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MORE ON 2-MODULES
ISAR STUBBE

ABSTRACT. A. Joyal and M. Tierney showed that the internal suplattices in the topos of
sheaves on a locale are precisely the modules on that locale. Using a totally different
technique, | shall show a generalization of this result to the case of (ordered) sheaves
on a (small) quantaloid. Then | make a comment on module-equivalence versus sheaf-
equivalence, using a recent observation of B. Mesablishvili and the notion of ‘centre’ of a
guantaloid.
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1.2-modules are2-suplattices

Given any quantaloid?, a new quantaloiddm(2) is built as follows: its ob-
jects are the idempotent arrows &f, and its arrows are “regular bimodules”.
Clearly there is a full embedding 2 —Idm(£2), sending an arrow: A— B to
f: 14-=+15. Note thatldm(2) is small wheneveg is.

Lemma 1.1.If #Z is a quantaloid in which idempotents split, then, for any quan-
taloid 2,

—oi: QUANT(Idm(£2),Z)— QUANT (2, %)
is an equivalence of quantaloids.

Sketch of proof Given F': 2—%, we must define'’: Idm(2)—%. But an
arrowb: e f in ldm(2) is a diagram

e f
Oy b,
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in 2, satisfyingeoe =¢, fo f = f,boe =b= fob. Applying F we have a
similar diagram inZ, in which we can thus split the idempotents:

Fe Fy

‘pa—tt . pp

N

FAp. FBpy
Now put

F(b: H»f> _ (pfoFbosez FAFEHFBFJC)
and verify that
(—): QUANT(2,%2)— QUANT (Idm(2), %)

gives the required inverse to o . O

Since idempotents split in the quantal&dp, we have an important special case
of the above; recall thadflod(2) = QUANT(2°P, Sup) is the quantaloid of so-
called 2-modules.

Proposition 1.2. For any quantaloid2,
—o0i: Mod(ldm(£)) —Mod(2)
IS an equivalence of quantaloids.

With the work previously done in [Stubbe, 2004] we can record a corollary;
recall that for a small quantaloi@, Cocont(2) denotes the (locally cocompletely
ordered) category of cocomplefe-categories and cocontinuous functors [Stubbe,
2005a].

Corollary 1.3. For a small quantaloid2,
Cocont(2) ~ Mod(£2) ~ Mod(ldm(£2)) ~ Cocont(ldm(2))
are (bi)equivalent locally ordered categories.

We will now study the monadicity ood(2). Recall that a Kock—@berlein
doctrine on a locally ordered 2-categdfyis a monad

(T:6—C,n: ldg=T,u: ToT=T)
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for whichT'(n¢) < nre for anyC' € €. This precisely means thaf “structures
are adjoint to units” [Kock, 1995]. Further on we will encounter an instance of
the following abstract lemma.

Lemma 1.4. For locally ordered 2-categories and 2-functors as in

Vv W
U
oS T %€

F
with W a local equivalencelV o V' = U, andn: idgy=U o F' the unit of the
involved adjunction, we get that

(1) FoW 4V anditsunit: Ildg=V o (F o W) satisfies) x idy = idy * &,
that is, W (£p) = nwp for everyB € A.

WritingT = UoF: € —% andS = Vo (FoW): — %, these monads satisfy

2Q)T oW =WoS,
(3) if T'is a KZ doctrine then
(@) also .S is a KZ doctrine,
(b) B € #is an S-algebra if and only ifit B is a T-algebra,
(c) for A € o7, UAis aT-algebra if and only ifi” A is an S-algebra,
(d) if o ~ €7 thens ~ 5°.

Proof: To prove thatt' o W -V, observe that foB € % andC € €,
PB(B,VC)
l applyWw
o (WB,WVC)
use that/ = WV
o (WB,UC)

l use thatt' 4 U
¢ (FWB,(C)
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are all equivalences (recall thif is supposed to be a local equivalence). Putting
C' = FW B in the above, and tracing the elemént; 3 through the equivalences,
it results indeed thatl/ (¢5) = nw .

The second part of the lemma is trivial.

