ = δαγ. With
these conditions, we have the following relations:

fα = Ψβαeβ , eα = Φβαfβ ,
∂

∂wα = Ψβα
∂
∂vβ ,

∂
∂vα = Φβα

∂
∂wβ .

Associated with the new coordinates on the Lie algebroid A, we consider on
the prolongation of A the following basis of local sections:

X ′
α(a) = (a, fα(p(a)), Xα(a)) , (12)

V ′
α(a) =

(
a, 0,

∂

∂wα

∣∣∣∣
a

)
,
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where Xα = Ψβα ρ
i
β ∂qi, for all α = 1, ..., r. Thus, the structure functions of

the Lie algebroid T A are given by:

[X ′
α,X

′
β]T A = γǫabX

′
ǫ , [X ′

α,V
′
β]T A = Ψβα ρ

i
β
∂Ψγβ

∂qi
ΦǫγV

′ǫ , [V ′
α,V

′
β]T A = 0 ,

ρT A(X ′
α) = Xα , ρT A(V ′

α) =
∂

∂wα
,

where [fα, fβ]A = γǫabfǫ.
Let L ∈ C∞(A) be the Lagrangian of a dynamical system on the Lie

algebroid A, depending on the action of a non-conservative force Q. The
elements of the Lagrangian formalism on the Lie algebroid A, with respect
to the local structure defined above, are given by:

1. Vertical endomorphism:

S = V ′
β ⊗X ′β;

2. Liouville section:
∆ = wǫV ′

ǫ;

3. Energy (in the absence of non-conservative forces):

EL = wǫ ∂L

∂wǫ
− L;

4. Differential of the energy:

dT AEL =

(
wǫXβ

(
∂L

∂wǫ

)
−Xβ(L)

)
X ′β + wǫ ∂2L

∂wβ∂wǫ
V ′β;

5. Cartan 1-form:

θL =
∂L

∂wβ
X ′β;

6. Cartan 2-form:

ωL =
1

2

(
γǫαβ

∂L

∂wǫ
−Xα

(
∂L

∂wβ

)
+Xβ

(
∂L

∂wα

))
X ′α∧X ′β+

∂2L

∂wβ∂wα
X ′α∧V ′β.

Given a section X = aαX ′
α + bαV ′

α of T A, the contraction of the section
with the Cartan 2-form is given by

i(X)ωL =

[
aα

[
γǫαβ

∂L

∂wǫ
−Xα

(
∂L

∂wβ

)
+Xβ

(
∂L

∂wα

)]
− bα

∂2L

∂wα∂wβ

]
X ′β

+aα
∂2L

∂wβ∂wα
V ′β.
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Therefore, if the Lagrangian is regular, the dynamics has a unique solution
X = aαX ′

α + bαV ′
α that satisfies the system



aα = wα

bα = W
αβ

[
wζγǫζβ

∂L

∂wǫ
− wζXζ

(
∂L

∂wβ

)
+Xβ(L) + Υβ

]
,

whereW
αβ

represents the entries of the inverse matrix of
(
∂2L/∂wβ∂wα

)
and

Υβ = ΨαβQα is the β-component of the non-conservative force Q = QαX
α, in

the new coordinates. As we expect the solution of the dynamics is a SODE
section of T A, because S(X) = ∆. Since X is a SODE vector field, the
dynamics equation is equivalent to

£ρT A
(X)θL = dT AL+ Q,

where £ρT A
(X) := i(X) ◦ dT A + dT A ◦ i(X). The generalized Euler-Lagrange

equations in the new coordinates, are given by

d

dt

(
∂L

∂wα

)
= Ψβα ρ

i
β
∂L

∂qi
+ wǫγβǫα

∂L

∂wβ
+ Υα, (13)

where q̇i = wαΨβαρ
i
β.

Example 6.1. Let P (M,G) be a principal bundle and (qi, gI , q̇i, ξI) a set of
quasi-coordinates on TP , where (qi) is a set of local coordinates on M , (qi, q̇i)
is the usual set of local coordinates on the tangent bundle TM and (gI , ξI) is
a set of quasi-coordinates on TG, given in the example 5.2.