For the third part, suppose th&atn-) < nr¢ for anyC € ¢, then also

WS(Ep) =TW (&) =T(mwa) < nrws = nwss = W(&sp)

for every B € %; but W is locally an equivalence, s8(¢z) < £gp as required
to prove (a). Now, by the very nature of the algebras of KZ doctritks %

Is an S-algebra if and only if¢z is a right adjoint in%, which is the same as
W (&) = nwp being a right adjoint irg” becauséV is locally an equivalence,
and this in turn is just saying th&t’ B is aT-algebra. This proves (b), and (c)
readily follows by puttingB = VA foranA € o/, and using thatV o V' = U; so
(d) becomes obvious. O

It is a result from2-enriched category theory [Stubbe, 2005a] tGatont(2)
is monadic oveCat(2): the forgetfulCocont(2) — Cat(2) admits the presheaf
contruction as left adjoint,

F
Cocont(2) | , Cat(2),

4
and moreover the structure map of an algebra for the monad is left adjoint to the
unit of the adjunction (i.eA € Cocont(2) if and only if Y : A— ZA admits a
left adjoint in Cat(2), which is then the structure map of the algelifa Since
there is thdully faithful forgetful Cat..(2) — Cat(2), the same thing can be said
about the forgetfuCocont(2)— Cat..(2) (as recalled in the lemma above): the
presheaf contruction thus provides a left adjoint, &odont(2) is precisely the
category of algebras for the induced monad_an..(2). We can apply this to the
quantaloiddm(2), of course.

Proposition 1.5. For any small quantaloid?, Cocont(ldm(2)) is the category of
algebras for the presheaf mona# : Cat..(ldm(2))— Cat(ldm(2)).

In combination with the above remarks on modules, we can now justify the
slogan that 2-modules are2-suplattices”. Recall tha®rd(2), the (locally
ordered) category of ordered sheaves on a small quantaloid equivalent to
the categoryCat..(ldm(2)) of Cauchy complete categories enricheddm(2)
[Stubbe, 2005c].
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Theorem 1.6.For a small quantaloid?, the diagram

S
Mod(2) ~ Cocont(ldm(£2)) 1 — Catc(ldm(2)) ~ Ord(2)
4
exhibits the quantaloitMod(2) as being (biequivalent to) the (locally completely

ordered) category of algebras for the presheaf construction.

It would thus make sense to wrifep(2) for any of the equivalent expressions
Cocont(£2) ~ Mod(2) ~ ..., and to speak of 2-suplattices”. It is then the case
thatSup(2) ~ Sup is just the “ordinary” quantaloid of suplattices; and for a locale
L, Sup(L) gives indeed the suplattices in the tofgdg L) (which means that the
above theorem is an alternative to Joyal and Tierney’s [1984] proof for the fact
that L-modules are the suplatticesSh(L)).

2.Every small quantaloid is Morita-equivalent to a quantale

Bachuki Mesablishvili [2004] observes that every small quantaloid is Morita
equivalent to a quantale; in fact he uses Max Kelly’s [1982] powerful but rather
abstract/ -category theory to prove this result. | will sketch an elementary proof.

Let £ be a small quantaloid; we may view its object $&t as a2-typed set
in the obvious way. TheMatr(2)(2,, 2,) is certainly a quantale, for it is an
endo-hom object in the quantaldidatr(2) of matrices with elements i? (see
[Stubbe, 2005a]). One can indeed picture the elements of this quantale as gigantic
square matrices: avl € Matr(2)(2,, 2,) is a collection of2-arrows

(M(B,A): A—B| (A B) e 2 x Qo);
such matrices are ordered elementwise:
M<N < V(A,B) € Zyx Zy:M(B,A) <N(B, A)

(so supremum of matrices is calculated elementwise); and multiplication is done
with the linear algebra formula:

(NoM)(B,A) = \/ N(B,X)oM(X,A).
Xe2,

Theorem 2.1.Given a small quantaloid?, put.# = Matr(2)(2y, 2y); then
Mod(2) ~ Mod(.Z).
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Sketch of proof We must first introduce some notation: fotaarrow f: A— B,
let M[; denote the square matrix whose elements are

| f if X =AandY =B,
M (Y, X) = { Oxy Otherwise

Here,0x y denotes the bottom element of the suplatt2eX, V).

Given a2-module F': 2—Sup, regard the elements of the direct surh =
@acoF A in Sup as “column vectors’s = (r4)aco With x4 € FA. ThenF
determines an actionp: .# x ¥ —%: (M,x) — ap(M,z) where theA™
component of the column vectalM,, x) is, by definition,

(ar(M,2)) = \/ F(M(A X)) (2a).
Xe2

That is to say, we take the image Byof the matrixM and then perform a matrix
multiplication.