Given a regular and G-invariant Lagrangian L ∈ C∞(TP ), it does not
depend on the elements of the Lie group G. Thus, in the quasi-coordinates,
the Lagrangian is given by l(q, q̇, ξ) = Lqc(q, g, q̇, ξ) = L(q, g, q̇, ġ). Since
the Lagrangian on the Lie algebroid TP is G-invariant, we can obtain the
equations of motion on the gauge algebroid TP/G from equations (13), in
the absence of non-conservative forces:

d

dt

(
∂l

∂ξI

)
= ξJγKJI

∂l

∂ξK
, (14)

d

dt

(
∂l

∂q̇i

)
=

∂l

∂qi
,

where γKJI = cJI
K are the structure constants of the Lie algebra g of the

Lie group G, with respect to a basis {eI} of g ≡ TeG (see [14]). Indeed,
let Π : TP → TP/G be the canonical projection over the principal bundle
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π : P →M = P/G. The gauge algebroid structure (ρTP/G, [·, ·]TP/G) is given
by (see for example [5, 17]):

(1) ρTP/G(X̂) = Tπ ◦ ρTP (X),

(2) [X̂, Ŷ ]TP/G = Π ◦ [X, Y ]TP ,

for all X, Y ∈ ΓΠ(TP ), Π-related with X̂, Ŷ ∈ Γ(TP/G), respectively. Given
a connection on the principal bundle π : P → M , we denote by A the con-
nection 1-form associated with the principal connection; in local coordinates,
A(∂/∂qi|q) = AI

i (q)eI. Let {ei, eI} be a basis of local sections of TP/G, ob-
tained by the Π-projection of the basis of local sections

{
(∂/∂qi)h, eLI

}
of TP ,

where (∂/∂qi)h = ∂qi −AI
i e
L
I is the horizontal lift of the vector field ∂qi on M

to a vector field on P and eLI is the left-invariant vector field on G associated
with the element eI of the basis of g. In these local coordinates, the gauge
algebroid structure is given by:

[ei, ej]TP/G = −CK
ij eK [ei, eI ]TP/G = cIJ

KAJ
i eK , [eI , eJ ]TP/G = cIJ

KeK ,

ρTP/G(ei) =
∂

∂qi
, ρTP/G(eJ) = 0,

where CK
ij are the coefficients of the curvature form defined by the princi-

pal connection. The local basis of sections
{
∂qi, eLI

}
of TP is associated to

the set of local coordinates given initially, (qi, gI , q̇i, ξI). The Π-projections,
Π ◦ ∂qi = fi ◦ π and Π ◦ eLI = fI ◦ π, define a local base of sections {fi, fI}
of TP/G, associated to the local coordinates (qi, q̇i, ξI) on TP/G. Note that
fi = ei + AI

i eI and fI = eI. By the definition of the gauge algebroid struc-
ture, we have [fi, fj]TP/G = [fi, fI ]TP/G = 0 and [fI , fJ ]TP/G = cIJ

KfK. So,
using the reduced Lagrangian l ∈ C∞(TP/G), we obtain from the generalized
Euler-Lagrange equations (13) the equations of motion (14). The reduced

dynamics X̂l = aαX ′
α + bαV ′

α satisfies the following system



aα = wα

bα = W
αβ

[
ξJγKJβ

∂l

∂ξK
− q̇i

∂2l

∂qi∂wβ
+ δβi

∂l

∂qi

]
,

where wi = q̇i, wI = ξI, W
αβ

are the entries of the inverse matriz of(
∂2L/∂wβ∂wα

)
and {X ′

α,V
′
α} is a base of local sections of T (TP/G) defined

in (12).
From Cariñena et. al. [6], the Lagrangian L is Π-projectable because

there exists a function l such that L = l ◦ Π. Therefore, the solution XL ∈
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X(TP ) of the dynamics characterized by L, projects into the dynamics X̂l ∈
Γ(T (TP/G)) characterized by the reduced lagrangian l, that is, Π ◦ XL =

X̂l ◦ Π, where Π : T (TP ) ≡ T (TP ) → T (TP/G) ≡ T (TP )/G is defined by
Π(a, b, v) = (Π(a),Π(b), TΠ(v)), for all (a, b, v) ∈ T (TP ).

7. Application of the above problem to solve Lagrangian

systems with non-holonomic linear constraints on a

Lie algebroid

In this section, we intend to solve systems with linear non-holonomic cons-
traints on a Lie algebroid A, i.e. constraints which are linear in the local
coordinates vα on A associated with a local base of sections {eα} of A, by
using local coordinates adapted to the constraints.

Let us consider on a Lie algebroid (A, ρ, [·, ·]A) over M , a system with k
linear non-holonomic constraints

φa(q,v) = Φ̂a(q,v) = Φaβ(q)v
β,

given by a subbundle τ : B → M of A, where Φa is an A-1-form and Φ̂a

is the associated linear function. The submanifold B is defined by the set
{φa = 0 | a = 1, ..., k} and is called the constrained manifold. Suppose that
the A-1-forms Φa are such that Φ1 ∧ . . .∧Φk 6= 0. Then, the functions φa are
functionally independent.

Let T B be the vector bundle over B, whose total space

T B = {(b, c, v) ∈ B ×B × TB | τ(b) = τ(c), ̺(c) = Tτ(v) com v ∈ TbB}

is given by the pullback of the vector bundle Tτ : TB → TM by the map
̺ = ρ ◦ ι : B → TM , where ι : B → A is the canonical inclusion. The
projection pT B : T B → B of T B onto B, is given by pT B(b, c, v) = b. Let
us suppose that L ∈ C∞(A) is a regular Lagrangian, that describes the non-
holonomic system subjected to the action of a non-conservative force Q. In
parallel with the formalism of linear non-holonomic systems in a tangente
bundle, the equations of motion of the non-holonomic system in A, can be
written satisfying the d’Alembert-Chetaev principle, in the global form:

{
(i(X)ωL − dT AEL + Q) |B ∈ Γ(B̃0)
X|B ∈ Γ(T B)

, (15)

where B0 = 〈Φa | a = 1, ..., k〉 is the annihilator of B, and B̃0 =
〈p∗2Φa | a = 1, ..., k〉 can be seen as a vector bundle over B, where p2 : T A→
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A is the projection defined by p2(a, b, v) = b, for all (a, b, v) ∈ T A. Note
that, for each m ∈M , B0

m are the set generated by the elements Φa(m) that
satisfy 〈Φa(m), v〉 = 0, for each element v ∈ Bm and a = 1, ..., k.

Suppose that the admissibility condition holds:

dim(T A
b B)0 = dimS∗((T A

b B)0),

for all b ∈ B, where T AB → B is the prolongation of the subbundle B with
respect to the Lie algebroid A (see [15, 19]) and S is the vertical endomor-
phism on T A. Observe that dim(T AB)0 = k and (T AB)0 is generated by

the 1-forms dT Aφa, and also S∗((T AB)0) = B̃0.

7.1. Lagrange multipliers method in a Lie algebroid framework. In
this section, we will solve the non-holonomic system given previous, using
the method of Lagrangian multipliers (see [4] for the classical case).

The dynamics equation of the system is given by

i(X)ωL = dT AEL −Q− λa p
∗
2Φa, (16)

where the Lagrange multipliers λa ∈ C∞(A) are to be determined by the
tangency condition £ρT A

(X)φa = 0, for all a = 1, ..., k. Recall that p2 : T A→
A is defined by p2(a, b, v) = b and the semi-basic sections p∗2Φa = Φaβχ

β are
the reaction forces of the Lie algebroid A (see [6]). The solution of the
equation (16) is a section of the form

X = XQ
L + λaZa,

where XQ
L is the solution of the dynamics without constraints and Za is a

vertical section of T A satisfying the condition

i(Za)ωL = −p∗2Φa.