Conversely, letv: #Z x £ — % be an action irbup. Since it is clear that, for
A B e 2,

M, ifA=B,

M, oMy, = { 0  otherwise,

it follows that, for anyA € 2, o(M; ,, —): £ —.Z is an idempotent iSup, and
therefore splits over some suplatti¢é:

&(M1A7 _) P
A
Qgﬂ S:A> Zy.

(It is easily verified that? = ®4c9.Z4.) Now we can define a&-module
F,: 2—Sup by putting
F, (f AHB) =ppoa(My,—)oss: Ly— Lp.

The definitions forF' — ap anda — F,, extend to quantaloid homomorphisms
Mod(2) — Mod(.#) andMod(.#') —Mod(2), which prove to be inverse equiv-
alences. O

3.The centre of a qguantaloid

The aim of this section is to discuss a notion, namely the centre of a quantaloid,
which is invariant under Morita equivalence.
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For any quantaloid?, let Z°(2) be shorthand foQUANT (2, 2)(ld 2, d2),
and call it the centre of2. This Z(2) is by definition a commutative quantale:
that 2°(2) is a quantale, is because it is an endo-hom-object of the quantaloid
QUANT (2, 2); that itis moreover commutative, is beca@@@eANT (2, 2)isin
fact monoidal — with tensor given by composition — and tHatis the unit object
for the tensor. Unraveling the definition, an elemert 2°(2) is a collection of
endo-arrows

( AQQA Ae )

such that forevery: A—Bin 2,ago f = f o ay.
The following proposition was inspired by [Bass, 1968, p. 56]; | have never seen
the version below in print, but | suppose that it belongs to folklore.

Proposition 3.1. For any quantaloid?, #(2) = % (Mod(2)).

Sketch of proof Given a natural transformatiam: Id 9 —1d o, build the natural
transformatiort: Idyieq(.2)— ldmod(2) Whose component at/ € Mod(2) is the
natural transformatiom,,;: M — M, whose component a4 € 2 is the Sup-

arrow

ady = M(ap): M(A)—M(A).
Conversely, given a natural transformatiénldyeq(2) — Idvoeq(2), build the nat-
ural transformatiors: Id o — Id » whose component at € 2 is the 2-arrow

Ba=Bo_y(1a): A=A

The mappingsy — & and3 — ( thus defined are quantale homomorphisms
Z(2)— Z(Mod(£2)) and Z(Mod(2)) — Z (L) which are each other’s in-
verse. O

As an obvious corollary we may record the following.

Corollary 3.2. Morita-equivalent quantaloids have isomorphic centres.
4.Module equivalence compared with sheaf equivalence
Proposition 4.1. For small quantaloids? and .2,

2~ 2 = 0rd(2) ~ 0rd(2') = Mod(2) ~ Mod(2') = Z(2) = Z(2').

Sketch of proof The first implication is obvious (“equivalent bases give equivalent
enriched structures”). The second implication is dug.6 modules are precisely
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algebras for the presheaf monad on the ordered sheaves. For the third implication,
see3.’. 0

It is an interesting problem to study the converse implications in the above propo-
sition. These converse implications do not hold in general, as the following coun-
terexample shows.

Counterexample 4.2.Let 2 be a quantaloid which can not be equivalent to a
quantale, for exampl& = 2 + 2 (coproduct iNQUANT):

1 ) 1
G e )
S0

0 0

Then still, by2.1and3.2, there exists a quantale with the same centr&aso,
in general,?(2) ~ 2°(£2’) does not imply2 ~ 2’

We must thus study extra conditions ghand 2’ that allow for the converse
implications in4.1. At least one such special case is thatommutative quan-
tales

Proposition 4.3. For commutative quantale® and .2,
2~ 92 & 0rd(2) ~ 0rd(2') & Mod(2) ~ Mod(2').
Proof: A quantale is commutative if and only if it equals its centre. O

A locale is in particular a commutative quantale, so the above applies. Moreover
— and this in contrast with the case of quantaloids or even quantales — apart from
ordered sheaves@td”) and completely ordered sheavedAsd”), we may also
consider sheaves§h”) on a locale.

Proposition 4.4. For localesL and L',
L~ "< Sh(L) ~ Sh(L') < Ord(L) ~ Ord(L") & Mod(L) ~ Mod(L').

Sketch of proof The first equivalence follows from the fact that a locales (iso-
morphic to) the locale of subobjects of the terminal obje&tifi.) (see [Borceux,
1994, vol. 3, 2.2.16] for example). The other equivalences are instandes df
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