Note, once again, that the section X is a SODE section of T A, since S(X) =
S(XQ

L ) = ∆.
It is important to observe that for the Lagrangian multipliers λa to be

determined, we must suppose the following compatibility condition (see [8]):
the matriz of entries Cab = ρT A(Za)φb is regular in each point of B, where B =
{wα = 0 | α = s− k + 1, ..., s} is the constrained manifold. In this situation,
we say that the non-holonomic system (L,B) on the Lie algebroidA is regular.
So, let us suppose that the non-holonomic system (L,B) is regular.



QUASI-COORDINATES FROM THE POINT OF VIEW OF LIE ALGEBROID STRUCTURES 21

We can assume without losing generality that the last k columns of the
matrix (Φaβ) are independent. Thus, let us consider on the bundle A a set
of coordinates (q1, ..., qn,w1, ...,ws) adapted to the constraints:

wα = vα, ∀α = 1, ..., (s− k),

ws−k+a = φa, ∀a = 1, ..., k.

The coordinates transformation matrices are given by:

Φ̃ =

(
Is−k 0(s−k)×k

A21 A22

)
, Ψ̃ =

(
Is−k 0(s−k)×k

B21 B22

)
,

where the matrix A = (A21A22) is given by Aab = Φa b, for all a = 1, ..., k and
b = 1, ..., s, with A22 invertible by hypothesis, and the matrix B = (B21B22)
is given by B21 = −A−1

22 A21 e B22 = A−1
22 . Note that the matrices satisfy

Φ̃ Ψ̃ = Is = Ψ̃ Φ̃. In the new coordinates the geometrical dynamics solution
is given by

X|B = wαX ′
α + fα(q,w)V ′

α,

where α = 1, ..., s− k. The functions fα are determined by

fα(q,w) = gα(q,w) + λaW
αβΦaβ,

with β = 1, ..., s and a = 1, ..., k, where

XQ
L = wβX ′

β + gβ(q,w)V ′
β,

Za = WαβΦaβV
′
α,

and the function λa is given by

dT Aw
n−k+b(XQ

L ) + λa dT Aw
n−k+b(Za) = 0, ∀b = 1, ..., k.

Therefore, the dynamics is given by the integral curves of the following vector
field in B

ρT A(X|B) = wαXα + fα
∂

∂wα
.

Since the solution X is a SODE section of T A, it satisfies the following
equation

£ρT A
(X)θL = dT AL+ Q + λa p

∗
2Φa.

In the new coordinates, the previous equation is given on B by

d

dt

(
∂L

∂wα

)
= Ψ̃βα ρ

i
β
∂L

∂qi
+ wǫγβǫα

∂L

∂wβ
+ Υα + λaΨ̃βαΦaβ,



22 J.F. CARIÑENA, J.M. NUNES DA COSTA AND PATRÍCIA SANTOS

where q̇i = wαΨ̃βαρ
i
β and Υα = Ψ̃βαQβ is the α-component of the non-

conservative force Q on the new coordinates, with α, ǫ = 1, ..., s− k, α, β =
1, ..., s, a = 1, ..., k e i = 1, ..., n. Thus, we have





q̇i = wαΨ̃βαρ
i
β

d

dt

(
∂L

∂wα

)
= Ψ̃βα ρ

i
β
∂L

∂qi
+ wǫγβǫα

∂L

∂wβ
+ Υα

d

dt

(
∂L

∂wᾱ

)
= Ψ̃βᾱ ρ

i
β
∂L

∂qi
+ wǫγβǫᾱ

∂L

∂wβ
+ Υᾱ + λᾱ−s+k

,

with ᾱ = s − k + 1, ..., s. Eliminating the Lagrange multipliers from the
system we obtain, in the new coordinates, the following generalized Lagrange-
d’Alembert equation

d

dt

(
∂L

∂wα

)
= Ψ̃βα ρ

i
β
∂L

∂qi
+ wǫγβǫα

∂L

∂wβ
+ Υα,

where q̇i = wαΨ̃βαρ
i
β.

Note that we would obtain similar results if we had selected a different set
of coordinates adapted to the constraints: wI = Φ̃Iβv

β and ws−k+a = φa =
Φaβv

β, for all I = 1, ..., s− k and a = 1, ..., k, with the only assumption that
the following matrix be invertible

Φ̃ =

(
A
B

)
,

where AIβ = Φ̃Iβ and Baβ = Φaβ, for all I = 1, ..., s − k, a = 1, ..., k and
β = 1, ..., s.

Example 7.1. Let us consider the motion of a free particle, of unity mass,
in the configuration space M = R

3, with a linear constraint

φ = ż − y ẋ.

In order to determined the solution of this problem, we consider on the Lie
algebroid A = TR

3 the set of local coordinates (x, y, z,w1,w2,w3), given by:

w1 = vx = ẋ, w2 = vy = ẏ, w3 = φ = vz − yvx.
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From the previous relations, we conclude that the coordinates transformation
matrices Φ̃ and Ψ̃ are:

Φ̃ =




1 0 0
0 1 0
−y 0 1


 , Ψ̃ =




1 0 0
0 1 0
y 0 1


 .

The motion of the free particle is characterized by the regular Lagrangian

L =
1

2

(
(w1)2 + (w2)2 + (w3 + yw1)2

)
.

Let B be the constraint manifold. Solving the problem through the method of
Lagrangian multipliers, we obtain the geometrical solution

X|B = w1X ′
1 + w2X ′

2 −
w1w2

y2 + 1
yV ′

1,

where:

XL = w1X ′
1 + w2X ′

2 + w3X ′
3 − w1w2V ′

3;

Z = −yV ′
1 + (y2 + 1)V ′

3;

λ =
w1w2

y2 + 1
.

In this particular case, we can identify T A = T (TR
3) with T (TR

3) = TA.
In a parallel way, we can identify the solution X|B with a vector field on B,

X|B ≡ w1 ∂

∂x
+ w2 ∂

∂y
+ yw1 ∂

∂z
−

w1w2

y2 + 1
y

∂

∂w1
.

The dynamics is given by the integrable curves of the above vector field.

7.2. Gibbs-Appell’s method in a Lie algebroid framework. In the
formalism of Lie algebroids, the aim of Gibbs-Appell’s method is to deter-
mined the equations of motion of a system with constraints. This method
consist, in a first step, to determine the Gibbs-Appell’s function associated
with the Lagrangian of the system without constraints. After that, we need
to obtain this function in a set of coordinates adapted to the constraints and,
in the last step, we need to determine the equations of motion, given by the
Gibbs-Appell in the new coordinates.

Next we will determine the Gibbs-Appell’s function associated to a La-
grangiano L ∈ C∞(A), defined on a Lie algebroid (A, ρ, [·, ·]A) over M . We
will show that this function is defined on a subset A(2) of TA, given by the
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set of equivalent classes of admissible curves in the bundle p : A → M , i.e.
curves σ′ : I → A in A such that σ̇(t) = ρ(σ′(t)), where σ : I →M is a curve
in M given by σ(t) = p ◦ σ′(t). The equivalence relation between two curves
of A, σA ≡ (σ, σ′) and γA ≡ (γ, γ′), is given by: the curves σA and γA are
said to be equivalent if and only if





σ(0) = γ(0)
σ′(0) = γ′(0)
σ̇′(0) = γ̇′(0)

.

The set A(2) is an affine subbundle of pTA : TA → A, whose projection in A
is given by

p2,1 : (q,v, a) ∈ A(2) → (q,v) ∈ A,

and the inclusion of A(2) in TA is defined by

i : (qi,vα, aα) ∈ A(2) → (qi,vα,vαρiα, a
α) ∈ TA.

So, given an element v ∈ A
(2)
a of the form v = (qi,vα, aα), we have i(v) =

vαρi α∂/∂q
i + aα∂/∂vα.

Let L ∈ C∞(A) be a regular Lagrangian of a system without constraints,
depending on a non-conservative force Q. To define the Gibbs-Appell’s func-
tion associated to the Lagrangian L, we need first to consider the section of
T A over the map p2,1 : A(2) → A

ΓL = XL ◦ p2,1 − T(1),

where XL is the solution of the equation i(XL)ωL = dT AEL, given in local
coordinates by XL(q,v) = vαXα + F α(q,v)Vα, and T(1) is a section of T A
over the map p2,1 : A(2) → A defined by v(1) = ρT A ◦ T (1), where v(1) is a
vector field on A over the map p2,1 : A(2) → A, given by

v(1) ◦ σ2 = Tσ1(d/dt),

for all admissible curves σ1 ≡ (σ, σ′) : I → A, where σ2 = (σ, σ′, σ̇′) : I →
A(2).

T A
ρT A // TA

pTA

��

A(2)

T
(1)

OO
v(1)

<<
y

y
y

y
y

y
y

y

p2,1

// A
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In local coordinates, the curve σ1 is given by (σi,vα) and, since it is admis-
sible, we have that σ̇i = vαρi α. Thus,

v(1)(qi,vα, v̇α) = vαρiα(q) ∂qi + v̇α ∂vα.

The section T(1) of T A over the map p2,1 : A(2) → A, is given in local
coordinates by

T(1)(qi,vα, v̇α) = vαXα(q
i,vα) + v̇αVα(q

i,vα).

Therefore, the section ΓL takes values in the vertical subbundle of T A, i.e.
p2 ◦ ΓL = s0 ◦ p2,1, where s0 is the null section of A; in local coordinates,

ΓL(q
i,vα, v̇α) = (F α(qi,vα) − v̇α)Vα.

Let us also consider a symmetric tensor GA : T A×A T A→ R in A, given in
local coordinates by

GA(q,v) = G1
αβ (q,v)Vα ⊗ Vβ + G2

αβ (q,v)Vα ⊗X β + G3
αβ (q,v)X α ⊗X β,

such that S∗GA = p∗2G, where G : A ×M A → R is the fundamental tensor
associated to the Lagrangian function L ∈ C∞(A), given in local coordinates
by G(q) = Gαβ(q)e

α ⊗ eβ, where Gαβ = ∂2L/∂vα∂vβ. In this way, G1
αβ(a) =

Gαβ(p(a)), for all a ∈ A. Thus, the Gibbs-Appell’s function associated to the
Lagrangian L is a function on A(2), defined by

GL =
1

2
G̃(ΓL,ΓL),

where G̃ = GA ◦ p2,1.
Let us consider a dynamical system on the Lie algebroid A with k li-

near non-holonomic constraints φa(q,v) = Φ̂a(q,v) = Φaβ(q)v
β, and let

(q1, ..., qn,w1, ...,ws) be a set of coordinates in A adapted to the constraints:

wα = Φ̃αβv
β,

where the last k coordinates coincide with the constraints φa, that is,

wI = Φ̃Iβv
β, ∀I = 1, ..., (s− k),

ws−k+a = φa, ∀a = 1, ..., k.

The coordinate transformation matrix Φ̃ is invertible, so vα = Ψ̃αβw
β, where

Φ̃γαΨ̃αβ = δγβ. The Gibbs-Appell function GL, defined in a curve (qi,vα, v̇α)
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in A(2), is given by

GL(q,v, v̇) =
1

2
Gαβ(q) v̇

αv̇β − Gαβ(q) v̇
αF β(q,v) +

1

2
Gαβ(q)F

α(q,v)F β(q,v).

In the set where the constraints ws−k+a = φa and their time derivatives
are equal to zero, the function GL is easily written in the new coordinates
(q1, ..., qn,w1, ...,ws−k, ẇ1, ..., ẇs−k). Note that the time derivative of a func-
tion f ∈ C∞(A) is a function in C∞(A(2)), given by

dT(1)f = i(T(1))dT Af = v(1)f,

where T(1) is a section of T A over the map p2,1 : A(2) → A, previously
defined.

To determine the equations of motion of the non-holonomic system de-
pending on a non-conservative force Q, we need to solve the system given by
the Gibbs-Appell (s− k)-equations

∂GL(q,w, ẇ)

∂ẇI
= ΥI , (17)

where ΥI = Ψ̃βIQβ is the I-component of the non-conservative force, in the
new coordinates, with I = 1, ..., s − k. Let B be the constrained manifold.
The geometrical solution of the non-holonomic system is the following section
of T B

X = wI X ′
I + ẇI V ′

I ,

where {X ′
α,V

′
α} is given by (12), that is,

X(a) =

(
a,wIfI(m),wIXI(a) + ẇI

∂

∂wI

∣∣∣∣
a

)
,

for all a ∈ Am, where XI = Ψ̃βIρ
i
β ∂qi. Therefore, the dynamics is given by

the integral curves of the following vector field on B

ρT A(X) = wIXI + ẇI
∂

∂wI
.

Example 7.2. Let A = TR
2 × R

3 → R
2 be a vector bundle, whose local

coordinates (x, y, ẋ, ẏ, ωx, ωy, ωz) are associated the the local basis of sections
{e1 = (∂x, 0), e2 = (∂y, 0), e3 = (0, X3), e4 = (0, X4), e5 = (0, X5)} of A. The
vector bundle A is endowed with a Lie algebroid structure (ρ, [·, ·]A), given
locally by:

[e3, e4]A = −e5, [e3, e5]A = e4, [e4, e5]A = −e3, ρ(e1) = ∂x, ρ(e2) = ∂y,
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where the remaining structure functions are zero. Let us suppose that a non-
holonomic system on the Lie algebroid A is characterized by the regular La-
grangian

L =
1

2
(ẋ2 + ẏ2) +

k2

2
(ω2

x + ω2
y + ω2

z),

whose constraints are given by:

φ1 = ẋ− rωy,

φ2 = ẏ + rωx,

where k, r are constants (see [8]). The solution of the system without cons-
traints is a section of T A, that is written in local coordinates as

XL = ẋX1 + ẏX2 + ωxX3 + ωyX4 + ωzX5,

where X1(a) = (a, e1(m), ∂x|a), X2(a) = (a, e2(m), ∂y|a) and Xi(a) =
(a, ei(m), 0), for all a ∈ Am and i = 3, 4, 5. Thus, the Gibbs-Appell’s function
associated with L is given for

GL =
1

2

[
(v̇1)2 + (v̇2)2

]
+
k2

2

[
(v̇3)2 + (v̇4)2 + (v̇5)2

]
.

Let us consider the following coordinates:

w1 = v1 = ẋ, w2 = v2 = ẏ, w3 = v5 = ωz,

w4 = φ1 = v1 − rv4, w5 = φ2 = v2 + rv3.

Taking the constraints and their time derivatives equal to zero, we obtain

GL =
1

2

[
(ẇ1)2 + (ẇ2)2

]
+
k2

2

[(
−ẇ2

r

)2

+

(
ẇ1

r

)2

+ (ẇ3)2

]
.

Solving the Gibbs-Appell equations, we conclude that

ẇ1 = ẇ2 = ẇ3 = 0.

Therefore, the geometrical solution of the non-holonomic is given by

X = w1X ′
1 + w2X ′

2 + w3X ′
3,

that is,

X(a) = (a, ẋf1(m) + ẏf2(m) + ωzf3(m), ẋ∂x|a + ẏ∂y|a),

for all a ∈ Am.
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8. Conclusions

The Lie algebroid formalism is an important geometrical tool to study
classical mechanics, describing it as well as in usual coordinates as in quasi-
coordinates. We believe that the geometrical description we presented makes
the resolution of systems using quasi-coordinates in a tangent bundle easier.

We can use the Lie algebroid formalism to study systems with linear
non-holonomic constraints, in parallel with the study of this type of sys-
tems in classical mechanics on a tangent bundle. Again, the rôle of “quasi-
coordinates” is essential to solve these systems. The Gibbs-Appell generali-
zed method is an useful tool to determine the equations of motion of a system
with constraints. In most cases, this method is more efficient to solve systems
with linear non-holonomic constraints than the Lagrange multipliers (genera-
lized) method or the resolution of the generalized Euler-Lagrange equations.
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